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A new type of collective excitations, due to the topology of a complex random
network that can be characterized by a fractal dimension DF, is investigated. We show
analytically that these excitations generate phase transitions due to the non-periodic
topology of the DF > 1 complex network. An Ising system, with long range interac-
tions, is studied in detail to support the claim. The analytic treatment is possible
because the evaluation of the partition function can be decomposed into closed
factor loops, in spite of the architectural complexity. The removal of the infrared
divergences leads to an unconventional phase transition, with spin correlations that
are robust against thermal fluctuations. C 2016 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Un-
ported License. [http://dx.doi.org/10.1063/1.4942826]

For a long time phase transitions have attracted significant attention. In this context, the analytic
achievement known as the Onsager1 solution of the two-dimensional (2D) Ising model, and the
Mermin-Wagner theorem (MWT)2,3 have been important milestones in the development of the field.
Here we investigate analytically a complex network with Ising nearest-neighbor (nn) plus random
long-range interactions, and develop a mechanism that provides a local enhancement of the corre-
lation length. We find that, as a consequence of the inclusion of frustrated long-range interactions,
and due to the fractal nature of the non-periodic complex network, inversion symmetry is broken.
Consequently, when the effective fractal dimension DF > 1 acquires non-integer values, incoherent
fluctuations are strongly suppressed.

The dimensionality restrictions imposed by the MWT,2–5 which for integer D < 3 is respon-
sible for the suppression of correlations by thermal fluctuations, has posed a challenging problem
in areas like condensed matter and high energy physics. During the last two decades the strong
dependence of the collective behavior of embedded topologies has given impulse to the study of
magnetic systems on more intricate architectures. This way complex networks have become a fertile
ground in the study of these non-ideal systems6–8 since, in spite of their compact structure, the
spatial fluctuations do give rise to a wide range of critical phenomena.

We notice that in these systems the underlying commonality is the emergence of phase transi-
tions produced by the topological structure of the complex network. Hence we show, mainly using
analytic tools, that the local correlation length can increase in small-world complex networks due to
the randomly frustrated interactions brought about by the topology of the network. Indeed, when the
fractal dimension DF > 1 the complexity of the network can yield “long range” correlations of the
collective excitations.

We face this challenge by means of two approaches. First, we construct an Ising model with
the spins located at the nodes of the network, and allow them to interact through nn and long
range interactions. The network in this specific case is of a small-world type, which has implica-
tions, that we will discuss below, for the correlation length and the nature of the phase transition
itself.9 The partition function of the model is calculated analytically, so that all the thermodynamic
properties can be obtained. Moreover, we show that this phase transition of the Ising model on
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such a network is robust against thermal fluctuations, and consequently that an unconventional
second order phase transition does occur. Our theory reproduces qualitatively the results of Chen
et al.10 that confirmed, through simulations on a 2D eight-state Potts model, that the presence of
randomly distributed ferromagnetic bonds changes the phase transition from first to second order.
The same analysis can be applied to results that were obtained by Theodorakis et al.11 with a 2D
Blume-Capel model embedded in a triangular lattice, and by Fytas et al.12 for an antiferromagnetic
Ising model with next nearest neighbor interactions. And second, we use a qualitative description
that suggests how the topological complexity of the network can produce such a phase transition.
This approach, in essence, generalizes Landau’s phenomenological theory for critical phenomena to
complex networks.

We start by introducing a ring Ising model, in order to analyze and illustrate the characteristics
of this phase transition. As is well known, in the absence of random links, the 1D Ising model obeys
the MWT and does not exhibit phase transitions2 due to the periodicity of the interactions. To the
1D ring Ising model composed of N nodes, with only nn interactions, we add the possibility of long
range interactions with other particles on the ring, thus generating a complex network. The Ising
Hamiltonian, plus random long range interactions, is given by

H = −

i

(
Jσiσi+1 + hσi + J0σiσri

)
, (1)

where σi = ±1; J > 0 and J0 are the exchange constants between nn and long range neighbors,
respectively, and |J0| < |J |; g is the gyromagnetic ratio; h = gµBH0; µB is the Bohr magneton; and
H0 is the uniform applied magnetic field. For simplicity, we assume that a particle at site i of the
network has a single long range interaction with particle ri, selected at random. Consequently, the
first term in Eq. (1) describes the nn exchange, the second the Zeeman interaction, and the third
the exchange between particle i and another one located at ri.

