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The particle-particle interaction potential of an N -atom cluster is expanded in n-body contributions. The
expansion allows us to determine the magnitude of each one of the n-body terms, and consequently quantifies
how n-body a potential really is. This way we obtain bounds for the relative error due to truncation, a feature
that could be applicable in several contexts like the search of minimal energy cluster conformations, to obtain
adequate seeds for further ab initio refinement, or to speed up molecular dynamics computations. We develop the
formalism, and test the procedure numerically for the Lennard-Jones, Murrel-Motram, Gupta, and Sutton-Chen
potentials. The contributions of the n-body terms for Ag, Al, Au, Co, Cu, Fe, Ir, Ni, Pb, Pd, Pt, and Rh clusters
are computed up to n = 9; they show that the importance and magnitude of the n > 2 interaction terms depend
on the particular element. The relevance of the n-body corrections as a function of cluster size is also explored
for N � 50, and for a linear chain of N � 1000 atoms.
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I. INTRODUCTION

Nanoclusters have attracted the interest of physicists,
chemists, and applied scientists, due to their challenges to
basic science and because of the variety of potential and actual
technological uses they have [1]. From a basic science point of
view they constitute a natural bridge between the macroscopic
bulk limit and the microscopic scale of atoms and molecules.
On the application side they have found a large variety of uses
in technologies that span the range from catalytic processes,
to hydrogen conversion, to increasing the octane grade of
gasolines, all the way to optoelectronics.

But, as Goedecker et al. [2] recently pointed out, the first and
most fundamental step in the description and understanding
of clusters is the precise determination of the geometrical
configuration that the constituent atoms do adopt, since most
physical properties depend on the structure of the system. This
fact has generated significant interest and activity in the field.

However, the complexity of the problem is quite over-
whelming as can easily be perceived by pointing out that
a 13-atom cluster, interacting via a simple Lennard-Jones
two-body potential, has a potential energy surface function
with around 1000 minima [3]. Even more impressive is
that for a 147-atom cluster this number grows to ∼1050

minima [4]. However, it is generally accepted that two-body
potentials, such as the Lennard-Jones potential, do not yield an
accurate description of the complex interatomic interactions
in a cluster. Consequently, ab initio approaches to handle
these interactions have become the standard in the literature,
especially when the number of atoms is not too large. However,
the ideal procedure of implementing an unbiased search using
exclusively ab initio, or density functional theory (DFT) codes,
is at present out of the question for large clusters, because of
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the extremely long number crunching times that are required.
Thus, a number of strategies [5–10] have been put forward to
approach this problem, such as (i) using two-body [4,6,11,12]
or more refined phenomenological potentials [13–15] and
global optimization techniques to obtain, rather quickly,
putative minimum energy configurations; (ii) using less ex-
pensive quantum methods, like tight binding, to compute
structural [16] and even magnetic properties [17–20] of larger
clusters (N > 100); or (iii) using a phenomenological potential
to construct a bank of diverse structures that are subsequently
refined by ab initio approaches [21–25]. Using the latter
approaches it becomes apparent that the minimum energy
cluster structure obtained with phenomenological potentials
does not necessarily converge to the one with the lowest
energy after DFT refinement [25]. Hence, a robust approach
should rely on constructing a diverse enough set of structures
that could be obtained, for example, as minimal structures of
a potential that has some similarities to the exact one (i.e.,
obtained from an ab initio calculation) but that are simple
enough to compute.

