TABLA DE CONTENIDO

Capítu	ılo 1: IN	NTRODUCCIÓN1
1.1	Introd	ducción / Motivación1
1.2	Objet	ivos
1.	2.1 (Objetivo general
1.	2.2 (Objetivos específicos
1.3	Metoo	dología4
1.4	Orgar	nización5
Capítu	ılo 2: S.	AFE-TOOLBOX
2.1	Descr	ripción general7
2.2	Leyes	s de los materiales8
2.	2.1 H	Hormigón
2.	2.2 A	Acero embebido14
Capítu	ılo 3: V	ALIDACIÓN DEL ELEMENTO TIPO SHELL
3.1	Mont	aje experimental de Thomsen y Wallace16
3.2	Mode	elos numéricos de los muros TW1 y TW219
3.3	Comp	paración de resultados
3.4	Factor	r de convergencia de carga23
Capítu	ılo 4: S	ELECCIÓN DE MUROS REPRESENTATIVOS25
4.1	Criter	rios de selección
4.2	Mode	elamiento de los muros seleccionados
4.3	Resul	ltados entregados por los modelos numéricos41
Capítu	ılo 5: D	DISEÑO DE LOS MUROS DE ENSAYO45
5.1	Predis	seño de los muros de ensayo45
5.2	Mode	elos numéricos de los muros de ensayo49

5.3	Resultados entregados por los modelos numéricos	55
5.4	Planos de los muros de ensayo	60
Capítu	ilo 6: CONCLUSIONES	75
BIBLI	OGRAFÍA	78
ANEX	XO A: Modelo de Saatcioglu y Razvi	80
Anexo	B: Montaje experimental de Thomsen y Wallace	82
Anexo	C: Verificación del diseño de las losas	83
Anexo	D: Verificación del diseño de la viga de transferencia de carga	85
Anexo	E: Verificación del diseño del pedestal	90

ÍNDICE DE TABLAS

Tabla 1.1: Diferencias en la normativa antes y después del terremoto del año 2010	2
Tabla 3.1: Propiedades de las barras de refuerzo.	17
Tabla 3.2 Tiempos de análisis del modelo TW1 antes y después de usar phi	24
Tabla 4.1: Cálculo del porcentaje de Ag \cdot fc' que iguala a la carga axial	29
Tabla 5.1: Cuantías de refuerzo usadas en los modelos de los muros de ensayo	55

ÍNDICE DE ILUSTRACIONES

Figura 2.1: Elemento con sección compuesta por capas7	1
Figura 2.2: Distribución de tensiones en una sección de hormigón armado	,
Figura 2.3: Modelo constitutivo del hormigón en tracción de Belarbi y Hsu9)
Figura 2.4: Modelo constitutivo del hormigón en compresión de Thorenfeldt10)
Figura 2.5: Modelo del comportamiento histerético del hormigón de Massone11	
Figura 2.6: Variación en la capacidad máxima del hormigón en compresión12	
Figura 2.7: Modelo constitutivo del acero de Menegotto y Pinto.	-
Figura 3.1: Dimensiones de los especímenes TW1 y TW216)
Figura 3.2: Detalle de la armadura del muro TW1 (Hernández [6]) 17	'
Figura 3.3: Detalle de la armadura del muro TW2 (Hernández [6])	,
Figura 3.4: Mallado utilizado en los modelos numéricos de los muros TW)
Figura 3.5: Resultado analítico vs experimental del muro TW1 (Hernández [6]))
Figura 3.6: Resultado analítico vs experimental del muro TW2 (Hernández [6])21	
Figura. 3.7: Perfil de deformaciones analítico vs experimental del ala (Hernández [6])22	•
Figura 3.8: Perfil de deformaciones analítico vs experimental del alma (Hernández [6])22	,
Figura 3.9: Respuesta analítica del muro TW1 antes y después de usar phi	,
Figura 4.1: Histograma de la relación de largo alma/ala26)
Figura 4.2: Espesor de los muro en el primer piso	'
Figura 4.3: Histograma del porcentaje de borde en ambas secciones	'
Figura 4.4: Histograma de la cuantía logitudinal de borde28	, ,
Figura 4.5: Histograma del coeficiente de carga axial)
Figura 4.6: Plano (con vista en elevación) del muro MT1	,
Figura 4.7: Cuantías de acero utilizadas en el muro MT134	-
Figura 4.8: Plano (con vista en elevación) del muro MT2.	í
Figura 4.9: Cuantías de acero utilizadas en el muro MT2)
Figura 4.10 Mallado usado en los modelos numéricos de los muros MT38	, ,
Figura 4.11: Curva esfuerzo-deformación para los materiales del muro MT1)
Figura 4.12: Curva esfuerzo-deformación para los materiales del muro MT240)
Figura 4.13: Desplazamiento de los nodos en los modelos numéricos de los muros MT42	•
Figura 4.14: Respuesta entregada por el modelo numérico del muro MT143	;

Figura 4.15: Respuesta entregada por el modelo numérico del muro MT244
Figura 5.1: Detalle del doblez de los ganchos de las trabas y la doble malla horizontal46
Figura 5.2: Dimensiones de los especímenes ET1 y ET247
Figura 5.3: Dimensiones del espécimen ET348
Figura 5.4: Curva esfuerzo-deformación para los materiales de los muros de ensayo 50
Figura 5.5: Mallado usado en los modelos paramétricos de los muros de ensayo51
Figura 5.6: Dimensiones y cuantías de acero en el muro de ensayo ET1
Figura 5.7: Dimensiones y cuantías de acero en el muro de ensayo ET2
Figura 5.8: Dimensiones y cuantías de acero en el muro de ensayo ET3
Figura 5.9: Desplazamiento de los nodos en los modelos numéricos de los muros ET56
Figura 5.10: Respuesta entregada por el modelo numérico del muro ET157
Figura 5.11: Respuesta entregada por el modelo numérico del muro ET258
Figura 5.12: Respuesta entregada por el modelo numérico del muro ET359
Figura 5.13: Plano (con vista en elevación) del muro de ensayo ET163
Figura 5.14: Plano (con vista en planta) del muro de ensayo ET164
Figura 5.15: Plano (con vista en elevación) del muro de ensayo ET265
Figura 5.16: Plano (con vista en planta) del muro de ensayo ET266
Figura 5.17: Plano (con vista en elevación) del muro de ensayo ET367
Figura 5.18: Plano (con vista en planta) del muro de ensayo ET2 – Parte 1
Figura 5.19: Plano (con vista en planta) del muro de ensayo ET3 – Parte 269
Figura 5.20: Plano (con vista en planta) de la losa de los muros de ensayo ET70
Figura 5.21: Plano de la viga de transferencia de carga71
Figura 5.22: Plano (con vista en planta) del pedestal72
Figura 5.23: Plano de secciones en el pedestal73
Figura 5.24: Plano con distribución de estribos en el pedestal74
Figura A.1: Distribución de tensiones en sección rectangular (Saatcioglu y Razvi [13])80
Figura B.1: Montaje experimental de Thomsen y Wallace (Hernández [6])