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ABSTRACT

Aims. We present new astrometric measurements of the components in the T Tauri system and derive new orbits and masses.
Methods. T Tauri was observed during the science verification time of the new extreme adaptive optics facility SPHERE at the
VLT. We combine the new positions with recalibrated NACO-measurements and data from the literature. Model fits for the orbits of
T Tau Sa and Sb around each other and around T Tau N yield orbital elements and individual masses of the stars Sa and Sb.
Results. Our new orbit for T Tau Sa/Sb is in good agreement with other recent results, which indicates that enough of the orbit has
been observed for a reliable fit. The total mass of T Tau S is 2.65 ± 0.11 M�. The mass ratio MSb:MSa is 0.25 ± 0.03, which yields
individual masses of MSa = 2.12 ± 0.10 M� and MSb = 0.53 ± 0.06 M�. If our current knowledge of the orbital motions is used to
compute the position of the southern radio source in the T Tauri system, then we find no evidence of the proposed dramatic change in
its path.

Key words. stars: pre-main sequence – stars: individual: T Tauri – stars: fundamental parameters – binaries: close – astrometry –
celestial mechanics

1. Introduction

T Tauri is a triple star that became the eponymous member of the
class of low-mass, pre-main-sequence stars. It is located in the
Taurus-Auriga star-forming region at a distance of 146.7± 0.6 pc
(Loinard et al. 2007b). As the brightest member of the class, it
was the subject of many studies of the stellar components and/or
the circumstellar material surrounding them.

Using speckle-interferometry, Dyck et al. (1982) were able
to resolve T Tauri into two components separated by about 0.′′7,
which are commonly called T Tau N and T Tau S. The south-
ern component is only visible in the infrared, and it has not
been detected in the V-band down to 19.6 mag (Stapelfeldt et al.
1998). With the construction of larger telescopes, it became pos-
sible to resolve T Tau S itself into two stars named T Tau Sa
and T Tau Sb (Koresko 2000). Because of their small separa-
tion (∼50 mas at the time of the discovery) and short orbital pe-
riod, it is possible to determine their orbital parameters within
a reasonable time span. A number of authors have presented or-
bit fits (e.g., Beck et al. 2004; Johnston et al. 2004; Duchêne
et al. 2006; Schaefer et al. 2006; Köhler et al. 2008; Köhler
2008; Schaefer et al. 2014), where the precision of the orbital

� Based on observations collected at the European Southern
Observatory, Chile, proposals number 070.C-0162, 072.C-0593, 074.C-
0699, 074.C-0396, 078.C-0386, 380.C-0179, 382.C-0324, 60.A-9363
and 60.A-9364.

parameters improved as more observational data became avail-
able. The nearby third component T Tau N can be used as an as-
trometric reference to determine the individual orbits of Sa and
Sb around their center of mass (Duchêne et al. 2006; Köhler
et al. 2008; Köhler 2008). The ratio of the semi-major axes is
equal to their mass ratio, while the sum of both masses can be
computed from the Sa/Sb orbit. From the mass ratio and sum to-
gether, we obtain individual masses for Sa and Sb. It turned out
that T Tau Sa is the most massive component in the triple sys-
tem, despite its faintness at optical and near-IR wavelengths. (It
was never detected in J-band, including with the new SPHERE
observations.) The currently most likely explanation for this is
that T Tau Sa and Sb are hidden behind circumstellar and/or
circumbinary material (Duchêne et al. 2005).

In this work, we report on our astrometric analysis of obser-
vations taken during the science verification time of SPHERE.
The data was analyzed independently by a different team, who
presented their results in Csépány et al. (2015). In addition to the
SPHERE data, we also recalibrated all the available NACO data
to provide a more consistent astrometric reference frame. This
includes two NACO observations that have not been published
before. We use these data to derive improved orbital elements
and masses and discuss the implications for our understanding
of the system.

This paper reports on the astrometric measurements taken
with SPHERE. The science verification data also allowed us to

Article published by EDP Sciences A35, page 1 of 8

http://dx.doi.org/10.1051/0004-6361/201527125
http://www.aanda.org
http://www.edpsciences.org


A&A 587, A35 (2016)

Table 1. Pixel scale and orientation of our NACO observations.

