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ABSTRACT

We establish a “preparatory Sard theorem” for smooth functions with a

partially affine structure. By means of this result, we improve a previous

result of Rifford [17, 19] concerning the generalized (Clarke) critical values

of Lipschitz functions defined as minima of smooth functions. We also

establish a nonsmooth Sard theorem for the class of Lipschitz functions

from Rd to Rp that can be expressed as finite selections of Ck functions

(more generally, continuous selections over a compact countable set). This

recovers readily the classical Sard theorem and extends a previous result

of Barbet–Daniilidis–Dambrine [1] to the case p > 1. Applications in

semi-infinite and Pareto optimization are given.
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1. Introduction

The classical Sard theorem asserts that the critical values of a Ck smooth func-

tion f : Rd → Rp are contained in a subset of null measure of Rp, provided

k ≥ max{1, d− p+ 1};
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see [21]. The case p = 1, known as the Morse–Sard theorem, had been previously

established in [15]. The Sard theorem can be readily extended to Ck-functions

f : M → N where M, N are Ck-manifolds of dimensions d and p respectively

(see, for example, [9, Theorem 1.3]). Notice that if d < p, then every point

is critical and f(M) has null measure in N . The above results are essentially

sharp. (We refer to [16] and [2] for refinements and precise sharp statements.)

Known counterexamples show that the degree of regularity cannot be lowered,

unless an extra structural assumption is made over the function: see [14] for C1

semialgebraic functions from Rd to Rp.

In this work we focus on the case of (locally) Lipschitz continuous functions

f : Rd → Rp. The notion of criticality is now defined by means of the gener-

alized (Clarke) Jacobian (see definition in Section 2.1). If f is Lipschitz, the

notation Critf (respectively, f(Critf)) will refer to the set of Clarke critical

points (respectively, values) of f . Let us notice that if d < p, then f(Rd) is

a null set in Rp and the conclusion of the Sard theorem holds trivially. For

this reason, unless overwise specified, we assume d ≥ p. However, endeavoring

to generalize the Sard theorem for (nonsmooth) Lipschitz functions is a huge

challenge even in the simplest nontrivial case d = p. Indeed, approximating the

given Lipschitz function by functions of class C1 outside a set of small measure

(see [8, 3.1.15]), we deduce that the image of the set of the classical critical

points (that is, points where the derivative of f exists and is not surjective) has

measure zero. Nonetheless, this does not yield any control on the set of Clarke

critical values: it can be shown that every point of a generic (with respect

to the uniform topology) Lipschitz function f : R → R is Clarke critical (see

[4] for the more general case of functions defined in Rd). This wipes out any

possible nonsmooth Sard-type result in full generality, indicating instead that

extra assumptions are required. Should this be a structural assumption in the

spirit of Grothendieck (subanalyticity, tameness of the graph of the Lipschitz

function), a strong version of the Morse–Sard theorem can then be established

(local finiteness of the Clarke critical values); see [3]. A more general result

concerning tame multifunctions is obtained in [10]; applications in constrained

optimization are presented in [12]. We refer to [11] for a survey on the use of

tame structures in variational analysis. Without such structural assumptions,

a couple of ad-hoc nonsmooth Morse–Sard results can still be found in the lit-

erature for particular Lipschitz functions: the distance function to a Riemanian

submanifold [17] and the viscosity solutions of Hamiltonians of certain type [19].
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In this work, we improve the aforementioned results of Rifford, by establishing

the following nonsmooth Morse–Sard theorem, which has interesting applica-

tions in Riemannian [17] and sub-Riemannian geometry [18] and more generally

in the Hamilton–Jacobi theory [19].

Theorem 1 (Morse–Sard theorem for min-type functions): LetN be a compact

manifold of class Ck and of dimension �. Let φ : Rn × N → R be a smooth

function of class Ck. If k ≥ n+ �(n+ 1), then the set of Clarke critical values

of the Lipschitz continuous function⎧⎨
⎩f : Rn → R

f(z) := minq∈N {φ(z, q)}, for all z ∈ Rn,

has measure zero.

A second contribution of this work is to provide a nonsmooth generalization

of the Sard theorem for Lipschitz functions f : Rd → Rp that are selections over

a finite family of Ck smooth functions, where k ≥ d− p+ 1. (This is of course

the minimal regularity that one should require; it corresponds to the regularity

for the classical Sard theorem to hold.) This result recovers remarkably the

classical Sard theorem (consider the trivial selection over a singleton). Our

forthcoming theorem will be stated in an even more general form, considering

selections over a (possibly infinite) countable family. In particular it extends

the recent result of Barbet, Daniilidis and Dambrine [1, Theorem 5], from the

real-valued case p = 1 (Morse theorem) to the vector valued case p > 1 (Sard

theorem).

Theorem 2 (Sard theorem for Lipschitz selections): Let T �= ∅ be a compact

countable set. Assume that

— F : Rd × T → Rp is a continuous function with d ≥ p;

— x �→ F (x, t) is of class Ck with k ≥ d− p+ 1, for all t ∈ T, and

— the function DxF : Rd × T → Rpd is continuous.

If f : Rd → Rp is continuous and

f(x) ∈ {F (x, t) : t ∈ T }, for all x ∈ Rd,

then f is locally Lipschitz and the set of Clarke critical values f(Critf) is null

in Rp.
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Notice that if T is finite (equipped by default with the discrete topology), the

assumptions of continuity of F and DxF become superfluous.

Both Theorem 1 (Morse–Sard for min-type functions) and Theorem 2 (Sard

for Lipschitz selections) are obtained as corollaries—though not straightfor-

ward—of the forthcoming (main) result that we call the “Preparatory Sard

theorem”. Some notation is needed in order to state this latter result: innΔm

stands for the algebraic interior of the simplex Δm of Rm+1, M denotes a Ck

smooth manifold and

Ψ(λ, x) :=

m∑
i=0

λiφ
i(x), (λ, x) ∈ innΔm ×M

where φi : M → Rp are Ck smooth functions. We denote by CritΨ the set

of critical points of Ψ, that is, the set of points (λ, x) for which the derivative

DΨ(λ, x) is not surjective:

(λ, x) ∈ CritΨ ⇐⇒ rank(DΨ(λ, x)) < p.

We also define the set ĈritΨ of strongly critical points, as follows:

(1.1) (λ, x) ∈ ĈritΨ ⇐⇒

⎧⎨
⎩φi(x) = φ0(x), i ∈ {0, . . . ,m},
rank(

∑m
i=0 λiDφi(x)) < p.

In the above definitions, by rank of a linear operator we mean the dimension of

its image. It follows easily that ĈritΨ ⊂ CritΨ and that equality holds if either

p = 1 or m = 0. We are now ready to state our main result.

Theorem 3 (“Preparatory Sard theorem”): Let M be a paracompact Ck man-

ifold of dimension d with k ≥ 1. Given m+1 functions φ0, φ1, . . . , φm : M → Rp

of class Ck we set

(1.2)

⎧⎨
⎩Ψ : innΔm ×M → Rp

Ψ(λ, x) :=
∑m

i=0 λiφ
i(x)

for all λ = (λ0, . . . , λm) ∈ innΔm and x ∈ M. Then the following properties

hold:

(I) If k ≥ d− p+ 1, then Ψ(ĈritΨ) is null in Rp.

(II) If k ≥ min{d+ 1,m+ d− p+ 1}, then Ψ(CritΨ) is null in Rp.

The above statement has two parts:
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The first part (Theorem 3 (I)) concerns the strongly critical values, a more

restrictive notion which turns out to be exactly what is required to establish

our main results (cf. Theorem 1 and Theorem 2). For this part only the (closed)

subset ofM where all functions φi coincide is relevant; notice, however, that this

subset is not in general a submanifold of M. The main instrument of the proof

is an adaptation of the quantitative method of Yomdin [22] (see also [6]) aiming

at exploiting the affine part of Ψ (namely, the variables λ0, . . . , λm) in order

to obtain a better regularity than what would yield a blind application of the

classical result: indeed, this latter bound would have been k ≥ (m+ d)− p+1.

A careful inspection of the proof (cf. Section 3.1) reveals that the open simplex

innΔm can be replaced by the (generated) affine space

H =

{
λ ∈Rm+1 :

m∑
i=0

λi = 1

}
.

In other words, only the condition
∑m

i=0 λi = 1 is important, the positivity of

the coordinates is irrelevant.

The second part of the theorem follows almost for granted since the same

pattern of proof of the first part applies. Although not needed for our purposes,

this second part has an independent interest and is stated for completeness.

