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Abstract
We consider the boundary value problem

—Au4+u=>xe", inQ
dyu=20 on 092

where €2 is a bounded smooth domain in ]Rz, A > 0 and v is the inner normal derivative at 2. This problem
is equivalent to the stationary Keller—Segel system from chemotaxis.

We establish the existence of a solution u) which exhibits a sharp boundary layer along the entire bound-
ary 02 as A — 0. These solutions have large mass in the sense that fQ Aetr ~ |log Al.
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1. Introduction and statement of the main result

Chemotaxis is one of the simplest mechanisms for aggregation of biological species. The term
refers to a situation where organisms, for instance bacteria, move towards high concentrations
of a chemical which they secrete. A basic model in chemotaxis was introduced by Keller and
Segel [9]. They considered an advection—diffusion system consisting of two coupled parabolic
equations for the concentration of the considered species and that of the chemical released, rep-
resented, respectively, by positive quantities v(x, ¢) and u(x, t) defined on a bounded, smooth
domain  in RY under no-flux boundary conditions. The system reads

= Av—V- (V) in Q
T = Au—u+v in Q (L.1)
g—ﬁ:g—l’ij on 0%,

where v denotes the unit inner normal to d2. Steady states of (1.1) are the positive solutions of
the system

Av—V.-(@Vu)=0 in Q
Au—u+v=0 in Q (1.2)
u=1r=0 on 9Q.

Problem (1.2) can be reduced to a scalar equation. Indeed, testing the first equation against
(Inv — u), an integration by parts shows that a solution of (1.2) satisfies the relation

/U|V(lnv —w|*=0

Q

and hence v = Ae" for some positive constant A, and thus u satisfies the equation

—Au +u=xre", in Q,
{ 5—‘“} =0 on 0J%. (1.3)
Reciprocally, a solution to problem (1.3) produces one of (1.2) after setting v = Ae”. In this paper
we consider problem (1.3) when € C R? is a bounded domain with smooth boundary and A > 0
is a small parameter. By integrating both sides of the equation we see that a necessary condition
for existence is A < 1.

The analysis of problems (1.1), (1.2) and their corresponding versions in entire space R2, has
a long history, starting with the work by Childress and Percus [3]. The analysis of the steady state
problem (1.3) for small A started with Schaaf [15] in the one-dimensional case. Existence of a
radial solution when €2 is a ball, generating a spike shape at the origin when A — 0 was estab-
lished by Biler [1]. The shape of an unbounded family of solutions u; with uniformly bounded
masses

limsup/)\e‘“ < 400

A—0F
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was established in [16,17]. As in the classical analysis by Brezis and Merle [2], blow-up of the
family is found to occur at most on a finite number of points &1, ..., & € 2, k41, ..., &+ € Q2.
More precisely, in the sense of measures,

k k+l1
— Aty + 1y, = A&t — Zsyns&, + Z 478, (1.4)
i=1 i=k+1

as A — 0. Here 8¢ denotes the Dirac mass at the point . Correspondingly, away from those
points the leading behavior of u, is given by

k k+1
w,(x)—> Y 8rG(x. &)+ Y 4rG(x, &) (1.5)
i=1 i=k+1

where G (-, &) is the Green function for the problem
(1.6)

For each given non-negative numbers k and /, a solution u; with the properties (1.4) and (1.5)
for suitable points &; is proven to exist in [7]. Near each point & = §; the leading concentration
behavior is given by

up(x) ~w(|x — &)
where o is a radially symmetric solution of the equation
—Aw=re® inR?, (1.7)

namely a function of the form

2

w(r):lnm—

InA,

where § is a suitable scalar dependent on A and the point &.
Since u; is uniformly bounded away from the points &;, this forces for the parameter § to
satisfy 82 ~ 1. We observe that all solutions w of (1.7) satisfy

/ re® = 8.
R2
Thus, consistently with (1.4), masses are quantized as

/xem — 4w 2k +1). (1.8)
Q
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A natural question is that of analyzing of solutions with large mass, namely solutions u, of
(1.2) with

/)\e‘”—>+oo as L — 0.
Q

It is natural to seek for solutions with property which concentrate not just at points but on a
larger-dimensional set. The purpose of this paper is to prove the existence of a family of solutions
to (1.2) with a boundary condensation property, exhibiting a boundary layer behavior along the
entire 2. These solutions satisfy

1
lim /Ae”* > 0.
=0 [In A|
Q

Let us formally derive the asymptotic shape of these solutions. Let us parametrize points of
space in a sufficiently small neighborhood of 92 in the form x = y (6) + yv(8), where y(9)
is a parametrization by 6, arclength of 9€2, and v(6) a corresponding unit inner normal, so that

v(0) = —k(0)y(0), where k designates inner normal curvature. We get the following expansion
for the Euclidean Laplacian in these coordinates
1 9 1 d k@ 9
A=0dy, + — _ -
7 1 —k(@)yd0 \1—k(@)y 00 1 —«k(0)y dy

The solution we look for has a boundary layer, thus large derivatives along the normal and a
comparatively smooth behavior along the tangent direction. It is then reasonable to take near 92
as a first approximation of a solution u, (6, y) of the equation (1.3) a solution of the ordinary
differential equation

w;i + xe¥r =0, wl/L(O) =0, (1.9)
which is

wu(Y)—InA=w(y/u) —2Inp—Ini, (1.10)

V2y . .
where w(y) = 1n487}2 and the concentration parameter p satisfies

<1+e‘/§y)
(@) = et (0) ~ ef1o(0).
Here ¢ = ¢() is a small positive number which we shall choose below and f19(f) is a uniformly

positive and bounded smooth function.
Let ¢ € C(£2) compactly supported near the boundary of 2. A direct computation yields

sfkewﬂwzﬁfwﬂgldQ—FO(a),
IQ

Q



3418 M. del Pino et al. / J. Differential Equations 261 (2016) 3414-3462

“+00
since [ e¥dy = /2. Thus,
0

et — «/E/lal(SaQ

where 3¢ is the Dirac measure on the curve 0L2.
Then we expect that, globally, v/2 U = eu;, satisfies approximately

—AU+U = iy " 850,
which means in the limit
~AU+AU=0inQ, U =—/;" ondQ.
Now, from our ansatz (1.10), we should have that close to the boundary
V2U®B, y) ~ sw(y/w) —2eInefi, — elnh
and hence, in particular
V2U®B,0)~ —elnk —2¢elne
By maximum principle and 0,U = —ji, ! < 0 the latter relation is consistent in the limit if the
constant ¢ In A approaches a negative number. If we choose ¢/ = 1 on the boundary of €2, then we
take ¢ such that
—elni —2¢elne~~/2

so that

Hence the limiting ¢/ equals U, the unique solution of the problem
—AUy+Uy=0in R, Uyp=10n0dR. (1.11)

We observe that by maximum principle and Hopf’s Lemma, we have that 9,y < 0, and hence
this fixes our choice of [ig(0) as

1o(0) = on 0L2.

B Uy

Our main result asserts the existence of a solution with exactly the profile above for all A
sufficiently small which remains suitably away from a sequence of critical small values where
certain resonance phenomenon occurs.
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Theorem 1.1. Suppose that Q is a smooth bounded domain of R?. Then there exists a sequence
of positive small numbers ). = A, converging to 0 as m — 400 such that the problem (1.3) has
a solution u; such that

re't dx < +oo.

0 < lim
A—0 |InA|
Q

Moreover, if &) = €, is the parameter defined by

4 2
ln—2 —InA=—
&y ex

(1.12)

then

lin}) ey =2 Uy Co-uniformly on compact sets of Q
r—
and, in the sense of measures,

eyret —~ —\/E 0,Up 830.-

We actually believe that problem (1.3) has a solution which concentrates along the entire
boundary, also in the higher-dimensional case Q2 C RY with N > 3. This fact has been estab-
lished in the radial case, when 2 is a ball, in [14].

Remark 4.3 below assures the existence of small numbers A > 0 for which the problem (1.3)
has a solution with the desired behavior. In fact, a more general condition on ¢, (and then on 1)
defined as in (1.12) is provided there. This type of condition, known as non-resonance condition,
were imposed to establish the presence of higher dimensional concentration patterns without
rotational symmetries in several works in the literature, starting with the pioneering works by
Malchiodi and Montenegro [11,12], who prove existence of a concentrating solution u, along
the boundary for the classical Neumann problem

EAu—u+u’=0 inQ, dyu=0o0na (1.13)

with p > 1. See also [4,10,13] for related results.

A major difference between our problem and (1.13) is that the limiting profile is highly lo-
calized in the sense that the limiting solution has an exponentially sharp boundary layer O(e_g)
where d designates distance to the boundary. Instead, in our setting the interaction with the
inner part of the domain is much stronger. The interaction inner—outer problem makes the im-
provement of approximations considerably more delicate. The construction of an inverse for the
approximate linearized operator is in fact quite different because of the presence of slow decay
elements in the kernel of the asymptotic linearization.

The proof of our result relies on an infinite-dimensional form of Lyapunov—Schmidt reduction.
We look for a solution to (1.3) of the form U, + @, where U, the main term, is a suitably con-
structed first approximation and ®;, is the remainder term. Then Problem (1.3) can be rewritten
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as
L(®;) =Sy + N(dp) in Q, (1.14)
where
L(®):=Ad — d+ reVr o, (1.15)
S, (Uy) = =AUy + Uy, — 1V (1.16)
and
N(®@):=—2re [e® —1—@]. (1.17)

The strategy consists of finding an accurate first approximation U, (Section 2) so that the error
term S, (U, ) be small in a suitably chosen norm (Section 3). Then an invertibility theory for
associated linearized operator L (Section 5) allows to solve equation (1.14) for term &, via a
fixed point argument (Section 4).