Epoch Pixel scale PA of the y-axis
[mas/pixel] [◦]

Dec. 2001 13.241 ± 0.011 1.26 ± 0.10
Dec. 2002 13.239 ± 0.028 0.01 ± 0.06
Dec. 2003 13.262 ± 0.025 0.18 ± 0.13
Dec. 2004 13.295 ± 0.024 0.01 ± 0.10
Dec. 2006 13.258 ± 0.020 0.50 ± 0.06
Sep. 2007 13.270 ± 0.010 0.43 ± 0.12
Feb. 2008 13.283 ± 0.004 0.47 ± 0.10
Oct. 2008 13.269 ± 0.015 0.54 ± 0.10
Feb. 2009 13.266 ± 0.013 0.54 ± 0.08

image the extended emission in the T Tauri system in unprece-
dented detail. These results will be presented in a subsequent
paper (Kasper et al. 2015).

2. Observations and data reduction

Many measurements of the relative positions of two or three
of the components of T Tau have been published in the past
(Ghez et al. 1995; Roddier et al. 2000; White & Ghez 2001;
Koresko 2000; Köhler et al. 2000; Duchêne et al. 2002, 2005,
2006; Furlan et al. 2003; Beck et al. 2004; Schaefer et al. 2006;
Köhler et al. 2008; Köhler 2008; Schaefer et al. 2014). We use
all of these data to solve for the orbit with the exception of the
points by Mayama et al. (2006), because they deviate signifi-
cantly from the model and the other measurements.

2.1. NACO

Between 2001 and 2009, T Tauri was observed almost yearly
with the adaptive optics, near-infrared camera NACO at the ESO
Very Large Telescope (VLT) on Cerro Paranal, Chile (Rousset
et al. 2003; Lenzen et al. 2003). Most of the data have al-
ready been published (Köhler et al. 2008; Köhler 2008) with
the exception of the observations in October 2008 and February
2009. However, the astrometric calibration of the published data
was derived from a field near the Trapezium in the Orion neb-
ula cluster and coordinates by McCaughrean & Stauffer (1994).
By now, much better coordinates are available (Close et al.
2012). Therefore, we recalibrated all the available NACO-data
of T Tauri. The results of the new calibration are listed in Table 1
and the new relative positions of T Tauri in Table 2. The new cal-
ibration resulted on average in a pixel scale that is 0.2% larger
and a rotation by 0.3◦ compared to the old calibration.

2.2. SPHERE

T Tauri was observed during the science verification time of the
extreme adaptive optics facility SPHERE (Spectro-Polarimetric
High-contrast Exoplanet REsearch) at the VLT (Beuzit et al.
2008) on December 9, 2014 and January 23, 2015. It was the
target of two different science programs (PIs: Markus Kasper
and Gergely Csépány).

We applied standard methods for infrared data reduc-
tion (dark subtraction, flatfield, and correction of bad pixels).
Figure 1 shows one of the reduced images. The positions of the
stars were measured with the Starfinder software (Diolaiti et al.
2000). Uncertainties were estimated by computing the standard
deviation of positions measured in individual images.

In December 2014, T Tauri was imaged with the infrared
dual-band imager and spectrograph (IRDIS) through a number
of narrow-band filters. We measured the relative positions of the
three components of T Tauri in the images obtained with the
BrG filter, which has a central wavelength of 2162.9 nm. The as-
trometric calibration was carried out by the instrument team and
is described in the SPHERE user manual1. During the science
verification campaign, SPHERE observed a dedicated field in the
outer region of the globular cluster 47 Tuc to derive astrometric
calibration of the IRDIS broad-band H image, using the Hubble
Space Telescope (HST) data as a reference (see Bellini et al.
2014 for the methods used to obtain HST measurements). The
derived plate scale was 12.232 ± 0.005 mas/pixel (for observa-
tions without a coronograph), and the y-axis of the IRDIS detec-
tor was at a position angle (PA) of −1.764± 0.01◦. The anamor-
phic distortion was corrected by multiplying the y-coordinates
by 1.0062. We used images taken with SPHERE’s internal grid
mask to confirm that the pixel scale is the same with the H-band
and the BrG filters.