As already mentioned, Theorem 2 (Sard theorem for Lipschitz selections)

is an extension of [1, Theorem 5] (Morse for Lipschitz selections), albeit not

a straightforward one: the proof of [1, Theorem 5] relies upon geometrical

arguments, leading nonsmooth criticality to a tractable smooth criticality of

some smooth functions in naturally arising manifolds, and applying the classical

Morse–Sard theorem to them. This approach is however much compromised by

the real-valued case and does not seem to admit any obvious extension if p > 1.

In contrast to that, the proof of Theorem 2, even specified to the case p = 1, is

considerably different in spirit. It passes through the highly technical-analytical

approach of Theorem 3 (“Preparatory Sard theorem”), which is an improved

version of Sard theorem. Still a common ground is tractable: both approaches

eventually recover the classical Morse–Sard (respectively, Sard) theorem.

The manuscript is organized as follows: Notation and some basic definitions

are recalled in Section 2, where several useful lemmas (required for the “Prepara-

tory Sard theorem”) are established. The proofs of the main results are given

in Section 3, while in Section 4 we present applications of Theorem 2 to semi-

infinite and vector optimization.
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2. Preliminaries

2.1. Notation. In this work we shall consider the following abbreviations:

— We denote by |J| the cardinality of any finite set J.

— Nm = {1, . . . ,m}, for any integer m ≥ 0, and

— Δm = {λ = (λ0, λ1, . . . , λm) ∈ Rm+1 : λi ≥ 0 :
∑m

i=0 λi = 1} for the

m-dimensional simplex Δm in Rm+1.

Further, we denote by rank(A) the rank of a matrix A and by co(C) the

convex envelope of any subset C of Rd. Then x ∈ co(C) if and only if there

exists m ≥ 0, λ ∈ Δm and {x0, x1, . . . , xm} ⊂ C such that x =
∑m

i=0 λixi. Let

us recall that, thanks to the Carathéodory theorem, if x ∈ co(C) then we can

always obtain a representation involving at most d+ 1 points. We also denote

by innΔm the algebraic interior of Δm. In other words, λ ∈ innΔm if and only

if λ ∈ Δm and λi �= 0 for all i ∈ {0, . . . ,m}. We finally denote by L(A) the

Lebesgue measure of any measurable subset A of Rp.

A function f : Rd → Rp is called Lipschitz continuous if there exists K > 0

such that for all x, y ∈ Rd we have ||f(x)− f(y)|| ≤ K||x− y||. If this property
holds locally (with possibly different constants) at a neighborhood of every

point of the domain of f , then f is called locally Lipschitz. By the Rademacher

theorem, every (locally) Lipschitz continuous function f is almost everywhere

differentiable. In particular, the set Df of points where the derivative of f exists

is a dense subset of Rd.

The Clarke (generalized) Jacobian JCf(x) of f at a point x ∈ Rd (at which

f might or might not be differentiable) is defined as the convex hull of the

set JLf(x) made up of all accumulation points of sequences {Df(xn)}n where

{xn}n ⊂ Df and {xn} → x; see [5, Chapter 2.6]. Notice that fixing the bases in

Rd and Rp the sets JLf(x), JCf(x) are naturally identified as subsets of p× d

matrices. Should the set JCf(x) contain an element (matrix) of rank strictly less

than p, the point x will be called (Clarke) critical for the Lipschitz function

f . In case f is continuously differentiable, JCf(x) = JLf(x) = {Df(x)} holds

and Clarke criticality collapses to the standard notion of criticality (that is, the

derivative fails to be surjective).

We call y ∈ Rp a (Clarke) critical value for a locally Lipschitz function f ,

if f−1(y) contains a Clarke critical point. We denote by Critf (subset of Rd)

the set of Clarke critical points, and by f(Critf) (subset of Rp) the set of Clarke
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critical values. Notice that in case p = 1 the Clarke Jacobian is identified with

the Clarke subdifferential ∂Cf(x) and criticality simply means 0 ∈ ∂Cf(x).

We finally recall that the modulus of (uniform) continuity of a function

g : Rd → Rp on a compact subset T ⊂ Rd is defined as follows:⎧⎨
⎩ω : [0,+∞) → [0,+∞],

ω(r) = sup{||g(x)− g(y)|| : x, y ∈ T , ||x− y|| ≤ r}.

2.2. Preliminary results.

Semialgebraic sets. A set A ⊂ Rd is called semialgebraic if it can be ob-

tained by means of a finite number of Boolean operations (union, intersection,

complementary) of sets of the form {f = 0}, {g > 0} where f, g are polynomi-

als on Rd. It is known that semialgebraic sets enjoy good stability properties

(Tarski–Seidenberg principle). In particular, if A ⊂ Rd is a semialgebraic set

and F : Rd → Rp is a polynomial mapping, then the set F (A) ⊂ Rp is semialge-

braic (see, for example [22, Proposition 2.7]). Moreover, the following statement

holds:

Fact (see [22, Proposition 2.6, Corollary 2.10]): There exists a number N∗ > 0

depending on the dimensions d, p, the degree of F and the degrees of the poly-

nomials involved in the construction of A such that:

(a) The number of connected components of F (A) is bounded by N∗.
(b) For any ball B of radius r > 0 in Rp, any two points belonging to the

same connected component of F (A) ∩ B can be joined by means of an

absolutely continuous path (in fact, a semialgebraic curve) whose length

is bounded by N∗r.

Linear operators and modulus of surjectivity. Given a linear mapping L :Rd→Rp

we denote by ρ(L) the smallest semi-axis of the ellipsoid

(2.1) EL = {Lu|‖u‖ ≤ 1} ⊂ Rp.

Notice that ρ(L) > 0 if and only if L is surjective. If ρ(L) is getting close

to zero, then we approach nonsurjectivity. In particular, if the ellipsoid EL is

contained in a hyperplane, then ρ(L) is zero, and the linear mapping L is not

surjective.
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We shall need the following lemma. In the sequel, {e1, . . . , ep} denotes the

canonical basis of Rp. For i ∈ {1, . . . , p} and α ∈ (0, 1) we define the closed

convex cone

Ci,α := {y ∈ Rp : |〈y, ei〉| ≤ α‖y‖}.

Lemma 4 (inclusion of hyperplanes to cones): There exists ᾱ = ᾱ(p)∈(1/
√
2, 1)

such that for any linear hyperplane H of Rp there exists i ∈ {1, . . . , p} such that

H ⊂ Ci,ᾱ.

Proof. The statement is trivial for p = 1. If the assertion were not true for some

p > 1, then there would exist a sequence {αn}n ↗ 1 together with a sequence of

linear hyperplanes {Hn}n such that each Hn would intersect the set Rp \Ci,αn

for all i ∈ {1, . . . , p}. By compactness of the Grasmannian manifold G(p−1, p),

{Hn}n converges (up to a subsequence) to some linear hyperplaneH which must

contain all of the vector of the canonical basis, a contradiction. The assertion

follows.

We further denote by L1, . . . , Lp the coordinates of the linear mapping L and

we consider, for p > 1, the linear mapping L̂ from Rd to Rp−1 defined by

(2.2) L̂u = (L1u, . . . , Lp−1u) ∀u ∈ Rd.

The following result controls, up to a permutation, the last coordinate of the

image of L in terms of the other coordinates and ρ(L).

Lemma 5 (Coordinate control): Let L : Rd → Rp (p > 1) be a linear operator.

Under the above notation, up to a permutation of the coordinates, there exists

C = C(p) > 0 such that

(2.3) |Lpu| ≤ C[ρ(L)‖u‖+ ‖L̂u‖] ∀u ∈ Rd.

Proof. Let us first consider the case where ρ(L) = 0, that is L is not surjective.

Let H denote a hyperplane of Rp containing the image of L. Applying again

Lemma 4 we deduce that for some ᾱ ∈ (1/
√
2, 1) and i ∈ {1, . . . , p} we have

H ⊂ Ci,ᾱ. Permuting the coordinates if necessary, we may assume that i = p.

It follows that for every z = (ẑ, zp) ∈ H we have

(2.4) |zp| ≤
ᾱ√

1− ᾱ2
‖ ẑ‖.

Taking z = Lu for u ∈ Rd we obtain (2.3) for ρ(L) = 0. Notice that the

obtained constant in (2.4) depends only on p.
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Let us now assume ρ(L) �= 0 and let ū ∈ Rd with ‖ū‖ = 1 such that

‖Lū‖ = ρ(L).