The main term U, looks like w, — InX close to the boundary, with w, defined in (1.10)
solves the ODE (1.9) and concentration parameter p := p(A) approaches 0 as A goes to 0. The
profile of U, in the inner part of the domain looks like T Uy where U solves the Dirichlet
boundary problem (1.11) and the dilation parameter 7 := 7 (1) approaches +0c0 as A goes to 0.
The concentration parameter (. () and the dilation parameter 7 (1) have to be chosen so that the
two profiles match accurately close to the boundary. This is the most delicate part of the paper
and it is carried out in sub-section 2.5.

2. The main term
2.1. The problem close to the boundary
Let us parametrize 92 by the arc length
y(©) = (y1(0), v2(0)), 0 €0,¢]

where ¢ := |0€2|. The tangent vector and the inner normal vector to the point y (6) € 92 are
given by

T(0) == (y1(6), y2(0)); v(©) := (=12(0), 71(0))

respectively.
If § > 0 is small enough, let

Ds:={xeQ : dist(x, Q) <8}

be a neighborhood of the curve 9€2.
Then for any x € D; there exists a unique (6, y) € [0, €] x [—4, 0] such that

x =y () +yv(®) = 10) — yr2(0), y2(0) + yy1(6)).
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We remark that in these coordinates the points of the boundary take the form (6, 0). If u (0, y) is
a function defined in [0, £] x [—48, 0] we can define the function u(x) = u(6(x), y(x)) (we use
the same symbol for sake of simplicity) for x € Ds and hence close to the boundary the equation
(1.3) takes the form

~ 1 S 1) K(0)
A=y @2 " = = T oy T T @)

dyu +u=»xre" in Dy,

d,u,0)=0
2.1
where k (0) is the curvature at the point y (0) € 9€2.
It is useful to introduce the spaces C? (R) and Cz (R) of £-periodic CY-functions and
C?-functions, respectively.

2.2. The scaled problem close to the boundary

Now, let us introduce an extra parameter ¢ := ¢, such that

4 2 4 _2
In — - InA = i, ie. A= —e . (2.2)
&y Ex &y

It is easy to check that ¢, — 0 as A — 0. We agree that in the following we will use indifferently
the two parameters ¢ and X to get the necessary estimates.
Moreover, let us choose the concentration parameter (1 (6) := (A, ) in (1.10) as

(@) :=¢i(9), where 1(0) :=1.(0) € C%(R). (2.3)

The function g will be defined in Lemma 2.8.
Finally, let us set

1

10(0) := — =
roO) == sa 3,040 6. 0)

(2.4)

We note that by maximum principle and Hopf’s lemma, 1 is a strictly positive C2-function.
Now, let us scale problem (2.1). In Ds it is natural to consider the change of variables

0
u(@,y):ﬁ<—,1), with & = ii (s, 7). 2.5)
e u
It is clear that

1 1)
(0, y) € Ds if and only if (s, 1) € I:(), _:| x |:__7 0:| .
€ n
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Let u = u(s, t), then we can compute

dpu =&~ yit — i 13y
8929u = 872352512 - 2871[1,/1711‘352[12 — i 00 4 22 0,0 + ,tlzpfztzatzlﬁ
dyu = p 3y
8)2,yu =u202i
where the dot stands for the derivative with respect to 6.

Hence, problem (2.1) can be written as

[i2(e5)d% 0 + 82 + A(ii) + au’e” =0 in Cs,

u=0 on aCs N {t =0} 2.6)
i (s + é t) =ii(s, 1), ie. il is t-periodicin s
where Cs :=R™ x [— % 0] and the linear operator Ais defined by
Ay = [(1_”—22 - ,:Lg] 8%ii + %agﬁ
ptk(€s)) (1 — prk(es))
by(s,t) b1(s,t)
2e Lt 2~ we ik (es) . 9~
T e U ey T
by(s,t) ba(s,t)
At i (es) 2%t pres) |, -
[_(1 —utk(es)? (1 —pix(es))® (1 —pic(es)? 1 —p,t/c(ss)i| ot
b3(s,1)
2.7)

It is important to point out that the linear operator Ais a perturbation term since all b;’s are
uniformly small when A is small (because of (2.3)).

2.3. A linear theory close to the boundary

Let us read the first order term of u, close to the boundary in the scaled variables: since u
looks like w,, — InA where the one-dimensional bubble w,, is defined in (1.10), it turns out that
the first order term of i, is nothing but w — In A where w = wj, namely

eV
w(t)=lnd——, t€R (2.8)
(1 +e‘/§’)
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which solves
w”’ +e? =0, in R. (2.9)

Therefore, it is important to develop a linear theory for the linear operator £ which comes
from the linearization of equation (2.6) around the bubble w — In A, namely

L(@) = 15050 + 916 + AP) + " $. (2.10)
In order to study £, an important role is played by the linear operator

L(p):=02p+e" (2.11)
which is nothing but the linearized operator around w of equation (2.9).

Lemma 2.1. Let us consider the associated linearized eigenvalue problem

L@)=Ad inR.

_ V2t

i-&-eﬁ’ and
Z5(t) = 2 + tw'(¢t). We point out that Z| behaves like a constant at infinity and that Z;
is not a bounded function.

(ii) There exists a positive eigenvalue Ay with associated radial, positive and bounded eigen-
function Zo = Zo(t) with L*-norm equal to one. Moreover, Zy decays exponentially at

infinity as O (e_“/Kl Il\>.

(1) A =0 is an eigenvalue with associated eigenfunctions Z|(t) = w'(t) = V2

Proof. (i) has been proved in [8]. (ii) can be proved arguing as in Section 3 in [6]. O

We consider the following projected problem: given a bounded function h, which is f-periodic
in s, find a bounded f—periodic function co(s) and ¢ such that

L(@)=h+co(s)Zo(t)  inCs,
3%$=0  on aCsN{t =0},

- ¢ -
¢<S+E’t> =60 (2.12)

0

/J)(s,t)Zo(t)dtzo VseRt.
_ 25

m

In Section 5, we will establish existence and a priori estimates for problem (2.12) in the
following norms:
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g1+ == sup(L + [#17)1$| + sup(L + [¢[7TH [V, [I]lss := sup(l + [¢[7T2)|h], for o € (0, 1).
Cs Cs Cs
(2.13)

More precisely, we prove that

Proposition 2.2. There exist Ao > 0 and a constant C > 0, such that for any A € (0, Lo) and for
any h with ||h| 4 < +00, there exists a unique ¢ =T (h) bounded solution of the problem (2.12)
such that

ol < Cllallk- (2.14)
2.4. The main term close to the boundary

The function w,, — InA is the main term of the approximated solution close to the boundary.
We need to add some correction terms, which improve the main term.
More precisely, we let

w0, ) = w0, y) —Ind+au @, y) +vu0, y) + Bu®, )+ 2.0, ) +e5(0)Z5 (»)
——

\_\/_-/
1st-order 2nd-order 3rd-order  unknown!
(2.15)
where
e o, (0, y)is defined in Lemma 2.3,
e v,(0,y) is defined in Lemma 2.4 and B,,(0, y) is defined in Lemma 2.5,
e 7,(6,y) is defined in Lemma 2.6,
° Zg (y) = Zo(;—;), where Z is defined in Lemma 2.1 and the function ej(6) is defined as

follows

¢5(0) = e2e0(0) with eg € CA(R). (2.16)

We point out that the function eq is unknown: it is playing the role of one parameter and it
will be chosen in Section 4.3 as solution of an ordinary differential equation. We assume that
eo has uniformly bounded || - ||s-norm, i.e.

lleolle := lle*€blloo + lleéolloo + lleolloo < Mo, (2.17)

for some large fixed number M.

The first term we have to add is a sort of projection of the function w,, namely the function
o, given in the next lemma.
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Lemma 2.3.

(1) The Cauchy problem

kO 4 «©) T Inat : 92
——dyx —_— —w ————————— W
T—ye@) "~ 1—yx(9> W~ Wu (1—yr(0))2 "

@, (6,0) = 3y, (6,0) =0

2
—dyou +

(2.18)

has the solution

y o
1 (0)

a,(0,y)= —f T[c(@) /(1 — pk(0)) [—%%wu(p) —wy(p) —i—ln){| do dp

0

(i1) Forany (0, y) € Das \ Dy it holds:

2 d? 2 4
o, (0,y) 1= (k) Ind)y + Y@ na+ S mp? - £K(@) +(ln— —Inx )|+
2 de? w u?

3 2
V| 2v2 2 f 4 V2 d* 1
+€|:— @) — (9)( ,bL2 —lnk)+7ﬁA

0 (|y|3) +0 (@) .