In January 2015, images were recorded with IRDIS through
a K-band filter. For most of these observations, T Tau N was
hidden behind a coronographic mask (Csépány et al. 2015).
Therefore, we did not measure its position, but only the relative
positions of T Tau Sa and Sb. The pixel scale and orientation pro-
vided by the SPHERE consortium were used for the astrometric
calibration.

The results for both observations are presented in Table 2.
These data sets were reduced independently by Csépány et al.
(2015) with different results for the positions. At the time of their
analysis, the precise pixel scale and true north orientation were
not known, which explains the different positions (G. Csépány,
priv. comm.).

3. Orbit determination

3.1. The orbit of T Tauri Sa/Sb

To determine the orbit of T Tau Sa and Sb around each other,
we followed the method described in Köhler et al. (2008). The
first step was to find the best period, eccentricity and time of
periastron with a grid search, while the remaining four orbital
elements were written in the form of the Thiele-Innes constants
and found using singular value decomposition. In a second step,
we improved the results of this grid search by fitting all seven
parameters simultaneously with a Levenberg-Marquardtχ2 min-
imization algorithm (Press et al. 1992). The orbit with the global
minimum χ2 is shown in Fig. 2, and its orbital elements are listed
in Table 3.

Uncertainties of the orbital elements were determined by an-
alyzing the χ2 function around its minimum. The 68% confi-
dence region for each parameter (the familiar 1σ-interval in the
case of a normal distribution) is the region where χ2 < χ2

min + 1.
Therefore, the uncertainties for the fit parameters depend on the
value of χ2 at and around the minimum. The reduced χ2 of our fit
was 2.7, which is more than one would expect for a good fit. This
indicated that some of the measurement errors might have been
underestimated. To avoid underestimating the uncertainties of
the orbital elements as well, we rescaled the uncertainties of the
observations so that the minimum χ2 was one. Although some
of the observations showed larger deviations from the model
than others, we had no reason to trust any of the measurements
less than the others. Therefore, we multiplied all observational

1 Document number VLT-MAN-SPH-14690-0430, issue P96.1.
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Table 2. New and recalibrated astrometric measurements of T Tau N – Sa – Sb.

Date (UT) Epoch T Tau N – Sa T Tau Sa – Sb Filter Instrument
d [mas] PA [◦] d [mas] PA [◦]

2001 Dec. 08, 3:34 2001.93470 693.70 ± 0.66 181.88 ± 0.11 99.60 ± 0.80 276.80 ± 0.40 K NACO
2002 Dec. 15, 2:31 2002.95306 694.21 ± 1.57 182.56 ± 0.10 106.50 ± 1.60 284.10 ± 0.20 Ks NACO
2003 Dec. 12, 3:14 2003.94424 692.93 ± 2.18 183.07 ± 0.13 112.70 ± 0.80 288.70 ± 0.80 Ks NACO
2004 Dec. 09, 4:06 2004.93818 697.89 ± 1.64 183.74 ± 0.14 119.70 ± 1.20 296.10 ± 0.60 Ks NACO
2006 Oct. 11, 8:50 2006.77582 694.75 ± 1.38 185.21 ± 0.07 125.10 ± 0.80 304.99 ± 0.20 Ks NACO
2007 Sep. 16, 8:00 2007.70659 694.41 ± 0.92 185.59 ± 0.13 127.20 ± 0.60 308.80 ± 0.40 Ks NACO
2008 Feb. 01, 0:38 2008.08358 695.10 ± 0.24 185.95 ± 0.10 127.10 ± 0.20 310.85 ± 0.14 Ks NACO
2008 Oct. 17, 6:18 2008.79333 695.00 ± 1.66 186.36 ± 0.10 129.30 ± 1.30 314.50 ± 0.70 Ks NACO
2009 Feb. 18, 0:32 2009.13216 690.84 ± 2.32 186.94 ± 0.13 124.60 ± 1.20 315.11 ± 0.60 Ks NACO
2014 Dec. 09, 3:36 2014.93676 689.98 ± 0.64 191.53 ± 0.10 110.33 ± 0.25 345.40 ± 0.15 BrG SPHERE
2015 Jan. 23, 2:20 2015.05981 – – 109.27 ± 0.44 345.70 ± 0.25 Ks SPHEREa

Notes. (a) T Tau N hidden behind the coronographic mask.

