O-antigen chain-length distribution in *Salmonella enterica* serovar Enteritidis is regulated by oxygen availability

Cecilia A. Silva-Valenzuela a,b, Felipe Velásquez a, Johany Peñailillo a, Héctor Garcías-Papayani a, Paulina Fernández a, Pía Tobar a, Inés Contreras a, Carlos A. Santiviago a, Sergio A. Álvarez a,*

a Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
b Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA

A R T I C L E I N F O

Article history:
Received 8 June 2016
Accepted 15 June 2016
Available online 23 June 2016

Keywords:
Salmonella
Lipopolysaccharide
O antigen
Anaerobiosis
ArcA
Fnr

Abstract

Lipopolysaccharide (LPS) consists of three covalently linked domains: the lipid A, the core region and the O antigen (OAg), consisting of repeats of an oligosaccharide. *Salmonella enterica* serovar Enteritidis (S. Enteritidis) produces a LPS with two OAg preferred chain lengths: a long (L)-OAg controlled by WzzSE and a very long (VL)-OAg controlled by WzzfepE. In this work, we show that OAg produced by S. Enteritidis grown in E minimal medium also presented two preferred chain-lengths. However, a simultaneous and opposing change in the production of L-OAg and VL-OAg was observed in response to oxygen availability. Biochemical and genetics analyses indicate that this process is regulated by transcriptional factors Fnr and ArcA by means of controlling the transcription of genes encoding WzzSE and WzzfepE in response to oxygen availability. Thus, our results revealed a sophisticated regulatory mechanism involved in the adaptation of S. Enteritidis to one of the main environmental cues faced by this pathogen during infection.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Infections caused by *Salmonella* constitute a severe health problem, particularly in developing countries. *Salmonella enterica* serovar Enteritidis (S. Enteritidis) is considered the primary cause of food-borne salmonellosis worldwide [1,2]. In humans, S. Enteritidis causes a syndrome characterized by diarrhea, fever and abdominal pain [2].

The mechanisms involved in *S. Enteritidis* pathogenicity are poorly understood, and most knowledge is based on studies conducted in *S. Typhimurium*, which causes a similar disease in humans. However, it is known that S. Enteritidis genes involved in lipopolysaccharide (LPS) synthesis and modification are essential for systemic colonization in mice [3] and hens [4], and also for resistance to serum [5] and survival in egg albumen [4].

The LPS consists of three structural domains: the lipid A region embedded in the outer membrane, the core oligosaccharide, and the O antigen (OAg) exposed on the bacterial surface [6]. The number of O antigen units that are attached to the lipid A-core region is regulated by the chain-length determinants WzzSE and WzzfepE. We described that *S. Enteritidis* NCTC13349 produces LPS with two preferred OAg chain lengths: a long (L)-OAg controlled by WzzSE and a very long (VL)-OAg controlled by WzzfepE [5].

To date, not much is known about the environmental regulation of OAg production and chain-length distribution. A previous study in *S. Anatum* showed that the growth temperature affects the size and distribution of the OAg molecules [7]. Also, Murray et al. [8] reported that *S. Typhimurium* incubated in heat-inactivated guinea pig serum or grown under iron-limiting conditions resulted in an increased production of VL-OAg. More recently, Delgado et al. [9] demonstrated that expression of the OAg chain-length determinant wzzST in *S. Typhimurium* was induced in defined medium containing low Mg^{2+} plus Fe^{3+}, in a pathway that requires the PhoP/PhoQ and PmrA/PmrB two-component systems. In addition, we have shown that production of OAg by *S. Typhi*, *S. Typhimurium* and *S. Enteritidis* is growth phase-regulated in a RfaH-dependent manner [5,10].

One of the conditions that *Salmonella* encounters during infection is low oxygen availability in the ileum and within host cells.
Adaptation to oxygen deprivation involves the global regulators Fnr and ArcA, which control the expression of a large number of genes whose products are mainly involved in adaptation to anaerobiosis [13–18]. In addition, transcriptomic analyses have shown that Fnr and ArcA also regulate the expression of several genes linked to S. Typhimurium virulence. However, oxygen-dependent regulation of OAg production and chain-length distribution has not been addressed. In this work, we show that the chain-length distribution of OAg in S. Enteritidis is under oxygen-dependent regulation mediated by Fnr and ArcA, which control the expression of the genes encoding WzzSE and Wzzlepf chain-length determinants.