In order to calculate effects due to the random long range interactions on the phase transition
we implement the transfer matrix method, to calculate analytically the partition function. We start
defining the matrices

Tσi,σ j
= ⟨σi | eϵi, j/kBT �σ j

�
,

Rσi,σ j
= ⟨σi | e∆i, j/kBT �σ j

�
,

Mσi,σ j
=

σℓ

Tσi,σℓ
Rσℓ,σ j

, (2)

where J0 , 0, ϵ i, j = Jσiσ j + h(σi + σ j)/2, and ∆i, j = J0σiσ j. J and J0 describe the nn and long
range interactions, respectively. ∆i, j describes the interaction between the magnetic moment at sites
i + 1 and ri through site i. These definitions allow to write the partition function of the system as

Z =


{σ1,σ2, ...}


{σ′1,σ′2, ...}


i

Tσi+1,σ′iRσ′i,σri
,

=


{σ1,σ2, ...}


i

Mσi+1,σri
=

k

tr(Mnk). (3)

where nk is the number of vertices of each loop of nodes that is formed as we follow the random
links along the network. Hence, Eq. (3) specifies the cluster decomposition of the transfer matrix in
closed loop factors. This decomposition is illustrated in Fig. 1 for an N = 20 configuration.

The J0 = 0 limit is recovered recalling that Z = tr(TN) = λN
+ + λ

N
− , where λ+ > λ− are the

T matrix eigenvalues. In the N → ∞ limit Z = λN
+ . However, when long range interactions are

incorporated the spatial fluctuations are decomposed into closed loop factors, which in the N → ∞
limit regularize the infrared divergences because we now have a multiplication of traces which
correspond to the closed loop factors, so that tr(Mn0) = λn0

+ + λ
n0
− must be kept in full, for some

n0 = min{nk} ≪ N .
For h = 0 and at finite temperatures, the average magnetic moment per particle mz = (N β)−1

∂ ln Z/∂h vanishes for the Ising model, implying that long range order is destroyed by thermal
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FIG. 1. Geometric representation of the decomposition into closed factor loops. The closed loop factors corre-
spond to nodes {3,15,18,9} (blue), {10,11,12} (green), {17,18,19,20} (yellow), {12,13,14,15,16,17} (orange),
and {1,2,3,4,5,6,7,8,9,10,11,13,14,16} (red). Following Eqs. (2) and (3) they correspond to the factorization Z

= tr(M2)tr(M2)tr(M3)tr(M4)tr(M6)tr(M23).

fluctuations. However, as the degree of interconnectivity between nodes grows, the fluctuations are
suppressed. This in turn leads to an unconventional continuous phase transition for J0/J < 0, i.e., as
the magnetic configuration is determined by a competition of short and long range interactions of
different signs. Due to the local frustration this could lead to a spin glass arrangement. However, as
a consequence of the small-world network topology, below the critical temperature a locally ordered
magnetic structure distribution is favored. This is illustrated in Fig. 2, where we display the magne-
tization vs. temperature for an N = 20 complex network with DF = 1.47, J = 1, J0 = −0.5, and

FIG. 2. mz vs. h/J loops of an N = 20 node 1D Ising ring with one randomly distributed long range link per node, for
kBT /J = 0.1,0.2,0.5. The correlation length αK of the given loops, as a function of cluster size, is given by the colors of
the links of the a) and b) insets, for h/J = 0.5 and 1.5, respectively.
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h/J = 0.1. We remark that the dependence of mz on T is highly nonlinear on the fractal dimension
DF. This fact is also reflected in the mz , 0 values shown in Fig. 2, even in the h → 0 limit.

In order to describe the effects of the topology on the phase transition we study the correlation
length αK of the K-th closed loop C(nK), with nK vertices, and

F(nK) =


i,δ ⊆ C(nK ) ⟨σiσi+δ⟩ /nK

=


δ ⊆ C(nK )tr(σMδσMnK−δ)/tr(MnK) , (4)

where F(nK) is the two-point correlation function over a closed loop C(nK). On the basis of the
above analytic expression, the correlation length αK can be obtained from the exponential depen-
dence13 of F(nK) ∝ enK/αK . The collective behavior of the system is dominated by the local corre-
lation of magnetically ordered clusters. In order to describe this local correlation let us consider the
1D Ising ring system with one long range link per node (over N = 20 nodes) with a small-world
network structure, as shown in Figs. 1 and 2. Fig. 2 displays the magnetization vs. applied field and
the cluster decomposition into local conformations in configuration space. For small clusters the
strong correlation is quite apparent, which also shows that the magnetic ordering is robust against
thermal fluctuations.