(iii) Moreover, via the change of variables 0 = es and y = ut, the function o,(s,t) :=
oy (es, ut) solves the problem

1
e, g MEOKED ek a1
1 —tu(es)k(es) 1 —tu(es)k(es) u?
1 AD a2 1 M 2112 2 ©2.2q02
_ 0, In to —_—+ — t-0
+<1—um(9))2[ a2 " ’w< PR L T

a,(es,0) =0,a,(es,0) =

(2.19)

@iv) The following expansion holds

Gy (s, 1) 1= (es, ut) = pon (es, 1) + praa(es, 1) + 0(th),  for |1 < =
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where
\ V2
ap(es, t) =«(ss) / w(o)do + T[L(ss)tz (2.20)
0
and
t tz
ar(es, t) = K2(8s)/ow(o)da + ) In m
t 0 2.21)
(e
2 d? t?
+ / / (w(p) —In4) dpdo + %[m(@)ﬁ + Wlnﬁ25~
00

Proof. We argue as in Lemma 3.1 of [14]. O
Now, let us construct the second order term of our approximated solution.
Lemma 2.4.

(1) There exists v solution of the linear problem (o is given in (2.20))

—Bgyv —ev=e"a1(0,y) (2.22)
such that
v, ) =v1O)y+ @) + 0@ ) |y +oo
where
V1(0) :=2k(©)(1 —In2) + In44(H) (2.23)
and
0
1) = — f <# + l) a1(8, y)dyw(y)e”? dy. (2.24)
7 l—ev2y V2

(ii) In particular, the function v, (0,y) = pv (9, ﬁ) solves the problem

—Byzyvu — ey, = petray <0, %) .
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(iii) Moreover, via the change of variables 6 = es and y = ut, the function v,(s,t) :=
v, (es, ut) = p(es)v(es, t) solves the problem

—Btztf)ﬂ — eV, = pevay(es, 1)
and the following expansion holds (see (2.3))
Uu(s, 1) :=¢evi(es)i(es)t + eva(es)i(es) + O (eeflt‘) as |t| = +oo.
Proof. We apply Lemma 2.7. O

As we have done for the function w,,, we have to add the projection of the function v,,, namely
the function B, given in the next lemma.

Lemma 2.5.

(i) The Cauchy problem (v, is given in Lemma 2.4)

ﬂalg __ﬂav ©,y)
=@ > Ty (2.25)

Bu(0.0) = 8,,(0.0) =0

2

has the solution

y o
Kk (0)
0,y)=] ————— [0 0,p)dpdo.
Bu (@, y) /1—ax(9)/ you(0, p)dpdo
0 0
(i1) Forany (0, y) € Das \ Ds we have:

2
Bu(0,y) = (ew)y7 +0(yP).

(iii)) Moreover, via the change of variables 0 = e¢s and y = ut, the function Bu(s,t) =
B (es, ut) solves the problem

p(es)k (es) 5 nles)k(es) .

Tt P T T T esyeien) (2.26)

Bu(es,0) = 3,B(es,0) =0

95
_8tt lt+

(iv) The following expansion holds:

Bu(s, 1) := Bules, ut) = u?Bi(es, 1) + 0(e3r)

where
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t o
Bi(es, t) =k (es) / / dyv(es, p)dpdo. (2.27)
0 0

Proof. We argue as in Lemma 3.4 of [14]. O
Finally, we build the third order term of our approximated solution.
Lemma 2.6.

(1) There exists z solution of the linear problem (a1, ar and By are given in (2.20), (2.21) and
(2.27) respectively, and v is given in Lemma 2.4)

1
—05z—ez=e" [az(e, W+ B0 ) + 5 (@0, 7) + v, y>)2]

such that
20,9)=8@)y+ @) + 0™ |y = +oo
where
1 0
)= / 1O, y)dyw(y)e”™ dy
—0
and
0
0(0) = — / (—2 + l) h(@, y)dyw(y)e”™ dy
1 —ev2y \/§ ’ Y '
—00
with

1
h(©,y) =200, y) + 10, y) + 5 (1 (0. y) + v (@, 2.

(i1) In particular, the function z,,(0,y) = /LZZ (9, %) solves the problem

2
y y 1 y y
—02 7, — ez, = ple"r | oy (9, —) + 81 (9, —) + = (oq (9, —) +v (9, —>> .
e a 1 w) o 2 I I

(iii) Moreover, via the change of variables 6 = es and y = ut, the function Z,(s,t) :=
Zu(es, ut) = w2 (es)z(es, t) solves the problem

~ - 1
—nZu — e Ty = ple” [Otz(SS, B+ Bui(es 1) + 5 (aules, 1) +ves, t))z]
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and the following expansion holds (see (2.3))
= 2 ) 2 ) 2
Zu(s, 1) :=¢e"C1(es) i~ (es)t + e Lo (es)u”(es) + O (8 e ) as |t| — +oo.
Proof. We apply Lemma 2.7. O

Lemma 2.7. (Lemma 4.1 [8]) Let h € CO(R) such that fh(y)w/(y)e“’(y)dy < 4+00. Then the
R

function

y 0
1
$U(y) = w'(y) f o / b(Dw' (1) Vdrd
P ey ) O

solves the ordinary differential equation
- —e¥U=e"hinR.

In particular,
Uy)=ay+b+0 (efcly‘) in C'(R) as y - —00

where

0

0
o= — / h(o)w' (1)e” Vdt and b= — / <72 + i) bh(o)w' (r)e” P dr
. \/57 . 1—evV2r V2

and
Uy)=cy+0+0 (efclyl) in CY(R) as y — +o0

where

o 1 ' / w(r)d do = o 2 T ’ w(r)d
€= E O/ h(t)w'(t)e Tand 0 = — 0/ <m + E) h(t)w'(t)e T.

2.5. How to match the main term close to the boundary with the main term in inner part

The solution u; in the inner part of the domain looks like Tlfy where Uy solves (1.11) and the
dilation parameter 7 := 7(X) approaches +o0o as A goes to 0. The function u; (and its derivative)
built in (2.15) in a neighborhood of the boundary has to match with the function 7 (A)Uy (and its
derivative). To this aim it is necessary to choose the dilation parameter T = @ and most of all

it is essential to modify the profile of the solution in the inner part of the domain by building a
new function U, which approaches U as & goes to zero and such that its value on the boundary
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together with the value of its normal derivative coincide with the value of u; and its normal
derivative. The main tool here is the Dirichlet-to-Neumann map and the key ingredient is the
choice of the concentration parameter [t as showed in the next crucial lemma.

Lemma 2.8. There exists € such that for any ¢ € (0, g9) there exist a function {1, € C2(02) and
a solution U to the problem

_Az/lg +Z/{g:O, in 97
U =1— 5 (Ini—eflevy—e?p20(0))  on 9L, (2.28)
U, = —t + % (2/< + fie Ind+eiicy (6’)) on 0%Q.

Moreover (1g is given in (2.4))

fe=fo+ O0() in C1(8§2) ase— 0 (2.29)
and

U =Uy+ O (e) inC*>Q)ase— 0. (2.30)
Proof. Let us apply the Dirichlet-to-Neumann map, which maps the value on 92 of a harmonic

function U to the value of its normal derivative 3,1 on 9%, i.e. F (U},5) = 3,U. Therefore, we
are going to find a function 2 € C2(3<2) such that

F (1 - <lnﬂ2—8ﬂ\&—82ﬂ2§2(9)>) _ Ll (26 + Alnd+epn 0)). (231
V2 [TRNG)
Let
H(e.pj)=F <1 _ £ (lnﬂz—eﬁvz—ezﬁzé‘z(@))) L (2(®) + i In4d + 121 (6)).
’ V2 TNG)
‘We have that
1
H(0, fig) = F(1) + — =0, since F(1) = 3,Uy and [ig = —ﬁ (see (2.4)).
fo v
Moreover

oH 1
57 (0.f10) = = #0.
f Qg

Hence by the Implicit Function Theorem, there exists a unique ft = fi.(9) € C?(92) such that
H (e, 1) = 0, namely (2.31) holds. Estimates (2.29) and (2.30) follow by elliptic standard regu-
larity theory. O
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Lemma 2.9. Let U, be given in Lemma 2.8. Then there exists &y such that for any ¢ € (0, &9)

V2 N .
u(0,y) — 7“8(01 y)=0 <e|y|2> +0 <%) uniformly in Das \ Ds

and

V2

3
dy |:Mx(9,y)— Tug(&y)} O(e IYI)+0<|y| ) uniformly in Das \ Ds.

Proof. Let us prove the estimate (2.32). The proof of (2.33) is similar.
Let U be a generic harmonic function, namely

—AU+U=0in Q.