2. Materials and methods

2.1. Bacterial strains, plasmids, media and growth conditions

Bacterial strains and plasmids used in this study are listed in Table 1. Cultures were performed in Luria-Bertani (LB) medium (10 g/L tryptone, 5 g/L NaCl and 5 g/L yeast extract) or E minimal medium (0.2 g/L MgSO₄·7H₂O, 2 g/L citric acid monohydrate, 13.1 g/L KH₂PO₄ × 3H₂O, 3.3 g/L NaNH₂HPO₄ × 4H₂O) supplemented with 0.2% glucose as carbon source (E-glucose). For aerobic or anaerobic cultures, LB-grown overnight cultures were diluted 1:100 in E-glucose. Aerobic cultures were incubated at 37 °C and anaerobic cultures were incubated in a anaerobic jar with the AnaeroGen system (Oxoid). Where appropriate, cultures were incubated at 37 °C with shaking and anaerobic cultures were incubated at 37 °C in an anaerobic jar with the anaerogen system (Oxoid). Enteritidis is under oxygen deprivation involves the global regulators Fnr and ArcA, which control the expression of a large number of genes whose products are mainly involved in adaptation to anaerobiosis [13–18]. In this work, we show that the chain-length distribution of OAg in S. Enteritidis is under oxygen-dependent regulation mediated by Fnr and ArcA, which control the expression of the genes encoding WzzSE and Wzzlepf chain-length determinants.

2.2. Mutagenesis and standard DNA techniques

Total genomic DNA was obtained from overnight cultures using the “GenElute Bacterial Genomic DNA Kit” (Sigma-Aldrich) according to the manufacturer’s instructions. Plasmid DNA was obtained from overnight cultures using the “QIAprep Spin Miniprep Kit” (QIAGEN), according to the manufacturer’s instructions. When required, PCR products were purified using the “QIAquick PCR Purification Kit” (QIAGEN). S. Enteritidis ΔarcA and Δfnr strains were constructed by allelic exchange as described [19], using plasmid pCLF4 as template and primers listed in Table S1. The mutant alleles were transduced to the wild-type background using phage P22 HT105/1 int-201. The ΔarcA Δfnr mutant was generated by transduction of the Δfnr::Kan allele into a ΔarcA::FRT recipient strain. A mutant strain expressing a Wzzlepf-3xFLAG protein fusion was constructed by allelic exchange as described [20], using plasmid pSUB11 as template and primers listed in Table S1. The corresponding mutant allele was transduced to the wild-type, ΔarcA and Δfnr backgrounds using phage P22 HT105/1 int-201. When required, the antibiotic-resistance cassettes inserted during mutagenesis were removed by transforming the corresponding mutants with pCP20, which encodes the FLP recombinase [21]. Gene replacements and deletion of antibiotic-resistance cassettes were confirmed by PCR.

2.3. LPS analyses

LPS samples were prepared as described [22]. Briefly, bacteria obtained from aerobic or anaerobic cultures were adjusted to an OD₆₀₀ = 2.0. Next, 1.5 mL of each suspension were centrifuged and bacterial pellets were suspended in 100 mL of lysis buffer containing proteinase K. LPS was separated in 12% (w/v) acrylamide gels using a Tricine-SDS buffer system (Tricine-SDS-PAGE) [23] and visualized by silver staining [22].

2.4. RNA isolation and qRT-PCR assays

RNA isolation was performed as described [24] from at least three independent aerobic or anaerobic cultures grown in E-glucose. Briefly, bacteria were grown to an OD₆₀₀ = 0.3 and total RNA was extracted using the “SV Total RNA Isolation Kit” (Promega). Samples were treated with RNase-free DNase I (Qiagen) at 25 °C for 45 min. RNA samples were kept at −20 °C until further use.

For qRT-PCR assays, 1 μg of total RNA was subjected to reverse transcription using SuperScript II (Life Technologies) following manufacturer’s instructions. DNA fragments of ~300 bp for each gene were amplified using the “Kapa Sybr Fast” kit (Kapa Biosystems) in an Mx3000P qPCR System with MxPro software (Agilent Technologies, Inc.). Data were analyzed using the relative expression software tool REST [25] and rpoD was used as housekeeping gene because its expression is not influenced by oxygen availability in Salmonella [26].

2.5. Western blot analyses of the 3xFLAG-tagged chain-length regulator Wzzlepf

Total protein samples obtained from bacteria grown under aerobic or anaerobic conditions (OD₆₀₀ = 0.3) were separated by SDS-PAGE in a 10% polyacrylamide gel. Gel loading was normalized so that each sample represented the same number of bacterial cells. Western blot analysis was performed as described [27]. Wzzlepf-3xFLAG protein signal was quantified by densitometry analysis using UN-SCAN-IT software (Silk Scientific). Values were

