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SEBASTIÁN ANDRÉS ZAMORANO ALIAGA

PROFESOR GUÍA:
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PROBLEMAS INVERSOS Y CONTROLABILIDAD EN MODELOS DE LA MECÁNICA
DE FLUIDOS

Esta tesis doctoral está dedicada al estudio de problemas inversos y de control en el área
de la mecánica de fluidos. Nos centramos en las ecuaciones de Stokes y de Navier–Stokes,
tanto sistemas estacionarios como evolutivos, los cuales son bien conocidos para el desarrollo
matemático de los flujos viscosos incompresibles. En concreto, se analizaron tres temas
principales:

• Realizamos la estimación del tamaño de una cavidad D inmersa en un dominio acotado
Ω ⊂ Rd, d = 2, 3, lleno de un fluido viscoso el cual se rige por el sistema de Stokes, por
medio de la velocidad y las fuerzas de Cauchy en la frontera ∂Ω. Más precisamente, es-
tablecemos una cota inferior y superior en términos de la diferencia entre las mediciones
externas cuando el obstáculo está presente y cuando no lo está. La demostración del
resultado se basa en los resultados de regularidad interior y estimaciones cuantitativas
de continuación única para la solución del sistema de Stokes.

• Desarrollamos el estudio del fenómeno del turnpike que surge en el problema de control
de seguimiento óptimo distribuido para las ecuaciones de Navier–Stokes. Obtenemos
una respuesta positiva a esta propiedad en el caso de que los controles son funciones
dependientes del tiempo, y también cuando son independientes del tiempo. En ambos
casos se prueba una propiedad de turnpike exponencial, bajo el supuesto que el estado
óptimo estacionario satisface ciertas propiedades de pequeñez.

• Consideramos las ecuaciones de Stokes evolutivas con viscosidad no constante. En
primer lugar adaptamos la construcción de soluciones del tipo óptica geométrica com-
plejas apropiadas para una ecuación de Stokes estacionaria modificada, con el fin de
demostrar un resultado de identificabilidad siguiendo el enfoque dado por Uhlmann
[110] y de Heck et al. [62]. Luego, se estudia la identificabilidad global para la función
de viscosidad por medio de mediciones de contorno reduciendo el problema al caso
estacionario, cuando consideramos el horizonte de tiempo suficientemente grande.
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PROBLEMAS INVERSOS Y CONTROLABILIDAD EN MODELOS DE LA MECÁNICA
DE FLUIDOS

This thesis is devoted to the study of inverse and control problems in the area of fluid me-
chanics. We focus on Stokes and Navier–Stokes equations, both stationary and evolutionary
systems which are well known to the mathematical development of incompressible viscous
flows. In particular, three main themes were analyzed:

• We are interested in estimating the size of a cavity D immersed in a bounded domain
Ω ⊂ Rd, d = 2, 3, filled with a viscous fluid governed by the Stokes system, by means of
velocity and Cauchy forces on the external boundary ∂Ω. More precisely, we establish
some lower and upper bounds in terms of the difference between the external measure-
ments when the obstacle is present and without the object. The proof of the result is
based on interior regularity results and quantitative estimates of unique continuation
for the solution of the Stokes system.

• We study the turnpike phenomenon arising in the optimal distributed control tracking-
type problem for the Navier-Stokes equations. We obtain a positive answer to this
property in the case when the controls are time-dependent functions, and also when
are independent of time. In both cases we prove an exponential turnpike property
assuming that the stationary optimal state satisfy certain properties of smallness.

• We consider the evolutionary Stokes equations with non constant viscosity. Firstly we
adapt the construction of an appropriate complex geometrical optics solutions for a
modified stationary Stokes equation in order to prove an identifiability result, following
the approach given by Uhlmann [110] and Heck et al.[62]. Later, we study a global
identifiability for the viscosity function by boundary measurements using a stability
result for the solutions of a non–steady Stokes equation when time tends to infinity.
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Chapter 1

Introduction

There is air around us, and there are rivers and seas near us. “The flow of a river never ceases
to go past, nevertheless it is not the same water as before. Bubbles floating along on the
stagnant water now vanish and then develop but have never remained.” So stated Chohmei
Kamo, the famous thirteenth–century essayist of Japan, in the prologue of Hohjohki, his
collection of essays. In this way, the air and the water of rivers and seas are always moving.
Such a movement of gas or liquid (collectively called fluid) is called the flow, and the study
of this is fluid mechanics (see [95]).

While the flow of the air and the water of rivers and seas are flows of our concern, so
also are the flows of water, sewage and gas in pipes, in irrigation canals, and around rockets,
aircraft, express trains, automobiles and boats. And so too is the resistance which acts on
such flows.

Throwing baseballs and hitting golf balls are all acts of flow. Furthermore, the movement
of people on the platform of a railway station or at the intersection of streets can be regarded
as forms of flow. In a wider sense, the movement of social phenomena, information or history
could be regarded as a flow, too. In this way, we are in so close a relationship to flow that
the fluid mechanics which studies flow is really a very familiar thing to us.

Fluids are divided into liquids and gases. A liquid is hard to compress and as in the ancient
saying “Water takes the shape of the vessel containing it”, it changes its shape according
to the shape of its container with an upper free surface. Gas on the other hand is easy to
compress, and fully expands to fill its container. There is thus no free surface.

Consequently, an important characteristic of a fluid from the viewpoint of fluid mechanics
is its compressibility. Another characteristic is its viscosity. Whereas a solid shows its
elasticity in tension, compression or shearing stress, a fluid does so only for compression. In
other words, a fluid increases its pressure against compression, trying to retain its original
volume. This characteristic is called compressibility. Furthermore, a fluid shows resistance
whenever two layers slide over each other. This characteristic is called viscosity.

In general, liquids are called incompressible fluids and gases compressible fluids. Nev-
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ertheless, for liquids, compressibility must be taken into account whenever they are highly
pressurized, and for gases compressibility may be disregarded whenever the change in pressure
is small.

In this doctoral thesis, we are interested to study some mathematical properties of viscous
incompressible fluid. For this it is necessary consider a mathematical model for the motion of
the flow. Two of the more important approaches are known as Stokes and Navier–Stokes
equations. Navier and Stokes were two scientists of the 19th century, which were the first
who tried to derive equations of motion for fluids.

It is well known that the Navier–Stokes system is one of the pillars of fluid mechanics (the
Stokes equations is a simplified version of the Navier–Stokes equations). These equations are
useful because they describe the physics of many things of academic and economics interest.
They may be used to model the weather behavior, ocean currents, water flow in a pipe and
air flow around a wing. The Navier–Stokes equations in their full and simplified forms also
help with the design of train, aircraft and cars, the study of blood flow, the design of power
stations and pollution analysis.

Mathematically speaking, the viscous incompressible Navier–Stokes equations are given
by 

ut − µ∆u+ (u · ∇)u+∇p = f , in Q,
div u = 0 , in Q,

u = 0 , on Σ,
u(0) = u0 , in Ω.

(1.1)

Here, u denotes the velocity field of the fluid. The pressure of the fluid is denoted by p.
The right hand side f is an given source term. The parameter µ > 0 is the viscosity of the
fluid. The initial profile of the flow is a given function u0. The incompressible condition of
the fluid is given by the assumption div u = 0. The cylindrical domain is represented by
Q = Ω× (0, T ) with boundary Σ = ∂Ω× (0, T ), where Ω ⊂ Rd (d = 2, 3) is a bounded region
with boundary ∂Ω.

The existence and uniqueness of classical solutions of the three–dimensional Navier-Stokes
equations is still an open mathematical problem and is one of the Clay Institute’s Millenium
Problems1. In the two–dimensional case, existence and uniqueness of regular solutions for
all time have been shown by Jean Leray in 1933. He also gave the theory for the existence
of weak solutions in the three–dimensional case while uniqueness is still an open question.
We refer the reader to [54, 38, 85, 86] and references therein, for an extensive literature of
mathematical theory of these two models. We can also mention that in Chapter 2 of this
thesis, we introduce and give the more important aspects of the Stokes and Navier–Stokes
equations.

As mentioned above, we are interested to study some applications of these models. In
this work we focus our attention in inverse problems for the Stokes equations and control
problem for the Navier–Stokes system. But, what is an inverse and control problem? Let
us briefly explain these two concepts.

1http://www.claymath.org/millennium/Navier-Stokes Equations
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An inverse problem consists in formulate the inverse of a forward problem (causes implies
results). Namely, it starts with the results and then calculates the causes. One of the
most important aspects of inverse problem is that tell us about some parameters of a model
that we cannot directly observe. This means that is a noninvasive methods to find some
characteristics which describe some model.

The field of inverse problems was first discovered and introduced by Soviet–Armenian
physicist, Viktor Ambartsumian. While still a student, Ambartsumian thoroughly studied
the theory of atomic structure, the formation of energy levels, and the Schrödinger equation
and its properties, and when he mastered the theory of eigenvalues of differential equations,
he pointed out the apparent analogy between discrete energy levels and the eigenvalues
of differential equations. He then asked: given a family of eigenvalues, is it possible to
find the form of the equations whose eigenvalues they are? Essentially Ambartsumian was
examining the inverse Sturm–Liouville problem, which dealt with determining the equations
of a vibrating string. This paper was published in 1929 in the German physics journal
Zeitschrift für Physik and remained in obscurity for a rather long time. Describing this
situation after many decades, Ambartsumian said, “If an astronomer publishes an article
with a mathematical content in a physics journal, then the most likely thing that will happen
to it is oblivion.” Nonetheless, toward the end of the Second World War, this article, written
by the 20-year-old Ambartsumian, was found by Swedish mathematicians and formed the
starting point for a whole area of research on inverse problems, becoming the foundation of
an entire discipline. See for instance [18].

One of the most famous example in this field is the Electrical Impedance Tomography
(EIT) inverse problem. The EIT is a non–invasive medical imaging technique in which an
image of the conductivity or permittivity of a part of the body is inferred from surface elec-
trode measurements. Mathematically, the problem of recovering the electrical conductivity
from boundary measurements of current and voltage is an example of a non–linear inverse
problem. The formulation of this mathematical problem is due to Alberto Calderón [32],
and is also known as Calderón’s inverse problem or the Calderón problem. For an extensive
literature about this problem we can refer the reader the work of G. Uhlmann [110], and the
references therein.

There are different aspects of an inverse problem that one could be interested in, for
instance: uniqueness and stability with respect to the measurements, recovery of a param-
eter by means of reconstruction formula or estimate a few relevant parameters of an object
immersed in a domain (geometric inverse problem). For Calderón’s problem, we can refer
the reader [105] for global uniqueness of the conductivity function and [77] in the case with
partial data. In [14] the authors discuss the stability issue for Calderón’s inverse conductivity
problem. In the case of size estimates, we can refer [9] to an extensive survey.

Because it is impossible to quote all relevant contributions in this area, we refer the reader
to the extensive survey [70, 39, 76, 78, 103] (and references therein),

A different kind of problem treated in this thesis is the called optimal control problems.
Optimal control is closely related in its origins to the theory of calculus of variations. Some
important contributors to the early theory of optimal control and calculus of variations in-
clude the books of Johann Bernoulli (1667–1748), Isaac Newton (1642–1727), Leonhard Euler
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(1707–1793), Ludovico Lagrange (1736–1813), Andrien Legendre (1752–1833), Carl Jacobi
(1804–1851), William Hamilton (1805–1865), Karl Weierstrass (1815–1897), Adolph Mayer
(1839–1907), and Oskar Bolza (1857–1942). Some important milestones in the development
of optimal control in the 20th century include the formulation dynamic programming by
Richard Bellman (1920–1984) in the 1950s, the development of the minimum principle by
Lev Pontryagin [97] (1908–1988) and co-workers also in the 1950s, and the formulation of the
linear quadratic regulator and the Kalman filter by Rudolf Kalman (b. 1930) in the 1960s, see
for instance [22, 40]. See the review papers Sussmann and Willems [104] and Bryson [31] for
further historical details, the book of J.L. Lions [83] for the theory of optimal control prob-
lems in the context of partial differential equations, also the books [4, 111] for more theory
of optimal control and the following books for details on control theory [42, 116, 87, 115].

Optimal control and its ramifications have found applications in many different fields,
including aerospace, process control, robotics, bioengineering, economics, finance, and man-
agement science, and it continues to be an active research area within control theory. Before
the arrival of the digital computer in the 1950s, only fairly simple optimal control problems
could be solved. The arrival of the digital computer has enabled the application of optimal
control theory and methods to many complex problems.

There are various types of optimal control problems, depending on the performance index,
the type of time domain (continuous, discrete), the presence of different types of constraints,
and what variables are free to be chosen. The formulation of an optimal control problem
requires the following:

1. a mathematical model of the system to be controlled,

2. a specification of the performance index,

3. a specification of all boundary conditions on states, and constraints to be satisfied by
states and controls,

4. a statement of what variables are free.

In order to apply mathematical approaches to the control of fluid flow these terminologies
have to be translated into mathematical language. The first question to pose is how to model
fluid flow mathematically. For this purpose firstly we have to the region of fluid flow has
to be specified and to be made accessible to a mathematical description. This is, from the
theoretical point of view, easy. Modelling fluid flow clearly depends on the physical properties
of the fluid. Most commonly, the fluid is assumed to be incompressible, so that its state can
approximately be described by the (instationary) Navier–Stokes equations. Once such a
model is available, physical terms like drag and turbulent kinetic energy may be expressed
in terms of the model variables and thus can be customized for mathematical performance
indexes. The same holds true for control actions. Finally, blowing and suction or movement
of walls may be regarded as boundary conditions for the flow variables, external forces applied
in the domain of flow as inhomogeneities.

The choice of the control policy depends on the control target and the environment. If the
system to be controlled is shielded against external influences, it can be desirable to provide
a time dependent control function that, for example steers the system from a given state to
a desired one. This would correspond to an optimal (open-loop) control problem (find the
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best time dependent control function for the specified environment). A more general form of
control activity is (optimal) closed-loop or feedback control (find the best feedback control
law). It allows for feeding back into the system control information obtained by currently
available state information or estimation. This is a much more general concept than optimal
control and, at least optimal feedback, also much more complicated to determine.

As mentioned earlier, our work focuses on inverse and control problems for the Stokes
equation and Navier-Stokes system, respectively. In what follows, we describe the mathe-
matical aspect of inverse and control problems, and the more recent and important results
in the context of fluids mechanics.

1.1 Inverse problems

We start with the most important and exemplifying inverse problem, the Calderón’s problem
introduced in the previous section. The problem that A.P. Calderón proposed in [32] is
whether it is possible to determine the conductivity of a body by making current and voltage
measurements at the boundary.

We now describe more precisely the mathematical problem. Let Ω ⊂ Rd be a bounded
domain with smooth boundary. The electrical conductivity of Ω is represented by a bounded
and positive function γ(x). In the absence of sinks or sources of current the equation for the
potential is given by

div (γ∇u) = 0 in Ω (1.2)

since, by Ohm’s law, γ∇u represents the current flux.

Given a potential f ∈ H1/2(∂Ω) on the boundary the induced potential u ∈ H1(Ω) solves
the Dirichlet problem {

div (γ∇u) = 0 , in Ω,
u = f , on ∂Ω.

(1.3)

The Dirichlet to Neumann map, or voltage to current map, is given by

f 7−→ Λγ(f) =

(
γ
∂u

∂n

) ∣∣∣
∂Ω

(1.4)

where n denotes the unit outer normal to ∂Ω.

The inverse problem is to determine γ knowing Λγ. More precisely, we want to study

properties of the map γ
Λ−→ Λγ. We can divide this problem into several parts.

• Injectivity of Λ (identifiability).

• Continuity of Λ and its inverse if it exists (stability).

• What is the range of Λ? (characterization problem).
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• Formula to recover γ from Λγ ( reconstruction).

• Give an approximate numerical algorithm to find an approximation of the conductivity
given a finite number os voltage and current measurements at the boundary (numerical
reconstruction).

For example, the identifiability problem is formulated as: if we assume that

Λγ1(f) = Λγ2(f), ∀f ∈ H1/2(∂Ω),

implies that γ1 and γ2 are equal? The answers have been given in many cases, see for instance
[94, 20, 105]. We refer the reader of [5] for stability result, [77] for identifiability result with
partial data, [93, 92] for reconstruction of conductivity with measurements at the boundary
and part of the boundary, respectively.

Here, we present the result of Sylvester and Uhlmann [105], where the authors resolved
the problem in dimension three and for smooth conductivities.

Theorem 1.1 (Sylvester and Uhlmann [105]) Let Ω ⊂ R3 be a bounded domain with smooth
boudary. Let γi ∈ C2(Ω), γi strictly positive, i = 1, 2. If Λγ1 = Λγ2, then γ1 = γ2 in Ω.

The proof of Theorem 1.1 is based on the construction of appropriate solutions to (1.3),
called exponentially growing solutions or complex geometrical optics solutions. Their method
has become a standard technique in treating inverse boundary value problems.

This result is a consequence of a more general result. Let q ∈ L∞(Ω). We define the
Cauchy data as the set

Cq =

{(
u
∣∣∣
∂Ω
,
∂u

∂n

∣∣∣
∂Ω

)}
,

where u ∈ H1(Ω) is a solution of

(∆− q)u = 0 in Ω.

We have that Cq ⊆ H1/2(∂Ω) × H−1/2(∂Ω). If zero is not a Dirichlet eigenvalue of ∆ − q,
then in fact Cq is a graph, namely

Cq = {(f,Λq(f)) ∈ H1/2(∂Ω)×H−1/2(∂Ω)}

where Λq(f) = ∂u
∂n

∣∣
∂Ω

with u ∈ H1(Ω) the solution of{
(∆− q)u = 0 , in Ω,

u = f , on ∂Ω.
(1.5)

Theorem 1.2 (Sylvester and Uhlmann [105]) Let qi ∈ L∞(Ω), i = 1, 2. Assume Cq1 = Cq2,
then q1 = q2.

We have that, when the dimension is greater than three, Theorem 1.2 implies Theorem
1.1, see for instance [105].
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Another interesting problem is the called geometrical inverse problem. Suppose that a
given electrically conducting body Ω having some conductivity k, might contain an unknown
inclusion D, having different conductivity. We can ask whether D can be determined by the
knowledge of a prescribed current density ϕ on the boundary ∂Ω and of the corresponding
voltage u measured on Ω.

Let us formulate analytically this problem. We suppose that the region containing the
body is represented by a bounded open set Ω ⊂ Rd, with Lipschitz boundary, and let ϕ ∈
H−1/2(∂Ω),

∫
∂Ω
ϕ = 0, represent the prescribed current density on ∂Ω. If the inclusion D is

present, then the electrostatic potential u = u(x) is determined as the H1(Ω) solution to the
Neumann problem {

div ((1 + χD)∇u) = 0 , in Ω,
∇u · n = ϕ , on ∂Ω,

(1.6)

where χD denote the characteristic function of D.

The inverse problem, also known as the inverse conductivity problem with one measure-
ment, consists of determining D when, for a prescribed nontrivial ϕ, the trace u|∂Ω is mea-
sured.

The uniqueness issue for this inverse problem remains a challenging unsolved problem. See
[70, 7] for reviews of the known results and extensive bibliographical information. We can
mention that, also if all boundary measurements are available, the inverse problem remains
severely ill–posed. In fact Di Cristo and Rondi have shown by examples [44], that, under
apriori assumptions on the Cm–regularity of D, the stability of this inverse problem is not
better than logarithmic.

Therefore, from a practical point of view, the question of the identification of D should
be reformulated in the following terms: What parameters associated to D can be effectively
evaluated from the available boundary measurements?

The approach of size estimates is an attempt in this direction. The goal is to obtain upper
and lower bounds on the size of the unknown enclosed object D in terms of some suitable
number, extracteed from the boundary measurement. The issue of size estimates has been
addressed in [102, 13, 75]. This type of approach has been extended also to the detection of
inclusions in elastic bodies [10, 67] and to the detection of cavities or extreme inclusions in
electric conductors [8] and in elastic bodies [88].

For the obtention of the size of the unknown object D, we define the following number

W =

∫
∂Ω

uϕ

which can be easily calculated from the boundary measurement, in fact it has a clear physical
interpretation as the power required to maintain the boundary current ϕ when the inclusion
D is present. We shall compare the power W to the power

W0 =

∫
∂Ω

u0ϕ,
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where u0 denotes the potential corresponding to the current density ϕ when the inclusion is
absent, namely the H1(Ω) solution to the Neumann problem{

∆u0 = 0 , in Ω,
∇u0 · n = ϕ , on ∂Ω.

(1.7)

The reference power W0 can be considered as a given quantity, since everything is known
in the boundary value problem (1.7). Thus, in order to have a parameter which is suitable
for the estimation of |D|, and is independent on the scaling of the boundary current, it is
reasonable to consider the number

|W0 −W |
W0

which we shall call the normalized power gap, see for instance [9].