The tangent plane to the ellipsoid EL ⊂ Rp at Lū is the affine hyperplane Lū+H

with

H = {z ∈ Rp|〈Lū, z〉 = 0}.
Applying Lemma 4 and permuting the coordinates if necessary, we deduce as

before thatH ⊂ Cp,ᾱ and (2.4) holds. By convexity, the ellipsoid EL is contained

in the strip

{tLū+ z : t ∈ [−1, 1], z ∈ H}.
Using any point y = (ŷ, yp) in the above strip satisfies

|yp|ρ(L) + ‖ŷ‖),

for C = 2ᾱ(1− ᾱ2)−1/2. Since for every ‖u‖ = 1 the point L(u) = (L̂(u), Lp(u))

belongs to the ellipsoid, we get the result for every u ∈ Rd with ‖u‖ = 1 and

by homogeneity for all u ∈ Rd.

3. Proofs of the results

Roughly speaking, the “preparatory Sard theorem” (Theorem 3) states that

the dimension of the affine manifold innΔm (corresponding to the linear part of

Ψ) does not (fully) appear in the required regularity of Ψ in order to conclude

that the set Ψ(ĈritΨ) (respectively Ψ(CritΨ)) is null. Indeed, it what follows

we exploit this partial affine structure of Ψ, by adapting carefully the so-called

Yomdin approach (see [22]). The proof is given in Section 3.1. This result will

be subsequently used to establish Theorem 1 (in Section 3.2) and Theorem 2

(in Section 3.3).

3.1. Proof of the “Preparatory Sard Theorem” (Theorem 3). There

is no loss of generality to assume M = Rd. We then denote by T the unit cube

of Rd. Since Rd is covered by a countable union of translations of T and since

a countable union of null sets is null, it is sufficient to establish the result for

the restriction of Ψ to innΔm × T .

To this end, fix a positive integer l ≥ m+1. The cube T can be divided into

ld cubes T1, . . . , Tld of side r := 1/l. For each i ∈ {0, . . . ,m} (counting functions

φi) and j ∈ {1, . . . , ld} (counting cubes), let Pi
j be the k-Taylor polynomial of
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φi at the center of the cube Tj and let ω denote a modulus of continuity for Dkφ

on the unit cube T , where φ := (φ0, . . . , φm). It follows that for any x ∈ Tj and

i ∈ {0, . . . ,m} we have

(3.1) ‖φi(x)−Pi
j(x)‖ ≤ ω(r)rk

and

(3.2) ‖Dφi(x)−DPi
j(x)‖ ≤ ω(r)rk−1.

Let further Kj > 0 be an upper bound for all derivatives

{‖Dφi(x)‖ : x ∈ Tj , i ∈ {1, . . . ,m}}

(that is, a common Lipschitz constant of all functions φi on Tj). In view of

(3.2), taking possibly a larger value, we may assume that Kj is also a common

upper bound for the derivatives {‖DPi
j(x)‖ : x ∈ Tj , i ∈ {1, . . . ,m}}. In the

sequel we set

(3.3) K = max
j∈{1,...,ld}

Kj .

For j ∈ {1, . . . , ld} we also denote by Mj an upper bound for the diameter of

Ψj(innΔ
m × Tj), and we define the function

(3.4) Ψ̃j(λ, x) :=

m∑
i=0

λiP
i
j(x).

The above function is obtained by simply replacing the functions φi by the

polynomials Pi
j in the definition of Ψ in (1.2). Therefore, in view of (3.1),

taking possibly a larger value we may assume that Mj is also a common upper

bound for the diameter of the set Ψ̃j(innΔ
m × Tj). We set

(3.5) M = max
j∈{1,...,ld}

Mj.

Our first aim, roughly speaking, is to show that any (strongly) critical point

of Ψ lying in Tj is an almost (strongly) critical for the function Ψ̃j. Recalling

notation from Section 2.2 we have:

Lemma 6 (Approximating critical values): Let (λ, x) ∈ innΔm × Tj . Then
(i) It holds

(3.6) ‖Ψ(λ, x)− Ψ̃j(λ, x)‖ ≤ ω(r)rk .

In addition:
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(ii) If (λ, x) ∈ ĈritΨ (strongly critical), then⎧⎨
⎩‖Pi

j(x)−P0
j (x)‖ ≤ 2ω(r)rk

for all i ∈ {1, . . . ,m}
and ρ

( m∑
i=0

λiDPi
j(x)

)
≤ ω(r)rk−1.

(iii) If (λ, x) ∈ CritΨ (critical), then

ρ(DΨ̃j(λ, x)) ≤ 2ω(r)rk−1.

Proof. Assertion (i) is straightforward from (3.1). The first inequality in (ii)

follows immediately from (1.1) and (3.1). To prove the second inequality of

(ii), we recall that since (λ, x) is strongly critical for Ψ, the linear mapping∑m
i=0 λiDφi(x) is not surjective, hence its image Im(

∑m
i=0 λiDφi(x)) is con-

tained in a hyperplane H ⊂ Rp. Thus, since by (3.2) we have∥∥∥∥
m∑
i=0

λiDφi(x)−
m∑
i=0

λiDPi
j(x)

∥∥∥∥ ≤ ω(r)rk−1 ,

the image by
∑m

i=0 λiDPi
j(x) of the unit ball of Rd is contained in the strip

{z + sv̂|z ∈ H, s ∈ [−ω(r)rk−1, ω(r)rk−1]},

where v̂ is a unit vector orthogonal to H. The second inequality in (ii) follows.

To prove (iii), we note that the formulae for DΨ and DΨ̃j at (λ, x) are,

respectively,⎧⎨
⎩DΨ(λ, x)(μ,u) =

∑m
i=0 μiφ

i(x) +
∑m

i=0 λiDφi(x)(u)

DΨ̃j(λ, x)(μ,u)=
∑m

i=0 μiP
i
j(x)+

∑m
i=0 λiDPi

j(x)(u)

∀(μ,u)∈TinnΔm(λ) × Rd,

where

TinnΔm(λ)× Rd(� Rm × Rd)

denotes the tangent space of innΔm × Rd at (λ, x). We deduce easily, in view

of (3.1), (3.2) and the Cauchy–Schwarz inequality (recall r = l−1 ≤ (m+1)−1),

that

‖DΨ(λ, x)−DΨ̃j(λ, x)‖ ≤ (r(m + 1) + 1)ω(r)rk−1 ≤ 2ω(r)rk−1.

If (λ, x) is critical, then DΨ(λ, x) is not surjective, yielding as before that the

image by DΨ̃j(λ, x) of the unit ball of TinnΔm(λ) × Rd is contained in a sym-

metric strip of width 4ω(r)rk−1. We conclude easily.
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Let ν, r be positive real numbers with ν << r. Motivated by the above

Lemma 6 (parts (ii), (iii)), for every j ∈ {1, . . . , ld} we define the semialgebraic

sets

Γ̂(ν, r)j , Γ(ν, r)j ⊂ innΔm × Tj
as follows:

(3.7)

(λ, x) ∈ Γ̂(ν, r)j ⇐⇒

⎧⎨
⎩‖Pi

j(x)−P0
j (x)‖ ≤ νr,

for all i ∈ {1, . . . ,m}
& ρ

( m∑
i=0

λiDPi
j(x)

)
≤ ν,

and respectively

(3.8) (λ, x) ∈ Γ(ν, r)j ⇐⇒ ρ(DΨ̃j(λ, x)) ≤ ν,

Roughly speaking, Γ̂(ν, r)j (respectively, Γ(ν, r)j) can be seen as the set of

“ν-almost strongly critical” (respectively, “ν-almost critical”) points of the func-

tion

Ψ̃j : innΔ
m × Tj(≈ [0, r]d) → Rp,

given in (3.4). The following result provides an upper bound for the diameter

of the image of these functions Ψ̃j , j ∈ {1, . . . , ld}, in terms of K (common

Lipschitz constant of Pi
j , see (3.3)) and r (size of Tj).

Lemma 7 (Size of the image of Ψ̃j): Assume that ν > 0 is sufficiently small.

Then:

(i) If Γ̂(ν, r)j is nonempty, then diam(Ψ̃j(innΔ
m × Tj)) ≤ 3Kr.

(ii) If Γ(ν, r)j is nonempty, then Ψ̃j(innΔ
m×Tj) is contained in a bounded

strip determined by a hyperplane H and a vertical width 3Kr.

Proof. Assume Γ̂(ν, r)j �= ∅ and pick any (λ̄, x̄) ∈ Γ̂(ν, r)j . We shall show that

Ψ̃j(innΔ
m×Tj) is contained in a ball of center P0

j(x̄) ∈ Rp and radius (K+ν)r.