Then the expansion of @u on the boundary reads as

y3
QU(O,y)zﬁ|:U(9,0)+y8ybl(6,0)+—32 Uuae, 0)+ U, O)]
e e 6 yy‘

(2.32)

(2.33)

(2.34)

()

(2.35)

Now, let us write the expansion of the function u; close to the boundary. In Dys \ D5 we get

V2y V2 V2y

4 IM A2 -
wyu(y) —InA=In— —In A———l—O( Hy=——Ina*— —— 4+ 0(e
w? € %

2,

because i = ¢f1 and (2.2) holds. Therefore, by Lemmas 2.3, 2.4, 2.5 and 2.6 we deduce

w30, y) = wy (y) —Ink+au @, y) + 0,0, y) + B0, y) + 2,0, y) +e5(0) Zg ()

V2 & 2 242
=Y - L (I al—e (@) —e2 20 (0
2[1- 2 (ni-ein®-eia0) |
~ U(6,0)
Y2 [ L k@) + ana+ A;w))]
- - — (2K n &
TR Y S [ g
~ 8,U(6,0)
V2y2[. k®) d? 2
R L +7 (Wln a2+ 2 (9)+K(9)Mln4>]
~ 92,U(6,0)
P} 3r 1 d2 1
L2200 L2060t %
e 6L 0 [ do

~ 83, U(6.0)
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4
+0(|y|3)+0(|y| )+0( —eih, (2.36)

for some ¢ > 0. Let us compare (2.35) with (2.36): the first four terms have to be equal!
In particular, it means that we have to find an harmonic function U/ such that the value
of U and the value of its normal derivative 9,/ on the boundary have to be equal to
[1 — % (lnﬁz—sﬁm—azﬂz{z(@))] and [ J—(ZK + flnd+epg (9))] respectively. This
is done in Lemma 2.8. Therefore, let us replace in (2.35) and (2.36) the generic harmonic func-
tion U with the function U/, which solves problem (2.28). The first two terms coincide. Now, let
us check what happens with the higher order terms, namely terms which involve the second and
third derivatives of U,. The function U, solves equation (2.28) which in a neighborhood of the
boundary reads as

1 K K .
Ty e — e (l_ywaeug O U AU =0in Dy (237)

(I —y«)
‘We have then on the boundary
03, Ue (60, 0) = —055Us (0, 0) + Kk (0)3,Ue (8, 0) + U (0., 0)
and
83, Us (0., 0) = =2k (0)d35Ue (0., 0) — 339 U (8., 0) — & (8)06Ue (6. 0)
+12(0)9,Ue (0, 0) + k (0)0;7,Us (6, 0) + 3,Us (6, 0)

Then differentiating twice with respect to 8 the value U/, on the boundary and the values of 9, U,
on the boundary we get

2000, = - (L i — e L (an@)) — 2L (2200)
goe bl - \/E d92 /"l’ dez M’ 2 d92 2
e d? .
=—EWIHM2+O(82)
2 P d? 2
33, Us(0,0) = —— — + — 2K(9)+/L1n4+8 (ucl) ————+0(e)
ooy o’ i~ 2 do? i

(2.38)

By (2.37) and (2.38) we deduce
2 2 0 d?
V2, U6, 0) = V2, kO, e L mp
g W € i V2 \ do?

ﬁ ﬁ 1 ) a1

—Inj? +2«%(6) +K(9)M1n4>:| + O(¢)

(2.39)

Finally, by (2.35), (2.36) and (2.39) the claim follows. O
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2.6. The main term in the whole domain

The main term of the solution is given by

2
Up(6) = 15y (0 0), y(x)) + (1= ns () ) gug(xx (2.40)

where u; is defined in (2.15), U, is defined in (2.28) and ns(x) = ns(y(x)) is a cut-off function
such that 75 = 1 in Ds, ns = 0in \ Das, 0 < 75 < 1 and [nj| < 5 and [n]] < 55. We choose
(see Lemma 3.1)

13
§:=¢g" ac (ﬁ’ 1) . (2.41)
3. The error estimate
In this section we study the error term
S, (U) i= =AU, + Uy, —2e%,  in Q. 3.1)

3.1. Estimate of the error close to the boundary

It is useful to scale the problem. After the change of variables (2.5), in a neighborhood of the
curve, we get that the error term is given by

R(UL) = 15(e) 35, Uy + 05Ux + AW0) + ape  in Cas (3:2)
where A is the operator defined in (2.7) and UA is defined as follows:

i (s, 1) in Cs

Uns,t):==1 Y ' (3.3)
ns (D (s, 1) + (1 — 05 () *=Ue (es, ut)  in Cos \ Cs
where 11, is the scaled function u; defined in (2.15), i.e.
~ 4 - - ~
uy(s,t):=1In o InA+1n W +w() +a,ls, 1) +v,0s,1) + Buls, 1)
+Zu(s, 1) + ey(es) Zo(t). (3.4)

Here 75(t) = ns(ut) is the cut-off function n; scaled, which is 1 inside Cs and 0 outside Cys. It
is only necessary to compute the rate of the error part R(U, ) defined as

R(U)) := R(UL) — 7isle* 4585 (es) + A1 (€)1 Zo(1) (3.5)
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Lemma 3.1. There exist C > 0 and gy > 0 such that for all € € (0, gg) we get
~ ~ 5
”R(Uk) ”** <Cez.

Proof. For sake of simplicity, let v2 ) := fsv1x + (1 — 55)v3,, where v (s, t) =i, (s, ) and
v3,(8,1) 1= ‘/Tiug(ss, ut). We are going to estimate ||7~2(vi,k)||** fori =1,2,3.

It is useful to point out that the weight 1 + |1|>1° present in the weighted norm || - || in Cas
has the following growth

sup(1+ |t1°T3) = 0 (s—<1—“><"+2>) . (3.6)

Cas
Claim 1: |R(v1.3)|lss < Ce3.
For sake of simplicity, set
hu(s. 1) = hy(es, w(es)t) and iy, (0, ¥) = 0 (0., ) + 0,00, ) + Bu(0. ¥) + 2,6, ).

We have to take into account that u = e/1. Therefore, a direct computation proves that

hy = efdyhy, and o5k (s, 1) = £dghy, + &2 [itd,hy,, (3.7)
Ohy =297 hy, (3.8)
0%y = 82005 hy + 263 (1193 hy, + &2 furdyhy, + e 1202 by, (3.9)
and
0% hy = 2 1dyhy + €2 103, hy + it . (3.10)

A straightforward computation together with Lemmas 2.3, 2.4, 2.5 and 2.6 lead to

)

7~€(v1,)\) =R (ln

— [e?4gE5 (es) + Aref(e5)]Zo(1)

_ 2 i+ 12 20— 2 tppr ;- _ 2’k w
(= pti )2 ST A= )2 ™ (= i) 0 (= )3
3.—1.,.
LK - we 'tk 1 o
- 3 3 | In h i
1 — ptk IZM+(1—MIK)3S|: 42+ i| e
. 2. 2. .2
pht Wopt K 2t ~ x
- - 0:h Ale5(es)Zo(t
+( (-t (1 — pre)? (1—/mc)2> thu+ Aleh(e) 20)

n & - - 1
+e” (ehu+€020 —1 =0, —poy — 2, — Mz (az + 81+ E(al + v)z) — eSZ()) .

So
(3.11)
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Now
R(v1,,) — A(ef(5)Zo(1)) — So = O (afsﬁu) 10 (82|t|23t21flu) 10 (8|l‘|332tflu)
+0 (£1Pow) + 0 (@1l + Dok
10 (82|t|85ﬁu) +0 (ed3,)

o (ezﬁﬂ) +o0 (83|t|) (3.12)

By using the estimates of Lemma 3.2 together with the derivatives of the function w computed
in (3.7), (3.8), (3.9) and (3.10), we get

IR (v1,2) — A (e5(e5)Zo(1)) — Sollsr < et 17002,

Now

A(ef(e5)Zo(0)) = bo(s, 1)e2E5 Zo + by (s, 1)e§dE Zo + ba(s, 1)eéhd; Zo
+b3(s, 1) [e§di Zo] + bals, 1) [eé§Zo] — 11%e5 Zo

where the coefficients b; (s, t) are defined in (2.7). Then we deduce immediately

1A (e§(£5)Zo(0)) llas < ce3

Finally,
w | h ~ = 2 1 2
So=e"|e" =1 =0, —puay —Zzu — u” | o2+ B +§(061 +v)
S
+ Wt [66820 —1- eSZo] +e¥ (eﬁﬂ — 1) eqZo
s 8
and hence
1S5 14 < Ce?

and it is independent of ep while
2
1S5 ll4x < C&°

and it is quadratic in eg and finally
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5
183 114 < Ce?

and it is linear in eg. Since a > ﬁ the claim follows.

Claim 2: ||7~€(v3,;\) L < Ce™ ¢ for some positive constant c.
Since
R(v3 1) = R(v3 1) = hu’e’?,

we get

4 _»~ _c
—e e (14 [1|71?) <ce™ .

R (v3, ) |l < c sup .

C25\Cs

Claim 3: |R(v2.1) s < Ce3.

By making some tedious computations, one gets that

R(v2,0) = fisR(w12) + (1 — i) R(v3.1) + Ra (3.13)
where
Ry o 100555 (V12 = v3) + 2A50siads (V1. = va.0) + s (1.0 — v3.2) + 200 Tlsdy (V1.0 — v3.)
B
+ A(sv1 a0 + (1 = fis)vs ) — fisA(vr ) — (1 — 7is)A(v3.)

B,

+ )»MZ (e;hﬁ”l,)»+(1*7.7'5)v3.)» — fger — (1 — ﬁg)ev“) )

B3

By using the expansion (3.13) and the result of claim 1 and claim 2 we get that

~ 3 _c
R(2,) s < ce2 +ce™ e + [ Rall -
So we are left to estimate ||R; ||««. Let us prove that

R [lex < CeP (1m0 @+,

Now we take into account that

~ ~ € 2 ~ 2 2= g2 2~
il = 0 (@), hils = 0 (). 025 = 0 (&), 8”175:0(;), 8,,na=0(

2
82

e).

(3.14)
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By (2.32), (2.33) and (3.28), we immediately deduce that for any (s, ) € Cas \ Cs (remember that
=gl

R V2
VI, D) = V30, 1) = (o5, pt) = U (es, put) = o0&t + 0@E|th),
. V2
3 (vials.t) —vsa(s, 1)) = udy (M(ES, ut) = = Ue(es, p1) | = 0@Eth + 0 |t)
and by using (3.28)

2
s (via(s, 1) —v3,(s,1)) = ¢€dp (ux(ss, ut) — %Ug(ss, ut))

. 2
+ ezﬁtﬁy (ux(ss, ut) — %ug (s, ut))
= 02t + O3 |t)P) + 0(*)t)P).