Now, we give the most relevant results of inverse problems in the context of fluids me-
chanics, in particular, for the Stokes equations. We start with an inverse identifiability result
for the viscosity function when the fluid is described by the stationary Stokes equations in
dimension three, using the idea given for the Calderón problem.

Let Ω ⊂ R3 be an open bounded domain with smooth boundary ∂Ω. Assume that Ω is
filled with an incompressible fluid. We consider the following stationary Stokes problem

div σµ(u, p) = 0 , in Ω,
div u = 0 , in Ω,

u = φ , on ∂Ω,
(1.8)

where u represents the velocity of the fluid, the scalar function p represents the pressure,

σµ = 2µ
(
∇u+∇uT

2

)
− pI is the stress tensor and I is the identity matriz of order d× d, and

µ = µ(x) > 0 is the viscosity function.

Given the boundary velocity φ ∈ (H1/2(∂Ω))3 satisfying the compatibility condition∫
∂Ω

φ · n = 0,

where n denotes the unit outer normal to ∂Ω, we consider the solution of problem (1.8), and
measure the corresponding Cauchy force on ∂Ω, ψ = σµ(u, p)|∂Ω ⊂ H−1/2(∂Ω), in order to
recover the viscosity function µ.

Regarding the identifiability of the viscosity, under the following hypothesis

µ1, µ2 ∈ Cn0(Ω), ∀n0 ≥ 8,

µi ≥ µ0 > 0, ∀i = 1, 2, (1.9)

∂αµ1(x) = ∂αµ2(x), ∀x ∈ ∂Ω , |α| ≤ 1,

Heck, Li and Wang [62] proved the injectivity of the Sµ given by

Sµ = {(u|∂Ω, σµ(u, p)|∂Ω)}.
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Theorem 1.3 (Heck, Li and Wang [62]) Assume that µ1(x) and µ2(x) are two viscosity
functions satisfying (1.9). Let Sµ1 and Sµ2 be the Cauchy data associated with µ1 and µ2,
respectively. If Sµ1 = Sµ2, then we obtain µ1 = µ2.

The strategy for the proof of Theorem 1.3 follows from Sylvester and Uhlmann’s seminal
paper [105]. The problem here lies in the construction of exponentially growing solution for
(1.8). The authors in [62] transformed (1.8) to the decoupled system which is a matrix–valued
Schrödinger equation and then using the complex variable methods to construct exponentially
growing solutions given by Eskin and Ralston in [48] and [47] for matrix–valued Schrödinger
equations, they overcome this difficulty.

We can mention that in the case of Navier–Stokes equations, similar result was obtained
by Fan et al. [52]. They proved the identification of the viscosity by observation data in a
neighborhood of the boundary, and then obtain Lispchitz stability by the Carleman estimates
in Sobolev spaces of negative order. Also, in [79] the authors obtained a global uniqueness
of the viscosity for the stationary and evolutionary Stokes and Navier–Stokes equations in
the two–dimensional case. Besides, Li and Wang [80] proved the identifiability result for the
viscosity considering small boundary condition.

On the other hand, we discuss the following geometric inverse problem associated to the
Stokes system. An inaccesible rigid body D is immersed in a viscous fluid, in such a way that
D plays the role of an obstacle around which the fluid is flowing in a greater bounded domain
Ω, and we wish to determine D via boundary measurements on the boundary ∂Ω. Both for
the stationary and the evolutionary problem, we show that under reasonable smoothness
assumptions on Ω and D, one can identify D via the measurement of the velocity of the fluid
and the Cauchy forces on some part of the boundary ∂Ω.

Let Ω be a smooth bounded open set in Rd, filled with an incompressible fluid, and let
D ⊂⊂ Ω be an unknown rigid body immersed in it. Let ϕ ∈ C1([0, T ]; (H3/2(∂Ω))d) be
non–homogeneous Dirichlet boundary data satisfying the compatibility condition

∫
∂Ω

ϕ · n = 0, (1.10)

and let (v, p) ∈ L2(0, T ; (H1(Ω \ D))d) × L2(0, T ;L2(Ω \ D)) be the unique solution of the
Stokes system of equations


ut − div (σ(u, p)) = 0 , in (Ω \D)× (0, T ),

div u = 0 , in (Ω \D)× (0, T ),
u = 0 , on ∂D × (0, T ),
u = ϕ , on ∂Ω× (0, T ),

u(0) = 0 , in Ω \D.

(1.11)

The problem is to obtain some information on the domain D through the observation of
the Cauchy force σ(u, p)n on some part of the boundary. Indeed the stationary version of
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the problem, that is, 
−div (σ(u, p)) = 0 , in Ω \D,

div u = 0 , in Ω \D,
u = 0 , on ∂D,
u = ϕ , on ∂Ω,

(1.12)

can also be considered and treated in the same way.

In this problem, we will look for the unknown domain D in the following class of admissible
geometries

Dad := {D ⊂⊂ Ω : D is open, Lipschitz and Ω \D is connected}. (1.13)

The corresponding Steklov–Poincaré map ΛD is defined by

ΛD(ϕ) := σ(u, p)n on Γ× (0, T ),

which maps ϕ ∈ C1([0, T ]; (H3/2(∂Ω))d) into the Cauchy forces σ(u, p)n ∈ L2(0, T ; (H−1/2(Γ))d),
where Γ is a relatively open subset of the boundary Ω. In the case of the stationary version
of the problem, the operator ΛD has to be considered as acting between the spaces H1/2(∂Ω)
into H−1/2(Γ).

The result concerns the identifiability of D was proved by Alvarez et al. [16]. They
proved that given fixed non–homogeneous Dirichlet boundary data ϕ, two different admissible
geometries D0 6= D1 ∈ Dad, yield two different Steklov–Poincaré operators ΛD0 6= ΛD1 .

Theorem 1.4 (Alvarez et al. [16]) Let T > 0 and Ω ⊂ Rd, d = 2 or d = 3, be a
bounded C1,1 domain, and Γ be a non–empty open subset of ∂Ω. Let D0, D1 ∈ Dad and
ϕ ∈ C1([0, T ]; (H3/2(∂Ω))d) with ϕ 6= 0, satisfying the flux condition (1.10). Let (uj, pj) for
j = 1, 1 be a solution of

ujt − div (σ(uj, pj)) = 0 , in (Ω \Dj)× (0, T ),
div uj = 0 , in (Ω \Dj)× (0, T ),

uj = 0 , on ∂Dj × (0, T ),
uj = ϕ , on ∂Ω× (0, T ),

uj(0) = 0 , in Ω \Dj.

Assume that (uj, pj) are such that σ(u0, p0)n = σ(u1, p1)n on Γ× (0, T ), then D0 ≡ D1.

The same identification result holds for the stationary problem:

Theorem 1.5 (Alvarez et al. [16]) Let Ω ⊂ Rd, d = 2 or d = 3, be a bounded Lipschitz
domain, and Γ be a non–empty open subset of ∂Ω. Let D0, D1 ∈ Dad and ϕ ∈ (H3/2(∂Ω))d

with ϕ 6= 0, satisfying the flux condition (1.10). Let (uj, pj) for j = 1, 1 be a solution of
−div (σ(uj, pj)) = 0 , in Ω \Dj,

div uj = 0 , in Ω \Dj,
uj = 0 , on ∂Dj,
uj = ϕ , on ∂Ω.

Assume that (uj, pj) are such that σ(u0, p0)n = σ(u1, p1)n on Γ, then D0 ≡ D1.
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The proof of these results are based by a suitable application of the unique continuation
property for the Stokes equations due to Fabre and Lebeau [51]. Besides, we mention that
the authors in [16] also proved the identification result in the case of Navier–Stokes equations,
both stationary and evolutionary systems.

Now, we consider the inverse stability problem associated to the stationary Stokes problem
(1.12), which we may roughly state as follows: Given two solutions (ui, pi) to (1.12) for two
different Di, for i = 1, 2, with the same boundary data ϕ, if

‖σ(u1, p1)n− σ(u2, p2)n‖ ≤ ε,

what is the rate of convergence of dH(D1, D2) as ε → 0? (here dH denote the Hausdorff
distance.)

We present the stability result proved by A. Ballerini [23], where the author prove a
log–log type stability for the Hausdorff distance between the boundaries of the inclusions,
assuming a C2,α regularity bound. Such estimates have been established for various kinds of
elliptic equations, for example, [6, 12] for the electric conductivity equation and [89, 90] for
the elasticity system and the detection of cavities or rigid inclusions. The main tool used to
prove stability is a quantitative estimate of continuation from boundary data, in the interior,
in the form of a three spheres inequality and its main consequences. However, while in [6]
the estimates are of log type for a scalar equations, here and in [89, 90], only an estimate of
log–log type could be obtained for a system of equations. To improve that, one would need
a doubling inequality at the boundary for systems of equations, which basically would allow
to extend the reach of the unique continuation property up to the boundary. Unfortunately,
to the present time, none are available.

Now, we state a priori hypotheses needed by Ballerini to prove the stability result. First,
we will often make use of the following definition of regularity of a domain.

Definition 1.6 Let Ω ⊂ Rd be bounded domain. We say that ∂Ω is of class Ck,α, with
constants ρ0, M0 > 0, where k is a nonnegative integer and α ∈ [0, 1), if, for any x0 ∈ ∂Ω,
there exists a rigid transformation of coordinates, in which x0 = 0 and

Ω ∩Bρ0(0) = {x = (x′, xn) ∈ Bρ0(0) : xn > ϕ(x′)},

where ϕ is a real valued function of class Ck,α(B′ρ(0)), such that

ϕ(0) = 0,

∇ϕ(0) = 0, if k ≥ 1,

‖ϕ‖Ck,α(B′ρ0 (0)) ≤M0ρ0.

When k = 0 and α = 1 we will say that ∂Ω is of Lipschitz class with constants ρ0,M0.

We assume Ω ⊂ Rd to be a bounded domain such that ∂Ω is connected, and it has
sufficiently smooth boundary, i.e., ∂Ω is of class C2,α of constants ρ0,M0, where α ∈ (0, 1]
is a real number, M0 > 0, and ρ0 > 0 is what we shall treat as our dimensional parameter.
And

|Ω| ≤M1ρ
d
0, (1.14)
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where M1 > 0.

We choose a special open and connected portion Γ ⊂ ∂Ω as being the accessible part of
the boundary, where ideally all measurements are taken. We assume that there exists a point
P0 ∈ Γ such that ∂Ω ∩Bρ0(P0) ⊂ Γ.

For the obstacle D, we requiere that Ω \ D is connected, ∂D is connected. Also, we
requiere the same regularity on D as we did for Ω, that is, ∂D is of class C2,α with constants
ρ,M0. In addition, we suppose that the obstacle is well contained in Ω, meaning

d(D, ∂Ω) ≥ ρ0.

Besides, for the Dirichlet data ϕ we assign on the accessible part of the boundary Γ, we
assume that ϕ ∈ H3/2(∂Ω)d, ϕ 6= 0, supp(ϕ) ⊂⊂ Γ. We also ask that, for a given a constant
F > 0, we have

‖ϕ‖H1/2(∂Ω)

‖ϕ‖L2(∂Ω)

≤ F.

Let Di, for i = 1, 2 satisfy the previous hypotheses. The following result, due to A.
Ballerini [23], gives us the log–log type stability for the Stokes problem.

Theorem 1.7 (A. Bellerini [23]) Let ϕ ∈ (H3/2(Γ))d be the assigned boundary data satisfying
the previous assumption. Let ui ∈ (H1(Ω))d solve (1.12) for D = Di, for i = 1, 2. If, for
ε > 0, we have

ρ‖σ(u1, p1)n− σ(u2, p2)n‖H−1/2(Γ) ≤ ε,

then

dH(∂D1, ∂D2) ≤ ρω

(
ε

‖ϕ‖H1/2(Γ)

)
,

where ω : (0,∞)→ R+ is an increasing function satisfying, for all 0 < t < 1
ε

:

ω(t) ≤ C(log | log t|)−β.

The constants C > 0 and 0 < β < 1 only depends on d,M0,M1 and F .

The proof of Theorem 1.7 relies on a sequence of propositions. Here, we present only one
of them. The result is the called Lipschitz propagation of smallness.

Proposition 1.8 (A. Ballerini [23]) Let Ω be a bounded Lipschitz domain with constants
ρ0,M0 satisfying (1.14). Let (u, p) be a solution to the following problem

−div (σ(u, p)) = 0 , in Ω,
div u = 0 , in Ω,

u = ϕ , on ∂Ω,
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where ϕ satisfies ϕ ∈ (H3/2(∂Ω))d, the compatibility condition, and
‖ϕ‖

H1/2(∂Ω)

‖ϕ‖L2(∂Ω)
≤ F , for a

given constant F > 0. Also suppose that there exists a point P ∈ ∂Ω such that ϕ = 0 on
∂Ω ∩Bρ0(P ). Then there exists a constan s > 1, depending only on d and M0 such that, for
every ρ > 0 and for every x ∈ Ωsρ = {x ∈ Ω : d(x, ∂Ω) > sρ}, we have∫

Bρ(x)

|∇u|2 ≥ Cρ

∫
Ω

|∇u|2,

where Cρ > 0 is a constant depending only on d,M0,M1, F, ρ0 and ρ.

1.2 Optimal control problems

The development of a theory of optimal control requires the following data:

1. A control u that we can handle according to our interests, which can be chosen among
a family of feasible controls Uad (the set of admissible controls).

2. The state of the system y to be controlled, which depends on the control. Some limi-
tations can be imposed on the state, in mathematical terms y ∈ C, which means that
not every possible state of the system is satisfactory.

3. A state equations that establishes the dependence between the control and the state.
In this thesis we consider this state equation will be a partial differential equation, y
being the solution of the equations and u a function arising in the equations so that
any change in the control u produces a change in the solution y. However the origin
of control theory was connected with the control of systems governed by ordinary
differential equations and there is a huge activity in this field, see for instance the
classical book Prontyagin et al. [97].

4. A function to be minimized, called the objective function or the cost function, depend-
ing on the control and the state (y, u).

The objective is to determine an admissible control, called optimal control, that provides
a satisfactory state for us and that minimizes the value of functional J . The basic questions
to study are the existence of solution and its computations.

There are no many books devoted to all the questions. Firstly let me mention the book by
Profesor J.L. Lions [83], which is an obliged reference in the study of the theory of optimal
control problems of partial differential equations. In this text, that has left an indelible track,
the reader will be able to find some of the methods used in the resolution of the two first
questions above indicated. More recent books are X. Li and J. Yong [81], H.O. Fattorini [53]
and F. Tröltzsch [109].

Let Ω be an open and bounded subset of Rd, d = 2, 3, ∂Ω being its boundary that we will
assume to be regular, C1,1 is enough for us in this introduction. In Ω we will consider the
linear operator A defined by

Ay := −
n∑

i,j=1

∂xj(aij(x)∂xiy(x) + a0(x)y(x)),
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where aij ∈ C0,1(Ω) and a0 ∈ L∞(Ω) satisfy:

1. ∃m > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥ m|ξ|2, for all ξ ∈ Rd and for all x ∈ Ω,

2. a0 ≥ 0 a.e. x ∈ Ω.

Now let φ : R → R be a non decreasing monotone function of class C2, with φ(0) = 0.
For any u ∈ L2(Ω), the Dirichlet problem{

Ay + φ(y) = u , in Ω,
y = 0 , on ∂Ω,

(1.15)

has a unique solution yu ∈ H1
0 (Ω) ∩ L∞(Ω).

The control problem associated to this system is formulated as follows

(P )

Minimize J(u) =

∫
Ω

L(x, yu(x), u(x))dx,

u ∈ Uad = {u ∈ L∞ : α ≤ u(x) ≤ β a.e. x ∈ Ω},

where −∞ < α, β <∞ and L satisfying some properties.

A typical functional in control theory is the Linear Quadratic Control Problem

J(u) =

∫
Ω

[|yu(x)− yd(x)|2 +Nu2(x)]dx, (1.16)

where yd ∈ L2(Ω) denotes the ideal state of the system, N ≥ 0 and in this case the set of
feasible controls is Uad = L2(Ω). The term

∫
Ω
Nu2(x)dx can be considered as the cost term

and it is said that the control is expensive if N is big, however the control is cheap if N is
small or zero. From a mathematical point of view the presence of the term

∫
Ω
Nu2(x)dx,

with N > 0, has a regularizing effect on the optimal control.

Now, (P ) with the functional (1.16) is a convex control problem. In fact, the objective
functional J : L2(Ω)→ R is well defined, continuos and strictly convex. Under these condi-
tions, if Uad is a convex and closed subset of L2(Ω), we can prove the existence and uniqueness
of an optimal control under one of the following assumptions:

1. Uad is a bounded subset of L2(Ω).

2. N > 0.

For the proof is enough to take a minimizing sequence and remark that the previous
assumptions imply the boundedness of the sequence. Then it is possible to take a subsequence
(uk)k ⊂ Uad converging weakly in L2(Ω) to u ∈ Uad. Finally the convexity and continuity of
J implies the weak lower semicontinuity of J , then

J(u) ≤ lim inf
k→∞

J(uk) = inf(P ).

The uniqueness of the solution is an immediate consequence of the strict convexity of J .
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Now, let us consider the case of control of evolution equations, that is consider the following
evolution state equation

∂y

∂t
(x, t) + Ay(x, t) = u(x, t) , in QT = Ω× (0, T ),

y(x, t) = 0 , on ΓT = ∂Ω× (0, T ),
y(x, 0) = y0(x) , in Ω,

(1.17)

where y0 ∈ C(Ω) and u ∈ L2(QT ). The existence and uniqueness are well now result for this
type of equations, see for instance [49]. Thus we can formulate a control problem similar to
the previous ones, taking as an objective function

J(u) =

∫
QT

L(x, t, yu(x, t), u(x, t))dxdt.

To prove the existence of a solution of the control problem, we consider again the case of
Linear Quadratic Control Problem, namely

J(u) =

∫
QT

[|yu(x, t)− yd(x)|2 +Nu2(x, t)]dxdt, (1.18)

and using the same arguments that in the stationary case and compactness results for abstract
spaces, it is possible to show the existence of an optimal solution.

Another property to study in optimal control problem is the first order conditions. This
conditions are necessary conditions for local optimality, except in the case of convex problems,
where they become also sufficient conditions for global optimality.

For problem (P ) with functional (1.16), we have the following first order optimality con-
ditions.

Theorem 1.9 (E. Casas [34]) Let u be a local minimum of (P ). Then there exists y, ϕ ∈
H1

0 (Ω) ∩W 2,p(Ω) such that the following relationship hold{
Ay + φ(y) = u , in Ω,

y = 0 , on ∂Ω,

{
A∗ϕ+ φ′(y)ϕ = y − yd , in Ω,

ϕ = 0 , on ∂Ω,

∫
Ω

(ϕ(x) +Nu(x))(u(x)− u(x))dx ≥ 0 ∀u ∈ Uad.

In the case of evolutionary optimal problem (1.17) with functional (1.18), the expression
of the optimality system is the following:

∂y

∂t
+ Ay = u , in QT ,

y = 0 , on ΓT ,
y(x, 0) = y0(x) , in Ω,
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−∂ϕ
∂t

+ A∗ϕ = y − yd , in QT ,

ϕ = 0 , on ΓT ,
ϕ(x, T ) = 0 , in Ω,∫

QT

(ϕ+Nu)(u− u)dxdt ≥ 0 ∀u ∈ Uad.

In the case of control problems with state constraints it is more difficult to derive the
optimality conditions, mainly in the case of point–wise state constraints, for instance |y(x)| ≤
1 for every x ∈ Ω. In fact this is an infinity number of constraints, one constraint for every
point of Ω. The reader is referred to Bonnans and Casas [28, 27].

Difficulties also appear to obtain the optimality conditions in the case of state equations
with more complicated linearities. A situation of this nature, especially interesting by the
applications, is the one that arises in the control of the Navier–Stokes equations. See for
instance Abergel and Casas [1].

Before giving the basic results on optimal control problems for the Navier-Stokes, we
discuss the concept of turnpike property. More specifically, we analyze the convergence of the
trajectories and controls which are optimal in [0, T ] toward the stationary state and control
which are optimal for the corresponding stationary regime.

In general terms, the question could be set as follows, see for instance [98]. We are given
a dynamics {

xt = f(x, u) ,
x(0) = x0 ,

(1.19)

and a corresponding control problem

min
u
JT (u) :=

∫ T

0

L(x, u)ds, x solution of (1.19),

under some conditions ensuring that this control problem as well as the stationary analogue,
namely,

min
u
Js(u) := L(x, u), with the constraint f(x, u) = 0,

are well posed. In other words, we assume that both JT and Js admit minimal controls and
states, possibly unique.

The question is the following: to which extent do the long horizon optimal controls and
states uT (t), xT (t) approximate the stationary ones u, x as T →∞?