In this context a number of many-body phenomenological
potentials have been developed, in the hope that a reasonable
approximation to the interatomic interactions can be found. For
example, Murrell and Mottram [26] truncated the interaction
beyond three-body terms. Other potentials, like the one by
Gupta [15,27], are intrinsically of many-body type and do not
have an explicit expansion as n-body potentials. However,
there is no consistent method to determine how relevant
each one of these expansions is, except for a fitting of the
error. For example, there is no physical picture to decide if
it makes sense to construct a full multibody potential, such
as the one by Gupta [27], or if it is enough to truncate by
means of a particular n-body description, such as Murrell and
Mottram did. A similar argument argument can be made when
choosing among different many-body potentials, such as Gupta
or Sutton-Chen [28].
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Here we offer a method to decompose the potential that
describes the atomic interactions in a cluster, in terms of
an n-body potential expansion, that applies both to phe-
nomenological potentials, and potentials obtained from ab
initio approaches. It is interesting to notice that such an
expansion into n-body terms could also provide physical
information and intuitive understanding about the relevant
mechanisms that determine the cluster structure. Furthermore,
such an expansion can be used to assert “how many body”
the interaction of the atoms that form the cluster really is,
within a given tolerance. This certainly may be combined with
a search strategy of the type mentioned above, to construct a
bank of diverse conformations that are subsequently refined
by ab initio approaches.

This paper is organized as follows: after this Introduction, in
Sec. II we present the basic ideas about the n-body expansion.
In Sec. III we apply the method to a number of elements,
to determine how relevant each one of the n-body terms is.
Finally, Sec. IV closes the paper with an analysis of the method
and a discussion of the results that are obtained.

II. EXPANSION INTO n-BODY INTERACTION TERMS

We start by assuming that the interactions between N

identical particles can be expanded using a Born-Oppenheimer
type approximation, namely

Utotal =
N∑

n=2

Un, (1)

where N is the number of particles in the system, and
Un represents n-body interaction terms. The total potential
energy Utotal = U [RN (�iNN )] depends in general on the position
�r → (x,y,z) of all N particles, where RN (�iNN ) is the set of
all possible N (N − 1)/2 different pairwise distances rij =
|�ri − �rj | that can be formed with the N particles labeled
by �iNN = (1,2,3, . . . ,N ). It is important to remember that
the particles are indistinguishable. Similarly, let us consider
an n-body potential un[Rn(�iNn )] that depends on n(n − 1)/2
variables, which correspond to all the different pair distances
that can be formed with the position of the n particles
labeled by �iNn = (i1,i2, . . . ,in), for 1 � k � n � N . Since the
n particles are chosen from the larger set of N particles. Hence,
for an n-body potential that describes an N -particle cluster, the
set �N

n is composed of all the N !/n!(N − n)! different subsets
of n particles labeled by �iNn = (i1,i2, . . . ,in). They are chosen
from the set of N particles, so that

Un =
∑

�iNn ∈ �N
n

un

[
Rn

(�iNn )]
. (2)

For example, in the case of a two-body potential we can
write �iN2 = (i,j ) with R2(i,j ) = {rij }, so that the two-body
contribution can be written as

U2 =
∑

�iN2 ∈ �N
2

u2
[
R2

(�iN2 )] =
N∑

i=1

N∑
j>i

u2(rij ). (3)

For a three-body potential we use �iN3 = (i,j,k) with
R3(i,j,k) = {rij ,rik,rjk}, from which we obtain

U3 =
∑

�iN3 ∈ �N
3

u3
[
R3

(�iN3 )] =
N∑

i=1

N∑
j>i

N∑
k>j

u3(rij ,rik,rjk). (4)

Iterating this procedure the potential U can be expanded in a
basis of n-body potentials {un}, as

U
[
RN

(�iNN )] =
N∑

n=2

∑
�iNn ∈ �N

n

un

[
Rn

(�iNn )] =
N∑

n=2

Un. (5)

Notice that if we change the particle order we still obtain the
same result, which is consistent with particle indistinguisha-
bility.