Then
By :=0 (82|U1,x - v3,,\|> + O (elds (v, — v3)1)
&2 £
+0 (55 lvia —vsal ) +0 (5101 = v3.1)

5,04 3 e 4 et 3
=0(E’t]")+0(e |t|)+0<6—2|t| >+0<?|f| )

from which it follows that

1B || s < ce2¢t1-(Ima)(o+2)

Now

By := bod} s (01,5 — v3,2) + 2b0ds 71505 (1,5, — v3.2) + b10g; 715 (V15 — v3)
+ 213,753, (v1,5. — v3,0) + b2d% s (D15 — v3,0) + b2dsiisd; (V1,3 — v3.2)
+ b0 1505 (V1,5 — v3,2) + b20s759; (V1,0 — v3,1)
+ 530,715 (V1,0 — v3,2) + badsiis (1,5 — v3,2)

and straightforward computations show that
1Byl s < CeYm (10D,

Finally,
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Bs :=)L/L2ev"* (e(l—ﬁa)(v3,A—v1,,\) _ 1) +)\./,L2€vl')‘(1 —7is) (1 _ evn—vm)
and so
B3 =0 (e”|vi,5 — v3,)
and hence

”83”** < Ce

Putting together all these estimates (3.14) follows by using the fact that a < 1. The result of the

claim follows since a > ii

That concludes the proof. O

Lemma 3.2. Let ay, vy, By and z,, as in Lemmas 2.3, 2.4, 2.5 and 2.6, respectively. It holds true
that uniformly with respect to 'y € Dys

|yI? |y[*

won=o((£) o()

2 3 5
sin=o0(2) o (5o ()

&? e

2 (P Iyl3) <|y|4) <|y|6>
%W“aw_0<8)+0<s TOUE )OS ) (3.15)
Ay, (8,y) =0 ('i—'),
yyH s 8 ,

%%@w=0wm

v (6, y) =0 (yD),
dov, (0, y) =0 (Iyl),

Iyl4
399%(9 »=0(y)+ 0O )

dyu =0 (1), (3.16)

2
2 [yl
om0l

2 Iy
39yvu(9,Y)=0 8—3 s
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2
Bu(®,y)=O0(yl%),

Iyl
9B, y)=0 (Iylz) + 0 (8—3),

5 6
¥9Bu0,y)=0 (Iylz) +0 ('Z—L) +0 ('Z—l)
3B, y) =0 (IyD),

35,Bu(0.y) =0 (Iy])
82,Bu(0,y) =0 (1y])

and

2.(0,y) = O(ely)),
d9zu(0,y) =0 (ely)),

2 _ Iy I*
99ezu(@,y) = O(ely]) + O )
dyzu(0,y) =0 (e),

|y|?
a}Z'yZ/t(e’ =0 <y_2 '

9y2u®.y)=0 (8—2) + 0 (e).

Proof. Let us remind that © = ¢/1(6). Then

1 1 y
w,L(y)zln—z—l—lnA—z—{—w — |-
& 12 En

It is easy to check that (taking into account (2.3))

V2 1 V2

w —InA=—+4+In— —
n(¥) - + 2 e

y+0(1).

Moreover, some straightforward computations show that

dowp () =—25 — Lo (1) Y=o (M) ,
[T e) e 3

y 1 1
0 —wl=)== ol -
) =w (w) o <e>

and

3439

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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i 1 1
892ywﬂ(y)=—%w/<g);>——%w”(gyM)——O( >+0<| '), (3.23)
2 d (B d (1@ y\y (i) ¥\ ly[?
9 — (2L (£ XY Rl 2N o2 ,
b ==205\7) " a6 \ @2 w<8ﬁ>s+ i) (sﬁ) & (82>

(3.24)
and analogously
Npgwu () =0 <|§—5> (3.25)
and
Wgppwu () = O (';—r) (3.26)
Moreover

. . 2
d ([ y\ v i y\ »?
53 __ A (rN (Y Ko (2) 2 327
6y Wi () 70 <ﬁ2>w <£ﬂ> 82ﬁ+ 2 w ) 7 (3.27)

1 2
—o(Y)+o(2)+o(1).
& I3 I3
Let us estimate o, and its derivatives.
By using (3.20), (3.21), (3.22), (3.23), (3.24), (3.25), (3.26) and (3.27) and using the expres-
sion of «, given in Lemma 2.3 we immediately deduce the first three estimates in (3.15). The

last three estimates in (3.15) follow by the mean value theorem taking into account the initial
value data in (2.18) and by using the equation satisfied by «,.

Let us estimate v,, and its derivatives. Since v, (6, y) = eftv (9 ’M ) we get immediately

lyI?
v=0(y); =0 (); agyﬂ_()(g_g_

Moreover
v, (0, y) = efu (9, Ea ) + £f1dpv (e, —yA) —Ba (9, Ra ) y=0(y).
efl en) - efl

/i y 2 y 2 y
B0, y) =0y (0. = )+ 83 v (0. =) — —50%v (6. = __av 0,
0y u(6,y) i y < SIJ«) 0y ( 8H> 2o < M)y B < 8H>
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and
> s y : y\ A2 y
0, 9, =i 97_/\ 210 9,— —,\—8 9,—,\
w00 o (0.5 ) + 2o (0.5 ) = o (035 )
A y 7 2 y
+ e[107, v<6,—A>—273 v(e, —A>y
) i 7% il
d IAL y liz 2 y 2
——=0v|0,—=)y+—50,v|0, =
do ( Su)y efi3 Y eir)”

4
— 0y |>+0('y' >

We have used the following facts. Since v solves equation (2.22), the functions dpv and 8§9v
solve the equations

—8}2,y89v —e% v =e"0pa;(@,y) inR
and
—07, 0550 — €" 550 = " 055001 (0, y) in IR.

Therefore we apply Lemma 2.7 and we deduce that v, dpv and 839 v have a linear growth, namely
they satisfy for any y € R and 6 < [0, £], the inequalities

[v(®, y)I, 18900, V)1, 195500, V)| < c1ly| + 2
and
10,00, )1, 105,06, Y)1, 1956, v(6, 1| < ¢3
for some positive constants cy, ¢; and c3. We also remark that by equation (2.22) we deduce that
185,00, ¥) | <ailyl® +azlyl + a3 forany y € R and 6 € [0, €],
for some positive constants ay, a> and as.
Arguing in a similar way, we prove estimates involving the functions 8, and z,,. O

Lemma 3.3. Let Uy be given in Lemma 2.8. Then if € is small enough

2 3 5
8{&1(94)—?%(9,”} O(|y|)+0<|yI >+0(|y| >+O(|i}| ) uniformly in Dys.

(3.28)
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Proof. First of all, by mean value theorem we get for some y € [0, y]

V2., S\ 2
doUe (0, y) = 09U (6, 0) + ydy (3plhe) (6, 0) + 73”391/{5(9, y)y

2
——2—+£%y+0(| |)+0<|y€| )

Here we use the boundary condition in (2.28) and the fact that 8}2, v (3pUy) is uniformly bounded
because of (2.30).
Now let us compute

g1 (0, y) = 0pwpu (y) + 06,0 (0, Y) + 99v, (0, ¥) + 9a (0, ) + 992, (6, y) + €0 Zo

lyl? |y|3 |y|5
_aewﬂ(y)+0(|y|)+0( +0 tO| 3 (3.29)
A i V2 2 3 5
=255+ 5oy 4 0y |)+0<'y|>+0<'y|>+0<'yl>.
i a2 £ g2 £
We take into account estimate (3.21) together with the first estimates in (3.15), (3.16), (3.17) and
(3.18). Then the claim follows. O
3.2. Estimate of the error in the inner part
Lemma 3.4. There exist ¢ > 0 and gy > 0 such that for any ¢ € (0, &9) we have

13U lloo.2\Dys < €. (3.30)

Proof. Since U, solves (2.28) we have

£u8>=_,\e?u£:_i L1 _ _ 2 LUty , L1
2
I I

SA(UA):SA< A e

Now, by the fact that d,Uy < 0 we deduce that Up(x) — 1 < ¢ <0 if x € 2\ Dys for some
constant c. Moreover, by (2.30) we also deduce that |, (x) — Up(x)| < ce for any x € Q \ Da;
for some constant c. Therefore, the claim follows. 0O

3.3. The projection of the error along Z
We are going to compute the component of the scaled error R(U,) given in (3.2) along Zo.
Lemma 3.5. There exists ey > 0 such that for any ¢ € (0, g9) the following expansion holds:
/ R(U,\)Zo dt = s% [82 (ao(ss)'éo(ss) + af(ss)éo) + az(es)eo] + 83M0(8S)

2 (3.31)

"

+ &> Ho(eo, éo. &) for any s € [0, £],
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where

ao(es) = [i3 + eal(es) (3.32)

and

ax(es) = Ay + a5 (es) (3.33)

with ai i =0, 1,2 explicit smooth functions, uniformly bounded in e. Moreover in (3.31)

o My is a sum of explicit smooth functions of the form, uniformly bounded in &;
e Hy denotes a sum of functions of the form

ho(es) [hi(eo) + o(1)h2 (e, €0, €0)]
— ho is a smooth function uniformly bounded in &;
— hy and hy is a smooth function of its arguments, uniformly bounded in € when e satisfies
- (02(.11)7£> 0 as € — O uniformly when eq satisfies (2.17).
Proof. For sake of simplicity, let vy := nsv1,2 + (1 — 1s)v3, . Where vy (s, ¢) = iy (s,t) and

v3a(s,1) = gug(ss, WUt).
First of all we get that by using (3.5) and (3.13)

0 - -
/ R(U,) Zodt = / RaZodt + f R(v3,)Zodt + f fisR(v1,2) Zo(t) dt
_2 _2 _2 _2
" " " "
Ut n I

0
+[82;13'e'g(8s)+1\1eg(5s)] / AsZ3(1)dt .