Here, we present one of the result proved by Porretta and Zuazua [98], specifically the
parabolic case. We consider the Dirichlet problem for a parabolic equation with internal
control and observation. In a bounded domain Ω ⊂ Rd, let us consider the equation

yt − div (M(x)∇y) + c(x)y +B(x) · ∇y = uχω , in QT = Ω× (0, T ),
y = 0 , on ΓT = ∂Ω× (0, T ),

y(0) = y0 , inL2(Ω),
(1.20)
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where M(x) ∈ L∞(Ω;Rd × Rd) satisfies λI ≤ M(x) ≤ ΛI for some λ,Λ > 0, and where
c(x) ∈ L∞(Ω), c(z) ≥ 0, and B(x) ∈ L∞(Ω)d (though we could assume some more general
integrability condition).

Then, consider the associated control problem

min JT (u) =
1

2

∫ T

0

[|y(t)− z|2L2(ω0) + |u(t)|2L2(ω)]dt, (1.21)

where u ∈ L2(0, T ;L2(ω)) and y solves (1.20). Here ω and ω0 are two open subsets of Ω.

Setting X = H1
0 (Ω), X ′ = H−1(Ω), and H = L2(Ω), and

A(y) = −div (M(x)∇y) + c(x)y +B(x) · ∇y,

we have A ∈ L(H1
0 (Ω), H−1(Ω)), and actually A is an isomorphism, since we have

‖y‖X ≤ K‖Ay‖X′ .

Moreover, observe that since A has positive first eigenvalue, both A and A∗ are exponentially
stable which implies some ‘observability” inequality for the evolution equation (1.20) and
also a similar ‘observability” estimate for the adjoint state equations associated to (1.20), see
the work [98] where the authors studied the turnpike phenomena in the abstract parabolic
case. Then, we obtain the following stability result due to Porretta and Zuazua [98].

Theorem 1.10 (Porretta and Zuazua [98]) Let us consider the control problem (1.21) and
let (uT , yT ) be the optimal control and state. Then, there exists λ > 0 such that

‖yT (t)− y‖L2(Ω) + ‖uT (t)− u‖L2(Ω) ≤ K(e−λt + e−λ(T−t)) ∀t ∈ [0, T ],

where u and y are the optimal and state of the corresponding stationary control problem.

Now, we present the most important results for the optimal control problem associated to
the Navier–Stokes equations in the two dimensional case. Both stationary and evolutionary
equations are considered. Because it is impossible to present all the bibliography related to
this problem, we refer the reader the following literature [1, 2, 25, 33, 35, 45, 64, 65, 112].

We consider the mathematical formulation of an optimal control problem associated with
the tracking of the velocity of a Navier–Stokes flow in a bounded two–dimensional domain
through the adjustment of a distributed control. The existence of optimal solutions is showed
and the first order necessary conditions for optimality are used to derive an optimality system
of partial differential equations whose solutions provide optimal states and control.

The purpose of the velocity tracking problem is to steer, over time, a velocity field to a
given target velocity field. We consider controls that act as a distributed body force; the state
of the system, i.e., the velocity and pressure fields, is the solution of the Navier–Stokes system
of partial differential equations. The cost or objective functional is a quadratic functional
involving the state and the control variables; the functional measures, in an appropriate norm,
the distance between the flow velocity and the target velocity fields, and through a penalty
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term (in the evolutionary case), also measures the cost of control. Thus, the minimization of
the functional is used to both drive the flow towards the target flow and to limit the cost of
control.

Firstly, we are concerned with the optimal control of the stationary Navier–Stokes equa-
tions, when the control is allowed to act as a point–wise constrained body force on a portion
of the domain. We present the existence of the mentioned optimal solution and the first
order necessary condition for the problem.

Let ω be an open connected subset of Ω ⊂ Rd. The mathematical setting of the problem
is find (y, u) ∈ H × Uad, where H = {z ∈ (H1(Ω))d : div z = 0} and Uad = {v ∈ (L2(ω))d :
a ≤ v ≤ b, a.e.}, which solves

min J(y, u) =
1

2

∫
Ω

|y − zd|2dx+
α

2

∫
ω

|u|2dx, (1.22)

subject to 
−µ∆y + (y · ∇)y +∇p = Bu , in Ω,

div y = 0 , in Ω,
y = g , on ∂Ω,

(1.23)

where zd ∈ (L2(Ω))d, a, b ∈ (L2(ω))d, g ∈ (H1/2(∂Ω))d and B ∈ L(L2(ω)d, L2(Ω)d), with

Bu =

{
u in ω

0 in Ω \ ω.

Then, we have the following result of existence of minimum of the problem (1.22) due to
De los Reyes [45].

Theorem 1.11 (De los Reyes [45]) There exists an optimal solution (y, u) of problem (1.22).

Besides, the author of [45] proved a sufficient requirement for the satisfaction of the regular
point condition (see [114]). Thereafter the existence of appropriate Lagrange multipliers is
justified and the optimality system for (1.22) is derived. Here, we present the optimality
system associated to the problem (1.22).

We define the active sets for (y, u) by

Aa := {x ∈ ω : u = a(x) a.e.} and Ab := {x ∈ ω : u = b(x) a.e.}

and the inactive set by

F = ω \ (Aa ∪ Ab).

Theorem 1.12 (De los Reyes [45]) Let (y, u) be an optimal solution for (1.22), such that

µ >M(y) = sup
v∈V

|((v · ∇)v, y)|
‖v‖2

V

, where V = {v ∈ (H1
0 (Ω))d : div v = 0}. Then it satisfies
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the following optimality system in variational sense:

−µ∆y + (y · ∇)y +∇p = Bu , in Ω,
div y = 0 , in Ω,

y = g , on ∂Ω,
−µ∆λ− (y · ∇)λ+ (∇y)Tλ+∇φ = zd − y , in Ω,

div λ = 0 , in Ω,
λ = 0 , on ∂Ω,
αu = B∗λ− ν , in Ω,
a ≤ u ≤ b , a.e.,
ν ≥ 0 , on Ab,
ν ≤ 0 , on Aa,
ν = 0 , on F .

Beside, the Lagrange multiplier λ ∈ V satisfies the following estimate:

‖λ‖V ≤ kσ(y)‖y − zd‖,

where σ(y) :=
1

µ−M(y)
and k is the Poincaré inequality constant.

For the instationary Navier–Stokes system we consider the following initial–boundary
value problem 

yt − µ∆y + (y · ∇)y +∇p = u , in Q,
div y = 0 , in Q,

y = 0 , on Σ,
y(0) = u0 , in Ω,

(1.24)

where the cylindrical domain is represented by Q = Ω×(0, T ) with boundary Σ = ∂Ω×(0, T ),
where Ω ⊂ R2 is a bounded region with boundary ∂Ω.

Let u ∈ L2(0, T ;L2(Ω)2) be the distributed control. Given T > 0, we define the functional

J(y, u) :=
α

2

∫ T

0

‖y(t)− zd(t)‖2
L2(Ω)dt+

β

2

∫ T

0

‖u(t)‖2
L2(Ω)dt+

γ

2

∫
Ω

|y(T )− zd(T )|2dx,

(1.25)

where zd ∈ C([0, T ];H2(Ω)2 ∩ V ).

The minimization of the first term in this functional is the real goal of the velocity tracking
problem, which is to keep the solution y close to zd over Q. The second term is introduced
in order to bound the control function and to prove the existence of an optimal control. And
the last term is necessary in order to keep the solution y close to zd near the time T .

As in the stationary case, the existence of minimum for the functional (1.25) was proved
by Gunzburger and Manservisi [60].

Theorem 1.13 (Gunzburger and Manservisi [60]) There exists an optimal solution (y, u) of
problem (1.25).
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After testing that the functional (1.25) is Gâteaux differentiable, the authors proved the
following first order necessary optimality condition.

Theorem 1.14 (Gunzburger and Manservisi [60]) If (y, u) is an optimal pair, then we have

u = − 1

β
ϕ,

where ϕ is the solution of the adjoint problem
−ϕt − µ∆ϕ− (y · ∇)ϕ+ (∇y)Tϕ+∇q = α(y − zd) , in Q,

div y = 0 , in Q,
y = 0 , on Σ,

y(T ) = γ(y(T )− zad(T )) , in Ω.

1.3 Contents of the thesis

In this section we briefly introduce the problems studied in this thesis. Three main subjects
are covered:

1. Size estimates for the stationary Stokes equations: In Chapter 3, we analyze the
inverse problem of establish a quantitative estimate of the size of an obstacle immersed
in a domain, which is filled with a viscous fluid. We prove that the size of the obstacle
can be estimated in terms of the boundary measurements of the Cauchy forces at the
boundary of the domain. The results of this chapter are based on the articles [8, 88],
in collaboration with E. Beretta, C. Cavaterra, and J.H. Ortega.

2. Turnpike property of Navier–Stokes equations: In Chapter 4, we consider an
optimal control tracking–type problem associated to the Navier–Stokes equations. We
study the relationship between the optimal solution of the evolutionary and station-
ary problem, when the time–horizon goes to infinity. We prove in a local sense that,
when the time is large enough, the optimal forward and backward trajectories con-
verge towards the stationary optimal solution and adjoint state, with an exponential
rate. In this case we need to ensure some smallness condition of the solution for the
stationary Navier–Stokes equations. Besides, we then consider the simpler problem
of time–independent controls showing that the accumulation point of a sequence of
controls for the evolutionary optimal control problem is an optimal control for the
stationary problem. The results of this chapter are based on the articles [99, 98], in
collaboration with E. Zuazua.

3. Inverse problem for the evolutionary Stokes equations: In Chapter 5, we present
our work about the identifiability of the viscosity function, when the fluid is modeled
by the nonstationary Stokes equations. The main idea is to prove that, as the time
goes to infinity, thus the determination of the viscosity is reduced to prove the result
for the stationary case. We formulate our initial results and describe the associated
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future work. The chapter is based on the articles [47, 48, 62, 69], in collaboration with
R. Lecaros and J.H. Ortega.

In what follows, we describe the most important aspects of each of these topics, the
obtained results and the methods we have developed.

1.3.1 Chapter 3: Size Estimates of an Obstacle in a Stationary
Stokes Fluid.

Chapter 3 is devoted to the study of an inverse problem for the Stokes equations. We prove,
under a list of suitable hypothesis, that if we consider an obstacle D immersed in a region
which is filled with a viscous fluid, the size of this inclusion D can be estimated for above
and below in terms of the normalized power gap (concept introduced by Alessandrini et al
[8, 10, 13, 102]).

Mathematically, consider a domain Ω ⊂ Rd, d = 2, 3, with boundary ∂Ω of Lipschitz class
with constants ρ0,M0 and an obstacle D ⊂ Ω with boundary ∂D of Lipschitz class too with
constants ρ, L. So, we consider the pair (u, p) ∈ (H1(Ω \ D))d × L2(Ω \ D) as the weak
solution to the following Stokes problem

−div (σ(u, p)) = 0 , in Ω \D,
div u = 0 , in Ω \D,

u = g , on ∂Ω,
u = 0 , on ∂D.

(1.26)

On the other hand, when the obstacle is absent, we shall denote by (u0, p0) ∈ (H1(Ω))d×L2(Ω)
the unique weak solution to the Dirichlet problem

−div (σ(u0, p0)) = 0 , in Ω,
div u0 = 0 , in Ω,

u0 = g , on ∂Ω.
(1.27)

In both cases (1.26) and (1.27) we consider g ∈ (H1/2(∂Ω))d, g 6≡ 0,
‖g‖H1/2(∂Ω)

‖g‖L2(∂Ω)

≤ c0.

As we want to estimate the size of D in terms of the pair of Cauchy boundary data
(g, σ(u, p)n) on ∂Ω, we introduce the following number

W =

∫
∂Ω

(σ(u, p)n) · u , W0 =

∫
∂Ω

(σ(u0, p0)n) · u0,

and the normalized power gap

W −W0

W0

.

Therefore, our goal is to derive estimates of the size of D in terms of W−W0

W0
.
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In order to give the two main results of this Chapter, we introduce the most important
assumption for the obtention of the estimate. For the lower estimate, we assume that there
exists a positive constants d0 and h1, such that

d(D, ∂Ω) ≥ d0 > 0, |Dh1| ≥
1

2
|D|,

∫
∂Ω

σ(u, p)n = 0. (1.28)

The first assumption tell us that the obstacle is strictly contained in Ω, the second means
that D satisfies the fatness condition and finally, the third is a technical condition on the
solution of (1.26).

Then, we obtain the first main result of this Chapter, specifically the upper estimate of
the size of the inclusion D.

Theorem 1.15 Assume the conditions (1.28). Then, we obtain

|D| ≤ K

(
W −W0

W0

)
,

where the constant K > 0 depends on Ω, d, d0, h1,M0,M1, and ‖g‖H1/2(∂Ω)/‖g‖L2(∂Ω).

Let us give some comments about the second assumption on D, the fatness condition.
In [8] the authors proved a similar Theorem for the estimates of cavities for conductivity
problem. They used similar assumption on the cavity, but without the fatness condition and
obtain the following upper estimate

|D| ≤ K

(
W −W0

W0

)1/p

,

where p > 1. The proof of this inequality is based on the fact that the gradient of the
solution of the background conductivity problem is a Muckenhoupt weight, see [58]. This
type of weight is a consequence on the fact that the conductivity problem satisfy the doubling
inequality. However, in the case of the Stokes problem, as far as we know, the doubling
inequality has not been proved. For this reason, in this Chapter we need to assume the
fatness condition on D.

On the other hand, for the upper estimate we need the following scale–invariant fatness
assumption with constant Q > 0 on the obstacle:

diam(D) ≤ Qρ. (1.29)

Therefore, we obtain the second main result of this Chapter, the lower estimate of the
volume of D.

Theorem 1.16 Assume the condition (1.29). Then, it holds

C
(W −W0)2

WW0

≤ |D|, (1.30)

where C > 0 depends on |Ω|, d, d0, L, and Q.

The proof of this inequality is based on interior regularity, the Rellich’s identity (see
[30, 50]) to the solution of the Stokes problem, among others.
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1.3.2 Chapter 4: Turnpike Property for Two–Dimensional Navier–
Stokes Equations.

In Chapter 4 we analyze the turnpike property, introduced in the previous section, in the case
when we consider the Navier–Stokes equations. The motivation of this type of property in
models of the fluids mechanics arises naturally. For example, in aeronautics and automotive
industry the optimal design problem is based on stationary models, see for instance [66],
where is assumed or understood that the optimal stationary shape is close enough to the
respective evolutionary shape.

This Chapter gives a first approach to this situation, considering the case of optimal
control problem. Due to the nonlinearity of the problem, we prove the turnpike property
for the optimal forward and backward state in a local sense. Specifically, we show that
the solution of the optimality system associated to the optimal control problem satisfies the
turnpike.

The main idea is to develop a local analysis around a given steady optimal control, and
then, by fixed point argument, prove the local nature of the turnpike. Namely, we have the
following optimality system for the nonstationary and stationary case

yTt − µ∆yT + (yT · ∇)yT +∇pT = −qT , in QT ,
div yT = 0 , in QT ,

yT = 0 , on ΓT ,
yT (x, 0) = y0(x) , x ∈ Ω,

−qTt − µ∆qT − (yT · ∇)qT + (∇yT )T qT +∇πT = yT − xd , in QT ,
div qT = 0 , in QT ,

qT = 0 , on ΓT ,
qT (x, T ) = q0 , x ∈ Ω.

(1.31)

and 

−µ∆y + (y · ∇)y +∇p = −q , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
−µ∆q − (y · ∇)q + (∇y)T q +∇π = y − xd , in Ω

div q = 0 , in Ω,
q = 0 , on ∂Ω.

(1.32)

Considering y = y + z, p = p+ η, q = q + ϕ, and π = π + ν, the optimality system (1.31)
linearized around this solutions takes the form

zt − µ∆z + (y · ∇)z + (z · ∇)y +∇η = −ϕ , in QT ,
div z = 0 , in QT ,

z = 0 , on ΓT ,
z(x, 0) = z0 , in Ω,

−ϕt − µ∆ϕ− (y · ∇)ϕ+ (∇y)Tϕ+∇ν = z − (∇z)T q + (z · ∇)q , in QT ,
div ϕ = 0 , in QT ,

ϕ = 0 , on ΓT ,
ϕ(x, T ) = ϕ0 , in Ω,

(1.33)
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where z0 = y0 − y and ϕ0 = q0 − q.

The system (1.33) can be seen as an optimal control problem for the Oseen equation, and
using the result for the linear case given in [98], we obtain the following theorem.

Theorem 1.17 Under suitable smallness condition, there exists some ε > 0 such that for
every y0, q0 with

‖y0 − y‖L2(Ω) + ‖q0 − q‖L2(Ω) ≤ ε,

there exists a solution of the optimality system (1.31) such that

‖yT (t)− y‖L2(Ω) + ‖qT (t)− q‖L2(Ω ≤ C(e−γt + e−γ(T−t)), ∀t < T, (1.34)

where γ > 0 is the stabilizing rate of the linearized optimality system (1.33).

In the case when the controls are independent of time, u = u(x), using the classical
Γ–convergence and suitable exponential stabilization of the nonstationary solutions of the
Navier–Stokes problem, we prove the following theorem.

Theorem 1.18 Let (yTn , uTn) be an optimal state and control for T = Tn. Then any accu-
mulation point (y∞, u∞), as n→∞, is an optimal steady state and control.

1.3.3 Chapter 5: Inverse Viscosity Boundary Value Problem for
the Evolutionary Stokes Equation.

In Chapter 5 we study an inverse identification problem associated to the Stokes equations
in three dimensions. We focus on the following boundary value problem

−div (σµ(u, p)) + λu = 0 , in Ω,
div u = 0 , in Ω,

u = g0 , on ∂Ω,
(1.35)

where σµ(u, p) = 2µe(u) − pI is the stress tensor, e(u) = ((∇u) + (∇u)T )/2 is the strain
tensor and λ > 0. Here µ(x) > µ0 > 0 is the kinematic viscosity function.

We are interested in the inverse problem of determining µ from the knowledge of boundary
measurements. Mathematically, the boundary measurements are encoded in the Cauchy data
of all solutions satisfying (1.35). Precisely, we define the set

Sµ = {(u|∂Ω, σµ(u, p)n|∂Ω)} ⊂ (H3/2(∂Ω))3 × (H1/2(∂Ω))3, (1.36)

where (u, p) is the solution of (1.35). Then, our inverse problem is to determine µ from the
knowledge of the operator Sµ.

In order to obtain the identification result, we need to consider a suitable regularity for
the viscosity, given by the following hypothesis.
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(H1) Let µ1 and µ2 be two viscosity functions. We assume that

µ1, µ2 ∈ Cn0(Ω), ∀n0 ≥ 8, (1.37)

µi ≥ µ0 > 0, ∀i = 1, 2, (1.38)

µ1(x) = µ2(x), ∀x ∈ ∂Ω. (1.39)

Using the construction of exponentially growing solutions given by Eskin and Ralston [47],
we have the following result.

Theorem 1.19 Let (u, p) be the solution to the stationary Stokes problem (1.35). Assume
that µ1(x) and µ2(x) are two viscosity function satisfying (H1). Let SEµ1

and SEµ2
be the

Cauchy data associated with µ1 and µ2, respectively. If SEµ1
= SEµ2

, then µ1 = µ2.

Now, we consider the following boundary value problem
ut − div (σµ(u, p)) = 0 , in Ω× (0, T ),

div u = 0 , in Ω× (0, T ),
u = g , on ∂Ω× (0, T ),

u(x, 0) = u0(x) , in Ω,

(1.40)

and the boundary measurements encoded in the Cauchy data

Sµ = {(u|∂Ω×(0,T ), σµ(u, p)n|∂Ω×(0,T ))}, (1.41)

where (u, p) is the solution of (1.40).

The idea is to obtain an identifiability result of the viscosity, in the evolutionary case
(1.40), using Sµ above defined, based on the uniqueness given in the stationary case, see
Theorem 1.19.

The question we address is as follows: can we get identifiability of the viscosity function
of the evolutionary Stokes equation from the stationary problem as the horizon time goes to
infinity?
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Chapter 2

Mathematical Theory of
Incompressible Stokes and
Navier–Stokes Equations

In this chapter we introduce and present the basics results concerning with the theory of the
incompressible Stokes and Navier–Stokes equations, both evolutionary and stationary. We
provide some functional analytic background to study this equations. We rely on the books
by Boyer and Fabrie [29], Galdi [57], Girault and Raviart [59], and Temam [107].

The existence, uniqueness and regularity for the Stokes systems is completely understood
in the two and three dimensional case. The Navier–Stokes systems is a little different, because
in the two–dimensional case we know all the previous properties; however in the three–
dimensional case there are many open problems connected with smoothness and uniqueness
of solutions.

The outline of the chapter is a follows. In Section 2.1 we introduce the notations, ba-
sic definitions and functionals spaces that we will use through the thesis. Section 2.2 and
2.3 are devoted to the study of the Stokes equations, both stationary and evolutionary, re-
spectively. We analyzed existence and uniqueness of solutions, also regularity results and
spectral properties of the Stokes operator. Analogously, in Sections 2.4 and 2.5 we analyze
the Navier–Stokes system for the stationary and nonstationary case, respectively. Finally,
in Section 2.6 we introduce the linearized equations from the Navier–Stokes system. This
model is called the Oseen equation or the Stokes–Oseen equation.