Up to this point all is completely general, but we are inter-
ested in a well defined basis {u1,u2, . . . ,uN }. In other words,
a basis where un only represents the n-body interactions, so
that un must vanish when two or more particles are infinitely
far apart. From this observation and Eq. (5) we conclude that
if we expand U in a well defined basis, then in the limit where
m particles are far apart from particle n, the expansion has to
converge to an (N − m)-body expansion, namely

U
[
RN

(�iNN )] →
N−m∑
n=2

∑
�iNn ∈ �N−m

n

un

[
Rn

(�iN−m
n

)]
. (6)

Therefore, we should define the two-body potential u2 by the
limit when all but two particles are infinitely far apart

U
[
RN

(�iNN )] → U2(r) = u2(r). (7)

It can be proven that when we choose u2 by means of Eq. (7)
we are also choosing this well defined basis. From Eq. (5) it
follows that we can define the following recurrence relation:

un

[
Rn

(�inn)] =
∑

�inn ∈ �n
n

un

[
Rn

(�inn)]

= U
[
Rn

(�inn)] −
n−1∑
k=2

∑
�ink ∈ �n

k

uk

[
Rk

(�ink )]
. (8)

Notice that here U [Rn(�inn )] is the total potential energy of n

particles. Equations (7) and (8) provide a recursive definition
for the construction of the well defined basis sets of n-body
potentials {un} that properly represents the n-body interac-
tions. Hence, through this approach the n-body potentials
can be computed iteratively from the potentials generated
for k = 2,3,4, . . . ,n − 1. For example, consider a potential
U describing the interaction of N = 3 particles. According
Eq. (7) the well defined two-body potential is given by

u2(r12) = lim
r13,r23→∞ U (r12,r13,r23), (9)

when the third particle is far away. Hence, Eq. (8) implies that
the well defined three-body potential is given by

u3(r12,r13,r23) = U (r12,r13,r23) −
3∑

i=1

3∑
j>i

u2(rij ). (10)
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FIG. 1. Comparison between the Lennard-Jones potential and the
expansion obtained with our algorithm. Only the two-body term is
nonzero.

Notice that if we replace u2 and u3 in Eq. (5) we obtain U , and
in the limit r13,r23 → ∞ we have that u3 → 0, as expected.
Hence, the n-body potential is calculated recursively from
clusters of sizes smaller than n. Combining Eqs. (7) and (8)
we find an explicit form to compute the n-body potentials,
given by

un

[
Rn

(�inn)] =
n∑

k=2

(−1)k−n
∑

�ink ∈ �n
k

U
[
Rk

(�ink )]
. (11)

In Fig. 1 we show the two- and three-body expansion of
a Lennard-Jones potential, which shows that, as expected,
the three-body contribution vanishes. The calculation is done
iteratively from N = 2 and N = 3 clusters. Similarly, we
take a Murrel-Mottran potential [26], which has two- and
three-body terms, and plot the respective contributions, shown
in Fig. 2. Assuming that all pairwise distances are the same,
namely r = rij , the two-, three-, and four-body terms are
displayed as u2(r), u3(r,r,r), and u4(r,r,r,r,r,r), respectively,
and they are calculated from N = 2, N = 3, and N = 4
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FIG. 2. Comparison between the two- and three-body expansion
terms for the Murrell-Mottram potential as obtained with our
algorithm. For the case of the three-body expansion we plot u3(r,r,r).
For the four-body expansion we plot u4(r,r,r,r,r,r). The parameters
we use are for Li.
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FIG. 3. Two-, three-, and four-body expansion terms of the Gupta
potential obtained with our algorithm for N = 4, and the comparison
between the sum of the terms and the full Gupta potential. We use Al
parameters.

clusters. The higher order n-body potentials (n > 3) are zero,
independent of N , verifying that our basis generates the
expected expansion.

The same strategy can be applied to potentials that are
inherently many-body, such as the widely used Gupta [27] or
Sutton-Chen [28] potentials. In Figs. 3 and 4 we display the
n-body expansion of the Gupta and Sutton-Chen potentials,
respectively, calculated from N = 2 through N = 4 clusters.
Using the same notation as in Fig. 2 we compare the Gupta
potential (evaluated at rij = r for all i and j ) so that the
expansion yields

U (r) = 6u2(r) + 4u3(r,r,r) + u4(r,r,r,r,r,r), (12)

and in this case the higher order contributions become nonzero
contrary to the Murrel-Mottran potential results of Fig. 2.