Table 1

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant properties</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella Enteritidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCTC13349</td>
<td>Wild-type strain</td>
<td>Laboratory stock</td>
</tr>
<tr>
<td>Δfur</td>
<td>NCTC13349 Δfur::FRT</td>
<td>This study</td>
</tr>
<tr>
<td>ΔarcA</td>
<td>NCTC13349 ΔarcA::FRT</td>
<td>This study</td>
</tr>
<tr>
<td>ΔarcA Δfnr</td>
<td>NCTC13349 ΔarcA::FRT Δfnr::Kan, Kan</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pGEM-T Easy</td>
<td>TA cloning vector, Amp<sup>R</sup></td>
<td>Promega</td>
</tr>
<tr>
<td>pBAD-TOPO</td>
<td>TA cloning vector, Amp<sup>R</sup></td>
<td>Life Technologies</td>
</tr>
<tr>
<td>parcA</td>
<td>arca cloned in pBAD-TOPO</td>
<td>This study</td>
</tr>
<tr>
<td>pfnr</td>
<td>fur cloned in pBAD-TOPO</td>
<td>This study</td>
</tr>
<tr>
<td>pJC142</td>
<td>Wzzlepf cloned in pGEM-T Easy</td>
<td>[5]</td>
</tr>
<tr>
<td>pKD46</td>
<td>bla_ Pbaa gom bet eso pSC101 oriTS, Amp<sup>R</sup></td>
<td>[33]</td>
</tr>
<tr>
<td>pCLF4</td>
<td>bla_frt apc_R FRT P51 P21 ori R6K T7 promoter, Amp<sup>R</sup>, Kan<sup>R</sup></td>
<td>[19]</td>
</tr>
<tr>
<td>pCP20</td>
<td>bla_cat cbs7 λarp flp pSC101 oriTS, Cam<sup>R</sup>, Amp<sup>R</sup></td>
<td>[21]</td>
</tr>
<tr>
<td>pSUB11</td>
<td>Template plasmid to generate 3xFLAG fusions, ori<sub>lac</sub>, Kan<sup>R</sup></td>
<td>[20]</td>
</tr>
</tbody>
</table>
normalized to the total amount of protein in the corresponding lane, as determined by densitometry of a Coomassie-blue stained gel analyzed in parallel.

3. Results

3.1. Oxygen availability modulates the OAg polymerization in S. Enteritidis

To assess the effect of oxygen availability on OAg production by S. Enteritidis, the wild-type strain and its isogenic ΔarcA and Δfnr mutants were grown under aerobic or anaerobic conditions, and LPS profiles analyzed by Tricine-SDS-PAGE. As described [5], S. Enteritidis grown in LB produces OAg with two preferred chain lengths: L-OAg and VL-OAg. However, when bacteria were grown under anaerobic conditions in E-glucose medium, VL-OAg was almost absent and a high level of L-OAg was observed (Fig. 1). In contrast, bacteria grown anaerobically produced high levels of VL-OAg with a concomitant slight decrease in L-OAg levels (Fig. 1). Deletion of archA gene resulted in a dramatic reduction of VL-OAg under anaerobic conditions as compared to the wild type. Strikingly, a high increase of VL-OAg in aerobic conditions was observed in the Δfnr and ΔarcA Δfnr backgrounds as compared to the wild type (Fig. 1).

3.2. Oxygen availability regulates the expression of wzzSE and wzzfepE in S. Enteritidis

The above results lead us to hypothesize that the expression of genes encoding the OAg chain-length regulators WzzSE and WzzfepE are regulated by ArcA or Fnr in response to oxygen availability. In support of this notion, our bioinformatics analyses showed that the promoter regions of wzzSE and wzzfepE include putative binding sites for ArcA and Fnr (Fig. S1). To determine whether the expression of wzzSE and wzzfepE is affected by oxygen availability, we measured the relative abundance of transcripts for both genes in bacteria grown anaerobically and aerobically. We observed that reduced production of VL-OAg results directly from reduced levels of WzzfepE. In addition, a reduction in L-OAg chain lengths was observed when bacteria overproduced WzzfepE (Fig. 4). Furthermore, these phenotypes correlate with the expression levels of WzzfepE and the production of the encoded protein. According to this idea, one could expect that overexpression of WzzfepE would bypass the effect of ArcA and oxygen availability on VL-OAg production. To test this, the wild type and ΔarcA mutant were transformed with a plasmid including wzzfepE. Production of VL-OAg under aerobicization was increased when the wild-type strain overexpressed wzzfepE (Fig. 4A). Also, the ΔarcA mutant overexpressing WzzfepE produced similar levels of VL-OAg under aerobic and anaerobic conditions (Fig. 4B). These results indicate that reduced production of VL-OAg results directly from reduced levels of WzzfepE. In addition, a reduction in L-OAg chain lengths was observed when bacteria overproduced WzzfepE (Fig. 4).