2.1 Function spaces and auxiliary results

In the whole chapter we assume that Ω ⊂ Rd, with d = 2 o d = 3, is a open bounded domain
with boundary Γ = ∂Ω. We denoted by n the outward normal vector of the boundary. In
general, we will need some smoothness condition of Ω and Γ. In many situations, it suffices
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to assume

Ω is locally Lipschitz. (2.1)

This means that for each point x ∈ Γ, there is a neighborhood O such that x ∈ O and Γ∩O
is the graph of a Lipschitz continuous function, see [3]. However, this assumption can be
insufficient in some other cases. For this reason, sometime we will need that

Ω is of class Ck, (2.2)

for some k ≥ 1 integer. This mean that the boundary Γ is a n− 1–dimensional manifold of
class Ck and Ω is locally located on one side of Γ, see [3]. We observe that if Γ is of class C1,
then the boundary Γ is locally Lipschitz. Both smoothness assumption imply the so–called
cone property.

In the Chapter 3 we need another type of regularity of Ω. Let x ∈ Rd, we denote by Br(x)
the ball in Rd centered in x of radius r. We will indicate by · the scalar product between
vectors or matrices. We set x = (x1, . . . , xd) as x = (x′, xd), where x′ = (x1, . . . , xd−1).

Definition 2.1 (Def. 2.1 [8]) Let Ω ⊂ Rd be bounded domain. We say that ∂Ω is of class
Ck,α, with constants ρ0, M0 > 0, where k is a nonnegative integer and α ∈ [0, 1), if, for any
x0 ∈ ∂Ω, there exists a rigid transformation of coordinates, in which x0 = 0 and

Ω ∩Bρ0(0) = {x ∈ Bρ0(0) : xn > ϕ(x′)},

where ϕ is a function of class Ck,α(B′ρ(0)), such that

ϕ(0) = 0,

∇ϕ(0) = 0, if k ≥ 1,

‖ϕ‖Ck,α(B′ρ0 (0)) ≤M0ρ0.

When k = 0 and α = 1 we will say that ∂Ω is of Lipschitz class with constants ρ0,M0.

Observation We normalize all norms in such a way that they are dimensionally equivalent
to their argument, and coincide with the usual norms when ρ0 = 1. In this setup, the norm
taken in the previous definition is intended as follows:

‖φ‖Ck,α(B′ρ0 (0)) =
k∑
i=0

ρi0‖Diφ‖L∞(B′ρ0 (0)) + ρk+α
0 |Dkφ|α,B′ρ0 (0),

where | · | represents the α-Hölder seminorm

|Dkφ|α,B′ρ0 (0) = sup
x′,y′∈B′ρ0 (0),x′ 6=y′

|Dkφ(x′)−Dkφ(y′)|
|x′ − y′|α

,

and Dkφ = {Dβφ}|β|=k is the set of derivatives of order k. Similarly we set the norms

‖u‖2
L2(Ω) =

1

ρd0

∫
Ω

|u|2 and ‖u‖2
H1(Ω) =

1

ρd0

(∫
Ω

|u|2 + ρ2
0

∫
Ω

|∇u|2
)
.
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We denote by Lp(Ω), with 1 ≤ p ≤ ∞, the space of real functions defined on Ω with the
p-th power absolutely integrable for the Lebesgue measure dx = dx1 . . . dxd when p ∈ [1,∞),
and essentially bounded real functions in the case p =∞. The Lp(Ω) space is a Banach space
with the norm

‖u‖p := ‖u‖Lp(Ω) =

(∫
Ω

|u(x)p|dx
)1/p

, p ∈ [1,∞),

‖u‖∞ := ‖u‖L∞(Ω) = ess sup
Ω
|u(x)|.

In the particular case when p = 2, we have that L2(Ω) is a Hilbert space with scalar
product

(u, v)2 =

∫
Ω

u(x)v(x)dx.

Further, we consider the quotient space

L2
0(Ω) = L2(Ω)/R =

{
q ∈ L2(Ω) :

∫
Ω

q(x)dx = 0

}
,

represented by the class of functions of L2(Ω) which differ by an additive constant. We equip
this space with the quotient norm

‖v‖L2
0(Ω) = inf

α∈R
‖v + α‖2.

Let Wm,p(Ω) be the space of functions in Lp(Ω) whose weak derivatives up to order m are
functions in Lp(Ω), where m is an integer and 1 ≤ p ≤ ∞. Equipped with the norm

‖u‖m,p := ‖u‖Wm,p(Ω) =

∑
|j|≤m

‖Dju‖pp

1/p

it is a Banach space. When p = 2, the space Hm(Ω) := Wm,2(Ω) is a Hilbert space with the
scalar product

(u, v)m,2 =
∑
|j|≤m

(Dju,Djv)2.

Let D(Ω) be the space of all C∞–functions with compact support in Ω. The closure of
D(Ω) in the norm of Wm,p(Ω) is denoted by Wm,p

0 (Ω), respectively Hm
0 (Ω) when p = 2.

For a comprehensive introduction of Solobev spaces we refer the reader to [3, 49].

In this thesis we shall work with d–component vector–valued functions, whose components
are elements of some of the above spaces. We shall use the following notation

(D(Ω))d = {(u1, . . . , ud) : ui ∈ C∞(Ω), i = 1, . . . , d},
(Lp(Ω))d = {(u1, . . . , ud) : ui ∈ Lp(Ω), i = 1, . . . , d},

(Wm,p(Ω))d = {(u1, . . . , ud) : ui ∈ Wm,p(Ω), i = 1, . . . , d},
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which is analogously employed for all other kinds of spaces. These product spaces will be
equipped with the usual product and norm or an equivalent norm, except the case (D(Ω))d,
that is not a normed space at all.

By X∗ we denote the dual of a normed linear space X. The symbol 〈·, ·〉 denotes the
duality: if f ∈ X∗, ϕ ∈ X, then 〈f, ϕ〉 = f(ϕ).

We recall that if Ω is bounded or bounded in some direction, then the Poincaré inequality
holds [49]

‖u‖2 ≤ c(Ω)‖Du‖2 , ∀u ∈ H1
0 (Ω), (2.3)

where D is the derivative in the sense of the distributions and c(Ω) is a constant depending
only on Ω. We know that, see [49], in this case the norm on H1

0 (Ω) is equivalent to the norm

‖u‖1,0 := ‖u‖H1
0 (Ω) =

(
d∑
i=1

‖Diu‖2

)1/2

.

The space H1
0 (Ω) is also a Hilbert space with the scalar product

(u, v)1,0 :=
d∑
i=1

(Diu,Di(v))2.

Further, let us recall that H1/2(Γ) is the subspace of L2(Γ) formed by the traces on Γ of
all functions from H1(Ω). We use the notation u|Γ = (u1|Γ, . . . , ud|Γ) for the trace of a vector
function u = (u1, . . . , ud) ∈ (H1(Ω))d on Γ.

Also, a very useful tool when dealing with Sobolev spaces is the following theorem. We
refer the reader to [3, 49] for the proof and further details.

Theorem 2.2 (Sobolev imbedding theorem) Let Ω ⊂ Rd be a domain having the cone
property. Suppose that mp < d, then the imbedding

Wm,p(Ω) ↪→ Lq(Ω)

is continuous for q < dp
d−mp . If mp > d, then we hace continuity of the imbedding

Wm,p(Ω) ↪→ C(Ω).

In the theory of Stokes and Navier–Stokes equations we shall work with spaces of solenoidal
functions satisfying the constraint div u = 0. We put

V = {u ∈ (D(Ω))d : div u = 0}.

The closures of V in (L2(Ω))d and (H1
0 (Ω))d are the basic spaces used in the theory of

incompressible Stokes and Navier–Stokes systems

H := V(L2(Ω))d

,

V := V(H1
0 (Ω))d

.
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Their norms are the usual (L2(Ω))d and (H1
0 (Ω))d–norms and will be denoted by ‖ · ‖H

and ‖ · ‖V , respectively. Although these spaces have the same scalar product as L2 and H1
0 ,

we will use (·, ·)H and (·, ·)V instead.

The following result is essential for the study, later, of the variational formulation of Stokes
and Navier–Stokes and related equations. This property can be proved by using a result of
De Rham [101].

Proposition 2.3 Let Ω ⊂ Rd be an open set and f = {f1, . . . , fd}, fi ∈ D′(Ω), i = 1, . . . , d.
A necessary and sufficient condition that

f = ∇p,

for some p ∈ D′(Ω), is that

〈f, v〉 = 0 , ∀v ∈ V .

Proposition 2.4 ([107], Chapter I, Section 1, Proposition 1.2) Let Ω be a bounded Lispchitz
open set in Rd. If a distribution p has all its first derivatives Dip, 1 ≤ i ≤ d, in H−1(Ω),
then p ∈ L2(Ω) and

‖p‖L2(Ω)\R ≤ c(Ω)‖∇p‖H−1(Ω).

We can now give the following characterizations of the spaces H, H⊥ (the orthogonal
complement of H in (L2(Ω))d), and V .

Theorem 2.5 ([107], Theorems I.1.4 and I.1.6) Let Ω be a Lipschitz open bounded set in Rd.
Then

H = {u ∈ (L2(Ω))d : div u = 0, γnu = 0},
H⊥ = {u ∈ (L2(Ω))d : u = ∇p, p ∈ H1(Ω)},
V = {u ∈ (H1

0 (Ω))d : div u = 0},

where γn is the normal trace operator γn : u 7−→ n · u|Γ.

In H, we can define a norm by

‖u‖∗ := sup
v∈V \{0}

(u, v)H
‖v‖V

.

The closure of H with respect to the ‖ · ‖∗–norm is equal to V ′, which is the usual dual space
of V . In V ′ we will use the above defined norm: ‖ · ‖V ′ := ‖ · ‖∗. The spaces V , H, and V ′

satisfies

V ⊂ H = H ′ ⊂ V ′

with dense and continuous imbedding. The duality pairing of V ′ and V is then the contin-
uation of the H–scalar product to V ′ × V . It is denoted by 〈·, ·〉V ′,V . Obviously, for u ∈ H
and v ∈ V we have the following property

〈u, v〉V ′,V =

∫
Ω

u(x)v(x)dx.
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We will use once in a while the following spaces, which are the Lp–counterparts of H and
V ,

Hp := V(Lp(Ω))d

,

Vp := V(W 1,p
0 (Ω))d

.

2.2 The stationary Stokes equations

2.2.1 Stokes equations with homogeneous boundary conditions

Let Ω ⊂ Rd be an open bounded set with boundary Γ, and let f ∈ (L2(Ω))d be a given vector
function in Ω. We are looking vector function u = (u1, . . . , ud) representing the velocity of
the fluid, and a scalar function p representing the pressure, which are defined in Ω and satisfy
the following equations and boundary conditions

−µ∆u+∇p = f , in Ω,
div u = 0 , in Ω,

u = 0 , on Γ,
(2.4)

where µ is the coefficient of kinematic viscosity, a positive constant.

Definition 2.6 A couple (u, p) is called the classical solution of the Stokes problem with
homogeneous boundary conditions, if u ∈ (C2(Ω))d and p ∈ C1(Ω) satisfy equation (2.4).

Let us assume there is a classical solution (u, p) satisfying (2.4). If v is an element of V ,
multiplying the first equation in (2.4) by v and integrating over Ω, we obtain

−µ
∫

Ω

∆u · vdx+

∫
Ω

v · ∇pdx =

∫
Ω

f · vdx. (2.5)

Using the Green’s theorem, the boundary condition u|Γ = 0, and the incompressible
assumption div v = 0 on Ω, the equation (2.5) can be rewritten in the form

µ(u, v)V = 〈f, v〉V ′,V , ∀v ∈ V. (2.6)

Since u is divergence–free, the pressure disappears in the weak formulation due to (u,∇p)2 =
0. Equation (2.6) suggests the following generalization of the concept of the solution of the
Stokes problem.

Definition 2.7 Let µ > 0, f ∈ (L2(Ω))d. We say that a vector function u : Ω → Rd is the
weak solution of the Stokes problem with homogeneous boundary conditions, if

u ∈ V and µ(u, v)V = 〈f, v〉V ′,V ∀v ∈ V. (2.7)
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Observation Let us notice that conditions div u = 0 and u|Γ = 0 are already hidden in the
assumption u ∈ V . Conditions (2.7) form the weak formulation of the Stokes problem.

We are now in a position to guarantee the existence and uniqueness of solutions to (2.7).
For this we need the classical projection Lemma, known as Lax–Milgram Lemma.

Lemma 2.8 Let W be a separable real Hilbert space with norm ‖ · ‖W and let a(u, v) be a
bilinear continuous form on W ×W , which is coercive. Then for each l ∈ W ′, the dual space
of W , there exists one and only one u ∈ W such that

a(u, v) = 〈l, v〉 , ∀v ∈ W.

Then, we obtain the following result about the existence and uniqueness of the weak
formulation of the Stokes equations.

Theorem 2.9 (Existence and Uniqueness) Let Ω ⊂ Rd be an open bounded domain. Given
f ∈ (L2(Ω))d, the problem (2.7) has a unique solution u.

Proof. The proof is an immediate consequence of the preceding lemma. Indeed, we take
W = V equipped with the norm associated ‖ · ‖V which is a separable space as a closed
subspace of the separable space (H1

0 (Ω))d, a(u, v) = µ(u, v)V , and the form v 7−→ 〈f, v〉V ′,V .
Then, we need to prove that the form a(u, v) and 〈f, ·〉V ′,V are linear and continuous. Its
linearity is obvious.

The continuity of the functional 〈f, ·〉V ′,V is a consequence of the inequalities

|(f, v)| ≤ ‖f‖2‖v‖2 ≤ ‖f‖2‖v‖1,2 ≤ c‖f‖2‖v‖V , ∀v ∈ V.

The properties of the form a(·, ·) follow from the fact that a(·, ·) is a positive multiple of
a scalar product in the space V .

Observation It is easily observed that the velocity field u obtained above through the Lax–
Milgram Lemma is the unique minimizer on V of the energy functional

J(w) =
1

2
µ

∫
Ω

|∇w|2dx−
∫

Ω

f · wdx , ∀w ∈ V.

This is a general property of the solution of variational problems in the symmetric case.

The term −µ∆u − f ∈ V ′ is nothing but the gradient of J considered as a functional
defined on (H1

0 (Ω)d. Since u minimizes J on the subspace V of divergence–free vector fields,
the Lagrange multiplier theorem show that, at the optimum point u, the gradient of J has to
be proportional to the gradient of the constraint in some sense. More precisely, the constraint
here is linear and defined by the operator div : (H1

0 (Ω))d → L2
0(Ω) and thus there must exist

a Π ∈ (L2
0(Ω))′ such that

(∇J)(u) = Π ◦ div ∈ V ′.
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Since (L2
0(Ω))′ can be identified with L2

0(Ω) itself, there exists a unique p ∈ L2
0(Ω) such that

〈Π, q〉(L2
0)′,L2

0
=

∫
Ω

pqdx , ∀q ∈ L2
0(Ω),

so that

〈Π ◦ div , w〉V ′,V =

∫
Ω

p(div w)dx = −〈∇p, w〉V ′,V , ∀w ∈ V,

that is Π ◦ div = −∇p. It follows from these computations that, for the Stokes problem,
the pressure can be understood as the Lagrange multiplier related to the divergence–free
constraint.

There is a question how to introduce the pressure to the velocity satisfying the weak
formulation (2.7). The following Theorem guarantee the existence of the pressure.

Theorem 2.10 Let u be a weak solution of the Stokes problem with homogeneous boundary
conditions. Then u belongs to (H1

0 (Ω))d and there exists p ∈ L2
0(Ω) such that the couple (u, p)

satisfies the problem (2.4) in the distribution sense in Ω.

Proof. Let us suppose that u satisfies (2.7). Then, u ∈ (H1
0 (Ω))d implies that the traces

γ0u of its components are zero in H1/2(Γ). Besides, u ∈ V implies that div u = 0 in the
distribution sense. And using (2.7) we obtain

〈−µ∆u− f, v〉V ′,V = 0 , ∀v ∈ V.

Then, by Proposition 2.3, there exists some distribution p ∈ L2
0(Ω) such that

−µ∆u− f = −∇p

in the distribution sense in Ω.

2.2.2 Stokes equations with non homogeneous boundary condi-
tions

For a given constant µ > 0 and given vectors functions f : Ω → Rd and g : Γ → Rd, we
consider the boundary value problem

−µ∆u+∇p = f , in Ω,
div u = 0 , in Ω,

u = g , on Γ.
(2.8)

The classical solution of this problem is defined analogously as in Definition 2.6. Let us
assume that the source term f ∈ (L2(Ω))d, the boundary data g ∈ (H1/2(Γ))d and∫

Γ

g · ndS = 0. (2.9)
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Observation We note that provided a function u ∈ (H1(Ω))d satisfies the first equation to
(2.8) and the third equation (in the sense of traces), then relation (2.9) is fulfilled. It means
that (2.9) is a necessary condition for the solvability of problem (2.8).

Lemma 2.11 Let the function g ∈ (H1/2(Γ))d satisfy (2.9). Then there exists ϕ ∈ (H1(Ω))d

such that

div ϕ = 0 in Ω, (2.10)

ϕ|Γ = g ( in the sense of traces).

Proof. By the traces theorem, we have that there exists g1 ∈ (H1(Ω))d such that g1|Γ = g.
Besides, ∫

Ω

div g1dx =

∫
Γ

g1 · ndS =

∫
Γ

g · ndS = 0.

This implies that div g1 ∈ L2
0(Ω). We know that the operator div is an isomorphism of

the ortogonal complement

V ⊥ = {u ∈ (H1
0 (Ω))d : (u, v)1,0 = 0 ∀v ∈ V }

of the subspace V ⊂ (H1
0 (Ω))d onto L2

0(Ω), see Chapter I, Corollary 2.4 of [59]. Then, there
exists g2 ∈ (H1

0 (Ω))d such that div g1 = div g2. Now, we put ϕ = g1 − g2. It is obvious that
ϕ ∈ (H1(Ω))d, div ϕ = 0, and ϕ = g.

The weak formulation of the Stokes equations with non homogeneous boundary conditions
can be obtained similarly as in the previous case with the use of Green’s Theorem. Now, we
introduce the concept of a weak solution.

Definition 2.12 Let f ∈ (L2(Ω))d, g ∈ (H1/2(Γ))d, and assume that the condition (2.9)
hold. Supposing that ϕ is a function from Lemma 2.11, we call u a weak solution of the
Stokes problem (2.8) if

a) u ∈ (H1(Ω))d (2.11)

b) u− ϕ ∈ V
c) µ(u, v)V = 〈f, v〉V ′,V , ∀v ∈ V.

Theorem 2.13 The problem (2.11) a)− c) has a unique solution which does not depend on
the choice of the function ϕ from Lemma 2.11.

Proof. The condition b) on (2.11) can be sought in the form u = ϕ + z, where z ∈ V is a
solution of the problem

µ(z, v)V = 〈f, v〉V ′,V − µ(ϕ, v)V , ∀v ∈ V. (2.12)
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The Lax–Milgram Lemma implies that problem (2.12) has a unique solution z ∈ V . It is
obvious that u = ϕ+ z is a weak solution of the Stokes problem. Now we show that u does
not depend on the choice of the function ϕ. Let g1 and g2 be two functions associated with
the given by Lemma 2.11 and let u1 and u2 be the corresponding weak solutions. Then we
obtain

µ(ui, v)V = 〈f, v〉V ′,V , ∀v ∈ V, i = 1, 2.

Tacking v := u1 − u2 ∈ V , we have

0 = (u1 − u2, v)V = (u1 − u2, u1 − u2)V = ‖u1 − u2‖2
V ,

which immediately implies that u1 = u2.

Observation The existence of a pressure function p ∈ L2
0(Ω) to a weak solution of the Stokes

problem with non homogeneous boundary conditions can be obtained in a similar way as in
Theorem 2.8.

2.2.3 The Stokes operator

The bilinear form a(·, ·) defined in the proof of the Theorem 2.9 being continuous on V × V ,
then we can define an operator A from V to V ′ by

〈Au, v〉V ′,V =

∫
Ω

∇v : ∇udx , ∀u, v ∈ V. (2.13)

The operator A is called the Stokes operator. From the Lax–Milgram Lemma this operator
is an isomorphism from V onto V ′.

We can now consider A as an unbounded operator in H with domain

D(A) = {u ∈ V : Au ∈ H}.

The Stokes operator defined above satisfies the following properties.

Lemma 2.14 The operator (A,D(A)) has a closed graph in H ×H.

Proof. Let (un)n be a sequence of elements of D(A) which converges in H towards an element
u ∈ H and such thta (Aun)n converges in H towards a certain f . Since f ∈ H, there exists
a unique v ∈ D(A) such that Av = f . We then need to prove that v = u.