It is apparent that the relative contributions of the n-body
terms depend on the many-body potential that is used. Hence
we can employ the relative magnitude of each term in the
n-body expansion to compare different many-body potentials.
This allows us to select a particular many-body potential
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FIG. 4. Two-, three-, and four-body expansion terms of the
Sutton-Chen potential obtained with our algorithm for N = 4, and the
comparison between the sum of the terms and the full Sutton-Chen
potential. We use Al parameters.
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that has the largest contribution for the lowest n-body terms.
This is useful when comparing and approximating the atomic
interactions in a clusters, obtained by ab initio methods, in
terms of a simple n-body expansion; for example, when using
the strategy outlined above.

III. ESTIMATING THE RELEVANCE OF THE n-BODY
TERMS FOR A GIVEN ELEMENT

We can estimate how relevant the n-body contribution to the
N -body expansion of a given cluster of size N is by averaging
the absolute value of the n-body term

Un =
∑

�iNn ∈ �N
n

un

[
Rn

(�iNn )]
, (13)

over the available phase space; namely, over a large set CN

of suitable (see below) randomly generated clusters of size N .
Hence, we can define this contribution as

Pn = 1

PT

∑
A∈CN

|Un(A)|, (14)

where the summation is over all clusters A ∈ CN , and the nor-
malization PT = ∑N

n=2

∑
A∈CN

|Un(A)|. With this definition
we can quantify the contribution of each term over the phase
space, so that we can correctly evaluate a tolerable truncation
of the potential. Furthermore, we can assert how n-body the
interactions of the atoms in a cluster, as a function of N , are.

We start by estimating the contribution of each n-body term
from the Gupta potential as a function of the total number
of atoms N in the cluster. We generate a random set of 3N

coordinates, in a cubic box of volume a3N , where a is 4
times the respective dimer equilibrium distance, but we only
allow interatomic distances that are larger than a certain value
rmin, since two-body terms diverge as r → 0. To choose this
minimal distance we adopt the radius corresponding to the
minimal value umin of u2 and we define rmin as u2(rmin) =
−umin. The n-body contribution average is calculated for M

clusters. In Fig. 5 we display the n-body contribution as a
function of N . For this particular element (Al), we notice that
on average, up to N = 9, within 50% accuracy the potential is
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FIG. 5. Contribution of the n-body expansion terms of the Gupta
potential with Al parameters. The data are obtained from M = 105
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FIG. 6. Contribution of the n-body expansion terms of the Sutton-
Chen potential with Al parameters. The data are obtained from
M = 105 clusters.

mainly two-body. Hence, in principle if we are willing to risk a
50% error we can perform, for example, molecular dynamics
simulations with just the two-body term. Similarly, we could
use the two-body term (or any higher n � N order expansion)
as a phenomenological potential to search for a large set of
minima that can be used as seeds for ab initio relaxations
applying the above strategy, in an attempt to later find the
global ab initio minimum.

We implement the same technique to determine the rel-
evance of each of the n-body terms of the Sutton-Chen
Al potential, as shown in Fig. 6. We observe that, in this
case, the two-body interaction decays much faster with N

than the Gupta potential, suggesting that for Al a two-body
expansion of the Gupta potential may be more appropriate
when implementing a molecular dynamics simulation or a
minimization strategy.

In Fig. 7 and Table I we compare the relevance of the n-body
expansion of clusters of size N = 9, using the Gupta potential
for different elements. The parameters corresponding to the
Gupta potential for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al, and Pb
have been extracted from Cleri et al. [29], and the parameters
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FIG. 7. Contribution of the n-body expansion terms of the nine-
body Gupta potential for different elements. The data is obtained from
M = 105 different seeds.

075435-4



MULTIBODY EXPANSION OF PARTICLE INTERACTIONS: . . . PHYSICAL REVIEW B 94, 075435 (2016)

TABLE I. Contribution of the n-body expansion terms of nine-atom cluster using the Gupta potential. The data are obtained from M = 105

clusters.