0.5"

E

N

 

T Tau N

Sa

Sb

Fig. 1. T Tauri system imaged with SPHERE on December 9, 2014,
displayed on a logarithmic scale.

uncertainties by the same factor
√

2.7 = 1.64. The uncertainties
of the orbital elements in Table 3 are based on χ2 computed with
these scaled measurement uncertainties.

Estimating the uncertainty of the mass required a special pro-
cedure. The mass itself was computed using Kepler’s third law
(M = a3/P2, Kepler 1619). The semi-major axis a and the pe-
riod P are usually strongly correlated. To obtain a realistic esti-
mate for the uncertainty of the mass, we did not use standard er-
ror propagation. Instead, we considered a set of orbital elements
where the semi-major axis was replaced by the mass. This is
possible because Kepler’s third law gives an unambiguous rela-
tion between the two sets of elements. With the mass being one
of the orbital elements, we treated it as one of the independent
fit parameters and determined its uncertainty in the same way as
for the other parameters.

Table 3. Parameters of the best orbital solution for Sa – Sb.

Orbital element Value

Date of periastron T0 2 450 131 +208
−288

(1996 Feb. 17)

Period P (years) 27 +2
−2

Semi-major axis a (mas) 85 +4
−2

Semi-major axis a (AU) 12.5 +0.6
−0.3

Eccentricity e 0.56 +0.07
−0.09

Argument of periastron ω (◦) 48 +34
−25

PA of ascending node Ω (◦) 92 +26
−36

Inclination i (◦) 20 +10
−6

System mass MS (mas3/year2) 838 +29
−32

Mass error from distance error (M�) ±0.032

System mass MS (M�) 2.65 +0.10
−0.11

reduced χ2 2.7

Mass ratio MSb/MSa 0.25± 0.03

Mass of Sa MSa (M�) 2.12± 0.10

Mass of Sb MSb (M�) 0.53± 0.06

3.2. The orbit of T Tauri S and the mass ratio MSb/MSa

The orbit of T Tau Sa and Sb around each other allows us to de-
termine the sum of the masses of both components. To measure
individual masses, we need to know the position of the center of
mass (CM) of Sa and Sb. We followed the method described in
Köhler et al. (2008) to do this. The path of the CM of Sa and Sb
can be described in two ways: It is in orbit around T Tau N, and
it is on the line from Sa to Sb, where its distance from Sa is a
constant fraction of the separation of Sa and Sb. The fraction2 is
f = q/(1 + q), with the mass ratio q = MSb/MSa.

Our model solves for eight parameters: the seven orbital ele-
ments of the orbit of the CM around T Tau N, and the fraction f .
We compute χ2 from the difference between the position on the
orbit and the position of the CM computed from the observed
positions of Sa and Sb. (The latter depends on the free param-
eter f .) The fitting procedure is similar to the one used for the
orbit of Sa/Sb, except that the grid search is carried out in four
dimensions: eccentricity e, period P, time of periastron T0, and
the fractional mass f . Singular value decomposition was used

2 The parameter f is often called fractional mass (Heintz 1978), since
it is the secondary star’s fraction of the total mass in a binary.
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Fig. 2. Best fitting orbit of T Tau Sb around Sa in the rest frame of
Sa. The observed positions are marked by their error ellipses and lines
connecting the observed and calculated position at the time of the obser-
vations. The dash-dotted line indicates the line of nodes, the dashed line
the periastron, and the arrow shows the direction of the orbital motion.

again to fit the Thiele-Innes constants, hence the remaining or-
bital elements. To improve the fit further, about 150 orbit models
with χ2 near the minimum were selected as starting points for
a Levenberg-Marquardt fit. Since this method assumes that the
measurement errors are independent of the fitting parameters, f
cannot be treated like the other parameters. Instead, we perform
a grid search over a narrow range in f to find the minimum.

Köhler et al. (2008) and Köhler (2008) included unresolved
observations of T Tau S as approximations for the position of the
center of mass. However, the unknown offset between the center
of light and the center of mass introduces an additional system-
atic error. Therefore, we used only resolved measurements of
the positions of T Tau Sa and Sb in this work. Since both Köhler
(2008) and this work are based on about 18 years of observa-
tional data, we can expect a fit of comparable quality.