Indeed, in view of (3.7), for any (λ, x) ∈ innΔm × Tj we have

‖Ψ̃j(λ, x) −P0
j (x̄)‖ ≤

∥∥∥∥
m∑
i=0

λi(P
i
j(x) −Pi

j(x̄))

∥∥∥∥+

∥∥∥∥
m∑
i=0

λi(P
i
j(x̄)−P0

j(x̄))

∥∥∥∥
≤Kr + νr.

Let us now assume Γ(ν, r)j �= ∅, and let (λ̄, x̄) ∈ Γ(ν, r)j . Then, roughly

speaking, the vectors P0
j (x̄), . . . ,P

m
j (x̄) are close to a hyperplane H of Rp, and
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consequently, the bounded set

Ψ̃j(innΔ
m × {x̄})

(convex hull of the Pi
j(x̄)) is contained in a narrow strip around this hyperplane.

Pick now any (λ, x) ∈ innΔm × Tj and notice that the distance of Ψ̃j(λ, x) to

the above set is majorized by

‖Ψ̃j(λ, x) − Ψ̃j(λ, x̄)‖ ≤
∥∥∥∥

m∑
i=0

λi(P
i
j(x) −Pi

j(x̄))

∥∥∥∥ ≤ Kr.

The result follows.

The following lemma borrows heavily from the work of Yomdin [22]. It gives

a quantitative estimation of the size of the sets of ν-almost strongly critical

values (respectively, ν-almost critical values) by means of standard arguments

of real algebraic geometry.

Lemma 8 (Semialgebraic estimates): There exists an integer Ñ depending only

on d, p (dimensions of the spaces), k (degree of Taylor approximation for the

functions φi), m (m + 1 being the number of functions φi) and the constants

K and M defined in (3.3), (3.5) (depending on the functions φi) such that for

each j ∈ {1, . . . , ld},
(i) the (semialgebraic) set

Δ̂(ν, r)j :=

{ m∑
i=0

λiP
i
j(x)|(λ, x) ∈ Γ̂(ν, r)j

}
= Ψ̃j(Γ̂(ν, r)j)

is contained in the union of Ñ( 1ν )
p−1 cubes of Rp of side νr,

(ii) the (semialgebraic) set

Δ(ν, r)j :=

{ m∑
i=0

λiP
i
j(x)|(λ, x) ∈ Γ(ν, r)j

}
= Ψ̃j(Γ(ν, r)j)

is contained in the union of Ñ( 1ν )
p−1 cubes of Rp of radius ν.

Proof. Let j ∈ {1, . . . , ld} (fixing the cube Tj). We can clearly assume that

the sets Γ̂(ν, r)j and Γ(ν, r)j are nonempty. (If one of these sets is empty, the

corresponding conclusion holds true trivially.) We now proceed with the proofs

of (i), (ii) to obtain the required integer bounds N1, N2 respectively. Then Ñ

will be simply the maximum of N1 and N2.
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In the remainder of the proof, we implicitly assume p > 1. The case p = 1 is

an easy adaptation and is left to the reader. (Replacing formally p = 1 in what

follows (and using obvious conventions) would lead to a disproportionally long

proof with superfluous parts.)

Let us now denote by R any rectangle (lamella) in Rp of the form

R = R̂× Ip,

where R̂ is a cube in Rp−1 of side α > 0 and Ip is an interval with length |Ip|
greater than the diameter of Ψ̃j(innΔ

m×Tj). (Typically α > 0 is much smaller

than r and |Ip|.)

(i). Since Γ̂(ν, r)j is nonempty, by Lemma 7 (i) we deduce that Ψ̃j(innΔ
m×Tj)

is contained in a rectangular ball of side 3Kr. Therefore, it can be covered by

(3Kr/α)p−1 lamellae R. In the sequel we shall indeed consider such a covering;

from now on, the notation R will assign an arbitrary element of this covering.

In order to keep notation reasonably simple, we shall drop the index j from

the polynomial functions Pi
j : Tj ⊂ Rd → Rp and the sets Γ̂(ν, r)j and Δ̂(ν, r)j

and will identify Tj with its translation [0, r]d. Then each polynomial Pi
j will

be simply denoted by Pi = (P i
1 , . . . , P

i
p) (keeping in mind that it is the Taylor

approximation of order k of the function φi on Tj).
Applying Lemma 5 (coordinate control) to the linear operators

(3.9) L(x) :=

m∑
i=0

λiDPi(x), x ∈ Tj

we deduce that for some σ ∈ Sp (permutation of the coordinates {1, . . . , p})

(3.10) |L(x)p(u)| ≤ C(ρ(L(x))‖u‖ + ‖L̂(x)(u)‖) ∀u ∈ Rd,

where according to the notation introduced in (2.2)

L̂(x) =
m∑
i=0

λiD̂Pi(x), with D̂Pi(x) = (DP i
1(x), . . . , DP i

p−1(x)).

This yields a natural covering of the semialgebraic set Γ̂(ν, r) by a finite union of

sets {Γ̂σ(ν, r)}σ∈Sp . Namely, (λ, x) ∈ Γ̂σ(ν, r) provided that after applying the

permutation σ ∈ Sp to the coordinates of L(x) we get (3.10). It follows readily

that Γ̂σ(ν, r) is a semialgebraic subset of innΔm × [0, r]d for every σ ∈ Sp.
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Let us observe that for any permutation σ ∈ Sp and any lamella R = R̂× Ip

of the covering of Ψ̃j(innΔ
m × Tj), the set

̂ΓR
σ (ν, r) :=

{
(λ, x) ∈ Γ̂σ(ν, r)|

m∑
i=0

λiP
i(x) ∈ R

}

is semialgebraic. Notice further that since

Ψ̃j( ̂ΓR
σ (ν, r)) = Ψ̃j(Γ̂σ(ν, r)) ∩R,

the projection of the set Ψ̃j( ̂ΓR
σ (ν, r)) to the first p− 1 coordinates is contained

in a cube of side α > 0. Let us now apply the “semialgebraic fact” given in

Section 2.1 for each of these sets A = ̂ΓR
σ (ν, r) and for F being either the identity

mapping on innΔm × [0, r]d or the composition of the polynomial mapping Ψ̃j

with the canonical projection from Rp to Rp−1. We deduce that there exists an

integer N∗ depending only on d, p (dimensions of the spaces) and k (degree of

the polynomials Pi) such that (for any σ ∈ Sp and any lamella R)

• the set ̂ΓR
σ (ν, r) ⊂ innΔm × [0, r]d has at most N∗ connected compo-

nents; (in the sequel ̂ΓR
σ (ν, r)conn will denote an arbitrary connected

component of ̂ΓR
σ (ν, r))

• any (λx, x), (λy , y) ∈ ̂ΓR
σ (ν, r)conn can be joined by means of an abso-

lutely continuous semialgebraic path t �−→ (λ(t), γ(t)), lying entirely in
̂ΓR
σ (ν, r)conn such that

(λ(0), γ(0)) = (λx, x), (λ(1), γ(1)) = (λy , y),

(3.11)

∫ 1

0

‖λ̇(t)‖dt ≤ N∗ and

∫ 1

0

‖γ̇(t)‖dt ≤ N∗r

(3.12) and

∫ 1

0

∥∥∥∥ d

dt
(

m∑
i=0

λi(t)P̂i(γ(t)))

∥∥∥∥dt ≤ N∗α.

(The first inequality is obtained by applying the aforementioned fact to

the set of tuples (λ, x) in [0, r]m+1 × [0, r]d such that λ/r ∈ innΔm and

dividing by r.)

Our strategy is now the following: our aim is to obtain an upper bound L∗ > 0

(independent of the cube Tj , the position of the lamelle R in Ψ̃j(innΔ
m × Tj)
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and the permutation σ ∈ Sp) for the length of the maximum interval made up

by elements of the form

(3.13)

{
Ψ̃(λ, x)p :=

m∑
i=0

λiP
i
p(x) | (λ, x) ∈ ̂ΓR

σ (ν, r)conn

}
⊂ Ip.

Since (3.13) is the projection onto the last coordinate of the set

Ψ̃( ̂ΓR
σ (ν, r)conn) ⊂ Rp,

we can then deduce that this latter can be covered by L∗/α cubes of size α.