1
We remark that
; 1
8
/ Z3wydi =5 +0 (VM)
_3s
m

and hence

1 3 — s
Iy:= 58% [Szﬂ%éo(gs) + A1€0(8S)] +0 (e mﬂ) )

Moreover by using Claim 2 of Lemma 3.1 we get that
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Ig =0 (e_cé)

for some positive ¢ and similarly, by using Claim 3 of Lemma 3.1 and also the exponential decay
of Z it follows that
0 —cl
Iy =0 (e e )

for some positive c. It remains to evaluate only 130 .By using (3.11)

0

0= /R(m A)Zo(t)dwro( )

o ‘:|°‘

:/ T 92 h, Zo(t)dt—i—/ - )2312,E,LZ0(t)dt

/1.

0

26 e
m ”h Z()([)dl
T
0 e 0
s
ma,wzo(t)dt—/ 1_" 0z, Zo() dt
- —
0
+/ weTlik [ 1 i | Zowdr
A=) | M ap2 0

|

0

. 9. 9. -
2 npt noput K 2#[ -
huZo® dr B - + dhyuZo(t)dt
wZo®) /( (1 —ute)?2 (1 — putk)3 (1—/Ltlc)2) thyZo(t)

\o’\*

|

m

SoZo(t) dt + f A(ef(es)Zo(1)) Zo(t) dt + / S§Zo(t) dt

_l’_
\%\o =

T e

S3Zodr + 0 (¢7%)

+
\o‘:

=l

=83M0(gs)(1+o(1))+f]l(eg(es)zo(t)) Zo(t)dz+/$§zo(t)dz

w w
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0
+ / S3Zo(t)dt + O (e*%)

=l

where My (es) is a sum of smooth functions uniformly bounded in ¢ that does not depend on eg.
Now

0 0
/ll(eg(gs)zo(t)) Zo(tdr =3 | €2, %agf;‘ + 2k (es) 12 (e5) / t1Z3(r) dt
=0
_% —00
i g (es)
0
+8% gép —Zﬁ[},/t@ZoZodi
—0Q
I af (es)
0
+8% eq —,LlK/-atZ()Z()dl‘
—00
I a3 (es)

+ £2h(eo, é0, 0) (1 + (1))

where h(eg, ég, €o) is a sum of functions depending linearly on eg, ég, 9. Now

0 0 0
/ S2Zodt = &3 F(e0)(1 4 0(1)); / SiZodt = ¢ | eo / eV Z3 (a1 +v)dr | (1+0(1)
_8 _3 —00
12 13
as(es)
where F is quadratic in eg.
Putting together all these estimates we get
0
7 _ .3 2 l ~n2 e\ I3 : l 13 3
RWU))Zopdt =¢e2 | & 2u0+8a0 €y +aj(es)ep + 2A1+8a2 ey | +e Mp(es)
_ 28 N— ————
s ap(es) a»(es)

+ &3F(e0)(1 + 0(1)) + 2 h(eo, éo, 0)(1 + o(1))

and the result follows. O
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4. The remainder term
We split the remainder term &, in (1.14) as

D, = s + V¥, 4.1

where ¢, solves a linear problem defined in a neighborhood of the boundary and v, solves a
linear problem defined in the whole domain. More precisely, we are led to consider the couple of
linear problems

AY =¥ + (1 —ms)re = —(1 — ) S (Up) — (1 — mas) N (259 + )
—2Vns Ve — dAns in (4.2)
dyy =0 on a2

and

L(¢) = =S, (Us) — N(n2s® + ¥) — reV* in Doy
dyp =0 on 0Dys.

(4.3)

4.1. The remainder term in the whole domain

Given a function ¢ defined in a neighborhood of the boundary, let us find a function y» which
solves problem (4.2).

First of all, it is useful to point out that for any g € L°°(2) there exists a unique ¥ solution to
the linear problem

Ay — Y+ —ms)rePy=g  inQ
{ =0 on 92 (“4.4)
with
1V lloo < Cllglloo- 4.5)

It is enough to show that the linear perturbation term (1 — 125) AeY* v is small as & goes to zero.
Indeed, arguing as in Lemma 3.4, we have

(1= m2s)re oo <€ ¢
for some positive constant c.

Now, let us split the remainder ¥ = ' 4+ 1> where ¥! solves a linear problem and 2 solves
a nonlinear problem. More precisely, ! solves (4.4) with

g == =m3) 8 (Us) = (1 = m2s) N (n254) — 2Vn25Vp — pAnps (4.6)

and ¥ 2 solves (4.4) with
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g:=—(1 —ms)[N(sep + ¥' +v?) — N(mse)]. 4.7

It is clear that for any function ¢ there exists a unique ¥ ! solution to (4.4) with the R.H.S. as
in (4.6). Let us prove that

11 oo < ce@T2U=D) ), (4.8)

By (4.5) we need to estimate the L°°-norm of R.H.S. given in (4.6). First of all, in Lemma 3.4
we have

(1= 728)S5.(Un)lloo < €

for some positive constant c. Moreover

(1 = 125)N (1258 oo < €ll(1 — mas)AeV 03507 oo < cll(1 — mas)Ae™ ool (1 = 125) 25115

. i
<ce s 1=DY G|,

since

(1 —n25)1m250 10 < C( sup

1Pl < ce® =D @],
Cs\Cs 1+ Itl">

where we agree that é is nothing but the scaled function ¢ (s, pt). Finally

g seNo+l . _ ~
1V Veloe = 5 () 16l = s 20 gy,

and

2

£ /EN\C - .
I9amslco = 55 (5) 191 = ce 20

Moreover it is possible to show that the nonlinear operator ¥, is Lipschitz such that
1 (@2.1) = ¥ (@12 lloo < ce @D [1gy — o

Once we have found the function lpl, we solve equation (4.4) with R.H.S. (4.7). A simple con-
traction mapping argument (the nonlinear term N is quadratic) yields the existence of a function
%2 such that

192100 < (1 = m25)2e* [loo 19 oo < e 1Y oo (4.9)

for some positive constant c.
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4.2. The remainder term close to the boundary: a nonlinear projected problem

In order to solve problem (4.3), it is necessary to solve a nonlinear projected problem naturally
associate with it. Since it is defined in a neighborhood of the boundary, it is useful to scale it.
Then we are led to study the problem~: given [t which satisfies (2.3) and eq which satisfies (2.17),
find a function co(s) and a function ¢ so that
L($) = ~R(Us) = N1(@) + coZo in Cas.
3¢ =0, on 9Cys N {r =0},

~ l ~
¢<s+g,t>=¢(s,t) (4.10)

0
f ¢ (s, 1) Zo(t)dt =0,

)
2%

where £ is defined in (2.10), R(U,) is defined in (3.3) and the superlinear term N (q;) is defined
by

NI (@) = agi2e [0 @) | — (s + (@) + 22 P (@) + (e — ") §.
4.11)
Here 1/}(¢) is the scaled function [1//(45)] (es, ut) and ¥ (¢) is the solution to the problem (4.2).
In (4.10) the terms which contain ef and €5 in R(U,) are encoded in the last sum (see (3.5)).

By Proposition 2.2 L is invertible. Hence solving (4.10) together with boundary, the periodic
and orthogonality conditions reduce to solve a fixed point problem, namely

¢ =T(=RU) — N1($) = M(¢) (4.12)

where 7 is the operator defined in Proposition 2.2.
We will prove the following result.

Proposition 4.1. There exist ¢ > 0 and Lo > 0 such that for all 1 € (0, Ao) and for any eq satisfy-
ing (2.17), the problem (4.10) has a unique solution ¢ = ¢(ep) and co = co(ep), which satisfies

~ 5
lplls <ce2. (4.13)
Proof. Let us consider the set
~ ~ 5
&:={¢ : 19l = ce?|

for a certain positive constant ¢. We first show that M maps & into itself.
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Let ¢ € £. Then by using Lemma 3.1

IM@)lx < CIRT) + Ny (@) s < ce? + N1 (@) -
We evaluate |} (@) |-
N (@) s < 11A122eD Gisd + T (@) e + 1282 % P (@) s + | (hpt2e% — )l

< 1€ G s + €T (D) s + 1€V PV (D) s + 1€ (D) s
+ 1 p2eD = )

Now
. . Lo+
lle” @ [|ss < ||¢||3scupewm <l
28
le” Y2 (@)l < 1T (D)IIZ supe™ (1 + [£]°T2) < g2 T2 12
Cas
. . . 14+ |t|0+2 B -
le” GV () Il < ||¢<¢)||oo||¢||*s(}lpe’”w <glotDU=a) 42
28
analogously
e¥ P (@) |lsx < £CTDI=D B,

and finally

1Oe — ") llux < lle" @+ B+ By + Zu + €5Z0) Pl < €115
Putting together all these computations we find that

INT(@) s < e TDU=D) )1, (4.14)

and the first claim is proved.