The convergence in H implies that in V ′, therefore we deduce that (Aun)n converges
towards Av in V ′. However, A is an isomorphism from V onto V ′ and hence (un)n converges
towards v in V . The convergence in V implies the convergence in H, thus we have shown
that u = v.

35



As we know in the general theory of unbounded operators this property implies that D(A),
equipped with the scalar product

(u, v)D(A) = (u, v)H + (Au,Av)H , ;∀u, v ∈ D(A),

is a Hilbert space and that the operator A is an isomorphism fromD(A) ontoH. Furthermore,
for all u ∈ D(A) we have

‖u‖V ≤ C‖Au‖V ′ ≤ C̃‖Au‖H ≤ C̃‖u‖D(A),

which implies that the canonical embedding from D(A) to V is continuous. Finally, since
the embedding from V to H is compact, we have that the embedding from D(A) to H is
compact.

Lemma 2.15 The Stokes operator (A,D(A)) is self–adjoint in H.

Proof. First, by definition, for all u, v ∈ D(A) we have

(Au, v)H = 〈Au, v〉V ′,V =

∫
Ω

∇u · ∇vdx,

and therefore it is clear that

(Au, v)H = (u,Av)H , ∀u, v ∈ D(A). (2.14)

This implies in particular that D(A) ⊂ D(A∗) and that for all u ∈ D(A), A∗u = Au.

We now need to prove that D(A∗) = D(A). Let u ∈ D(A∗). By definition there exists
f = A∗u ∈ H such that for all v ∈ D(A) we have (Av, u)H = (v, f)H . However, A is bijective
from D(A) onto H, and thus there exists ũ ∈ D(A) such that f = Aũ. Then, we need to
prove that u = ũ. To do this, let w ∈ H. Then there exists w̃ ∈ D(A) such that Aw̃ = w.
Then we have

(w, u− ũ)H = (Aw̃, u)H − (Aw̃, ũ)H . (2.15)

From the definition of the adjoint we obtain (Aw̃, u)H = (w̃, A∗u)H , and from (2.14), since
ũ ∈ D(A), we have (Aw̃, ũ)H = (w̃, Aũ)H . By definition of ũ, we have Aũ = A∗u and hence,
(2.15) becomes

(w, u− ũ)H = 0,

and this for all w ∈ H, which proves that u = ũ, and in particular, that u ∈ D(A).

In consequence of all the preceding results, we can therefore construct a spectral decom-
position of the Stokes operator. More precisely, we have the following proposition.
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Proposition 2.16 ([29], Chapter IV, Section 5, Theorem 5.5) Let Ω be a bounded, connected,
Lipschitz domain of Rd. There exists an increasing sequence of positive real numbers (λk)k,
which tends to +∞, and a sequence of functions (uk)k, which is orthonormal in H, orthogonal
in V and in D(A), forming a complete family in H, in V , and in D(A), and a sequence of
functions (pk)k in L2

0(Ω) satisfying
−µ∆uk +∇pk = λkuk , in Ω,

div uk = 0 , in Ω,
uk = 0 , on Γ.

We kwon that the solution u ∈ H1
0 (Ω) of the Dirichlet problem −∆u + u = f belongs

to Hm+2(Ω) when f ∈ Hm(Ω) and Ω is sufficiently smooth. The Stokes operator satisfies
elliptic regularity properties which are similar to those of the Laplace operator, for instance.
More precisely, we can state the following result.

Proposition 2.17 ([107], Chapter I, Section 2, Proposition 2.2) Let Ω be an open bounded
set of class Cr, r = max(m+ 2, 2), m positive integer. Let us suppose that

u ∈ W 1,α(Ω) , p ∈ Lα , 1 < α <∞,

are solutions of the following Stokes problem
−µ∆u+∇p = f , in Ω,

div u = 0 , in Ω,
u = g , on Γ.

(2.16)

If f ∈ Wm,α(Ω), g ∈ Wm+2−1/α,α(Γ), then

u ∈ Wm+2,α(Ω) , p ∈ Wm+1,α. (2.17)

Besides, there exists a constant c = c(α, µ,m,Ω) such that

‖u‖m+2,α + ‖p‖m+1,α ≤ c(‖f‖m,α + ‖g‖m+2−1/α,α + dα‖u‖α), (2.18)

where dα = 0 for α ≥ 2, dα = 1 for 1 < α < 2.

We observe that the Proposition 2.17 does not assert the existence of u, p satisfying the
Stokes equations (2.16), but gives only a result on the regularity of an eventual solution. The
following proposition gives a general existence result for N = 2 or N = 3.

Proposition 2.18 ([107], Chapter I, Section 2, Proposition 2.3) Let Ω be an open set of
class Cr, with r = max(m + 2, 2), m integer bigger than −1, and let f ∈ Wm,α(Ω), g ∈
Wm+2−α,α(Ω) be given satisfying the compatibility condition∫

Γ

g · ndS = 0. (2.19)

Then there exists unique functions u and p (p is unique up to a constant) which are solutions
of (2.16) and satisfy (2.17) and (2.18) with dα = 0 for any α, 1 < α < ∞. In particular,
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for any f ∈ (L2(Ω))d and g ∈ (H3/2(∂Ω))d satisfying (2.19), the unique solution to (2.16) is
such that, see [19],

(u, p) ∈ (H2(Ω))d ×H1(Ω). (2.20)

Moreover, we have

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)), (2.21)

where C is a positive constant depending only on Ω.

Let us finish this section with a new sight to the Poincaré inequality.

Proposition 2.19 ([29], Chapter IV, Section 5, Proposition 5.12) Let Ω be a bounded Lips-
chitz domain in Rd. Then, we have the following Poincaré inequalities

‖u‖2
H ≤

1

λ1

‖∇u‖2
2 , ∀v ∈ V, (2.22)

‖∇u‖2
2 ≤

1

λ1

‖Au‖2
2 , ∀u ∈ D(A),

where λ1 is the smallest eigenvalue of the Stokes operator.

2.3 The non stationary Stokes equations

In this part of the thesis, we use the elements introduced before concerning the Stokes
operator in order to solve the evolutionionary incompressible Stokes problem.

First, we introduce some notations and auxiliary spaces. We denote by Q := Ω × (0, T )
the space–time cylinder. Here, T > 0 is a given final time. Further, we set Σ := Γ× (0, T ).

We shall work in the standard space of abstract functions from [0, T ] to a real Banach
space X, Lp(0, T ;X), endowed with its natural norm

‖u‖Lp(X) := ‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖pXdt
)1/p

, 1 ≤ p <∞,

The space L∞(0, T ;X) is the space of essentially bounded functions from [0, T ] into X,
and is equipped with the Banach norm

‖u‖L∞(X) := ess supt∈[0,T ]‖u(t)‖X .

When no confusion can arise, we will use the following notations

Lp(X) := Lp(0, T ;X) , 1 ≤ p ≤ ∞
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For our proposes, we need the following technical Lemma. The proof can be found in
[107].

Lemma 2.20 ([107], Chapter III, Section 1, Lemma 1.1) Let X be a given Banach space
with dual X ′ and let u and g be two functions belonging to L1(X). Then ,the following three
conditions are equivalent:

(i) u is a.e. equal to a primitive function of g,

u(t) = ξ +

∫ t

0

g(s)ds , ξ ∈ X, a.e. t ∈ [0, T ].

(ii) For each test function ϕ ∈ D((0, T )),∫ T

0

u(t)ϕ′(t)dt = −
∫ T

0

g(t)ϕ(t)dt

(
ϕ′ =

dϕ

dt

)
.

(iii) For each η ∈ X ′,
d

dt
〈u, η〉 = 〈g, η〉,

in the scalar distribution sense on (0, T ).

If (i)− (iii) are satisfied u, in particular, is a.e. equal to a continuous function from [0, T ]
into X.

Let Ω be a Lipschitz open bounded domain in Rd and let T > 0 fixed. We consider the
evolutionionary incompressible Stokes problem

ut − µ∆u+∇p = f , in Q,
div u = 0 , in Q,

u = 0 , on Σ,
u(0) = u0 , in Ω,

(2.23)

where the vector function u : Q→ Rd represents the velocity of the fluid, the scalar function
p : Q→ R represents the pressure, the vector functions f and u0 are given, f defined on Q,
u0 defined on Ω.

As in the previous section, we will formulate the weak formulation of the problem (2.23).
Let us suppose that u ∈ C2(Q) and p ∈ C1(Q) are classical solutions of (2.23). Let v be any
element of V , then we have that

(ut, v)2 + µ(u, v)V = 〈f, v〉V ′,V , (2.24)

holds for all t ∈ (0, T ). Since u is divergence–free, the pressure disappears in the weak
formulation. Equation (2.24) suggests the following formulation of the problem (2.23).

For given f ∈ L2(0, T ;V ′) and u0 ∈ H, find a solution u ∈ L2(0, T ;V ) such that{
d

dt
(u, v)2 + µ(u, v)V = 〈f, v〉V ′,V , ∀v ∈ V.

u(0) = u0.
(2.25)
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We observe that if u ∈ L2(0, T ;V ), then the condition u(0) = u0 does not make sense in
general. For this reason we need to give an alternative formulation of the weak problem.

Using the results above the Stokes operator, we can write the first equation in (2.25) as

d

dt
〈u, v〉V ′,V = 〈f − µAu, v〉V ′,V , ∀v ∈ V. (2.26)

Since A is linear and continuos from V into V ′ and u ∈ L2(0, T ;V ), we obtain that the
function Au belongs to L2(0, T ;V ′). Hence f − µAu belongs to L2(0, T ;V ) and by Lemma
2.20, we have

u′ ∈ L2(0, T ;V ′), (2.27)

and the equation (2.26) can be written as

u′ + µAu = f.

Therefore, an alternative weak formulation of the evolutionary Stokes problem is the
following:

Given f ∈ L2(0, T ;V ′) and u0 ∈ H, to find u such that

u ∈ L2(0, T ;V ) , u′ ∈ L2(0, T ;V ′), (2.28)

u′ + µAu = f , on (0, T ), (2.29)

u(0) = u0. (2.30)

Then, we can prove the following result about the existence and uniqueness of solution of
these problems.

Theorem 2.21 ([107], Chapter III, Section 1, Theorem 1.1) For given f ∈ L2(0, T ;V ′) and
u0 ∈ H, there exists a unique function u which satisfies (2.28)–(2.30).

Observation As in the stationary case, we need to ensure the existence of the pressure p
satisfying the problem (2.23) in the distribution sense in Q, with u defined by Theorem 2.21.

Lemma 2.22 Under the assumptions of Theorem 2.21, there exists a distribution p on Q,
such that the function u defined by Theorem 2.21 and p satisfy (2.23).

Proof. We consider the functions

U(t) =

∫ t

0

u(s)ds , F (t) =

∫ t

0

f(s)ds. (2.31)

Note that, at least, the functions satisfying

U ∈ C([0, T ];V ) , F ∈ C([0, T ];V ′).
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Integrating over time the first equation in (2.25), we obtain

(u(t)− u(0), v) + µ(U(t), v)V = 〈F (t), v〉 , ∀t ∈ [0, T ], ∀v ∈ V.

Equivalently, we can write the previous equation as

〈u(t)− u0 − µ∆U(t)− F (t), v〉 = 0 , ∀t ∈ [0, T ], ∀v ∈ V.

By Proposition 2.3, for each t ∈ [0, T ] there exists a function P (t) ∈ L2(Ω), such that

u(t)− u0 − µ∆U(t) +∇P (t) = F (t). (2.32)

From Proposition 2.4 we have that the gradient operator is an isomorphism from L2(Ω)\R
into H−1(Ω). From (2.32), we have that ∇P = F + µ∆U − u + u0, which implies that
P ∈ C([0, T ];H−1(Ω)). Then, P ∈ C([0, T ];L2(Ω)).

Finally, taking the derivative with respect to the t–variable, we obtain

u′(t)− µ∆u(t) +∇p(t) = f(t),

where p = ∂P
∂t

.

We finished this section with a simple result of regularity.

Proposition 2.23 ([107], Chapter III, Section 1, Proposition 1.2) Let us assume that Ω is
of class C2, that f ∈ L2(0, T ;H) and u0 ∈ V . Then,

u ∈ L2(0, T ;H2(Ω)) , u′ ∈ L2(0, T ;H) , p ∈ L2(0, T ;H1(Ω)). (2.33)

2.4 The stationary Navier–Stokes equations

The present section we will be concerned with the study of the stationary Navier–Stokes
equations. We will show the basic properties of this equations, existence and uniqueness of
the solution. But, unlike the Stokes systems, there exists important differences between these
two models:

• The Navier–Stokes systems is a nonlinear partial differential equations. Then, we need
to ensure some strong convergence results, and this properties can be obtained by
compactness arguments.

• The strong convergence, Sobolev inequalities, Sobolev embedding, among others, de-
pend according to the dimension of the space. Namely, unlike the Stokes systems, the
dimension can be consider a parameter.

• The uniqueness of solutions occurs only when the data are small enough, or the viscosity
term is large enough.
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Let us consider the boundary value problem for the stationary nonlinear Navier–Stokes
equations with homogeneous boundary data. Namely, let Ω ⊂ Rd, with d = 2 or d = 3,
be an open bounded Lipschitz set with boundary ∂Ω = Γ. We are seek vector function
u = (u1, . . . , ud) and scalar function p, such that

−µ∆u+ (u · ∇)u+∇p = f , in Ω,
div u = 0 , in Ω,

u = 0 , on Γ,
(2.34)

where f ∈ (L2(Ω))d is a given vector function and µ > 0 the viscosity coefficient.

The nonlinear term (u · ∇)u can be written in the following form

(u · ∇)u =
d∑
i=1

ui
∂u

∂xi
.

As in the linear case, let (u, p) be its classical solution of (2.34), namely, u ∈ (C2(Ω))d

and p ∈ C1(Ω) satisfy (2.34). Then, multiplying the first equation of (2.34) by an arbitrary
vector function v ∈ V , integrating over Ω ans using the Green’s Theorem, we obtain

µ(u, v)V + b(u, u, v) = (f, v) , ∀v ∈ V , (2.35)

where

b(u, v, w) =
d∑

i,j=1

∫
Ω

ui
∂vi
∂xj

wjdx. (2.36)

Using continuity argument, we can show that equation (2.35) is satisfied by any v ∈ V .

The variational formulation of the problem (2.34) will be slightly different with respect the
Stokes equations, and this will be stated after studying some properties of the form b(u, v, w).

Lemma 2.24 The mapping b is defined and trilinear continuos form on (H1(Ω))d×(H1(Ω))d×
(H1(Ω))d.

Proof. Let u, v, w ∈ (H1(Ω))d. Then ui, vi, wi belongs to H1(Ω). Recalling that we are
working in dimension two or three and in the bounded case, in virtue of the continuos
embedding of H1(Ω) into L4(Ω), we have ui, wj ∈ L4(Ω) and ∂vi

∂xj
∈ L2(Ω). By the Hölder

inequality we obtain

|
∫

Ω

ui
∂vi
∂xj

wjdx| ≤
(∫

Ω

|uiwj|2
)1/2(∫

Ω

| ∂vi
∂xj
|2
)1/2

≤
(∫

Ω

|ui|4
)1/4(∫

Ω

|wj|4
)1/4(∫

Ω

| ∂vi
∂xj
|2
)1/2

, (2.37)

which implies that ui
∂vi
∂xj
wj belongs to L1(Ω). It means that the integral in (2.36) exists and

is finite. The form b is thus defined on (H1(Ω))d × (H1(Ω))d × (H1(Ω))d. Its linearity with
respect the arguments u, v, w is obvious.
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Let us prove the continuity of b. Due to the continuos embedding of H1(Ω) into L4(Ω),
there exists a constant c > 0 such that

‖u‖L4(Ω) ≤ c‖u‖H1(Ω) , ∀u ∈ (H1(Ω))d.

Then, from (2.37) we obtain

|
∫

Ω

ui
∂vi
∂xj

wjdx| ≤ c2‖ui‖H1(Ω)‖wj‖H1(Ω)‖vi‖H1(Ω). (2.38)

Summing these inequalities for i, j = 1, . . . , d, (2.38) ensures the continuity of b.

In particular, we have the following result.

Corolary 2.25 The function b is a continuos trilinear from on V × V × V . Besides, there
exists a constant c > 0 such that

|b(u, v, w)| ≤ c‖u‖V ‖v‖V ‖w‖V , ∀u, v, w ∈ V. (2.39)

The following property of b is fundamental for the study of the Navier–Stokes equations,
and will be used throughout the thesis.

Lemma 2.26 Let u ∈ (H1(Ω))d, div u = 0, and v, w ∈ (H1
0 (Ω))d. Then, we obtain

b(u, v, v) = 0, (2.40)

b(u, v, w) = −b(u,w, v), (2.41)

b(u, v, w) = ((∇v)Tw, u), ∀u, v, w ∈ (H1(Ω))d. (2.42)

A proof can be found for instance in [107], Chapter III, Section 1, Lemma 1.3.

The above considerations leads us to the following variational formulation of the Navier–
Stokes system.

Definition 2.27 Let µ > 0 and f ∈ (L2(Ω))d be given. We say that u is a weak solutions of
the Navier–Stokes problem with homogeneous boundary data, if

u ∈ V and µ(u, v)V + b(u, u, v) = (f, v) , ∀v ∈ V. (2.43)

It is obvious that any classical solution is a weak one. Similarly as in Stokes equations,
we can prove that to the weak solution u there exists the pressure p ∈ L2

0(Ω) satisfying the
identity

µ(u, v)V + b(u, u, v)− (p, div u) = (f, v) , ∀v ∈ (H1
0 (Ω))d.

Then, the couple (u, p) satisfies the equation (2.34) in the sense of distributions.

As we said before, we need some results of strong converge to ensure some convergence
of the nonlinear term. The following result will be helpful in the proof of the existence of a
weak solution of the Navier–Stokes problem.
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Lemma 2.28 Let (uα)α be a sequence in V such that converges strongly in (L2(Ω))d to some
u ∈ V , as α→∞. Then

b(uα, uα, v)→ b(u, u, v) , ∀v ∈ V . (2.44)

Proof. From (2.41) we have

b(uα, uα, v) = −b(uα, v, uα) = −
d∑

i,j=1

∫
Ω

uiαu
j
α

∂vi
∂xj

dx.

By the assumption that uα → u in (L2(Ω))d, imply∫
Ω

|uiαujα − uiuj| → 0 , ∀i, j = 1, . . . , d. (2.45)

Since v ∈ V , there exists c > 0 such that∣∣∣∣ ∂vi∂xj

∣∣∣∣ ≤ c , ∀x ∈ Ω, ∀i, j = 1, . . . , d. (2.46)

From (2.45) and (2.46), we have∣∣∣∣∫
Ω

(
uiαu

j
α

∂vi
∂xj
− uiuj ∂vi

∂xj

)∣∣∣∣ ≤ c

∫
Ω

|uiαujα − uiuj| → 0,

and thus ∫
Ω

uiαu
j
α

∂vi
∂xj
→
∫

Ω

uiuj
∂vi
∂xj

. (2.47)

Summing (2.47) we obtain

b(uα, uα, v) = −b(uα, v, uα) = −
d∑

i,j=1

∫
Ω

uiαu
j
α

∂vi
∂xj
→ −

d∑
i,j=1

∫
Ω

uiuj
∂vi
∂xj

= b(u, u, v).

Theorem 2.29 (Existence of solution) Let Ω be a bounded set in Rd and let f be given in
(H−1(Ω))d. Then problem (2.43) has at least one solution u ∈ V .

Proof. For the proof of the existence, which is carried out using a Galerkin approximation,
we refer to Temam [107], .

In the following we shall investigate the uniqueness of a weak solution of the Navier–Stokes
problem.

Theorem 2.30 ([107], Chapter II, Section 1, Theorem 1.3) Suppose that d ≤ 4 and if µ is
sufficiently large or f sufficiently small, so that

µ2 > c(d)‖f‖V ′ (2.48)

then there exists a unique solution u of (2.43).
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2.5 The non stationary Navier–Stokes equations

In this section we are dealing with the mathematical setting of the non stationary and
incompressible Navier–Stokes equations in the two–dimensional case.

As in the case of the evolutionary Stokes problem, we denote by Q = Ω × (0, T ) the
space–time cylinder. Here, Ω is a Lispchitz open bounded domain in R2 and T < ∞ is a
given final time. Further, we set Σ = Γ× (0, T ).

To deal with the time derivative in the state equation, we introduce the common spaces
of functions y whose time derivative yt exist as abstract functions,

Xk(0, T ;V ) := {y ∈ L2(0, T ;V ) : yt ∈ Lk(0, T ;V ′)},
X(0, T ) := X2(0, T ;V ),

where k ∈ [1, 2]. Endowed with the norm

‖y‖Xk := ‖y‖Xk(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lk(V ′),

‖y‖X := ‖y‖X2 ,

these spaces are Banach spaces. Every function of X(0, T ) is equivalent to a function of
C([0, T ], H), and the imbedding X(0, T ) ⇀ C([0, T ], H) is continuos, see [3, 84].