As the magnetic field decreases the correlation length is reduced, and the large cluster mag-
netic order is destroyed by thermal fluctuations, but it is preserved in small ones. This induces
a residual magnetization, where the continuous line represents the J0 = −|J |/2 (J > 0) situation,
and the dashed line the J0 = |J |/2 (J < 0) case. It is also worth mentioning that this continuous
phase transition resembles ferrimagnetic or canted anti-ferromagnetic ordering, but its microscopic
configuration is created by random long range interactions through different closed loops, instead of
locally induced magnetic domains.

It is relevant to notice that the concept of “long range” correlations to induce phase transitions
requires some discussion. In general, we expect to observe a phase transition, and its associated
critical phenomena, when the correlation length becomes large, e.g., effectively of the size of the
system. In the case of the Ising model on a small-world network, the correlation length is about
the size of the system. However, in this case it is the topology that reduces the effective distance
between nodes, allowing the system to become of the size of the correlation length. This is why
we have used a small-world type network, which allows a large system, in terms of the number
of nodes, to have small average correlation length. This observation should be quite general, and
be applicable to a number of other systems, as suggested by the qualitative characterization of the
general phase transition problem in complex networks that we now present. Particular attention is
given to complex networks of small-world type. The phase a system adopts, in thermal equilibrium,
is characterized by spontaneous symmetry breaking14 and by the ratio of the order parameter and
the characteristic length of the system. Our main assumption is that the addition of the small-world
structure (long range interactions) does not change significantly the correlation length but that, due
to cluster decomposition, it reduces its size-scale and consequently increases the local correlation.
Following Landau14 we assume invariance under time reversal inversion and discrete symmetries
to write, neglecting higher order terms of the order parameter ψ, the free energy Φ0(x,T) as
Φ0(x,T) = A(T)|∇ψ |2 + B(T)|ψ |2, where x is the spatial coordinate, ψ = ψ0e−x/ξ , ξ =


A(T)/B(T)

is the correlation length, and A and B are functions of the temperature T . For T > Tc, A(T) ≪ B(T),
and consequently ξ ≪ 1. On the contrary, below the critical temperature T < Tc, A(T) ≫ B(T), and
ξ ≫ 1. This way the phase transition is characterized analytically. In order to estimate the critical
dimensionality, we use the energy equipartition theorem which, including spatial fluctuations of the
classical ground state, takes the form

dDxΦ0(x,T < Tc) ≥ kBT , (5)

where D is the dimensionality of the system and kB is the Boltzmann constant, and the inequality is
due to quantum fluctuations.
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Using the explicit expression for the order parameter in Eq. (5), we obtain (for 0 < T < Tc)

|ψ0|2 ≥ ρkBT
A(T)(πξ)D Γ(D)

kD−2

D − 2

�����

k0

k→0
, (6)

where 1/ρ =


dDk/(2π)D, Γ(y) is the Gamma function, and 1/k0 is the range of the interac-
tion in units of the nn distance. This leads to a 1/k |k→0 infrared divergence for D = 1, and a
ln k |k→0 divergence for D = 2, a result that is equivalent to the MWT. It is worth mentioning that
our phenomenological model recovers results derived from a microscopic theory, based on the
Bogoliubov inequality.15

Now we focus our attention on how this phenomenological theory can be applied to a com-
plex network with both nn plus long range random links. The complexity of this topology can be
characterized, for example, by an effective fractal dimension DF that can be defined as the scaling
⟨N⟩ ∼ dDF of the average number ⟨N⟩ of nodes within a radius d of a given node. Therefore, by
means of a box-counting procedure, the inversion symmetry breaking may be characterized by an
effective fractal dimension, which is expected to couple the free energy to a current density axial
vector term, defined as

J(x) = i(ψ(x)∇ψ∗(x) − ψ∗(x)∇ψ(x))/2 . (7)