If only the astrometric data were used, the best orbit solu-
tion corresponds to a system mass of 111 M�, which is clearly
unphysical. In the same way as in Köhler et al. (2008), we intro-
duced a system mass of 4.7 ± 1.0 M� as an additional constraint
for the computation of χ2:

χ2 =
∑

i

(
ri,model − ri,obs

Δri,obs

)2

+

(
Mmodel − 4.7 M�

1.0 M�

)2

·

Here ri,obs and Δri,obs are the observed position at time i and the
corresponding error, ri,model is the position at time i computed
from the model, and Mmodel is the system mass computed from
the orbit model. The mass estimate of 4.7 M� is the sum of our
result for MS in Sect. 3.1 and the mass of T Tau N estimated from
its spectral energy distribution by Loinard et al. (2007b). They
derived a mass for T Tau N of 1.83+0.20

−0.16 or 2.14+0.11
−0.10, depending

on the theoretical pre-main-sequence track used. The uncertainty
of ±1.0 M� for our mass estimate was chosen to be about three
times as large as the uncertainties of the estimates for MS and
MN, in order to avoid adding a constraint to the orbit fit that is
more stringent than the astrometric data.

The model with minimum χ2 is presented in Table 4, while
the mass ratio MSb/MSa is given in Table 3. Uncertainties were

Table 4. Parameters of the best orbital solution for T Tau N–S.

Orbital element Value

Date of periastron T0 (Epoch) 1967 +25
−47

Period P (years) 4200 +5000
−3400

Semi-major axis a (arcsec) 2.9 +5.4
−1.7

Semi-major axis a (AU) 430 +790
−250

Eccentricity e 0.7 +0.2
−0.4

Argument of periastron ω (◦) 12 +10
−6

PA of ascending node Ω (◦) 156 +11
−11

Inclination i (◦) 52 +4
−5

System mass (mas3/year2) 1468 +15
−15

Mass error from distance error (M�) ±0.057

System mass (M�) 4.6 +0.1
−0.1

Reduced χ2 3.7

Fig. 3. χ2 as function of period and eccentricity for the orbit of T Tau S
around T Tau N. The cross marks the location of the best-fitting orbit
solution (see Table 4). Contour lines show the 68.3% and 99.7% confi-
dence regions (equivalent to 1σ and 3σ for a normal distribution). The
innermost contour line is at χ2

min + 0.2. This has no particular signifi-
cance, but demonstrates how flat χ2 is around the minimum.

determined in the same way as for the orbit of Sa/Sb, Table 4
gives the 68% confidence intervals. The uncertainties for the or-
bital elements are still large owing to the short section covered
by the observations. Figure 3 shows χ2 of our orbit models as
function of period and eccentricity. The orbit model whose pa-
rameters are listed in Table 4 is only one out of a wide range
of models that fit the data almost equally well. Figure 4 shows
the (formally) best orbit, the orbits at the lower and upper end
of the 68% confidence interval for the orbital period, and one
circular orbit (eccentricity e = 0). In the part of the orbit where
observations have been collected, they are indistinguishable.

However, the main purpose of the fit is to determine the
mass ratio of Sa and Sb, which is well constrained. Figure 5
shows the mass ratio as function of the orbital period for 150 or-
bit models that were the result of Levenberg-Marquardt fits.
Despite the large range in period, the mass ratio of all these so-
lutions are remarkable similar. Even though the orbit of T Tau S
around N is only weakly constrained, we are confident that our
mass ratio MSb/MSa is accurate within the uncertainties.
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Fig. 4. Motion of T Tau S around T Tau N. The solid line shows the orbit
with the minimum χ2. The dotted lines show orbits at the short and long
end of the confidence interval for the period (see Table 4), while the best
circular orbit is shown by the dashed line. The thick section indicates
the part of the orbit that has been observed so far.

Figure 6 shows the motion of T Tau Sa and Sb in the rest
frame of T Tau N, while Fig. 7 shows the offset of T Tau Sb as
function of time. Both figures demonstrate that our model is a
good fit for the motion of Sa and Sb relative to T Tau N.

The high eccentricity of the best-fitting orbit is surprising.
However, high-eccentricity orbits are often the result of orbit fits
to data that cover only a small fraction of the orbit. As more
data are collected, the orbit solution usually converges toward an
orbit with much lower eccentricity. We expect that this is also the
case for the orbit of T Tau N/S. Therefore, the orbit presented in
Table 4 should not be regarded as the most likely orbit, but only
as one example of a large family of possible solutions. Even the
confidence intervals in Table 4, while formally correct, are only
an approximate representation of the probability distribution of
the parameters. Even a circular orbit cannot be ruled out from
the data available (see Fig. 4).