4. Discussion

In this study, we describe that ArcA and Fnr are involved in the oxygen-dependent control of OAg chain-length distribution in S. Enteritidis. A simultaneous and opposing change in the production levels of L-OAg and VL-OAg was observed in response to oxygen availability. Of note, LPS profiles showed that S. Enteritidis cultured aerobically in minimal medium was almost devoid of VL-OAg. To our knowledge, this phenotype has not been described for any bimodal serovar of Salmonella enterica. Interestingly, our unpublished data show that the effect of oxygen is not observed in bacteria grown in LB, indicating a direct influence of culture medium on the LPS modal distribution in S. Enteritidis.

Our data also indicate that the described OAg chain-length modulation occurs by controlling the expression of genes encoding the Wzz regulators in response to oxygen availability. Thus, the increased production of VL-OAg and Fnr in anaerobicise (L-OAg) and absence O2) or absence O2) of oxygen were analyzed by Tricine-SDS-PAGE.

Fig. 1. Effect of oxygen availability and archA and fnr deletion on OAg modal distribution. LPS samples obtained from bacteria grown in the presence (+O2) or absence (-O2) of oxygen were analyzed by Tricine-SDS-PAGE.
of VL-OAg production, probably by controlling the transcription of \textit{wzz}\textsubscript{fepE} and \textit{wzz}\textsubscript{SE}. In support of this hypothesis, our bioinformatics analyses revealed the presence of a putative binding sites for Fnr at position -262, and three putative binding sites for ArcA at positions -13, -85 and -107 with respect to the potential transcription initiation site of \textit{wzz}\textsubscript{fepE} (Fig. S1). In the case of \textit{wzz}\textsubscript{SE}, we also identified a putative binding site for Fnr at position -14, and three putative binding sites for ArcA at positions -117, -208 and -314, with respect to its assumed transcription initiation site (Fig. S1). Several genes regulated by oxygen availability in \textit{Escherichia coli}, such as \textit{cydAB} [30], \textit{cyoABCDE}, \textit{fiXABCX} [28] and \textit{dpiBA} [31], also possess similarly-positioned Fnr and ArcA binding sites. Moreover, both Fnr and ArcA are able to bind \textit{in vitro} to the promoter regions of \textit{wzz}\textsubscript{fepE} and \textit{wzz}\textsubscript{SE} in \textit{S. Enteritidis} (Fig. S2), suggesting a direct role for these regulators in the control of \textit{wzz}\textsubscript{fepE} and \textit{wzz}\textsubscript{SE} transcription.

On the other hand, the \textit{Δfnr} \textit{ΔarcA} and the \textit{Δfrr} mutants produced similar levels of VL-OAg under aerobic conditions. This indicates that the LPS phenotype associated to the \textit{Δfrr} allele does not depend on the presence of a functional ArcA. In contrast, the LPS phenotype associated to the \textit{ΔarcA} allele requires the Fnr function. Therefore, these observations reveal a functional interplay between ArcA and Fnr in response to oxygen availability. In agreement with our results, both ArcA and Fnr regulate several genes in \textit{E. coli} [13,16,32]. In some cases, this regulation cannot be explained only by simple additive effects of each regulator, suggesting complex functional interactions between ArcA and Fnr [16]. Thus, how ArcA and Fnr influence the expression of \textit{wzz}\textsubscript{fepE} and \textit{wzz}\textsubscript{SE} remains unknown. We are currently performing site-directed mutagenesis of putative binding sites and protein binding experiments to gain insight into the mechanism of the oxygen-dependent transcriptional regulation of these genes.

Previously, we demonstrated that the relative levels of chain-length regulators WzzB and Wzz\textsubscript{phs2} are critical to determine the OAg modal distribution in \textit{Shigella flexneri} 2a [27]. We also showed that both regulators compete to control the degree of OAg
polymerization. Thus, increase of one modal length results in the concomitant decrease of the other [27]. Here, we showed that the relative amounts of L-OAg and VL-OAg in S. Enteritidis also changed in an opposite way in response to oxygen availability, so that the decrease in L-OAg levels during anaerobiosis may be the result of an increase in VL-OAg levels. In support of this, when S. Enteritidis overproduced WzzfgEpE, not only an increment in VL-OAg, but also a reduction in L-OAg production was observed (Fig. 4).

At present, we can only speculate on the physiologic role of the described oxygen-dependent control of OAg modal distribution and its association to virulence in Salmonella. For instance, given that VL-OAg protects Salmonella serovars from lytic action of serum complement [5] and egg albumen [4], increased amounts of these molecules under oxygen limitation could contribute to survival of S. Enteritidis in blood, eggs and during systemic spread in different hosts.

Acknowledgments

This work was supported by FONDECY grant 1130225 (to SA). CS was supported by FONDECY grant 1140754. PF was supported by CONICYT fellowship 21140692.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.bbrc.2016.06.074.

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.bbrc.2016.06.074.

References