An interesting property of the space X(0, T ) is the following Lemma.

Lemma 2.31 Let y ∈ X(0, T ) be given. Then it holds y ∈ (L4(Q))2 with ‖y‖4 ≤ c‖y‖X .

Proof. We known the following interpolation inequality proven in [107], for every y ∈ H1(Ω),
Ω ∈ Rd, d ≤ 4, it holds

‖y‖4 ≤ 21/4‖y‖1/2
2 ‖y‖

1/2
1,2 . (2.49)

Then, we obtain

‖y‖4
4 =

∫ T

0

∫
Ω

|y(x, t)|4dxdt ≤ 2

∫ T

0

|y(t)|2H |y(t)|2V dt ≤ 2‖y‖2
L∞‖y‖2

L2(V ).

We observe that the claim remains true for y ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), since we did not
use any regularity of the time derivative.

We introduce the following spaces of abstract functions in the Lp–context:

X2,1
p := {y ∈ Lp(0, T ; (W 2,p(Ω))2) ∩ Vp : yt ∈ Lp(0, T ; (Lp(Ω))2)}. (2.50)

We abbreviate H2,1 = X2,1
2 , for p = 2. The space H2,1 is continuously imbedded in

C([0, T ];V ), see Lions and Magenes [84].
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Now, we are ready to investigate the non stationary Navier–Stokes equations. Given
f ∈ L2(0, T ; (L2(Ω))2) and u0 ∈ H, we are looking for solutions of the system

ut − µ∆u+ (u · ∇)u+∇p = f , in Q,
div u = 0 , in Q,

u = 0 , on Σ,
u(0) = u0 , in Ω.

(2.51)

As in the previous section, let us assume there is a classical solution, say y ∈ C2([0, T ]; (C2(Ω))2)
and p ∈ C1([0, T ];C1(Ω)) satisfying system (2.51). If v belongs to V , we obtain that

(ut, v)2 + µ(u, v)V + b(u, u, v) = 〈f, v〉V ′,V , ∀t ∈ (0, T ). (2.52)

Equation (2.52) suggests the following weak formulation of the problem (2.51) which is
due to Leray.

For given f ∈ L2(0, T ;V ′) and u0 ∈ H, find a solution u ∈ L2(0, T ;V ) with ut ∈
L2(0, T ;V ′) that fulfills

〈ut(t), v〉V ′,V + µ(u(t), v)V + b(u(t), u(t), v) = 〈f, v〉 , ∀v ∈ V, a.e. on (0, T ), (2.53)

u(0) = u0. (2.54)

We observe that the condition (2.54) makes sense, because it is well known the embedding
X(0, T ) ↪→ C([0, T ];H). For our proposes, we want to give an equivalent formulation as
an equation in function space. To this aim, we introduce the linear continuous operator
A : L2(0, T ;V )→ L2(0, T ;V ′) for u, v ∈ L2(0, T ;V ) by

〈Au, v〉L2(V ′),L2(V ) =

∫ T

0

〈(Au)(t), v(t)〉V ′,V dt

=

∫ T

0

(u(t), v(t))V dt =

∫ T

0

∇u(t) · ∇v(t)dt

and a nonlinear operator B : X(0, T )→ L2(0, T ;V ′) for u ∈ X(0, T ), w ∈ L2(0, T ;V ′) by

〈B(u), w〉L2(V ′),L2(V ) =

∫ T

0

〈(B(u))(t), w(t)〉V ′,V dt =

∫ T

0

b(u(t), u(t), w(t))dt.

The operator B is a bounded mapping from X(0, T ) into L2(0, T ;V ′).

Lemma 2.32 ([112], Chapter I) For all y ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) it holds B(y) ∈
L2(0, T ;V ′).

Then, we can transformed the system (2.53)–(2.54) to an operator equation.

Definition 2.33 Let f ∈ L2(0, T ;V ′) and u0 ∈ H be given. A function u ∈ L2(0, T ;V ) with
ut ∈ L2(0, T ;V ′) is called weak solution of (2.51) if it fulfills

ut + µAu+B(u) = f in L2(0, T ;V ′), (2.55)

u(0) = u0 in H. (2.56)
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In [112], the author prove that the weak formulation (2.53)–(2.54) and (2.55)–(2.56) are
equivalent problems. Using this fact, in the sequel, we will work with the second and more
handy definition of a weak solution (2.55)–(2.56). We will restrict our considerations to the
spatial two–dimensional case. Here, results concerning the solvability of (2.55)–(2.56) are
standars, for example see [59, 107] for proofs and further details. The next result concerning
the existence and uniqueness of solution to (2.55)–(2.56) is only valid for two–dimensional
domains.

Theorem 2.34 ([107], Chapter III, Section 2) Let Ω be a bounded Lipschitz domain in R2.
Then, for every f ∈ L2(0, T ;V ′) and u0 ∈ H, the equation (2.55)–(2.56) has a unique solution
u ∈ X(0, T ). Moreover, the mapping (u0, f) 7→ u is locally Lispchitz from L2(0, T ;V ′) × H
into X(0, T ).

With respect to the more regular solutions, we have the following result.

Theorem 2.35 Let u0 ∈ V and f ∈ L2(0, T ; (L2(Ω))2) be given. Then the weak solution of
(2.55)–(2.56) fulfills

u ∈ L2(0, T ; (H2(Ω))2) ∩ L∞(0, T ;V ) , ut ∈ L2(0, T ;H).

2.6 Linearized Navier–Stokes equations

We will need in the following some results about the linearized equations. In the literature,
this problem is so–caled Oseen equation, and in the Barbu’s book [25] is called Stokes–Oseen
equation. We refer the reader to the extensive survey [25, 57] and references therein.

Given a state u ∈ (H2(Ω))2 ∩ V , solution of the steady Navier–Stokes problem (2.43),
we consider the linearized Navier–Stokes equation around the state u. Namely, we consider
u = u+w, where u is the solution of the evolutionary Navier–Stokes equation (2.55)-(2.56).
Then, we obtain

wt + µAw +B′(u)w = f in L2(0, T ;V ′), (2.57)

w(0) = w0 in H, (2.58)

where w0 = u0 − u. Here, B′(u)w denotes the Fréchet derivative of B with respect to the
state u. It is itself a functional of L2(0, T ;V ′), which for v ∈ L2(0, T ;V ) is given by

〈B′(u)w, v〉L2(V ′),L2(V ) =

∫ T

0

(b(u,w(t), v(t)) + b(w(t), u, v(t)))dt. (2.59)

Since B is of quadratic nature, its differentiability is a simple conclusion of the above
considerations.

Lemma 2.36 The operator B : X(0, T ) → L2(0, T ;V ′) is twice Fréchet differentiable. All
derivatives of third or higher order vanish. The first derivative is given by (2.59). It can be
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estimated as

‖B′(u)w‖L2(V ′) ≤ c‖u‖‖w‖X . (2.60)

Besides, let B′(y)∗ denote the adjoint of B′(y) for the duality between V and V ′, then we
have

〈B′(u)∗v, w〉 =

∫ T

0

[b(w(t), u, v(t))− b(u, v(t), w(t))]dt.

As for quadratic functions, the second derivative is independent of u:

〈B′′(u)[w1, w2], v〉L2(V ′),L2(V ) =

∫ T

0

(b(w1(t), w2(t), v(t)) + b(w2(t), w1(t), v(t)))dt. (2.61)

The proofs of the following existence and regularity results of solutions of the linearized
system are proven in [65].

Theorem 2.37 Let w0 ∈ H, f ∈ L2(0, T ;V ′), and u ∈ V be given. Then there ex-
ists a unique weak solution w ∈ X(0, T ) of (2.57)–(2.58). Moreover, if w0 ∈ V , f ∈
L2(0, T ; (L2(0, T ))2), and u ∈ (H2(Ω))2 ∩ V be given. Then the weak solution of (2.57)–
(2.58) satisfies also w ∈ H2,1.

Now, we give some properties for this equation. We define the Oseen operator A as

Av := −µP (∆v) + P [(y · ∇)v + (v · ∇)y], (2.62)

where P is the Leray projector.

This operator is closed and has the domain D(A) = D(A) = (H2(Ω))2 ∩ V , where A is
the Stokes operator defined at the beginning.

Assuming that the spaces are complex, we denote by ρ(A) the resolvent set of operator
A, namely, the set of λ ∈ C such that the resolvent operator

R(λ,A) ≡ (λI −A)−1

is defined and continuous. Here I is the identity operator. The complement of ρ(A) is called
the spectrum of the operator A and is denoted by Σ(A).

It is well known that for λ ∈ ρ(A), the resolvent of Oseen operator (2.62) is a compact
operator, and the spectrum Σ(A) consists of a discrete set of points. Moreover, Oseen
operator is sectorial.

Now, let us consider the adjoint operator A∗ to Oseen operator

A∗v := −µP (∆v)− P [(y · ∇)v − (∇y)Tv], (2.63)

where T denote the transpose of ∇y.
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Evidently, A∗ are the same properties than A. Namely, is closed with domain D(A∗) =
(H2(Ω))2 ∩ V . Moreover, A∗ is sectorial with a compact resolvent. Besides, we assume that
y ∈ (H2(Ω))2 ∩ V , then ρ(A) = ρ(A∗).

Let σ > 0 be a constant satisfying

Σ(A) ∩ {λ ∈ C : Reλ = σ} = ∅. (2.64)

Denote by X+
σ (A) the subspace of H generated by all eigenfunctions and associated func-

tions of operator A corresponding to all eigenvalues of A placed in the set {λ ∈ C : Reλ <
σ}. By X+

σ (A∗) we denote analogous subspace corresponding to adjoint operator A∗. We
denote the orthogonal complement to X∗σ(A∗) in H by Xσ. Then, we have the following
result of Fursikov [56].

Theorem 2.38 (see [56]) Suppose that A is the operator (2.62) and σ > 0 satisfies (2.64).
Then for each w0 ∈ Xσ we have

‖w(t, ·)‖V ≤ c‖w0‖V e−σt, for t ≥ 0. (2.65)
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Chapter 3

Size Estimates of an Obstacle in a
Stationary Stokes Fluid

3.1 Introduction

In this chapter we consider an obstacle D immersed in a region Ω ⊂ Rd (d = 2, 3) which is
filled with a viscous fluid. Then, the velocity vector u and the scalar pressure p of the fluid
in the presence of the obstacle D fulfill the following boundary value problem for the Stokes
system: 

−div (σ(u, p)) = 0 , in Ω \D,
div u = 0 , in Ω \D,

u = g , on ∂Ω,
u = 0 , on ∂D,

(3.1)

where σ(u, p) = 2µe(u) − pI is the stress tensor, e(u) = (∇u+∇uT )
2

is the strain tensor, I is
the identity matrix of order d× d, n denotes the exterior unit normal to ∂Ω and µ > 0 is the
kinematic viscosity. The condition u|∂D = 0 is the so called no-slip condition.

Given the boundary velocity g ∈ (H1/2(∂Ω))d satisfying the compatibility condition∫
∂Ω

g · n = 0,

we consider the solution of problem (3.1), (u, p) ∈ (H1(Ω\D))d×L2(Ω\D), and measure the
corresponding Cauchy force on ∂Ω, ψ = σ(u, p)n|∂Ω, in order to recover the obstacle D. Then,
it is well known that this inverse problem has a unique solution. In fact, in [16], the authors
prove uniqueness in the case of the steady-state and evolutionary Stokes system using unique
continuation property of solutions. By uniqueness we mean the following fact: if u1 and u2

are two solutions of (3.1) corresponding to a given boundary data g, for obstacles D1 and
D2 respectively, and we consider that the Cauchy forces satisfy σ(u1, p1)n = σ(u2, p2)n on
an open subset Γ0 ⊂ ∂Ω, then D1 = D2. Moreover, in [23], log− log type stability estimates
for the Hausdorff distance between the boundaries of two cavities in terms of the Cauchy
forces have been derived. Reconstruction algorithms for the detection of the obstacle have
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been proposed in [17], [36] and in [63]. The method used in [63] relies on the construction
of special complex geometrical optics solutions for the stationary Stokes equation with a
variable viscosity. In [17], the reconstruction algorithm released in a nonconvex optimization
algorithm (simulating annealing) for the reconstruction of parametric objects. In [36], the
detection algorithm is based on topological sensitivity and shape derivatives of a suitable
functional. We would like to mention that there hold log type stability estimates for the
Hausdorff distance between the boundaries of two cavities in terms of boundary data, also
in the case of conducting cavities and elastic cavities (see [6], [37] and [89]). These very
weak stability estimates reveal that the problem is severely ill posed limiting the possibility
of efficient reconstruction of the unknown object. The above problem motives the study or
the identification of partial information on the unknown obstacle D like, for example, the
size.

In literature we can find several results concerning the determination of inclusions or
cavities and the estimate of their sizes related to different kind of models. Without being
exhaustive, we quote some of them. For example in [73] and [74] the problem of estimating the
volume of inclusions is analyzed using a finite number of boundary measurements in electrical
impedance tomography. In [46], the authors prove uniqueness, stability and reconstruction
of an immersed obstacle in a system modeled by a linear wave equation. These results are
obtained applying the unique continuation property for the wave equation and in the two
dimensional case the inverse problem is transformed in a well-posed problem for a suitable cost
functional. We can also mention [63], in which it is analyzed the problem of reconstructing
obstacles inside a bounded domain filled with an incompressible fluid by means of special
complex geometrical optics solutions for the stationary Stokes equation.

Here we follow the approach introduced by Alessandrini et al. in [8] and in [88] and we
establish a quantitative estimate of the size of the obstacle D, i.e. |D|, in terms of suitable
boundary measurements. More precisely, let us denote by (u0, p0) ∈ (H1(Ω))d × L2(Ω) the
velocity vector of the fluid and the pressure in the absence of the obstacle D, namely the
solution to the Dirichlet problem

−div (σ(u0, p0)) = 0 , in Ω,
div u0 = 0 , in Ω,

u0 = g , on ∂Ω.
(3.2)

and let ψ0 = σ(u0, p0)n|∂Ω. We consider now the following quantities

W0 =

∫
∂Ω

g · ψ0 and W =

∫
∂Ω

g · ψ,

representing the measurements at our disposal. Observe that the following identities hold
true

W0 = 2

∫
Ω

|e(u0)|2 and W = 2

∫
Ω\D
|e(u)|2,

giving us the information on the total deformation of the fluid in the corresponding domains,
Ω and Ω\D. We will establish a quantitative estimate of the size of the obstacle D, |D|, in
terms of the difference W −W0. In order to accomplish this goal, we will follow the main
track of [8] and [88] applying fine interior regularity results, Poincaré type inequalities and
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quantitative estimates of unique continuation for solutions of the stationary Stokes system.
The plan of the chapter is as follows. In Section 3.2 we provide the rigorous formulations
of the direct problem and state the main results, Theorems 3.2-3.3. Section 3.3 is devoted
to some auxiliar results and to give the proofs of Theorems 3.2-3.3. In Section 3.4 we prove
Proposition 3.8 which deals with some estimates for the trace of the Cauchy force on the
boundary of the cavity D. Finally, in Section 3.5 we show some computational examples of
the behavior of the rate with respect to the shape and the size of the interior obstacle.

3.2 Main results

In this section we introduce some preliminary results we will use through the chapter and
we will state our main theorems. Let x ∈ Rd, we denote by Br(x) the ball in Rd centered
in x of radius r and B′r(0) the ball in Rd−1. In what follows we will consider the notation ·
for the scalar product between vectors in Rd, : for the inner product between matrices, and
⊗ for the tensorial product between vectors. We set x = (x1, . . . , xd) as x = (x′, xd), where
x′ = (x1, . . . , xd−1).

3.2.1 Preliminaries

In order to prove our main results we need the following a-priori assumptions on Ω, D and
the boundary data g.

(H1) Ω ⊂ Rd is a bounded domain with a connected boundary ∂Ω of Lipschitz class with
constants ρ0,M0. Further, there exists M1 > 0 such that

|Ω| ≤M1ρ
d
0. (3.3)

(H2) D ⊂ Ω is such that Ω \D is connected and it is strictly contained in Ω, that is there
exists a positive constant d0 such that

d(D, ∂Ω) ≥ d0 > 0. (3.4)

Moreover, D has a connected boundary ∂D of Lipschitz class with constants ρ, L.

(H3) D satisfies (H2) and the scale-invariant fatness condition with constant Q > 0, that is

diam(D) ≤ Qρ. (3.5)

(H4) The boundary condition g is such that

g ∈ (H1/2(∂Ω))d, g 6≡ 0,
‖g‖H1/2(∂Ω)

‖g‖L2(∂Ω)

≤ c0,

for a given constant c0 > 0, and satisfies the compatibility condition∫
∂Ω

g · n = 0.
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Also suppose that there exists a point P ∈ ∂Ω, such that,

g = 0 on ∂Ω ∩Bρ0(P ).

(H5) Since one measurement g is enough in order to detect the size of D, we choose g in
such a way that the corresponding solution u satisfies the following condition∫

∂Ω

σ(u, p)n = 0. (3.6)

(H6) There exists a constant h1 > 0, such that the fatness condition holds, namely

|Dh1| ≥
1

2
|D|. (3.7)

Concerning assumption (H5), the following result holds.

Proposition 3.1 There exists at least one function g satisfying (H4) and (H5).

Proof. Consider (d+ 1) linearly independent functions gi satisfying (H4), i = 1, . . . , d+ 1.

Let ∫
∂Ω

σ(ui, pi)n = vi ∈ Rd,

where (ui, pi) is the corresponding solution of (3.1) associated to gi, i = 1, . . . , d+ 1.

If, for some i, we have that vi = 0, then the result follows. So, assume that all the vi are
different from the null vector. Then, there exist some constants λi, with i = 1, . . . , d+ 1, not
all zero, such that

d+1∑
i=1

λivi = 0

and we can choose our Dirichlet boundary data as

g =
d+1∑
i=1

λigi.

Therefore, g satisfies (H4) and since the Cauchy force is linear with respect to the Dirichlet
boundary condition we have ∫

∂Ω

σ(u, p)n = 0,

where (u, p) is the corresponding solution to (3.1), associated to g.

With respect to these hypotheses, we make some remarks.

Observation Integrating the first equation of (3.1) on Ω \ D, applying the Divergence
Theorem and using (3.6), we obtain ∫

∂D

σ(u, p)n = 0. (3.8)
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Observation Notice that the constant ρ in (H2) already incorporates information on the
size of D. In fact, an easy computation shows that if D has a Lipschitz boundary class, with
positive constants ρ and L, then we have

|D| ≥ C(L)ρd.

Moreover, if also condition (H3) is satisfied, then it holds

|D| ≤ C(Q)ρd.

Then, it will be necessary to consider ρ as an unknown parameter while the constants L
and Q will be assumed as given pieces of a priori information on the unknown inclusion D.

Observation The fatness condition assumption (H6) is classic in the context of the size
estimates (see [10, 91]), and is satisfied when mild a priori regularity assumptions are made
on D. For instance, if D has a boundary of class C1,α, then there exists a constant h1 > 0,
such that (see [102])

|Dh1| ≥
1

2
|D|. (3.9)

where we set, for any A ⊂ Rd and h > 0,

Ah = {x ∈ A : d(x, ∂A) > h}.al

Observation The non-slip condition for viscous fluids establishes that, on the boundary of
the solid, the fluid has zero speed. The fluid velocity in any liquid-solid boundary is the
same as that of the solid surface. Conceptually, we can think that the molecules of the fluid
closest to the surface of the solid ”stick” to the molecules of the solid on which it flows. For
that reason, the condition g = 0, on ∂Ω ∩ Bρ0(P ), in the assumption (H4) is a congruent
hypothesis with the non-slip condition on the boundary data. On the other hand, in our
case this condition is also a technical assumption. This can be seen in the proof of the main
theorems (Section 3), where we need to use the classical Poincaré inequality and one result
of Ballerini [23] about the Lipschitz propagation of smallness.

Observation Condition (H5) is merely technic and it is used in the proof of Theorem
3.2. We can see that in the case where there is no obstacle in the interior, the condition
holds directly. Moreover, we mention that replacing the Dirichlet boundary condition by
σ(u, p)n = g, then assumption (H5) is straightforward, due to the compatibility condition.

3.2.2 Main results

Under the previous assumptions we consider the following boundary value problems. When
the obstacle D ⊂ Ω is present, the pair given by the velocity and the pressure of the fluid in
Ω \D is the weak solution (u, p) ∈ (H1(Ω \D))d × L2(Ω \D) to

−div (σ(u, p)) = 0 , in Ω \D,
div u = 0 , in Ω \D,

u = g , on ∂Ω,
u = 0 , on ∂D.

(3.10)

54



Then we can define the function ψ by

ψ = σ(u, p)n|∂Ω ∈ (H−1/2(∂Ω))d (3.11)

and the quantity

W =

∫
∂Ω

(σ(u, p)n) · u =

∫
∂Ω

ψ · g.