P2 P3 P4 P5 P6 P7 P8 P9

Ag 6.34 × 10−1 2.13 × 10−1 8.97 × 10−2 4.07 × 10−2 1.63 × 10−2 4.97 × 10−3 9.74 × 10−4 9.03 × 10−5

Al 4.68 × 10−1 2.37 × 10−1 1.46 × 10−1 8.78 × 10−2 4.28 × 10−2 1.49 × 10−2 3.23 × 10−3 3.23 × 10−4

Au 7.10 × 10−1 1.97 × 10−1 6.11 × 10−2 2.21 × 10−2 7.43 × 10−3 1.97 × 10−3 3.45 × 10−4 2.94 × 10−5

Co 4.73 × 10−1 2.31 × 10−1 1.45 × 10−1 8.84 × 10−2 4.34 × 10−2 1.52 × 10−2 3.30 × 10−3 3.32 × 10−4

Cu 4.60 × 10−1 2.32 × 10−1 1.50 × 10−1 9.24 × 10−2 4.55 × 10−2 1.60 × 10−2 3.47 × 10−3 3.49 × 10−4

Fe 5.32 × 10−1 2.29 × 10−1 1.25 × 10−1 6.93 × 10−2 3.17 × 10−2 1.05 × 10−2 2.20 × 10−3 2.15 × 10−4

Ir 6.10 × 10−1 2.09 × 10−1 1.00 × 10−1 5.03 × 10−2 2.15 × 10−2 6.83 × 10−3 1.38 × 10−3 1.31 × 10−4

Ni 2.12 × 10−1 2.05 × 10−1 2.19 × 10−1 1.87 × 10−1 1.16 × 10−1 4.77 × 10−2 1.17 × 10−2 1.30 × 10−3

Pb 6.51 × 10−1 2.15 × 10−1 8.16 × 10−2 3.42 × 10−2 1.30 × 10−2 3.77 × 10−3 7.17 × 10−4 6.54 × 10−5

Pd 7.02 × 10−1 1.98 × 10−1 6.51 × 10−2 2.42 × 10−2 8.35 × 10−3 2.27 × 10−3 4.08 × 10−4 3.50 × 10−5

Pt 7.18 × 10−1 1.94 × 10−1 5.84 × 10−2 2.05 × 10−2 6.78 × 10−3 1.79 × 10−3 3.14 × 10−4 2.66 × 10−5

Rh 4.01 × 10−1 2.27 × 10−1 1.69 × 10−1 1.15 × 10−1 6.06 × 10−2 2.24 × 10−2 5.06 × 10−3 5.24 × 10−4

for Co and Fe from Varas et al. [30]. The parameters of the
Sutton-Chen potential for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Pb,
and Al have been extracted from Rafii-Tabar and Sutton [31],
and the parameters for Co from Kaszkur et al. [32]. We observe
that for Ni the two-body expansion only explains about 20%
of the interaction between the atoms in the cluster; while the
three-, four-, and five-body interaction terms are similar in size.
In this case a full multibody expansion of the Gupta potential
is needed to account for the cluster properties. On the contrary,
for Pt and Pd the two-body contribution amounts to about 70%,
and the n-body interactions for n > 3 may be disregarded.

A similar analysis is presented for the Sutton-Chen poten-
tial, and for the same elements shown in Fig. 8 and Table II.
In this case we notice that the n-body contributions are
similar for all elements, and that each of the n-body terms
for n < 5 contributes about 20% to the particle interactions.
It is interesting to notice that the two descriptions of the
same clusters provide different contributions to an n-body
expansion, making one of them more suitable when truncating.
Of course another issue is how good the expansion is, an
issue which we discuss in the conclusions, where we also
put forward a proposal on how to construct an n-body
phenomenological potential from ab initio results.
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FIG. 8. Contribution of the n-body expansion for a nine-atom
Sutton-Chen potential for different elements, obtained from M = 105

different seeds.

