TABLE OF CONTENTS

INTRODUCTORY REMARKS	15
CHAPTER I:	
FACTORS CONTROLLING ALPINE GLACIATIONS IN THE SIERRA	
BAGUALES MOUNTAIN RANGE OF SOUTHERN PATAGONIA (50° S),	
INFERRED FROM THE MORPHOMETRIC ANALYSIS OF GLACIAL	
CIRQUES	28
Abstract	28
Resúmen	29
Introduction	30
Study area	
Geologic and climatical setting	31
Geomorphology	32
Methodology	33
Results	
Cirque classification according to their activity	41
Cirque shape	42
Elevation, slope and aspect	44
L/H W/H and L/W ratios	45
Morphological cirque types	46
Composite map	48
Discussion	49
Cirque distribution, elevation and dimensions	51
Paleoglacial significance	51
Conclusions	52
Acknowledgements	53
Bibliography	54

CHAPTER II:

RELICT GLACIAL LANDSCAPE IN THE SIERRA BAGUALES MOUNTAIN	
RANGE (50°-51° S): EVIDENCE OF GLACIATION DYNAMICS AND	
STYLES IN THE EASTERN FOOTHILLS OF THE SOUTHERN	
PATAGONIAN ANDES	61
Abstract	61
Introduction	62
Study area	63
Methods	
Geomorphological mapping	66
Radiocarbon dates	67
ELA estimation and reconstruction of surface profile of former glaciers	67
SBMR temperature variation based on former ELA position	68
Results	
Glacial geomorphology	69
Radiocarbon dates	75
ELA behavior and temperature variation	76
Surface profiles of former glaciers	76
Discussion	77
Conclusions	79
Acknowledgements	80
Bibliography	80
FINAL REMARKS	88
APPEND 1	94
APPEND 2	98

INDEX OF FIGURES

Figure 2.3. Lateral moraine (dark lines) below the cirques shown in figure 2a	
(F3 in Fig. 2.1b)	35

 Figure 2.10. Tree cluster of cirques (Euclidean distance measurements and amalgamation conducted by Ward's method). The analysis shows two major morphological types where the differences are based on the cirque activity (i.e. glacial, perennial snow, or absence of both), surface, shape and spatial distribution. Morphological type 2 tends to show largest cirques compared with the morphological type 1.....

47

Figure 2.11. Composite map of study area. Cirques were categorized using 10 parameters extracted from the morphometric analysis (Table 1.2). Black dotted lines show outlines of LGM lobes. Cirque areas closest to the SPIF, such as in the far SW, were partly covered or adjacent to the large ice sheet during the LGM (Garcia *et al.*, 2012; Strelin *et al.*, 2011). This contributed to their higher areal development in relation to those located in the eastern SBMR, which were isolated from the ice sheet outlet lobes. Note that high values show the spatial distribution of currently active snow/ice processes, which particularly for the eastern SBMR, are conditioned by cirque floor elevations (Fig. 2.1) and the rainshadow effect. The lowest values spatially match with evidence of areas covered or adjacent to former outlet glaciers of the SPIF, and cirques with no evidence of current glacier or snow activity..... 50

Figure 3.2. SBMR glacial geomorphology. White boxes show the location of

х

samples for radiocarbon dating. RB-RB` shows the location of the topographic profile (Figure 3.8). AA`, BB`, CC` show the former surface topography of alpine glaciers (Figure 3.10)	71
Figure 3.3. U-shaped valley in the area where the former Alpine glaciers coalesced to form a small Icefield (F3 in Fig. 3.2)	72
Figure 3.4. Remnant of lateral moraine and boulders deposited and aligned with the moraine (F4 in Fig. 3.2)	72
Figure 3.5. Lateral moraine and boulders below the U-shaped valley shown in Figure 3 (F5 in Fig. 3.2)	73
Figure 3.6. Figure 3.6. Hummocky terrain and remnants of lateral moraine. These deposits, located in the middle section of the Baguales River basin, constitute evidence of a former Icefield (F6 in Fig. 3.2)	73
Figure 3.7. Eroded kame terraces along the Baguales River (see also Figure 3.8) (F7 in Fig. 3.2)	74
Figure 3.8. RB-RB' topographic profile	74
Figure 3.9. Spatial distribution of rock mass strength in SBMR, the box on the left shows that at greater rock resistance cirque areas tend to decrease.	75
Figure 3.10. Former surface topography profiles of alpine glaciers. Topography and ice thickness vary depending on changes in the bedrock slope	77

INDEX OF TABLES

Table 1.1	Data source for cirq	e mapping	
-----------	----------------------	-----------	--

 Table 1.2. Summary of circue morphometric characteristics
 38

Table 1.3. Correlation between analyzed morphometric characteristics. S, P, L, and W parameters have a high positive correlation followed by the altitude range (H). These variables are dependent and determine mainly the shape and cirque development. On the other hand, the $E_{med} E_{min}$ and S_{mean} parameters have a weak negative correlation with the shape parameters. Particularly M has a strong negative correlation with the planimetric development and cirque incision. See Table 1.2 for definition of attributes.... 44

Table 2.1.	Meteorological	stations	and data	obtained from the	e DGA of the	
Chilean	Ministerio	de	Obra	s Publicas	website	
(http://snia.dga.cl/BNAConsultas/reportes)					69	