When the obstacle D is absent, we shall denote by (u0, p0) ∈ (H1(Ω))d × L2(Ω) the unique
weak solution to the Dirichlet problem

−div (σ(u0, p0)) = 0 , in Ω,
div u0 = 0 , in Ω,

u0 = g , on ∂Ω.
(3.12)

Let us define
ψ0 = σ(u0, p0)n|∂Ω ∈ (H−1/2(∂Ω))d, (3.13)

and

W0 =

∫
∂Ω

(σ(u0, p0)n) · u0 =

∫
∂Ω

ψ0 · g.

Our goal is to derive estimates of the size of D, |D|, in terms of W and W0.

Theorem 3.2 Assume (H1), (H4), (H5), (H6), and (3.4). Then, we obtain

|D| ≤ K

(
W −W0

W0

)
, (3.14)

where the constant K > 0 depends on Ω, d, d0, h1,M0,M1, and ‖g‖H1/2(∂Ω)/‖g‖L2(∂Ω).

Theorem 3.3 Assume (H1), (H2), (H3) and (H4). Then, it holds

C
(W −W0)2

WW0

≤ |D|, (3.15)

where C > 0 depends on |Ω|, d, d0, L, and Q.

Observation We expect that a similar result to the one obtained in Theorem 3.2 and 3.3
can be derived when we replace the Dirichet boundary data with

σ(u, p)n = g, on ∂Ω,

g satisfying suitable regularity assumptions and the compatibility condition∫
∂Ω

g = 0.

Observation In the work [13], the authors showed that the upper bound without assuming
a priori information on D, has the form

|D| ≤ K

(
W −W0

W0

)1/p

,
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where p > 1. The proof of this inequality is strongly based on the fact that the gradient of
the solution of the background conductivity problem, namely u0, is a Muckenhoupt weight,
[58]. Namely, for any r̃ > 0 there exists B > 0 and p > 1 such that(

1

|Br|

∫
Br

|∇u0|2
)(

1

|Br|

∫
Br

|∇u0|−
2
p−1

)p−1

≤ B,

for any ball Br such that B4r ⊂ Ωr̃. This estimate is based on the Caccioppoli inequality,
Poincaré–Sobolev inequality, and the called Doubling inequality. It is known that the Dou-
bling inequality holds for some classes of elliptic systems [11]. Unfortunately, as far as we
know, for the Stokes system the doubling inequality has not been proved. For instance, see
the paper by Lin, Uhlmann and Wang [82] where the authors explain that they were not able
to prove a doubling inequality for the Stokes systems, but only to derive a certain optimal
three spheres inequality, which is also a strong unique continuation property.

3.3 Proofs of the main theorems

The main idea of the proof of Theorem 3.2 is an application of a three spheres inequality.
In particular, we apply a result contained in [82] concerning the solutions to the following
Stokes systems {

−∆u+ A(x) · ∇u+B(x)u+∇p = 0 , in Ω,
div u = 0 , in Ω.

(3.16)

Indeed it holds:

Theorem 3.4 (Theorem 1.1 [82]) Consider 0 ≤ R0 ≤ 1 satisfying BR0(0) ⊂ Ω ⊂ Rd. Then,
there exists a positive number R̃ < 1, depending only on d, such that, if 0 < R1 < R2 < R3 ≤
R0 and R1/R3 < R2/R3 < R̃, we have∫

|x|<R2

|u|2dx ≤ C

(∫
|x|<R1

|u|2dx
)τ (∫

|x|<R3

|u|2dx
)1−τ

,

for (u, p) ∈ (H1(BR0(0)))d ×H1(BR0(0)) solution to (3.16). Here C > 0 depends on R2/R3,
d, and τ ∈ (0, 1) depends on R1/R3, R2/R3, d. Moreover, for fixed R2 and R3, the exponent
τ behaves like 1/(− logR1), when R1 is sufficiently small.

Based on this result, the following proposition holds:

Proposition 3.5 (Lipschitz propagation of smallness, Proposition 3.1 [23]) Let Ω satisfy
(H1) and g satisfies (H4). Let u be a solution to the problem

−div (σ(u0, p)) = 0 , in Ω,
div u0 = 0 , in Ω,

u0 = g , on ∂Ω.
(3.17)
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Then, there exists a constant s > 1, depending only on d and M0, such that for every r > 0
there exists a constant Cr > 0, such that for every x ∈ Ωsr, we have∫

Br(x)

|∇u0|2dx ≥ Cr

∫
Ω

|∇u0|2dx, (3.18)

where the constant Cr > 0 depends only on d,M0,M1, ρ0, r,
‖g‖H1/2(∂Ω)

‖g‖L2(∂Ω)

.

Following the ideas developed in [8], we establish a key variational inequality relating the
boundary data W −W0 with the L2 norm of the gradient of u0 inside the cavity D.

Lemma 3.6 Let u0 ∈ (H1(Ω))d be the solution to problem (3.12) and u ∈ (H1(Ω \D))d be
the solution to problem (3.10). Then, there exists a positive constant C = C(Ω) such that∫

D

|∇u0|2 ≤ C(W −W0) = C

∫
∂D

u0 · σ(u, p)n, (3.19)

where n denotes the exterior unit normal to ∂D.

Proof. Let (u, p) and (u0, p0) be the solutions to problems (3.10) and (3.12), respectively.
We multiply the first equation of (3.10) by u0 and after integrating by parts, we have∫

Ω\D
σ(u, p) : ∇u0 −

∫
∂Ω

(σ(u, p)n) · u0 +

∫
∂D

(σ(u, p)n) · u0 = 0, (3.20)

where n denotes either the exterior unit normal to ∂Ω or to ∂D.

In a similar way, multiplying the first equation of (3.12) by u0, we obtain∫
Ω

σ(u0, p0) : ∇u0 −
∫
∂Ω

(σ(u0, p0)n) · u0 = 0. (3.21)

Now, replacing ψ = σ(u, p)n|∂Ω and ψ0 = σ(u0, p0)n|∂Ω into the equations (3.20)-(3.21), we
get 

∫
Ω\D

σ(u, p) : ∇u0 −
∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · u0 = 0,∫
Ω

σ(u0, p0) : ∇u0 −
∫
∂Ω

ψ0 · g = 0.
(3.22)

Let us define

ũ(x) =

{
u if x ∈ Ω \D,
0 if x ∈ D.

Since u = 0 on ∂D, we have ũ ∈ (H1(Ω))d. So, multiplying (3.10) and (3.12) by ũ, we obtain

∫
Ω\D

σ(u, p) : ∇ũ−
∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · ũ︸ ︷︷ ︸
=0

= 0,

∫
Ω\D

σ(u0, p0) : ∇ũ−
∫
∂Ω

ψ0 · g = 0.

(3.23)
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Using that σ(u, p) = 2e(u)− pI, where e(u) = 1
2
(∇u+∇uT ), in the first equation of (3.22),

we have

0 =

∫
Ω\D

σ(u, p) : ∇u0 −
∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · u0

=

∫
Ω\D

(2e(u)− pI) : ∇u0 −
∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · u0

=

∫
Ω\D

2e(u) : ∇u0 −
∫

Ω\D
p(div u0)−

∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · u0

=

∫
Ω\D

2e(u) : ∇u0 −
∫
∂Ω

ψ · g +

∫
∂D

(σ(u, p)n) · u0,

where we use the fact that div u0 = 0. For the next step, we need a different expression for
the term e(u) : ∇u0. We claim that, for every v ∈ (H1(Ω))d such that div v = 0, we have
e(u) : ∇v = e(u) : e(v). Indeed,

2e(u) : ∇v =

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xj

+
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vj
∂xi

= e(u) : ∇v + e(u) : ∇vT = 2e(u) : e(v).

Therefore, equalities (3.22) and (3.23) can be rewritten as

2

∫
Ω\D

e(u) : e(u0)−
∫
∂Ω

ψ · g +

∫
∂D

u0 · (σ(u, p)n) = 0, (3.24)

2

∫
Ω

|e(u0)|2 −
∫
∂Ω

ψ0 · g = 0, (3.25)

2

∫
Ω\D
|e(u)|2 −

∫
∂Ω

ψ · g = 0, (3.26)

2

∫
Ω\D

e(u0) : e(u)−
∫
∂Ω

ψ0 · g = 0. (3.27)

We note that if we subtract (3.27) from (3.24) we get∫
∂Ω

(ψ − ψ0) · g =

∫
∂D

u0 · (σ(u, p)n). (3.28)

Now, let us consider the quadratic form∫
Ω

e(ũ− u0) : e(ũ− u0) =

∫
Ω

|e(u0)|2 +

∫
Ω\D
|e(u)|2 − 2

∫
Ω\D

e(u) : e(u0)

=
1

2

∫
∂Ω

ψ0 · g +
1

2

∫
∂Ω

ψ · g −
∫
∂Ω

ψ0 · g

=
1

2

∫
∂Ω

(ψ − ψ0) · g.

By Korn’s inequality there exists a constant C = C(Ω) > 0, such that∫
Ω

|∇(ũ− u0)|2 ≤ C

∫
Ω

|e(ũ− u0)|2.
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Finally, by the chain of inequalities∫
D

|∇u0|2 =

∫
D

|∇(ũ− u0)|2 ≤
∫

Ω

|∇(ũ− u0)|2

≤ C

∫
Ω

|e(ũ− u0)|2 = C

∫
∂Ω

(ψ − ψ0) · g = C(W −W0),

and (3.28) the claim follows.

Now, using the previous results, we are able to prove Theorem 3.2.

Proof. The proof is based on arguments similar to those used in [8] and [10]. Let us consider
the intermediate domain Ωd0/2. Recalling that d(D, ∂Ω) ≥ d0, we have d(D, ∂Ωd0/2) ≥ d0

2
. Let

ε = min
(
d0

2
, h1√

d

)
> 0. Let us cover the domain Dh1 with cubes Ql of side ε, for l = 1, . . . , N .

By the choice of ε, the cubes Ql are contained in D. Then,∫
D

|∇u0|2 ≥
∫
∪Nl=1Ql

|∇u0|2 ≥
|Dh1|
εd

∫
Ql

|∇u0|2, (3.29)

where l is chosen in such way that∫
Ql

|∇u0|2 = min
l

∫
Ql

|∇u0|2 > 0.

We observe that the previous minimum is strictly positive, in fact, if the minimum is zero,
then u0 would be constant in Ql. Thus, from the unique continuation property, u0 would be
constant in Ω and since there exists a point P ∈ ∂Ω, such that,

g = 0 on ∂Ω ∩Bρ0(P ),

we would have that u0 ≡ 0 in Ω, contradicting the fact that g is different from zero. Then,
the minimum is strictly positive.

Let x be the center of Ql. From the estimate (3.18) in Proposition 3.5 with x = x, r = ε
2
,

we deduce that ∫
Ql

|∇u0|2 ≥ C

∫
Ω

|∇u0|2. (3.30)

On account of Remark 3.2.1, we obtain∫
D

|∇u0|2 ≥
1
2
|D|
εd

C

∫
Ω

|∇u0|2 = |D|C ′
∫

Ω

|∇u0|2. (3.31)

We estimate the right hand side of (3.31). First, using (3.25) we have∫
∂Ω

ψ0 · g = 2
∫

Ω
|e(u0)|2 = 2

∫
Ω

|∇u0+∇uT0 |2
4

= 2
(∫

Ω

|∇u0|2+|∇uT0 |2+2∇u0:∇uT0
4

)
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Now, Hölder’s inequality implies ∫
∂Ω

ψ0 · g ≤ 2

∫
Ω

|∇u0|2. (3.32)

Then, coming back to (3.31), we obtain that there exists a constant K, depending on
Ω, d, d0, h1, ρ0,M0,M1, and ‖g‖H1/2(∂Ω)/‖g‖L2(∂Ω) such that∫

D

|∇u0|2 ≥ |D|K
∫
∂Ω

ψ0 · g. (3.33)

Combining (3.33) and Lemma 3.6 we have

C

∫
∂Ω

(ψ − ψ0) · g ≥
∫
D

|∇u0|2 ≥
(
K

∫
∂Ω

ψ0 · g
)
|D|. (3.34)

Therefore, we can conclude that

|D| ≤ K
W −W0

W0

,

where K̃ is a positive constant depending on Ω, d, d0, h1, ρ0,M0,M1, and ‖g‖H1/2(∂Ω)/‖g‖L2(∂Ω).

In order to prove Theorem 3.3, we make use of the following two propositions. The first
Proposition can be found in [8] and the second Proposition will be shown in the next section.

Proposition 3.7 (Poincaré type inequality, Proposition 3.2 [8]) Let D be a bounded domain
in Rd of Lipschitz class with constants ρ, L and such that (3.5) holds. Then, for every
u ∈ (H1(D))d we have ∫

∂D

|u− u∂D|2 ≤ C1ρ

∫
D

|∇u|2, (3.35)∫
D

|u− uD|2 ≤ C2ρ
2

∫
D

|∇u|2, (3.36)

where

u∂D =
1

|∂D|

∫
∂D

u and uD =
1

|D|

∫
D

u,

and the constants C1, C2 > 0 depend only on L,Q.

Proposition 3.8 Assume (H1), (H2), (H3) and (H4). The Cauchy force σ(u, p)n on ∂D
belongs to L2(∂D) and the following estimate holds:∫

∂D

|σ(u, p)n|2 ≤ C

min{ρ, 1}

∫
Ω\D
|∇u|2, (3.37)

where C > 0 only depends on |Ω|, L, Q and d0.

Using this results and Lemma 3.6, we can prove now Theorem 3.3.
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Proof. Let u0 be the following number

u0 =
1

|∂D|

∫
∂D

u0. (3.38)

Then, we deduce that∫
∂D

(σ(u, p)n) · u0 =

∫
∂D

(σ(u, p)n) · u0 −
∫
∂D

(σ(u, p)n)u0, (3.39)

because
∫
∂D
σ(u, p)n = 0. From equality (3.28) in Lemma 3.6, we have

W −W0 =

∫
∂D

(σ(u, p)n) · u0 =

∫
∂D

(σ(u, p)n) · (u0 − u0). (3.40)

Applying Hölder inequality in the right hand side of (3.40) we obtain

W −W0 ≤
(∫

∂D

|u0 − u0|2
)1/2(∫

∂D

|σ(u, p)n|2
)1/2

. (3.41)

Now, using Poincaré inequality (3.35) and inequality (3.37) on the right hand side of (3.41),
we get

W −W0 ≤ C

(∫
D

|∇u0|2
)1/2(∫

Ω\D
|∇u|2

)1/2

, (3.42)

where C > 0 depends on |Ω|, Q, L, and d0. The first integral on the right hand side of (3.42)
can be estimated as ∫

D

|∇u0|2 ≤ |D| sup
D
|∇u0|. (3.43)

Now, we need to give an interior estimate for the gradient of u0. We known that the
pressure is an harmonic function. This implies that each component of u0 is a biharmonic
function. Then, using interior regularity estimates for fourth order equations, we deduce that

sup
D
|∇u0| ≤ C‖u0‖L2(Ω), (3.44)

where the constant C depends on Q, |Ω| and d0. Estimate (5.30) can be obtained considering
the following results. We know that the embedding from H4(Ω) to Ck(Ω) is continuous for
0 ≤ k < 4− d

2
, with d = 2, 3. Then, in particular,

‖u0‖C1(D) ≤ C‖u0‖H4(D).

Moreover, from the interior regularity of fourth order equations, see [91, Th. 8.3], we obtain

‖u0‖H4(D) ≤ C‖u0‖H2(Ωd0/2).

Finally, considering the estimates in [21] and [29], we have

‖u0‖H2(Ωd0/2) ≤ C‖u0‖L2(Ωd0/4) ≤ C‖u0‖L2(Ω),

and (3.42) holds. We refer to [21, 26, 41], and references therein, for more details on interior
estimates for elliptic operators.
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As the boundary data g satisfies (H4), we use the classical Poincaré inequality and obtain

‖u0‖L2(Ω) ≤ C‖∇u0‖L2(Ω). (3.45)

Therefore, by means of the inequality

∫
Ω

|∇u0|2 ≤ C

∫
∂Ω

ψ0 · g, we deduce

(∫
D

|∇u0|2
)1/2

≤ C|D|1/2W 1/2
0 .

Now, concerning the second integral in (3.42), by (3.26), we get∫
Ω\D
|∇u|2 ≤ C

∫
Ω\D
|e(u)|2 ≤ CW. (3.46)

Therefore, it holds

C
(W −W0)2

WW0

≤ |D|,

where C depends on |Ω|, d, L, d0 and Q. This completes the proof.

Observation We note that the last inequality can be rewritten in the form

Cφ

(
W −W0

W0

)
≤ |D|,

where the function φ is given by

φ(t) =
t2

1− t
, ∀t ∈ [0, 1].

The previous expression is identical to the one obtained in [8].

3.4 Proof of Proposition 3.8

The proof closely follows the arguments of [8]. For technical reason, we introduce the following
notation. Given τ, L > 0, and a Lipschitz function ϕ : B2τ (0) ⊂ Rd−1 → R such that
ϕ(0) = 0, ‖ϕ‖C0,1(B2τ (0)) ≤ 2τL. We define for every t, with 0 < t ≤ 2τ , the following sets

C+
t := {x = (x′, xd) ∈ Rd : |x′| < t, ϕ(x′) < xd < Lt},

∆t := {x = (x′, xd) ∈ Rd : |x′| < t, xd = ϕ(x′)}.

Before proving Proposition 3.8, we need some auxiliary result.

We start by some algebraic formalisms associated with the Stokes system. Let us consider
the following family of coefficients, with δjk denoting the Kronecker symbol,

aαβjk := δjkδαβ + δjβδkα, 1 ≤ j, k, α, β ≤ d.
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We denote by A the fourth order tensor associated to the family of coefficients aαβjk , namely

A = (aαβjk ). Let B be any matrix in Rd. Adopting the summation convention over repeated
indices, we obtain that this tensor A applied on matrix B, component–wise, is

(AB)αj = aαβjk bkβ =
∑
k,β

δjkδαβbkβ +
∑
k,β

δjβδkαbkβ = bjα + bαj, 1 ≤ α, j ≤ d.

From the previous considerations, we can write the strain tensor e(u) = ∇u+∇uT
2

, for
u = (uβ)1≤β≤d, component–wise, as

(e(u))αj =
aαβjk ∂kuβ

2
=
∂αuk + ∂kuα

2
, 1 ≤ α, j ≤ d,

and in matrix form as
2e(u) = A∇u,

where ∇u is the Jacobian matrix associated to u. Then, the Stokes system in a domain
Ω ⊂ Rd can be written as

div (A∇u− qI) = 0, div u = 0, in Ω. (3.47)

From the previous computations, it follows that the α–th component of the normal deriva-
tive is

[(∇u)n]α =
∑
l

(∂luα)nl, 1 ≤ α ≤ d.

Then, the tangential component of the gradient of u, ∇Tu, can be expressed by

(∇Tu)αj = ∂juα −
∑
l

(∂luα)nlnj, 1 ≤ α, j ≤ d. (3.48)

Lemma 3.9 Let (u, q) ∈ (H3/2(C+
2τ ))

d × L2(C+
2τ ) such that div (σ(u, q)) ∈ L2(C+

2τ ) and
div u = 0 in C+

2τ . Then, there exists C > 0 such that∫
∂C+

2τ

(|∇u|2 + q2) ≤ C

∫
∂C+

2τ\∆2τ

|σ(u, q)n|2 + C

∫
∆2τ

|∇Tu|2 + C

∫
C+

2τ

|div (σ(u, q))||∇u|,

(3.49)

where we indicate by ∇Tu the tangential gradient of u (see (3.48)).

Proof. The proof is based on the Rellich’s identity for the Stokes system [30, 50] and elliptic
system [96] from which it holds, for any vector valued field f ∈ C∞(Rn),∫

C+
2τ

div (σ(u, q)) · ((∇u)f) =

∫
∂C+

2τ

σ(u, q)n · ((∇u)f)− 1

2

∫
∂C+

2τ

(f · n)|∇u|2

+
1

2

∫
C+

2τ

(div f)|∇u|2 +

∫
C+

2τ

q∂iuk∂kfi − ∂iuk(∂juk + ∂kuj)∂jfi. (3.50)
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More precisely, in Theorem 4.1 and Corollary 4.2 of [30] the authors studied a mixed
problem for the Stokes system and they established a technical estimate. This estimate
(where we have taken r = 1) implies in our particular case∫

∂C+
2τ

(|∇u|2 + q2) ≤ C

∫
∂C+

2τ\∆2τ

|σ(u, q)n|2 + C

∫
∆2τ

|∇Tu|2 + C

∫
C+

2τ

(|∇u|2 + q2)+

C

∫
C+

2τ

|div (σ(u, q))||∇u|.