Just as we can estimate the relevance of the n-body
contribution for an N atom cluster, we can also determine
the error due to the truncation of the potential by neglecting
the higher m-body terms, with n � m � N . To do so we define

εm =
√√√√ 1

α

∑
A∈CN

(
U (A) −

m∑
j=2

Uj (A)

)2

, (15)

where the summation is over all clusters A ∈ CN and the
normalization factor is given by α = ∑

A∈CN
U 2(A). We

could have used the expression given by Eq. (14), but
for large clusters the summation over all subclusters takes
significantly longer computer time. The results for the Gupta
and Sutton-Chen potentials are shown in Figs. 9 and 10,
respectively. We notice that for Au, Co, and Pt the Gupta
potential seems to be reasonably well approximated by the
two-body description, but the Sutton-Chen potential requires a
higher n-body expansion. For N = 50 we show the two-body
contribution, as characterized by ε2, for several elements of
a relevant sector of the periodic table, illustrated in Fig. 11
for the Gupta potential and in Fig. 12 for the Sutton-Chen
potential. Since the blue area corresponds to the value of ε2

for that element, the larger the blue area, the larger the relative
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FIG. 9. Energy error when we use the two-body term to approxi-
mate the Gupta potential, using M = 105 clusters of size N generated
at random.
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TABLE II. Contribution of the n-body expansion terms of nine-atom cluster using the Sutton-Chen potential. The data are obtained from
M = 105 clusters.

P2 P3 P4 P5 P6 P7 P8 P9

Ag 1.97 × 10−1 1.81 × 10−1 2.12 × 10−1 2.00 × 10−1 1.34 × 10−1 5.91 × 10−2 1.54 × 10−2 1.78 × 10−3

Al 1.85 × 10−1 1.84 × 10−1 2.15 × 10−1 2.03 × 10−1 1.36 × 10−1 6.00 × 10−2 1.56 × 10−2 1.80 × 10−3

Au 3.30 × 10−1 1.96 × 10−1 1.78 × 10−1 1.50 × 10−1 9.47 × 10−2 4.01 × 10−2 1.01 × 10−2 1.15 × 10−3

Cu 1.94 × 10−1 1.82 × 10−1 2.12 × 10−1 2.01 × 10−1 1.35 × 10−1 5.93 × 10−2 1.54 × 10−2 1.78 × 10−3

Ir 1.99 × 10−1 1.80 × 10−1 2.11 × 10−1 2.00 × 10−1 1.34 × 10−1 5.91 × 10−2 1.53 × 10−2 1.78 × 10−3

Ni 1.93 × 10−1 1.82 × 10−1 2.13 × 10−1 2.01 × 10−1 1.35 × 10−1 5.95 × 10−2 1.54 × 10−2 1.79 × 10−3

Pb 2.56 × 10−1 1.90 × 10−1 1.97 × 10−1 1.77 × 10−1 1.15 × 10−1 4.99 × 10−2 1.28 × 10−2 1.46 × 10−3

Pd 2.59 × 10−1 1.88 × 10−1 1.97 × 10−1 1.77 × 10−1 1.15 × 10−1 4.98 × 10−2 1.28 × 10−2 1.46 × 10−3

Pt 3.29 × 10−1 1.95 × 10−1 1.78 × 10−1 1.51 × 10−1 9.52 × 10−2 4.04 × 10−2 1.02 × 10−2 1.16 × 10−3

Rh 1.97 × 10−1 1.81 × 10−1 2.12 × 10−1 2.00 × 10−1 1.34 × 10−1 5.92 × 10−2 1.54 × 10−2 1.78 × 10−3

error. Hence, in general even for N = 50 there are a number
of elements that when described by the Gupta potential may
still allow a reasonable two-body description, within a certain
error.

We see that in general we can expect that the n-body terms
have a characteristic distance of action, because the n-body
interactions are important only when the n atoms are close
enough to each other. We recall that the n-body potential
is defined so that it becomes small if any of the distances
between the n atoms is large (i.e., larger than this characteristic
distance). In Fig. 13 we show the relative contribution to the
global minima of the (N − i)th body potential term, for stable
clusters of size N using the Gupta potential. We notice that as
N increases the (N − i)th contribution decreases. Of course,
at the same time the number of minimum energy structures
also increases with N , giving a distribution of the measure
when calculated over all the minimum energy structures.