We next prove that M is a contraction, so that the fixed point problem (4.12) can be uniquely
solved in £.

Indeed, for any b1, ¢y € M we get (setting 1/71 = 1/7(451) and 1}2 = &(q&z))

[M(p1) — M (@)l < CING (@1) — N1 (@2) [l
< ||ew . eﬁza¢~’1+1/71 (1 _ eﬁ%((zz—(z’l)"“/}Z_‘/}I + (;128((1;2 _ (]31) + 1}2 _ 1}1)) s
+ lle” (7as (@2 = 1) + 2 — 1) (9N — Dy,
F e W1 — )l + 102D = €Y (@2 — 1)l

~ ~ ~ ~ 2
< lle” (s (@2 = @) + (2 = VD)l
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+ [le” (ﬁzs (2 — d1) + V2 — @1) (fi2sB1 + ¥1) |l s
+ 1€ (1 — P2l + 2P — ) (2 — $1) 1

<lle” (@2 = 1) llar + lle” (T2 — Y1) llax + € (b2 — 1) (P2 — Y1) [l
+ lle” (2 — 1) Gias@1 + VD) llsw + €™ (b2 — Y1) (2t + V1) [l
+ 1€ 1 — P2l + 2P — ) (2 — $1) s

< max ;112 — 1 1« +jr5a11§2||&,»||oo||&z — Vil
+ max (19 lloollf2 = il + 19111192 = brlloo + 1V llocli bz = Bl
+ 1Bl V2 — Villoo + W1 llsollP2 — Villoo

<& 2 —ills.

Hence M is a contraction and the proof is complete. O

4.3. Proof of Theorem 1.1 completed

It only remains to find the function eg to get the coefficient ¢ in (4.10) identically equal to
zero. To do this, we multiply equation (4.10) by Zy and we integrate in ¢. Thus the equation

co(@) =0forany 0 € [0,£] (here es =0)
is equivalent to

0

/ [R(ﬁ,\) + L)+ M (&)] Zodt =0forany s € [0, §j| ) (4.15)

We first remark that, by using (4.14), it follows that

0

/ [£@) + N @) Zodr = o2 1=0%3, (4.16)

_2
m

where r is the sum of functions of the form

ho(es) [h1(eo, éo) + o(1)ha(eq, éo, €p)]

where ¢ is a smooth function uniformly bounded in ¢, 4| depends smoothly on ey and on ¢égy
and it is bounded in the sense that

h1lleo < clleolle

and it is compact, as a direct application of Ascoli—Arzeld Theorem shows.



M. del Pino et al. / J. Differential Equations 261 (2016) 3414-3462 3451

The function h, depends on e, ég, € and it depends linearly on €y and it is Lipschitz with

Iha(ed) = ha(€d) oo < 0(1)led — €lle.

By using (3.31) it follows that (4.15) is equivalent to the following ODE

€2 (ao(£5)é0 + a1 (£5)é0) + ar(es)eg = £3 Mo(es) + £3 Hy + @ +D1-0+1, 4.17)

where a;(es),i =0, 1,2, My, Fo and Hy are as in Lemma 3.5 and r is as in (4.16). Our goal is
to find a smooth periodic function ey which solves (4.17).

In order to do this we introduce an auxiliary problem.

Suppose that po() is a positive C2(0, ¢) function, p1(0) is a C%(0, £) function and ¢ > O is a
parameter small enough.

Given an arbitrary function f € C°(0, £) let us consider the problem

{ G+ p1O)x) + po@)x=f  in (0, (4.18)

x(0) = x(€) %(0) =%(0)

Lemma 4.2. Let

2

¢
Apoo) = fvpo(t) dt
0

There is a small number go = go(po, £) > 0 such that if € € (0, eg) satisfies the gap condition

l42m?e? — A py| = E0e  for anym e NU{0} (4.19)

with ¢ is small enough, then there exists a constant C > 0 such that problem (4.18) has a unique
solution which satisfies

.. . C
1%l oo + & ll% oo + I1¥lloo < pal PAES (4.20)

forany f € C°(0, £). Moreover, if in addition f € C*(0, £), the unique solution to problem (4.18)
satisfies

1% oo + llFlloo + 1xlloo < C (I Flloo + I fllo + I Flloc) - 4.21)

Proof. Although similar results were obtained in [6], we sketch the proof to illustrate why con-
dition (4.19) is required.
We take

2

¢ 0
Apyo) = /vpo(l)dt ; 5(0) = — /\/Po(l)dt, y(s) =x(6).
0 0

AY APO
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Then (4.18) is transformed into

2 e . ~ .
e +q)y)+voy=f(s) in(0,7)
{ I+ a9+ vy f 42
y(0) =y(@@) y(0) =y(m)
with
Po 1 P1 Apy z Apy [
()=-—+ — Vo= 53 ($)=——.
I 2po  m/Apy PO 0T a2 ! 72 po
It is a standard fact that the eigenvalue problem
V+q@)y+vy=0  in(0,7)
) ) (4.23)
y(0) = y(r) y(0) = y(m)

has an infinite sequence of eigenvalues (v,,),, C R such that

1
4/vm=2m—i—0( ) as m — oo

m3

with associated eigenfunctions y,,(s) that forms an orthonormal basis in L2(0, 7).
Thus, if vy # g2y, for all m > 0 the problem (4.18) is solvable. In such a case the solution
(4.18) can be described as

00 ~

NOEDY w)_f#vmym(s)

m=0

where fi,(s) := f F£($)ym(s)ds.
0

Since y € C2(0, 7r) the above expression holds in C%(0, 7). From (4.19) we find that
Vo — vme?| > e
if € is sufficiently small. Next we notice that, by using Cauchy—Schwarz inequality and Parseval’s

identity we have

1 1

> L 1 L
2.2 - 4.24
<< 0fmym) (mZ:O(VO_vmgz)2> <Sflle (424)

m=

fmym(s)
vy — €2y,

(o.¢]
¥lloo < Y
m=0

Coming back to the original variable

Apy

c C
IIXIloo=||y||oo<—H [ flloo < =11 flloo-
€ 0 €
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In this way, one can also estimate the L°°(0, r)-norms of y and j. Therefore the result holds.
For a more detailed treatment of this and estimate (4.21) one can see [6, Lemma 8.2]. O

In view of system (4.18), it is natural to consider a perturbation of the equation in (4.18),
namely

&2 (F+ p1(0)%) + (po®) +epo@)x=f  in(0,0) 25)
X =x) %0 =) ’
where {Pg.¢(0)}s~0 is a family of C2(0, ¢) functions such that
Sup | Po.e ||C2(0 0 < C (4.26)
>0
and
95
supe [ 202 <. 4.27)
>0 & o)
Then we have a constant M > 0 and a family {A.}. C R such that
Apo@)+epo.0) = DMpo) +EAe
and
oA,
[Ag|l +¢ <M. (4.28)
de
We observe that if there exists a small ¢ > 0 such that
[4r?m?e? — (Apy +eAe) | =G  m=0,1,2,... (4.29)

for some small ¢o > 0, then (4.19) holds after A  is substituted by A 5, and hence existence
of a unique solution to (4.25) satisfying a priori bounds (4.20) and (4.21) is guaranteed.

Moreover (4.26) allows us to choose the constant C > 0 in (4.20) and (4.21) to be independent
of e.

Remark 4.3.

(i) First we deduce a sufficient condition of & > 0 for which inequality (4.29) holds. Notice that
(4.29) means that if

4%m?e* > Apy +ehe  (ordmPm?e? <Ay, +eAs)

then it should be

4r’m?e? —Coe = Apy + A, (or Ar’m?e? + Coe < Apy +eAs)
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for a sufficiently small ¢ > 0 and for every m € N U {0}. Given any small number & > 0, let
us write

Apy +eAg

Ar’e? = 5
(mo + ag)

(4.30)

with some mg € N large and ag € [0, 1). Assume ag # 0. Then the least m € N satisfying
472m2e? > Apy +eAgism =mg+ 1. Besides, for m > mg + 1 we have

mo + 1 )2_ _(Apteng) 2
mo + ao 27 (mo + aop)

2(1 — o 1 1
>(Ap+edg) 1420 o L (1
m 270 /A p, Mo m

Z Apy +eAe

4’m?e? — Goe > (A,,O—f—sA) (

provided ag < 1 — o= \/7 choosing ¢p < 27 /A p,.

(i1) Let us show the existence of a sequence of small positive numbers ¢ > 0 converging to zero
satisfying (4.29) provided (4.27) holds.
Indeed it is easy to see that the equation (4.30) has a unique pair (mg, ag) for any ¢ € (0, 1)
where &1 > 0 is determined by A, and M in (4.28).

We come back to the original problem.
Let us introduce the linear operator

Lo(eo) ==& (ao(e5)éo + a1 (e5)éo) + aa(es)ep.
The following result holds.