This axial vector J(x) is the simplest term that one can incorporate to break inversion symmetry. The
above equation implies that |∇ψ |2 ∼ J2/|ψ |2, where J(x) = |J(x)|. This is a higher order term that,
for T < TC, can be neglected compared to Φ1(x,T) = γ(T)J(x), where γ(T) ∼ kB(TC − T). When
this last term is included in the free energy, we obtain

|ψ0|2 ≥ ρkBT
γ(T)(πξ)D Γ(D)

kD−1

D − 1

�����

k0

k→0
. (8)

This way the infrared divergences are removed for D > 1 since |ψ0|2 ∼ kD−1/(D − 1), so that the
restrictions on phase transitions for D < 3 are removed. With the insight gained from dimensional
regularization of the phenomenological approach, we now show how random exchange interac-
tions lead to long range magnetic order. Our starting point, or unperturbed Hamiltonian, is a 1D
periodic system (i.e. a ring with only nn interactions), and the random link interactions are added
perturbatively i.e. J0/J ≪ 1, the expansion in momentum eigenstates is valid. But, this random
link distribution brings about a dimensionality change, from integer to fractal (D → DF), and the
breaking of the periodicity of the system (which is essential for the MWT to hold). In Fig. 3 we
show the temperature and fractal dimension DF dependence of the order parameter, for k0 ∼ 1 and
assuming that the elementary excitation density, of correlation length ξDF/ρ, remains constant. It is
thus apparent that the introduction of random links removes the infrared divergences, and that phase
transitions are in principle now allowed.

FIG. 3. Regularization of infrared divergences when the fractal dimension DF > 1.
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In conclusion, we have shown that random links remove infrared divergences by breaking the
inversion symmetry of a complex network. This way, the dimensionality restrictions imposed by the
MWT, which assumes translational invariance, are completely removed. Instead, an unconventional
second order phase transition emerges due solely to the topology of the system. This topologi-
cally induced phase transition displays long range magnetic order in the absence of external fields
through interconnected clusters, as suggested by Graß et al.16 Moreover, the small-world network
topology guarantees that spin correlations are robust against thermal fluctuations.

ACKNOWLEDGMENTS

This work was supported by the Fondo Nacional de Investigaciones Científicas y Tecnológ-
icas (FONDECYT, Chile) under grants #1150806 (FT), #1120399 and #1130272 (MK and JR),
#1150718 (JAV), and CEDENNA through the “Financiamiento Basal para Centros Científicos y
Tecnológicos de Excelencia-FB0807”(FT, JR, MK and JAV).
1 L. Onsager, Phys. Rev. 65, 117 (1944).
2 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
3 N. D. Mermin, Phys. Rev. 176, 250 (1968).
4 S. Coleman, Commun. Math. Phys. 31, 259 (1973).
5 P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
6 S. N. Dorogovtsev, Goltsev, A. V., and J. F. F. Mendes, Rev. Mod. Phys. 80, 1275 (2008).
7 R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
8 S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. E 66, 016104 (2002).
9 D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

10 S. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. Lett. 69, 1213 (1992).
11 P. E. Theodorakis and N. G. Fytas, Phys. Rev. E 86, 011140 (2012).
12 N. G. Fytas and A. Malakis, Physica A 388, 4950 (2009).
13 A. Wipf, in Statistical Approach to Quantum Field Theory, Lectures Notes in Physics Vol. 100 (Springer Berlin Heidelberg,

2013), pp. 101–118.
14 L. D. Landau and E. M. Lifshitz, in Statistical Physics (Pergamon Press, 1958).
15 F. Torres, D. Altbir, and M. Kiwi, Eur. Phys. Lett. 106, 47004 (2014).
16 T. Graß, C. Muschik, A. Celi, R. W. Chhajlany, and M. Lewenstein, Phys. Rev. A 91, 063612 (2015).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  200.89.68.74 On: Fri, 12 Aug

2016 19:23:51

http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.176.250
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1103/PhysRevLett.69.1213
http://dx.doi.org/10.1103/PhysRevE.86.011140
http://dx.doi.org/10.1016/j.physa.2009.08.022
http://dx.doi.org/10.1209/0295-5075/106/47004
http://dx.doi.org/10.1103/PhysRevA.91.063612