Similarly, we have calculated the relative error
∑k

i=2 |Ui −
U |/U in the truncation of the n-body potential at a given
order k, for a linear chain of N Gupta atoms placed at their
equilibrium positions derived from the two-body potential.
We see in Fig. 14 that the error quickly saturates to a small
value for a small k, confirming the notion that the there
is a characteristic distance over which an n-body potential
becomes negligible. Hence, we have shown that for n larger
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FIG. 10. Energy error when we use the two-body term to
approximate the Sutton-Chen potential, for different elements, using
M = 105 clusters of size N generated at random.

than a certain n0 the characteristic distance of action of the
n-body potentials becomes smaller than the size of every n

atom subcluster, so that we can neglect n-body potentials for
n > n0. Hence, it is possible to estimate the contribution of
each term in the n-body expansion, for a large cluster of size
N , from all the relevant subclusters that are smaller than the
n-body characteristic distance. This procedure can be applied
to ab initio calculations to construct iteratively the n-body
contribution (see comment at the end of the Conclusions) of
each cluster.

More important, Fig. 14 shows an explicit determination
and explanation of the empirical assumption that is commonly
used when trying to fit a multibody potential, i.e., that it
is possible to truncate the multibody expressions at 20 to
100 atoms to obtain reasonably accurate representations of
the full potential. For example, Fig. 14 shows that, using
neural networks to construct an empirical interaction potential
in a large system, it is sufficient to consider three to four
atoms to represent with reasonable accuracy the interactions
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FIG. 11. Energy error when we use the two-body term to
approximate the Gupta potential, for different elements, using M =
104 clusters of size N = 50 randomly generated. The blue area
corresponds to the value of ε2 for that given element.
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of the atoms along a line. Therefore, not much is gained by
including more atoms or a higher order term in the energy
evaluation. When translating this to large systems we notice
that it is necessary, at most, to consider between 33 = 27
to 43 = 64 atomic interactions when estimating the potential
interaction of a large systems of atoms. Hence, this provides
an explicit determination of the interaction order that has to
be included when modeling large systems, for example using
neural networks [5].

IV. DISCUSSION AND CONCLUSIONS

We have developed a procedure to expand a multibody
potential in terms of n-body contributions that can be used as a
basis to expand and approximate elaborate potentials. Besides

FIG. 13. Relative contribution |Un−i |/|Min(U )|, relative to the
global minima, of the (N − i)-body potential term for stable clusters
of size N , using the Gupta potential. The distribution are given by the
filled areas, and the averages by the lines.
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FIG. 14. The relative error
∑k

i=2 |Ui − U |/U in the truncation
of the n-body potential at a given order k for a linear chain of N

Gupta atoms placed at their equilibrium positions, derived from the
two-body potential.

providing a method to assert “how many body” the effective
interactions of the atoms in the cluster are, this strategy may
help, for example, to search for a suitable set of cluster seeds to
be further refined by ab initio methods. It is relevant to mention
that more important than a very accurate approximation to the
potential, it is desirable to produce a genuinely diverse set of
structures to be refined, so that at the end a significant fraction
of phase space is sampled in the search for the global minimum,
or the distribution of the local minima. We have also studied
the convergence and the error due to the truncation of such an
expansion, which is controlled by a characteristic distance for
a given n-body potential. This type of analysis may be useful
when conducting molecular dynamic simulations.

Furthermore, this procedure allows us to estimate the
relevance of every term of an n-body expansion of the potential
energy, obtained from an ab initio approach, by computing
iteratively the n-body contribution. This is similar to what
is done by a multibody phenomenological approximation, but
evaluating ab initio the energy contribution for each term of the
expansion. A similar approach can be implemented by means
of neural networks, which can be used to iteratively construct
the n-body expansion of an ab initio potential. The truncation
of the potential for an n-body expansion is absolutely necessary
to implement the neural network approach, since the number of
variables increases very rapidly with the number N of atoms
in the cluster (i.e., 3N ), which soon becomes numerically
unmanageable for large N . The exploration of these ideas is
in progress.
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