Given the large uncertainty about the orbit, it might be sur-
prising that the uncertainty of the system mass is very small, sig-
nificantly smaller than in the term we added in the computation
of χ2. However, to determine the mass, it is not always necessary
to know the full orbit (see Sect. 4.2 in Köhler et al. 2008). The
mass can be computed if both separation and acceleration are
known. This is usually not the case for astrometric orbits, since

Fig. 5. Mass ratio MSb/MSa as a function of the period of the T Tau N-S
orbit model. These are the results of 150 runs of a Levenberg-Marquardt
fit starting with different initial estimates for the parameters (see
Sect. 3.2). The quantized appearance is caused by the grid-based fit
method for the mass ratio. The large cross indicates the 68% confidence
intervals for the period and mass ratio (see Tables 3 and 4). The mod-
els plotted encompass a wider range in period than the 68% confidence
interval of the best solution.

Fig. 6. Motion of T Tau Sa and Sb in the reference frame of T Tau N.
The path of Sa predicted by our orbit models is shown by the dotted line,
the path of Sb by the dashed line, and the path of their center of mass
by the dash-dotted line. The predicted positions on January 1 in every
other year between 1997 and 2024 are marked by crosses. The observed
positions of Sa are depicted by diamonds, those of Sb by triangles. Solid
lines connect the observed and the predicted positions.

their component parallel to the line of sight cannot be measured.
However, these components are zero if the companion is at one
of the nodes of the orbit. The information about separation and
acceleration is inherently present in the data and results in an
orbit solution with a well-constrained mass.

In the case of the orbit of T Tau N and S, the mass constraint
selected one family of orbits from the larger set of orbits that
agree with the astrometric data. For this family of orbits, the line
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Fig. 7. Offsets of T Tau Sb from T Tau N. The observed positions are
marked by crosses with error bars. The solid line is our best fit for the
motion of T Tau Sb, while the dotted line shows the motion of the center
of mass of T Tau Sa and Sb.

of nodes is close enough to the observations to result in a small
mass uncertainty.

4. Discussion

4.1. Comparison to previous results

The orbital elements for our best fit for the motion of T Tau Sa
and Sb around each other are very similar to the preliminary
orbit presented by Schaefer et al. (2014). Both solutions agree
well within 1σ. We take this as sign that the portion of the orbit
observed so far is large enough to allow a reliable orbit fit and
that our orbits are close to the true orbit.

Most of the uncertainties of our orbit are significantly
smaller than for the orbit of Schaefer et al. (2014). Although
more and better data should improve the fit, we did not expect
to reduce some of the uncertainties by a factor of two, since the
orbital coverage was only extended by one year. This might be
due to the improved calibration of the old NACO data. However,
the argument of periastron and the PA of the line of nodes of our
solution are less well constrained than those of Schaefer et al.
(2014). The position of the periastron is difficult to determine,
since the inclination of the orbit counteracts the (already mod-
erate) eccentricity of the orbit, resulting in a projected orbit that
is closer to circular than the true orbit. The small inclination of
only 20◦ (smaller than in Schaefer et al. 2014) makes it more
difficult to find the orientation of the line of nodes. Finally, the
PA of the line of nodes and the argument of periastron are cor-
related, since only both angles together give the position of the
periastron relative to north.

We note that a similar orbit has already been published in
Köhler (2008), which was significantly different from the orbit
in Köhler et al. (2008), although only one additional astrometric
measurement was used in Köhler (2008).

For the orbit of T Tau N and S around each other, the ob-
served section is very small (less than 10◦ in position angle),
which results in very large errors for any orbital elements de-
rived from the data. It would be premature to even speak of a
“preliminary orbit”. Given the large uncertainties, it is also not
possible to predict when a reasonable solution will be possible.
Nevertheless, our orbit solution is similar to the orbits presented

Fig. 8. Positions of the radio source reported by Loinard et al. (2003) in
the reference frame of the center of mass of T Tau Sa+Sb. Overplotted
are our orbits for T Tau Sa (dashed ellipse) and T Tau Sb (continuous el-
lipse). Lines connect the positions of the radio source with the expected
position of T Tau Sb at the same time.

in Köhler (2008) and Csépány et al. (2015). The period and semi-
major axis are better constrained, thanks to the new data ac-
quired since Köhler (2008) and the better calibration compared
to Csépány et al. (2015).