Lemma 4.4. We have a positive number A, and a number {Ap, ;e such that if
[472m?e? — (Mg, +eApy )| =>Goe m=1,2... 4.31)

for some positive and sufficiently small constant ¢y, then for any f € CE(R) N L*®(R), there
exists a unique e € C[2 (R) solution of Lo(eg) = f. Moreover, there exists C > 0 such that

. ) C
lleolls = &2[1é0lloc -+ &lléolloo + lleoll < ~ Il
Finally, if f € C}(R), then

leolls = €2l1€0llco + lléollos + lleoll < C [l Fllco + I fllos + Il Fllso] -
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Proof. The equation 2 (ag(es)ég + aj (e5)ég) + az(es)eg = f can be written as
&% (60 + p1(6)éo) + (po(8) + £ po.)eo = g
with

_ai(es)

p10) =

Ay N a5 (0)ig(0) —ag Ay £
s 0)= ) 5 0) = ~ + &qs¢ 0 ) = .
awe PO e 1@ 730) O 8=

It is clear that pg(0) > Oisa CZ(O, £) function and pg . € CZ(O, £) function and (4.26) and (4.27)

hold. Then we let
¢ 2
Ay = / Aty
Ho J /2%

and hence there exist numbers A, , such that
APO+51~70,S = AIALO + SA[LQ,E
and the result comes from the above discussions. O

Proof of Theorem 1.1. By Lemma 4.4 it follows that there exists a sequence of small e = ¢,,, > 0
converging to zero as m — —+00 such that the operator Lg(ep) is invertible with bounds for
Lo(eg) = h given by

-1
leolls = Ce™ I lloo,

for some positive constant C. Finally, by Contraction Mapping Argument using the properties of
the right-hand side of (4.17), it follows that, the problem (4.17) has a unique solution with

leolle < ce@tP=
and that concludes the proof. O
5. The linear theory

In this section we give the proof of Proposition 2.2. We need a couple of preliminary results.

Lemma 5.1. Assume & ¢ {0, =</ A1}. Then given h € LOO(RZ), there exists a unique bounded
solution of

(L —&E)y =hin R (5.1)
Moreover

[V lloo = Cellhlloo (5.2)

for some constant C¢ > 0 only depending on &.
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Proof. We argue as in Lemma 3.1 of [6]. O

Lemma 5.2. Let ¢ a bounded solution ofﬁ(qﬁ) + Bszsqﬁ =0in R2. Then ¢ (s, t) is a linear combi-
nation of the functions Z1(t), Zo(t) cos(v/A1s), Zo(t) sin(v/ A1s).

Proof. We argue as in Lemma 7.1 of [5]. O
Proof of Proposition 2.2. The proof will be carried out in three steps.

Step 1: A priori bound (special case) Let us assume for the moment that in problem (4.10) the
function cy is identically zero.

We will prove that there exists C > 0 so that for any & with |4+« < 400 and any ¢ solution
of problem

L(p)=h in Cos
oo =0 on 9Cys N {t =0}

L) =
G (s+L.1)=(s.1) 53)

0
/¢>(s,t)Z0(t)dt=0 VseRT.
_ 28

m
with ||¢ ||« < +00 we have
ol < Cllallsx.

By contradiction we assume that there exist sequences A, — 0, (h,), and (¢,), solutions of
(5.3) where

8, = ¢ for some a € (0, 1) and p, (g,5) = &, fL(Ens)
such that

To achieve a contradiction we will first show that

[Pnlloc — 0. 5.4)

If this was not the case then we may assume that there is a positive number ¢ for which
[P lloc.Cys, > ¢ Since we also know that

c
|pn (s, D] < m,

we conclude that for some A > 0
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lpnllLoo(rj<a) = c.

Let us fix an s, such that

C
@n (s, IlLoo(ej<a) = 3
By elliptic estimates, compactness of Sobolev embeddings and the fact that the coefficients
of .A(¢>n) tend to zero as X, — 0, we see that we may assume that the sequence of func-
tions ¢n (s,1) := ¢n(s + su, t) converges uniformly over compact subsets of R2, to a nontrivial,
bounded solution of

ALG+ 32 +e"p=0  in R?

where [i3° is a positive constant, which with no loss of generality via scaling, we may assume

equal to one. By virtue of Lemma 5.2 then ¢ is a linear combination of Zg and Z;. Moreover
by the decay behavior and the orthogonality conditions assumed, which pass to the limit thanks
to the Dominated Convergence, we find then that <f> = (. This is a contradiction that shows the
validity of (5.4).

Let us conclude now the result of Step 1.
Since ||¢, ||« = 1, there exists (s,, t,;) with r;, := |f,| — 400 such that

1
1 |n(Sns t)| + 19 T Dy (s, 10)] = ¢ > 0.
Let us consider now the scaled function
$u(20,2) = ry?d’n (Sn + rnz0, Tn2)

defined on D given by

_ 1 28,r!
D::{(zg,z):—r;lsnszSr,I_l(——sn); —"7rn<z<0}.
n(€nS)

Then we have
|6n (20, 2)| + 12| DPn(z0, )| < 1z inD

and for some z,, with |z,| =1

16 (0, 22| + D (0, 24)| > ¢ > 0.

Moreover ¢, satisfies

(3,02 . fn + 0%dn +o(DC() =hy  inD

where h,(z0, 2) = r,‘{”hn(sn + 7120, Tn2)s fo.n = figy (Sn + rnzo) and C(¢y) is bounded.
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Since

19525 1l oo, 5 = O (En):

then, we may assume that

( rn_lsn )H a
3 = 0(ey,);
//Ln(gn(sn +rnZO)) 00,D

5 ro tsn I+a
o, = 0@
/,Ln(sn(sn + rnZO)) o0o0,D

[L%n - 4*>0

and that the function ¢, converges uniformly, in C'-sense over compact subsets of D, to ¢
which satisfies

[ ¥0z0200 + 0,6 =0 in D, (5.5)
where
D, = (0, 00) x (—00, 0)

and ¢ satisfies

|6(z0, 2)| + 121 D (20, 2)| < I2| ™7 (5.6)

with the boundary condition. With no loss of generality, we may assume that o* = 1.

Hence ¢ is weakly harmonic in D, and hence & = const. Moreover since it satisfies (5.6), it
follows that ¢ = 0.

This is a contradiction.

Step 2: A priori bound (general case) We claim that the a priori estimate obtained in Step 1 is
valid for the full problem (4.10). We conclude from Step 1 that

l[olls < clliAlles + llcoZollsx] < CllIA 1l + llcolloo] (5.7

for any & with ||/« < 0o and solution ¢ of problem (4.10). To conclude we have to find a bound
for the coefficient cq(s).
Testing the equation in (4.10) with Zy and integrating with respect to dt, we get

0

0 0
co(s) / Zidt = / L(P)Z,dt — / hZ, dt (5.8)
_2 28

_ _2
w w W
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Since Z( decays exponentially

0
1 Al
fZ%dt:§+0(e VA

3459

0 0 0
1 1 -
co(s)<§+0<e_‘/A‘§>>:/ﬁ%aszs¢zodt+ / (070 +e"0) Zodt—i-/.A(qb)Zodt
28

28 _2%
"

— f hZydt.

It is easy to see that

0 0
1
[ hzade| <l [ g < cin,
_2 28
m w

m

(5.9)

(5.10)

Now by using the boundary condition, the orthogonality condition and the radial symmetry of

Zy we get
0
/(3£¢+ew¢)Zodt < 0(e)|9lls
_2
m
Now, since
0
/ ¢Zodt =0

_2
1

(5.11)

if we make twice the s-derivative and we make some computations, we immediately get that

0

[ @zt <0 () 1ol

26
n
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Moreover we get

0 0 0
/A(¢)Zod: = /bo(s,t)aéthodt-l- / bi(s,1)d2¢Zodt
_25 _2 _2
" n n
0 0 0
+/b2(s,t)8§,¢20dt+/b3(s,t)at¢Zo,dl+/b4(S,t)3S¢ZOdt
_2 _25 _2
W w w
where b; are defined in (2.7).
Now reasoning as before
0 0
[ wenatezodr| <e [ @2ozaldr <0 () il
28 _28
m

/bl(s,na,%qszodt < 0@ H|ollx + Cellollx < Ce2 Il

25
m

0 0
/bz(s,t)af,qﬁZodt <ell@ll /bs(s,t)aﬂﬁZodt <elloll
_2 _28
n n
0

/ ba(s. 356 Zodt| < 211l

_x
"

hence by (5.9)
(5.12)

lcolloe < Cllllss + cell @]l

Combining (5.12) with (5.7) the result follows.

Step 3: (Existence part) We establish now the existence of a solution ¢ for problem (4.10).
We consider the case in which A (s, t) is a T -periodic function in s, for an arbitrarily and large

but fixed T. We then look for a weak solution ¢ to (4.10) in Hr defined as the subspace of
functions ¥ which are in H!(B) for any B bounded subset of Cps, which are T-periodic in s,

such that 9,¢ =0 on 9Cps N {t = 0} and so that
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0
/wzodt=o v v € H (B).
_2

LetDr:={r e [_%6’ O] : 5 € (0, T)} and the bilinear form in Hr:

B, ¥) :=/w£<¢>dt Yy e Hy.

Dr

Then problem (4.10) gets weakly formulated as that of finding ¢ € Hr such that

B(qﬁ,xp):/iupdt Ve Hr.

Dr

If & is smooth, elliptic regularity yields that a weak solution is a classical one.
The weak formulation can be readily put into the form

¢+K(@p)=h in Hr

where £ is a linear operator of 4 and K is compact.

The a priori estimate of Step 2 yields that for 2 = 0 only the trivial solution is present. Fred-
holm alternative thus applies yielding that problem (4.10) is thus solvable in the periodic setting.
This is enough for our purpose. However we remark that if we approximate a general & by peri-
odic functions of increasing period and we use uniform estimate we obtain in the limit a solution
to the problem. O
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