Multiplying then this number by N∗ (upper bound for the number of connected

components of ̂ΓR
σ (ν, r)) and by p! (number of permutations) we obtain an upper

bound
p!N∗L∗

α
for the number of cubes of size α > 0 required to cover the set

Δ̂(ν, r) ∩R = Ψ̃(Γ̂(ν, r)) ∩R ⊂ Rp,

that is, the set of ν-almost strongly critical values of Ψ̃ (restricted to innΔm×Tj)
in the lamella R. Multiplying the above bound by (3Kr/α)p−1 (number of

lamellae R of the covering of Ψ̃j(innΔ
m × Tj)) we deduce that the set Δ̂(ν, r)

can be covered by a maximum of

(3.14) (3K)p−1p!N∗
L∗
α

( r

α

)p−1

cubes of size α > 0.

Let us now proceed to obtain the required upper bound L∗ > 0. To this

end, we fix a permutation σ ∈ Sp, a lamella R = R̂ × Ip and a connected

component ̂ΓR
σ (ν, r)conn and we consider two arbitrary elements (λx, x), (λy , y)

in ̂ΓR
σ (ν, r)conn. We readily get

(3.15)

m∑
i=0

λy
i P

i
p(y)−

m∑
i=0

λx
i P

i
p(x) =

∫ 1

0

d

dt

( m∑
i=0

λi(t)P
i
p(γ(t))

)
dt

=

∫ 1

0

m∑
i=0

λ̇i(t)P
i
p(γ(t))dt

+

∫ 1

0

m∑
i=0

λi(t)DP i
p(γ(t))(γ̇(t))dt.

We shall now obtain appropriate bounds of small order for the above terms.
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Step 1. Bound for the first integral of (3.15) of order νr.

Since λ(t) ∈ innΔm, it follows that
∑m

i=0 λ̇i(t) = 0, whence

m∑
i=0

λ̇i(t)P
i(γ(t)) =

m∑
i=1

λ̇i(t)(P
i(γ(t))−P0(γ(t))).

By (3.7) and the Cauchy–Schwarz inequality, we obtain∥∥∥∥
m∑
i=0

λ̇i(t)P
i(γ(t))

∥∥∥∥ ≤
√
mνr||λ̇(t)||.

Therefore, thanks to (3.11) we have

(3.16)

∫ 1

0

∣∣∣∣
m∑
i=0

λ̇i(t)P
i
p(γ(t))

∣∣∣∣dt ≤
∫ 1

0

∥∥∥∥
m∑
i=0

λ̇i(t)P
i(γ(t))

∥∥∥∥dt ≤ √
mN∗νr.

Step 2. Bound for the second integral of (3.15) of order max{α, νr}.
According to the notation of (3.9) we have

L(γ(t)) =

m∑
i=0

λi(t)DPi(γ(t)).

In view of Lemma 5 (Coordinate control), combining (3.7), (3.11), (3.12) and

(3.16) we deduce that for some C = C(p)

(3.17)

∣∣∣∣
∫ 1

0

m∑
i=0

λi(t)DP i
p(γ(t))(γ̇(t))dt

∣∣∣∣
≤C

∫ 1

0

ρ(L(γ(t)))‖γ̇(t)‖dt+ C

∫ 1

0

‖L̂(γ(t))(γ̇(t))‖dt

≤CνN∗r + C

∫ 1

0

∥∥∥∥ d

dt

( m∑
i=0

λi(t)P̂i(γ(t))

)∥∥∥∥dt
+ C

∫ 1

0

∥∥∥∥
m∑
i=0

λ̇i(t)P̂i(γ(t))

∥∥∥∥dt
≤CN∗νr + CN∗α+ C

√
mN∗νr.

Combining the bounds (3.16) and (3.17) obtained in the above steps, we obtain∣∣∣∣
m∑
i=0

λy
i P

i
p(y)−

m∑
i=0

λx
i P

i
p(x)

∣∣∣∣ ≤ N∗(
√
m(1 + C) + C)νr +N∗Cα.

Setting

D∗ = N∗(
√
m(1 + C) + C) and α = νr,
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we deduce that ∣∣∣∣
m∑
i=0

λy
i P

i
p(y)−

m∑
i=0

λx
i P

i
p(x)

∣∣∣∣ ≤ 2D∗νr := L∗

where D∗ = D∗(d, p, k,m). Replacing the values L∗ = 2D∗νr and α = νr in

(3.14) we deduce that the set Δ̂(ν, r)j can be covered by at most

(3K)p−1p!N∗(2D∗)
(1
ν

)p−1

rectangles of side νr. Therefore, the first assertion follows by taking

N1 = (3K)p−1p!N∗(2D∗).

(ii). The proof of this part follows the patterns of the proof of part (i) above.

Given j ∈ {1, . . . , ld} (fixing the semialgebraic set Γ(ν, r)j ⊂ innΔm × Tj) we

apply Lemma 5 (coordinate control) to the linear operators

DΨ̃j(λ, x) : TinnΔm(λ)× Rd → Rp (λ, x) ∈ Γ(ν, r)j

to deduce that under an appropriate permutation σ ∈ Sp of the coordinates

{1, . . . , p} relation (3.10) holds, that is,

(3.18)
|DΨ̃j(λ, x)p(u)| ≤ C(ρ(DΨ̃j(λ, x))‖u‖ + ‖ ̂

DΨ̃j(λ, x)(u)‖)

∀u ∈ TinnΔm(λ)× Rd.

We recall again the notation of (2.2),

̂
DΨ̃j(λ, x) = (DΨ̃j(λ, x)1, . . . , DΨ̃j(λ, x)p−1).

For each partition σ ∈ Sp we define Γσ(ν, r)j to be the set of those elements

(λ, x) ∈ Γ(ν, r)j for which, after applying the permutation σ to the coordinates

of DΨ̃j(λ, x), relation (3.18) holds true. Since we have assumed that Γ(ν, r)j is

nonempty, by Lemma 7 (ii) we deduce that the bounded set Ψ̃j(innΔ
m × Tj)

is contained in a strip of width less than or equal to 3Kr. Recalling from (3.5)

that M > 0 is an upper bound for the diameter of Ψ̃j(innΔ
m×Tj), we therefore

conclude that Ψ̃j(innΔ
m × Tj) can be covered by at most(M

α

)p−1

lamellae of the form R = R̂ × Ip, where R̂ is a cube in Rp−1 of side α > 0 and

|Ip| ≥ M . Let us consider such a covering and let R be an arbitrary element

(lamella) of it.
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Fixing now the partition σ ∈ Sp and the lamella R we set

ΓR
σ (ν, r) := {(λ, x) ∈ Γσ(ν, r)|Ψ̃j(λ, x) ∈ R}.

The above set being semialgebraic, we can apply again the “semialgebraic

fact”(Section 2.1). Notice again that the projection of the set Ψ̃j(Γ
R
σ (ν, r))

to the first p − 1 coordinates is contained in a cube of side α > 0. Let N∗ be

an integer (depending on d, p and k) such that the set ΓR
σ (ν, r) has at most

N∗ connected components (each of which will be denoted as ΓR
σ (ν, r)conn) and

that for any (λx, x), (λy , y) ∈ ΓR
σ (ν, r)conn there exists a semialgebraic path

u(t) = (λ(t), γ(t)), t ∈ [0, 1], lying entirely in ΓR
σ (ν, r)conn with

u(0) = (λx, x), u(1) = (λy , y),

(3.19)

∫ 1

0

‖u̇(t)‖dt ≤ N∗

(3.20) and

∫ 1

0

∥∥∥ d

dt
(

̂
DΨ̃j(u(t)))

∥∥∥dt ≤ N∗α.

Following the same strategy as in part (i), we seek an upper bound L′
∗ > 0 for

the length of the maximum interval contained in the set

Ψ̃j(Γ
R
σ (ν, r)conn)p ⊂ Ip.

Once we get this bound at hand, we can deduce, as before, that the set Δ(ν, r)j

can be covered by a maximum of

(3.21) p!N∗
L′∗
α

(M
α

)p−1

cubes of size α > 0. To determine L′
∗ > 0 we pick (λx, x), (λy , y) in ΓR

σ (ν, r)conn

and obtain, in view of (3.18) and up to a permutation of coordinates,

(3.22)

∣∣∣∣
m∑
i=0

λy
i P

i
p(y)−

m∑
i=0

λx
i P

i
p(x)

∣∣∣∣ =
∣∣∣∣
∫ 1

0

d

dt
(DΨ̃j(u(t))p)dt

∣∣∣∣
≤
∫ 1

0

Cρ(DΨ̃j(u(t)))‖u̇(t)‖dt

+

∫ 1

0

‖ ̂
DΨ̃j(u(t))(u̇(t))‖dt

≤CN∗ν + CN∗α = CN∗(ν + α) := L′
∗.
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Taking α = ν, replacing L′
∗ = 2CN∗ν in (3.21) and setting

N2 = 2CN2
∗p!M

p−1

we deduce that the set Δ(ν, r)j can be covered by at most

N2

(1
ν

)p−1

cubes of side α = ν as asserted. This concludes the proof of (ii) and in turn of

Lemma 8.