However, to estimate the mass ratio MSb/MSa, we do not
need the full orbit of T Tau S around N, but only a good estimate
of the path of the center of mass at the times of our observations.
Therefore, we can derive the mass ratio with relatively small un-
certainties. In fact, our value of 0.25 ± 0.03 is close to those re-
ported by Duchêne et al. (2006)3 and Köhler (2008). Including
the new data reduced the uncertainty of the mass ratio and the
masses of Sa and Sb by a factor 2–3.

4.2. The compact radio source near T Tau Sb

Loinard et al. (2003, 2005) observed a compact radio source,
which they identified with T Tau Sb. Their astrometric mea-
surements indicate a dramatic change in the motion of the radio
source. Loinard et al. (2003) speculate that T Tau Sb underwent
an ejection and might even leave the system on an unbound orbit.
However, Furlan et al. (2003) find that T Tau Sb and the radio
source move on distinct paths and suggest that a fourth object is
the source of the radio emission.

In our orbit fit described in Sect. 3.1, we also tried parabolic
and hyperbolic orbits for T Tau Sb, i.e., unbound orbits that
would result in T Tau Sb leaving the system. These orbits do not
fit the data very well, and the best orbit has a reduced χ2 = 5.82,
much higher than the best elliptical (bound) orbit. Furthermore,
if T Tau Sb was on one of the unbound orbits matching the
data, it would leave the system in an eastern direction. This is
almost the opposite direction of the motion of the radio source
(cf. Loinard et al. 2003).

In Fig. 8, we compare the positions of the radio source re-
ported by Loinard et al. (2003) and our orbit of T Tau Sb, both

3 Their parameter μ is the ratio of MSb to the total mass MS, i.e.,
the same as our fractional mass f . Their value of μ corresponds
to q = 0.22 ± 0.07.
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in the reference frame of the center of mass of T Tau Sa+Sb.
The radio positions in this plot differ from those in Loinard et al.
(2003). They computed the offsets from T Tau Sa with a linear
approximation of the path of Sa, which does not take the orbital
motion of Sa and Sb into account. We recalculated the offsets of
the radio source from T Tau N and subtracted the position of the
CM of Sa+Sb, computed from the orbit found in Sect. 3.2. With
the recalculated offsets, there is hardly any sign of a dramatic
change of its orbit.

However, it is obvious that the radio source is not identi-
cal with T Tau Sb, yet they appear to be close enough to imply
a relation between the star and the radio source. Loinard et al.
(2007a) suggest that the radio emission comes from the jets of
Sb hitting the circumbinary disk. If this is true, then it is sur-
prising that the position of the radio source relative to T Tau Sb
changes within a few years. However, our knowledge of the ge-
ometry of the system is limited. Ratzka et al. (2009) argue that
the circumstellar disk around T Tau Sb is seen not far from face-
on, which implies that the jet axis is close to the line of sight.
The circumbinary disk has to be nearly edge-on to provide the
observed extinction. This means that the circumbinary disk is
not aligned with the disk around T Tau Sb or the binary orbit.
Given this complex geometry, it is conceivable that the offset
from T Tau Sb of the intersection of jet and circumbinary disk
changes on the timescale of the binary orbit.

There appears to be a systematic offset between T Tau Sb
and the radio source, with the radio source always east of the
star. This might indicate the orientation of the jet. However, con-
sidering the difficulties in registering the radio observations with
the infrared images and the uncertainties of the T Tau N-S or-
bit, which was extrapolated more than 20 years into the past, es-
timating the jet direction from this systematic offset would be
extremely uncertain.

Finally, we note that the circumbinary material in front of
T Tau S has to be distributed over at least 20–25 AU in both RA
and Dec to explain the permanently high extinction of T Tau Sb.
The star has been observed from the most southern to the most
northern point in its orbit, but no significant brightening was
observed. The material causing the extinction might not be cir-
cumbinary, but a cloud in the T Tau system that happens to lie
on our line of sight to T Tau S.