Return now to the proof of Theorem 3. To prove (I), we note that in view of

Lemma 6 (ii), we may apply Lemma 8 (i) with

(3.23) ν = 2ω(r)rk−1

to deduce that for every j ∈ {1, . . . , ld} the set

Ej :=

{ m∑
i=0

λiP
i
j(x)|x ∈ Tj , (λ, x) ∈ ĈritΨ

}

is contained in a union of Ñ(1/ν)p−1 cubes of side νr, with Ñ depending only

on k, d, p, m and K. This together with (3.6) yields that the set

Ψ(ĈritΨ)

of strongly critical values of the function Ψ defined in (1.2) is contained in the

union of Ñld(1/ν)p−1 cubes of side 3νr. Therefore, its measure is bounded by

Ñld
1

νp−1
(3νr)p = 3pÑ ldrpν.

Using (3.23) and replacing r = 1/l in the above, we get the following bound for

the Lebesgue measure of Ψ(ĈritΨ):

L(Ψ(ĈritΨ)) ≤ 2 · 3pÑω
(1
l

)
l(d−p+1)−k.

It follows that for k ≥ d−p+1, taking the limit as l tends to infinity, we obtain

the result.

To prove (II), we note that in view of Lemma 6 (ii), we may apply Lemma 8

(iii) with

(3.24) ν = 2ω(r)rk−1



778 L. BARBET ET AL. Isr. J. Math.

to deduce that for every j ∈ {1, . . . , ld} the set

Ej :=

{ m∑
i=0

λiP
i
j (x)|x ∈ Tj , (λ, x) ∈ CritΨ

}

is contained in a union of Ñ(1/νp−1) cubes of side ν, with Ñ depending only on

k, d, p, m and the constants K and M . This together with (3.6) yields that the

set Ψ(CritΨ) of critical values of Ψ is contained in the union of Ñ ld(1/νp−1)

cubes of side ν + 2νr ≤ 3ν. Therefore, its measure is bounded by

ldÑ
1

νp−1
(3ν)p = 3pÑ ldν.

Using (3.23) and replacing r = 1/l in the above, we get the following bound for

the Lebesgue measure of Ψ(CritΨ):

L(Ψ(CritΨ)) ≤ 3pÑ2ω
(1
l

)
ld+1−k.

Therefore, if k ≥ d+1, then taking the limit as l tends to infinity, we obtain the

result. Notice that this regularity bound is interesting only when the dimension

of the simplex innΔm is greater than or equal to the dimension of the arrival

space. If p > m then the classical Sard theorem will provide a better result.

3.2. Proof of the Morse–Sard theorem for min-type functions(The-

orem 1). We denote by Critf the set of Clarke critical points of the function

f(z) := min
q∈N

{φ(z, q)}

and we recall that in this case the Clarke subdifferential is given by the formula

∂f(z̄) = co{Dzφ(z̄, q)|q ∈ argmin φ(z̄, ·)}.

Therefore, thanks to Carathéodory’s lemma, if z̄ ∈ Critf , there exist

m ∈ {0, . . . , n}, λ̄ = (λ̄0, . . . , λ̄m) ∈ innΔm and q̄ := (q̄0, . . . , q̄m) ∈ Nm+1

such that
m∑
i=0

λ̄iDzφ(z̄, q̄
i) = 0.

Notice that φ(z̄, q̄i) = f(z̄) and Dqφ(z̄, q̄
i) = 0, for all i ∈ {0, . . . ,m}. In

particular, we deduce
m∑
i=0

λ̄iDφ(z̄, q̄i) = 0.
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Let us now consider the function⎧⎨
⎩Ψm : innΔm × (Rn ×Nm+1) → R

Ψm(λ, z,q) :=
∑m

i=0 λiφ(z, q
i),

where q := (q0, . . . , qm). Setting x := (z,q) ∈ M := Rn ×Nm+1 and defining

φi(x) := φ(z, πi(q)), i ∈ {0, . . . ,m}

(πi denotes the i-projection of q) we deduce easily that Ψm is of the form (1.2)

with p = 1 and the tuple

(λ̄, x̄) := (λ̄, z̄, q̄0, . . . , q̄m)

is a (strongly) critical point of Ψm. Moreover,

f(z̄) = Ψm(λ̄, z̄, q̄).

Thus the set f(Critf) of Clarke critical values of f is contained in the finite

union (from m = 0 to n) of the (strongly) critical values of the functions Ψm.

Since m ≤ n we have k ≥ dimM = n + �(m + 1) and the result follows from

Theorem 3 (I) for p = 1.

3.3. Proof of the Sard theorem for Lipschitz selections (Theo-

rem 2). Let F = (F1, . . . , Fp) : Rd × T → Rp satisfy the assumptions of

Theorem 2 and let f = (f1, . . . , fp) be a continuous selection of F, that is, f is

continuous and

f(x) ∈ {F (x, t) : t ∈ T }, for all x ∈ Rd.

Then the assertion that f is locally Lipschitz is a straightforward consequence

of [1, Proposition 2], since for each i ∈ {1, . . . , p} the function fi : Rd → R is a

continuous selection of the family {Fi(·, t) : t ∈ T } with T countable compact,

whence locally Lipschitz continuous.

The second part of the theorem asserts that f(Critf) is null in Rp. In order

to establish this part we shall need the following notation: We set

Ti(x) = {t ∈ T : fi(x) = Fi(x, t)}, for i ∈ {1, . . . , p}

and

T (x) = {t ∈ T : f(x) = F (x, t)} =
⋂

i∈{1,...,p}
Ti(x).
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We further set

(3.25) Afi(x) = co{DxFi(x, t) : t ∈ Ti(x)}, for all i ∈ {1, . . . , p}

and

(3.26) Af (x) = Af1 (x)⊗ · · · ⊗Afp(x).

The following claim is important for our purposes:

Claim 1 (Broadening the notion of criticality): JCf(x) ⊂ Af (x) for all x ∈ Rd.

Proof of Claim 1. Let Df (respectively, Dfi) denote the set of points of differ-

entiability of f (respectively, of fi). By definition of the Clarke Jacobian of f

(respectively, Clarke subdifferential of fi) we have

JCf(x) =co{ lim
xn→x

Df(xn) : {xn}n ⊂ Df}

respectively,

∂Cfi(x) =co{ lim
xn→x

Dfi(xn) : {xn}n ⊂ Dfi}.

Since Df ⊂ Dfi for all i ∈ {1, . . . , p}, it follows readily from the above definitions

that

JCf(x) ⊂ ∂Cf1(x) ⊗ · · · ⊗ ∂Cfp(x).

By [1, Proposition 4] we deduce ∂Cfi(x) ⊂ Afi(x) for all i ∈ {1, . . . , p}, and the

claim follows.

To prove the result it is sufficient to establish that the set f(C̃ritf) is null in

Rp, where

(3.27) C̃ritf := {x ∈ Rd : ∃A ∈ Af (x), rank(A) < p}.

(Indeed, in view of Claim 1, we deduce readily that Critf ⊂ C̃ritf, whence

f(Critf) ⊂ f(C̃ritf).)

Let us now consider the following (countable) set:

(3.28) F := {J ⊂ T : |J | ≤ d+ 1}.

For J = (J1, . . . , Jp) ∈ Fp we set mi = |Ji| − 1 and define the function

(3.29)

⎧⎨
⎩GJ : innΔm1 × · · · × innΔmp × Rd −→ Rp

GJ (λ1, . . . ,λp, x)=(
∑m1

j1=0 λ
1
j1F1(x, t

1
j1
), . . . ,

∑mp

jp=0 λ
p
jp
Fp(x, t

p
jp
))
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where for i ∈ {1, . . . , p} we have

λi = (λi
0, . . . , λ

i
mi

) ∈ innΔmi and Ji = {ti0, . . . , timi
}.

Notice that GJ is of class Ck with k ≥ d − p + 1 (inheriting the regularity of

the functions x �→ F (x, t), t ∈ T ).