4.3. Are there more components in the system?

Nisenson et al. (1985) detected another source 0.′′27 north of
T Tau N using speckle imaging techniques in the visual wave-
length regime. The source was later identified in the K-band by
Maihara & Kataza (1991), but neither Gorham et al. (1992) nor
Stapelfeldt et al. (1998) detected it. The magnitude difference to
T Tau N was 4.33 ± 0.09 mag at 521 nm (Nisenson et al. 1985)
and 3.46 ± 0.32 mag in the K band (Maihara & Kataza 1991).

Csépány et al. (2015) found a tentative companion 144 mas
south of T Tau N. They found magnitude differences of 4.96 ±
0.30 mag at 1.02 μm and 4.37 ± 0.30 mag at 1.34 μm.
Considering the long time difference and the different wave-
lengths, this is comparable to the brightness reported by
Nisenson et al. (1985) and Maihara & Kataza (1991).

If both Nisenson et al. (1985) and Csépány et al. (2015) ob-
served the same object, then its position angle has changed by
about 180◦ in 30 years, which corresponds to an orbital period
of 60 years. With a semi-major axis of ∼0.2′′ or 30 AU, a sys-
tem mass of 7.5 M� would be required, clearly more than the
mass expected for T Tau N plus a faint companion. It is also not
possible that the two sources are a background star. The proper

motion of T Tau is (15.51,−13.67) mas/yr (van Leeuwen 2007),
meaning that it is moving south. Therefore, a background star
would move from south to north relative to T Tau. We conclude
that the two additional companions – if both are real – are not
the same object.

Unfortunately, the dynamical mass derived by our orbit fit
in Sect. 3.2 cannot be used to exclude additional objects in the
system, since we used our best estimate for the total mass as a
constraint for the fit. It is therefore not surprising that the total
mass of the best orbit is close to the expected total mass.

5. Summary

We have presented an astrometric measurement of the stars in
the T Tauri triple system obtained with SPHERE and recali-
brated data obtained with NACO. After careful calibration, the
SPHERE data is as precise as the best astrometric data from
NACO. Time will tell whether SPHERE is stable enough to
maintain this high precision over several years.

We determined the orbital elements of the T Tau Sa/Sb bi-
nary and found very good agreement with the latest orbit by
Schaefer et al. (2014). This indicates that the observed fraction
of the orbit is large enough for a good orbit fit.

The orbit of the binary around T Tau N is only weakly con-
strained. Its period is several thousand years long, therefore no
progress can be expected in the foreseeable future. However,
we successfully used T Tau N as astrometric reference to find
the position of the center of mass of the Sa/Sb binary. This al-
lowed us to derive the mass ratio and individual masses of the
stars. The masses of T Tau Sa and Sb are 2.12 ± 0.10 M� and
0.53 ± 0.06 M�, which confirms that T Tau Sa is at least as
massive as T Tau N, despite the high contrast in visible light.

We used the newly derived orbits to compute the position of
the radio source reported by Loinard et al. (2003) in the reference
frame of T Tau S. We find no evidence of a dramatic chance in its
orbital path. Given its proximity to T Tau Sb, the interpretation
that it is related to but not identical to T Tau Sb is still valid.

The orientation of the disks in the T Tau S binary remains
puzzling. The circumstellar disk around T Tau Sb is only moder-
ately inclined (Ratzka et al. 2009). It might be coplanar with the
binary orbit, which has an inclination of about 20◦. On the other
hand, the circumstellar disk around T Tau Sa and the circumbi-
nary disk are seen nearly edge-on, since they have been sug-
gested as an explanation for the large extinction. Therefore, both
disks are approximately perpendicular to the binary orbit. The
extinction in front of T Tau S is more or less constant over the
observed section of the binary orbit (almost half of it). Therefore,
the material causing the extinction must be distributed over at
least 20–25 AU. This raises the question of whether it really
forms a circumbinary disk or is distributed in a different way
in front of T Tau S.

The orbit of T Tau S is now well understood. Our knowl-
edge of the circumstellar and circumbinary material, however,
remains sketchy. More high-resolution observations at longer
wavelengths will be required to reveal the orientation of the disks
around T Tau Sa and Sb and the nature of the material in front of
both stars.
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