Let further Ĉrit GJ denote the set of “strongly critical points”of the function

GJ , that is,

(λ1, . . . ,λp, x) ∈ Ĉrit GJ

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
Fi(x, t

i
ji
) = Fi(x, t

i
0),

⎧⎨
⎩for all i ∈ {1, . . . , p}
for all ji ∈ {0, . . . ,mi}

rank(
∑m1

j1=0 λ
1
j1DxF1(x, t

1
j1 ), . . . ,

∑mp

jp=0 λ
p
jp
DxFp(x, t

p
jp
)) < p.

The following claim is crucial for our considerations.

Claim 2 (Transferring criticality from f to some GJ ): For every x ∈ Critf,

there exist J = (J1, . . . , Jp) ∈ Fp (depending on x ) and λi ∈ innΔ|Ji|−1,

i ∈ {1, . . . , p} (depending on x) such that:

— the point (λ1, . . . ,λp, x) is strongly critical for the function GJ ;

— f(x) = GJ (λ1, . . . ,λp, x).

Proof of Claim 2. Let x ∈ Critf. It follows from Claim 1 that x ∈ C̃ritf , that

is, there exists A ∈ Af (x) (identified with a p × d matrix) with rank(A) < p.

Let A1, . . . ,Ap stand for the p lines of A. By (3.26) we obtain Ai ∈ Afi(x), for

i ∈ {1, . . . , p}. Using (3.25) and the Carathéodory theorem, we deduce that for

some 0 ≤ mi ≤ d, λi = (λi
0, . . . , λ

i
mi

) ∈ innΔmi and Ji = {ti0, . . . , timi
} ⊂ Ti(x)

we have

Ai =
∑mi

ji=0
λi
jiDxFi(x, t

i
ji ).

Set J = (J1, . . . , Jp) and consider the function GJ defined in (3.29). Since

Ji ⊂ Ti(x) for all i ∈ {1, . . . , p}, we have

Fi(x, t
i
ji) = fi(x), for all ji ∈ {0, . . . ,mi}.

It follows that

GJ (λ1, . . . ,λp, x) = f(x),

and the claim is proved.
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Therefore, provided we establish that the set GJ (ĈritGJ ) is null, we shall

deduce from Claim 2, since Fp is countable, that the set

f(Critf) ⊂
⋃

J∈Fp

GJ (ĈritGJ )

is null in Rp and we are done. Therefore, it remains to establish that for a given

J = (J1, . . . , Jp) ∈ Fp and function GJ the set GJ (ĈritGJ ) is null.

To this end, we shall use Theorem 3 for an appropriate function Ψ of the

form (1.2) that we define below. We set

m =

( p∏
i=1

|Ji|
)
− 1 and

⎧⎨
⎩

→
i = (i1, i2, . . . , ip)

ij ∈ {0, . . . ,mj}
and describe the elements of innΔm by means of the above multi-indices, that

is, λ = (λ→
i
) ∈ innΔm. We now consider the following m+ 1 functions:

(3.30)

⎧⎨
⎩φ

→
i : Rd → Rp,

→
i = (i1, i2, . . . , ip)

φ
→
i (x) = (F1(x, t

1
i1
), . . . , Fp(x, t

p
ip
))

and the function

Ψ(λ, x) :=

m1∑
i1=0

· · ·
mp∑
ip=0

λ→
i
φ

→
i (x), (λ, x) ∈ innΔm × Rd.

Notice that the functions φ
→
i and consequently the function Ψ are of class Ck

with k ≥ d− p+ 1. Thus Theorem 3 (I) applies yielding

Ψ(ĈritΨ) is null in Rp.

It remains to establish the following.

Claim 3 (Transferring strong criticality from GJ to Ψ): Assume

(λ1, . . . ,λp, x) ∈ ĈritGJ .

Then for λ = (λ→
i
) ∈ innΔm with

(3.31) λ(i1,...,ip) = λ1
i1 · · ·λ

p
ip

we have

(λ, x) ∈ ĈritΨ and Ψ(λ, x) = GJ (λ1, . . . ,λp, x).

Proof of Claim 3. The proof is straightforward in view of (3.30), (3.31) and the

definition of strongly critical points for GJ .

This concludes the proof of the claim and, in turn, of the result.
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4. Applications in Optimization

In this section we discuss applications of Theorem 2 (Sard theorem for Lips-

chitz selections) in Optimization. The first two sections deal with constrained

optimization problems: following a well-known pattern —that we recall briefly

for completeness—we outline the paramount role of Theorem 2 for establishing

genericity of the Karush–Kuhn–Tucker conditions in the semi-infinite optimiza-

tion problem. In the last section we come up with another (almost straightfor-

ward) application of the same result in vectorial optimization.

4.1. Semi-infinite programming. Let h : Rd → Rp be a Ck function, with

k ≥ d − p > 0. Let gt : Rd → R, t ∈ T, be a family of Ck functions, parame-

terized on a nonempty countable compact set T such that both (x, t) �−→ gt(x)

and (x, t) �−→ ∇gt(x) are continuous. We consider the following semi-infinite

minimization problem (depending on the parameter (r, s) ∈ R× Rp):

(Pr,s) min
gt(x)≤r, t∈T

h(x)=s

u(x)

where u : Rd → R is a Lipschitz continuous function. In what follows we assume

that the feasibility set

Fr,s = Cr ∩ Es

is nonempty, where

Cr := {x ∈ Rd : gt(x) ≤ r; t ∈ T } and Es := {x ∈ Rd : h(x) = s}.

A feasible point x̄ ∈ Rd is said to be a solution of (Pr,s) provided for some

δ > 0,

(4.1) x ∈ Fr,s ∩Bδ(x̄) =⇒ u(x) ≥ u(x̄).

Let us observe that

(4.2) Cr = {x ∈ Rd : f(x) ≤ r} where f(x) := max{gt(x) : t ∈ T },

and let us denote by

(4.3) T (x) := {t ∈ T : gt(x) = f(x)}

the set of active indexes at x ∈ Rd. It follows from our assumptions that the

above set is always a nonempty compact subset of T .

We are interested in determining necessary optimality conditions for the so-

lutions of (Pr,s).
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Proposition 9 (Genericity of optimality conditions for (Pr,s)): For almost all

values of the parameter (r, s) ∈ R × Rp, every solution x̄ of (Pr,s) satisfies a

necessary Karush–Kuhn–Tucker condition. Namely there exist λ1, . . . , λd ≥ 0,

α1, . . . , αp ∈ R and {t1, . . . , td} ⊂ T (x̄) such that

(4.4) 0 ∈ ∂Cu(x̄) +
d∑

i=1

λi∇gti(x̄) +

p∑
i=1

αi∇hi(x̄).

Proof. The function f defined in (4.2) is lower-C1 (see, for example, [7]), hence

locally Lipschitz continuous. We consider the function F : Rd → Rp+1 defined

by F (x) = (f(x), h1(x), . . . , hp(x)). Obviously F is a continuous selection of the

Ck functions Ft(x) = (gt(x), h1(x), . . . , hp(x)), for t ∈ T . Hence, Theorem 2

(Sard theorem for Lipschitz selections) applies yielding that the set of critical

values (r, s) ∈ R× Rp of F is a null set.

For any regular value (r, s) ∈ R×Rp, any x ∈ Rd with F (x) = (r, s), and any

v ∈ ∂Cf(x) one has

(4.5) rank {v,∇h1(x), . . . ,∇hp(x)} = p+ 1.

In particular, the vectors ∇h1(x), . . . ,∇hp(x) are linearly independent and the

normal cone NEs(x) is the linear space generated by ∇h1(x), . . . ,∇hp(x).

Let us fix a regular value (r, s) ∈ R× Rp of F and let us consider a solution

(local minimum) x̄ of (Pr,s), i.e., x̄ ∈ Fr,s and (4.1) holds. If f(x̄) < r, then x̄

belongs to the interior of Cr and 0 ∈ ∂Cu(x̄) + NEs(x̄). Therefore (4.4) holds

trivially. Thus we may assume f(x̄) = r. We now define the locally Lipschitz

function ⎧⎨
⎩Φ : Rd → R

Φ(x) := max{u(x)− u(x̄) + r, f(x)}

and we check readily that Φ(x) ≥ Φ(x̄) for every x ∈ Es, hence

(4.6) 0 ∈ ∂CΦ(x̄) +NEs(x̄),

yielding

0 ∈ co(∂Cu(x̄) ∪ {∇gt(x̄) : t ∈ T (x̄)}) +NEs(x̄).
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By the Carathéodory theorem, there exist

m ∈{1, . . . , d},
μ =(μ0, . . . , μm) ∈ innΔm,

{pi}mi=0 ⊂∂Cu(x̄) ∪ {∇gt(x̄) : t ∈ T (x̄)},
and

α1, . . . , αp ∈ R

such that

0 = μ0p0 + · · ·+ μmpm +

p∑
i=1

αi∇hi(x̄).

We claim {pi}mi=0∩∂Cu(x̄) �= ∅. Assume by contradiction {pi}mi=0∩∂Cu(x̄) = ∅.
Then, the vector v = μ0p0 + · · · + μmpm belongs to ∂Cf and the vectors

v,∇h1(x), . . . ,∇hp(x) are linearly dependent, which negates (4.5). The con-

clusion (4.4) follows by a standard normalization argument.

4.2. Semi-infinite programming with loose constraints. We adopt the

same framework as in Section 4.1, namely, we consider again a regular Lipschitz

continuous objective function u : Rd → R which is to be minimized under a

countable set of restrictions gt(x) ≤ r, t ∈ T, where r ∈ R is a scalar parameter,

T is a nonempty countable compact set T and the functions (x, t) �−→ gt(x)

and (x, t) �−→ ∇gt(x) are continuous. However, in contrast to (Pr,s), we now

allow a certain number of inequality constraints, say k ∈ N, to be violated. The

feasibility set is therefore larger and is described as follows:

F (−k)
r,s = C(−k)

r ∩ Es = C(−k)
r ∩ {x ∈ Rd : h(x) = s},

where

(4.7)

C(−k)
r :={x ∈ Rd : f (−k)(x) ≤ r},

with

f (−k)(x) = inf
F⊂T ;|F |=k

sup
t∈T�F

gt(x).

Notice that x ∈ C
(−k)
r if and only if gt(x) ≤ r for all but k restrictions t ∈ T .

Under this notation, we are interested in determining necessary optimality con-

ditions for the solutions of the following minimization problem:

(P(−k)
r,s ) min

x∈F
(−k)
r,s

u(x)
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To this end, we shall need the following result:

Proposition 10 (Continuous Selection): The function f (−k) given in (4.7) is a

continuous selection of the family {gt}t∈T . In particular, f (−k) is Lipschitz con-

tinuous and satisfies the generalized Morse–Sard theorem for its Clarke critical

values.

Proof. Let us recall that the Cantor derivative T ′ of the set T is the set of all

accumulation points of T, that is,

T ′ = {t ∈ T : t ∈ T�{t}}.

For every subset F of T we set

f−F (x) := sup
t∈T�F

gt(x).

Notice that if F ⊂ T�T ′, then the above supremum is attained (i.e., it is a

maximum). For every m ∈ {1, . . . , k} we consider the function

(4.8) f [−m](x) = inf
F⊂T�T ′;|F |=m

f−F (x) = inf
F⊂T�T ′;|F |=m

max
t∈T�F

gt(x).

Claim: The infimum in (4.8) is attained (i.e., it is a minimum). In particular,

f [−m] is a (Lipschitz continuous) selection of {gt}t∈T .

Proof of claim. Let us recall from (4.2) the function

f(x) := max{gt(x) : t ∈ T }

and the corresponding set T (x) of active indices given by (4.3). If T (x)∩T ′ �= ∅,
then f−F (x) = f(x) for all F ⊂ T�T ′ and consequently

f [−m](x) = f−F (x) = f(x),

for all m ∈ {1, . . . , k} and F ⊂ T�T ′ with |F | = m. In this case the infimum

in (4.8) is trivially attained. Therefore, in what follows, we may assume that

T (x) ∩ T ′ = ∅.
If |T (x)| > m, then again f [−m](x) = f−F (x) = f(x), for every F ⊂ T

with |F | = m (and the infimum is trivially attained). If |T (x)| = m, then for

F̂ = T (x) we have

f [−m](x) = f−F̂ (x) < f−F (x), for all F �= F̂ with |F | = m



Vol. 212, 2016 SARD THEOREMS FOR LIPSCHITZ FUNCTIONS 787

and the infimum is attained at F̂ . It remains to consider the case |T (x)| < m

(and T (x) ∩ T ′ = ∅). In this case we set

m1 := m− |T (x)| ∈ {1, . . . ,m− 1},

T1 = T�T (x) and

f1(x) = max{gt(x) : t ∈ T1} < f(x).

Notice that T ′
1 = T ′ and

(4.9) f [−m](x) = f1
[−m1](x) = inf

F1⊂T1�T ′;|F1|=m1

(f1)−F1
(x).

The above analysis applying to f1
[−m1](x) yields that the above infimum is

attained whenever either T1(x) ∩ T ′ �= ∅ or |T1(x)| ≥ m1. Notice that if the

infimum in the definition of f1
[−m1](x) is attained at F1, then the infimum

in the definition of f [−m](x) is attained at F := F1 ∪ T (x); see (4.8) and

(4.9), respectively. If now T1(x) ∩ T ′ = ∅ and |T1(x)| < m1, then we set

m2 := m1 − |T1(x)| < m1, T2 = T1�T1(x) and continue as before. This process

will eventually stop, since m > m1 > m2 > · · · is a strictly decreasing sequence

of natural numbers, which has to be finite. We conclude that

f [−m](x) = min
F⊂T�T ′;|F |=m

max
t∈T�F

gt(x).

This shows that f [−m] is a selection of {gt}t∈T . Moreover, thanks to our as-

sumption on the family {gt}, the functions {f−F : F ⊂ T�T ′; |F | = m} are

uniformly Lipschitz continuous. A standard argument now shows that f [−m] is

Lipschitz continuous. This concludes the proof of the claim.

We deduce easily from the above claim that

f (−k)(x) = min
m≤k

f [−m](x) = min
F⊂T�T ′;|F |≤k

max
t∈T�F

gt(x)

is a selection of the family {gt : t ∈ T } and Lipschitz continuous.

Remark 11 (Minimax selections): The interested reader might want to compare

Proposition 10 above with [1, Corollary 8], where it has been established that

Theorem 2 (for p = 1) applies in particular to any function f obtained by taking

successive maxima/minima over a finite collection of Ck functions.

Using Proposition 10 we obtain the following result:
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Corollary 12 (Genericity of optimality conditions for (P(−k)
r,s )): For almost

all values of the parameter (r, s) ∈ R × Rp, every solution x̄ of (P(−k)
r,s ) sat-

isfies a necessary KKT type condition. Namely, there exist λ1, . . . , λd ≥ 0,

{t1, . . . , td} ⊂ T (x̄) and α1, . . . , αp ∈ R such that

0 ∈ ∂Cu(x̄) +

d∑
i=1

λi∇gti(x̄) +

p∑
i=1

αi∇hi(x̄).

Proof. We consider again the function F : Rd → Rp+1 defined by

F (x) = (f (−k)(x), h1(x), . . . , hp(x)).

Arguing in the same manner as in Proposition 9, we deduce, by means of Propo-

sition 10 and Theorem 2, that almost every value (r, s) ∈ R×Rp is Clarke regular

for the Lipschitz function F . Fix any such value (r, s) and consider an optimal

solution x̄ ∈ C
(−k)
r ∩Es of the problem (P(−k)

r,s ). Then f (−k)(x̄) ≤ r. Repeating

the proof of Proposition 9 with f being replaced by f (−k) and Cr by C
−k
r , we

obtain the result.

4.3. Vector Optimization: Pareto minimal values. Let P be a nontrivial

closed convex cone of Rd and f : Rd → Rd. A point x̄ ∈ Rd is called a Pareto

minimum point for the function f provided there exists δ > 0 such that

x ∈ B(x̄, δ)

f(x̄) ∈ f(x) + P

}
=⇒ f(x) = f(x̄).

In this case ȳ = f(x̄) is called a Pareto minimal value. We now present an

application of our main result concerning the size of the set of Pareto minimal

values.

Proposition 13 (Pareto values): Let F : Rd × T → Rd be a continuous func-

tion. Assume F is Ck, k ≥ d − p + 1, with respect to the first variable and

DxF is continuous. Then the set of Pareto minimal values of any continuous

selection f of the family {Ft = F (·, t)}t∈T is null.

Proof. Let ȳ = f(x̄) be a Pareto minimal value of f. Since

f(B(x̄, δ)) ∩ (ȳ − P ) = {ȳ}

it follows directly that f is not locally surjective there. By [5, Theorem 7.1.1]

ȳ has to be a Clarke critical value. The result follows from Theorem 2.
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tributions à l’analyse non-diffrentiable avec applications à l’optimisation et à l’analyse
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