Then, following the proof of Theorem 4.1 in [30] and choosing f = ed in the Rellich’s
identity (3.50), we obtain that any terms involving derivatives of f vanish. So that, as in
Corollary 4.2 in [30], we have∫

∂C+
2τ

(|∇u|2 + q2) ≤ C

∫
∂C+

2τ\∆2τ

|σ(u, q)n|2 + C

∫
∆2τ

|∇Tu|2 + C

∫
C+

2τ

|div (σ(u, q))||∇u|.

Proposition 3.10 Let (u, q) ∈ (H3/2(C+
2τ ))

d × L2(C+
2τ ) such that div (σ(u, q)) ∈ L2(C+

2τ ),
q = u = |∇u| = 0 on ∂C+

2τ \∆2τ , and div u = 0 in C+
2τ . Then, we have∫

∆τ

|σ(u, q)n|2 ≤ C

(∫
∆2τ

|∇Tu|2 +

∫
C+

2τ

(
|∇u|2 + |∇u||div (σ(u, q))|

))
, (3.51)

where the constant C > 0 only depends on L.

Proof. Using again the Rellich identity (3.50) with f = ed and recalling that q = u = |∇u| =
0 on ∂C+

2τ \∆2τ , u = (u1, . . . , ud) and n = (n1, . . . , nd), then we obtain∫
∆2τ

(
σ(u, q)n · (∂du)− 1

2
nd|∇u|2

)
=

∫
C+

2τ

div (σ(u, q)) · (∂du). (3.52)

Now, we express the matrix ∇u in terms on its tangential component ∇Tu and the Cauchy
forces σ(u, q)n. From (3.48), we have

(∇u)αj =
∑
l

(∂luα)nlnj +
∑
l

(∂αul)nlnj + (∇Tu)αj −
∑
l

(∂αul)nlnj.

Recalling that the tensorial product is denoted by ⊗, we obtain

∇u = (A∇u− qI)n⊗ n+∇Tu− (∇u− qI)Tn⊗ n.

Using the above expression we can write the scalar terms σ(u, q)n · (∂du) and 1
2
nd|∇u|2 as

σ(u, q)n · (∂du) = nd|σ(u, q)n|2 +
∑
j

(σ(u, q)n)j(∇Tu)jd−
∑
j

(σ(u, q)n)j((∇u−qI)Tn : n)jd

= nd|σ(u, q)n|2 + σ(u, q)n · (∇Tu)·d − σ(u, q)n · ((∇u− qI)Tn)·d, (3.53)
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and

1

2
nd|∇u|2 =

1

2
nd|σ(u, q)n|2 +

1

2
nd|∇Tu|2 +

1

2
nd|(∇u− qI)Tn|2+

nd

(
|[σ(u, q)n⊗n] : ∇Tu|+ |[σ(u, q)n⊗n] : [(∇u−qI)Tn⊗n]|+ |∇Tu : [(∇u−qI)Tn⊗n]|

)
(3.54)

Replacing (3.53) and (3.54) in (3.52), we obtain

1

2

∫
∆2τ

nd|σ(u, q)n|2 =

∫
∆2τ

(
1

2
nd|∇Tu|2 +

1

2
nd|(∇u− qI)Tn|2 +

1

2
nd|[σ(u, q)n⊗ n] : ∇Tu|

+
1

2
nd|[σ(u, q)n⊗ n] : [(∇u− qI)Tn⊗ n]|+ 1

2
nd|∇Tu : [(∇u− qI)Tn⊗ n]|+

σ(u, q)n · (∇Tu)·d − σ(u, q)n · ((∇u− qI)Tn)·d

)
+

∫
C+

2τ

div (σ(u, q)) · (∂du). (3.55)

Now, we apply the Young inequality with weight ε > 0, namely ab ≤ ε
2
a2 + 1

ε
b2, to the

last five terms on ∆2τ on the right hand side in (3.55). We obtain that

|[σ(u, q)n⊗ n] : ∇Tu| ≤
ε

2
|σ(u, q)n|2 +

1

2ε
|∇Tu|2 =

ε

2
|σ(u, q)n|2 + Cε|∇Tu|2,

|[σ(u, q)n⊗ n] : [(∇u− qI)Tn⊗ n]| ≤ ε

2
|σ(u, q)n|2 + Cε|(∇u− qI)Tn|2,

|∇Tu : [(∇u− qI)Tn⊗ n]| ≤ ε

2
|(∇u− qI)Tn|2 + Cε|∇Tu|2,

σ(u, q)n · (∇Tu)·d ≤
ε

2
|σ(u, q)n|2 + Cε|∇Tu|2,

−σ(u, q)n · ((∇u− qI)Tn)·d ≤ |σ(u, q)n · ((∇u− qI)Tn)·d|+
ε

2
|σ(u, q)n|2 + Cε|(∇u− qI)Tn|2.

This implies

1

2

∫
∆2τ

nd|σ(u, q)n|2 ≤ Cε

∫
∆2τ

(
|∇Tu|2 + |∇u|2 + q2

)
+ε

(
C

∫
∆2τ

(
|σ(u, q)n|2 + |∇u|2 + q2

))
+

∫
C+

2τ

div (σ(u, q)) · (∂du), (3.56)

where C > 0. From Lemma 3.9 and using the assumptions q = u = |∇u| = 0 on ∂C+
2τ \∆2τ ,

we obtain ∫
∆2τ

|∇u|2 + q2 ≤ C

∫
∆2τ

|∇Tu|2 + C

∫
C2τ

div (σ(u, q)) · (∂du). (3.57)
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Combining (3.56) and (3.57), and using the inequality |nd| ≥ 1√
1+L2 , then we derive

1

2
√

1 + L2

∫
∆2τ

|σ(u, q)n|2−ε
∫

∆2τ

|σ(u, q)n|2 ≤ Cε

(∫
∆2τ

|∇Tu|2 +

∫
C2τ

div (σ(u, q)) · (∂du)

)
+ ε

(
C

∫
∆2τ

|∇Tu|2 + C

∫
C2τ

div (σ(u, q)) · (∂du)

)
+

∫
C2τ

div (σ(u, q)) · (∂du).

Choosing ε > 0 small enough, we have∫
∆τ

|σ(u, q)n|2 ≤ C

(∫
∆2τ

|∇T (u)|2 +

∫
C+

2τ

(
|∇u|2 + |∇u||div (σ(u, q))|

))
,

where the constant C > 0 depends on L, and the proof is finished.

Proposition 3.11 Let (v, p) ∈ (H1(C+
2τ ))

d × L2(C+
2τ ) be the solution of the problem{

−div (σ(v, p)) = 0 , in C+
2τ ,

div v = 0 , in C+
2τ .

(3.58)

If v|∆2τ ∈ H1(∆2τ ), then σ(v, p)n ∈ L2(∆τ ) and∫
∆τ

|σ(v, p)n|2 ≤ C

[∫
∆2τ

|∇Tv|2 +

(
1 +

1

τ

)∫
C+

2τ

|∇v|2
]
, (3.59)

where the constant C > 0 only depends on L.

Proof. First, we assume that the function v is more regular, namely v ∈ H3/2(C+
2τ ). We

consider the following vector field cut–off function η = (η1, . . . , ηd) in Rd

ηi(x
′, xd) = ϕi(x

′)ψi(xd), ∀i = 1, . . . , d, div η = 0, (3.60)

where

ϕi ∈ C∞0 (Rd−1), ϕi(x
′) = 1 if |x′| ≤ τ, ϕi(x

′) = 0 if |x′| ≥ 3

2
τ, (3.61)

‖∇ϕi‖∞ ≤ C1τ
−1, ‖∇2ϕi‖∞ ≤ C1τ

−2, (3.62)

ψi ∈ C∞0 (R), ψi(xd) = 1 if |xd| ≤ τL, ψi(xd) = 0 if |xd| ≥
3

2
τL, (3.63)

‖∇ψi‖∞ ≤ C2τ
−1, ‖∇2ψi‖∞ ≤ C2τ

−2. (3.64)

Here C1 is an absolute constant and C2 is a constant only depending on L. For u =
(u1, . . . , ud) and c ∈ R, we consider the function

ui = ηi(vi − c), q = ηjp, i = 1, . . . , d, for some j ∈ {1, . . . , d}. (3.65)
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We note that if we take τ = t in Proposition 3.10, for every 3
4
τ < t < τ , we obtain that

|x′| ∈ (3
2
τ, 2τ). This implies ϕi = 0, for every i = 1, . . . , d. Then, the pair (u, q) satisfies the

hypotheses of Proposition 3.10, with τ = t, for every 3
4
τ < t < τ . Namely,∫

∆τ

|σ(u, q)n|2 ≤ C

(∫
∆2τ

|∇Tu|2 +

∫
C+

2τ

(
|∇u|2 + |∇u||div (σ(u, q))|

))
.

Recalling that (v, p) satisfies equation (3.58) and the definition of the cut–off function
(3.61)–(3.64), we obtain∫

∆t

|σ(v, p)n|2 ≤ C

(∫
∆2t

|∇Tv|2 +

(
1 +

1

t

)∫
C+

2t

[
(v − c)2

t2
+ |∇v|2

])
,

for every 3
4
τ < t < τ . Choosing the constant c such that

c =
1

|C+
2t|

∫
C+

2t

v,

and applying the Poincaré inequality (3.36), we obtain∫
∆t

|σ(v, p)n|2 ≤ C

(∫
∆2t

|∇Tv|2 +

(
1 +

1

t

)∫
C+

2t

|∇v|2
)
.

Then passing to the limit for t → τ , we deduce (3.59). We observe that the assumption
of the regularity on v is satisfied when ϕ ∈ C∞, by the regularity of the Stokes problem.

Now, given a Lipschitz function ϕ, let {ϕm}m be a sequence of C∞ equi–Lipschitz functions
with constant L, such that

ϕm(0) = 0, ϕm → ϕ uniformly,

∇ϕm → ∇ϕ in Lp, ∀p <∞, as m→∞.

Therefore, we have that (3.59) is valid when ϕ is replaced by ϕm, for every m.

For every m and for every t, with 0 < t ≤ 2τ , let us consider the following sets

C+
t,m := {x = (x′, xd) ∈ Rd : |x′| < t, ϕm(x′) < xd < Lt},

∆t,m := {x = (x′, xd) ∈ Rd : |x′| < t, xd = ϕm(x′)}.

Let (um, pm) ∈ (H1(C+
2τ ))

d × L2C+
2τ be the solution to the following Stokes problem

−div (σ(vm, pm)) = 0 , in C+
2τ ,

div vm = 0 , in C+
2τ ,

vm = v , on ∂C+
2τ .

(3.66)

Then, multiplying the first equation in (3.66) by vm and integrating by parts, we obtain∫
C+

2τ

σ(vm, pm) : ∇vm =

∫
∂C+

2τ

[σ(vm, pm)n]vm =

∫
∂C+

2τ

[σ(vm, pm)n]v =

∫
C+

2τ

σ(vm, pm) : ∇v.
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Equivalently, from (3.24) and the fact that div vm = 0, we deduce∫
C+

2τ

e(vm) : e(vm) =

∫
C+

2τ

e(vm) : e(v).

Therefore, e(vm) is a bounded sequence in L2(C+
2τ ) and∫

C+
2τ

|e(vm)|2 ≤ C

∫
C+

2τ

|e(v)|2, (3.67)

where C > 0. We note that (vm − v)|∂C+
2τ

= 0, then applying the Poincaré inequality to
vm − v and the Korn’s inequality, we deduce∫

C+
2τ

|vm − v|2 ≤ C

∫
C+

2τ

|∇vm|2 ≤ C

∫
C+

2τ

|e(vm)|2 ≤ C

∫
C+

2τ

|e(v)|2.

Namely, {vm}m is a bounded sequence in (H1(C+
2τ ))

d. Then, there exists a subsequence,
still denoted by vm, such that {vm}m converges weakly in (H1(C+

2τ ))
d to some function u ∈

(H1(C+
2τ ))

d. From estimate (2.21), we obtain that the sequence {pm}m also converges weakly
in L2(C+

2τ ) to some q ∈ L2(C+
2τ ). Besides, div vm = 0 in C+

2τ , for every m, and then we have
div u = 0 in C+

2τ . Recalling (3.66), for every ξ ∈ V = {f ∈ (H1
0 (C+

2τ ))
d : div f = 0}, and

using again (3.24), we obtain

−
∫
C+

2τ

div (σ(u, q)) · ξ =

∫
C+

2τ

σ(u, q) : ∇ξ −
∫
∂C+

2τ

σ(u, q)n · ξ =

∫
C+

2τ

e(u) : ∇ξ, (3.68)

and

0 = −
∫
C+

2τ

div (σ(vm, pm)) · ξ =

∫
C+

2τ

σ(vm, pm) : ∇ξ −
∫
∂C+

2τ

σ(vm, pm)n · ξ

=

∫
C+

2τ

e(vm) : ∇ξ. (3.69)

This implies

−
∫
C+

2τ

div (σ(u, q)) · ξ =

∫
C+

2τ

e(u) : ∇ξ −
∫
C+

2τ

e(vm) : ∇ξ =

∫
C+

2τ

e(u− vm) : ∇ξ. (3.70)

From the weak convergence in (H1(C+
2τ ))

d of {vm}m to u, we obtain that the right hand
side of (3.70) converges to zero, as m tends to infinity, for every ξ ∈ V . Then, (u, q) is a
weak solution to {

−div (σ(u, q)) = 0 , in C+
2τ ,

div u = 0 , in C+
2τ .

On the other hand, on account of the trace Theorem we have vm ⇀ u weakly in (H1/2(∂C+
2τ ))

d.
So that vm = v on ∂C+

2τ implies u = v on ∂C+
2τ . From the uniqueness of the solution to the

Stokes problem we obtain that u = v and q = p in C+
2τ . Therefore, we get

vm ⇀ v weakly in (H1(C+
2τ ))

d,
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and, by compactness,
vm → v in (L2(C+

2τ ))
d.

Now, as noticed before, the equation (3.59) holds for v = vm and p = pm, then∫
∆τ

|σ(vm, pm)n|2 ≤ C

(∫
∆2τ

|∇Tvm|2 +

(
1 +

1

τ

)∫
C+

2τ

|∇vm|2
)
, (3.71)

where C > 0 is independent of m. We observe that v = vm on ∆2τ , ∇Tv ∈ (L2(∆2τ ))
d by

hypotheses. So that, using the equation (3.67) we deduce∫
∆τ

|σ(vm, pm)n|2 ≤ C,

where C > 0 is independent of m. Hence, up to asubsequence, σ(vm, pm)n converges weakly
in (L2(∆τ ))

d to some h ∈ (L2(∆τ ))
d. On the other hand, let us take any ξ ∈ Ṽ = {f ∈

(H1(C2τ ))
d : div f = 0}. Using (3.24), it follows

0 =

∫
C+

2τ

σ(vm, pm) : ∇ξ −
∫
∂C+

2τ

σ(vm, pm)n · ξ, 0 =

∫
C+

2τ

σ(v, p) : ∇ξ −
∫
∂C+

2τ

σ(v, p)n · ξ.

Therefore, ∫
∂C+

2τ

σ(vm, pm)n · ξ −
∫
∂C+

2τ

σ(v, p)n · ξ =

∫
C+

2τ

e(vm − v) : ∇ξ,

and the last integral converges to zero, as m tends to infinity. Namely,

σ(vm, pm)n ⇀ σ(v, p)n weakly in (L2(∂C+
2τ ))

d. (3.72)

Finally, we obtain σ(v, p)n = h ∈ (L2(∆τ )). Then, by definition

‖σ(v, p)n‖L2(∆τ ) ≤ lim inf
m→∞

‖σ(vm, pm)n‖L2(∆τ ).

On account of (3.67) and (3.71), we deduce (3.37).

Using the previous result, we are able to prove the Proposition 3.8.

Proof. First, assume that ρ < d0. Let us cover ∂D with internally nonoverlapping closed
cubes Qj, j = 1, . . . , J , with side ρ̃ = γ(L)ρ, where γ(L) = min{1,L}

2
√
d
√

1+L2 . From the result of [8],

we have

J ≤ C
|D|
ρd
≤ CQd, (3.73)

where C > 0 only depends on L. For every j = 1, . . . , J there exists x0 ∈ ∂D ∩Qj such that
Qj ∩ (Ω \D) ⊂ C+

ρ , where ρ = ρ

2
√

1+L2 and C+
t = {y = (y′, yd) ∈ Rd : |y′| < t ϕ(y′) < yd <
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tL}, for every t, with 0 < t ≤ 2ρ. In this case, ϕ is a Lipschitz function in B2ρ(0) ⊂ Rd−1

satisfying ϕ(0) = 0 and ‖ϕ‖C0,1(B2ρ(0)) ≤ 2ρL, representing locally the boundary of D in a
suitable coordinate system y = (y1, . . . , yd), y = Rx, with R an orthogonal transformation
and x = (x1, . . . , xd) the reference coordinate system. We note that from (3.47), the functions
u ∈ (H1(Ω \D))d, p ∈ L2(Ω \D) satisfies

−div (σ̃(u, p)) = 0, in C+
2ρ,

where σ̃(u, p) = (RA(RT∇u)RT − RpIRT ). We have that u = 0 on ∂D, then applying
equation (3.59) with τ = ρ, we obtain

∫
∂D∩Qj

|σ(u, p)|2 ≤ C

(
1 +

1

ρ

)∫
C+

2ρ

|∇u|2,

where C > 0 only depends on L. Following the same arguments as in the proof of Proposition
3.3 in [8], we deduce (3.37).

3.5 Computational examples

In this section we will perform some numerical experiments to compute |W−W0

W0
| for classes

of cavities for which our result holds. In particular, we expect to collect numerical evidence
that the ratio between |D|

|Ω| and |W−W0

W0
| is bounded from below and above by two constants,

representing the ones appearing in our estimates.

Moreover, we are interested in studying the dependence of this ratio on d0, which bounds
from below the distance of D from ∂Ω, and the size of the inclusions.

A more systematic analysis would require the knowledge of explicit solutions u and u0.
This would allow to compute analytically the constants in the upper and lower bounds, at
least for some particular geometries. On the contrary to the case in [8], for the Stokes system
it is difficult to find explicit solutions.

For the experiments we use the free software FreeFem++ (see [61]). Moreover, in all
numerical tests we consider a square domain Ω, discretized with a mesh of 100×100 elements,
and with boundary condition u|∂Ω = g as in Figure 3.1. The datum g satisfies the assumptions
(H4) and (H5).
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Figure 3.1: Square domain in 2-D with boundary condition g.

The first series of numerical tests has been performed by varying the position and the size
of a circle inclusion D with volume up to 8% of the total size of the domain. In particular,
we consider a circle inclusion with volume 0.2%, 3.1% and 7.1% with respect to |Ω|. We have
placed these circles in eight different positions, see Figure 3.2. The results are collected in
Figure 3.3, 3.4 and 3.5, for different values of the distance d0 between the object D and the
boundary of Ω. Also, the averages of all this simulations are collected in Figure 3.6.

Figure 3.2: The eight positions of the circle inclusion D.

In order to compare our numerical results with the theoretical upper and lower bounds
(3.14) and (3.15), it is interesting to study the relationship between |D|

|Ω| and |W−W0

W0
|. As

we expected from the theory, the points (W−W0

W0
, |D||Ω| ) are confined inside an angular sector

delimited by two straight lines.
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Figure 3.3: Case d0 = 5 for circle inclusion.
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Figure 3.4: Case d0 = 3 for circle inclusion.
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Figure 3.5: Case d0 = 2 for circle inclusion.
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Figure 3.6: Averages of the ratio W−W0

W0
with different d0 for circle inclusion.

However, it is quite clear that when d0 decreases, then the lower bound becomes worse.
To illustrate this situation, we simulate also the case when the distance is d0 = 1, see Figure
3.7.
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Figure 3.7: Case d0 = 1 for circle inclusion.

As a second class of experiments, we consider what happens when the size of the circle
increases. In this case we can observe that the number |W−W0

W0
| grows rapidly when the volume

occupies almost the entire domain. The result is collected in Figure 3.8.

Again it is observed the relationship between the volume of the object with the quotient
(W −W0)/W0. This gives us an indication that the estimates found in Theorems 3.2 and 3.3
involve constants that do not depend on the inclusion.
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Figure 3.8: Influence of the size of the circle.

Observation From the previous analysis an interesting problem would be to find optimal
lower and upper bounds for this model. Another interesting issue would be to weaken the
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a-priori assumptions imposed on the obstacle, as for example the fatness condition (see, for
instance, [13, 43], where this restriction is removed in the case of the conductivity and shallow
shell equations, respectively).
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Chapter 4

Turnpike Property for
Two–Dimensional Navier–Stokes
Equations

4.1 Introduction

In this chapter, we are dealing with optimal control problem of the incompressible Navier-
Stokes equations in two dimensions, both evolutionary and stationary problem. We try
to understand what is the relationship between the optimal solution of the nonstationary
and the stationary problem, when the times goes to infinity. Specifically, we want to know
the conditions under which the nonstationary optimal control and state converges to the
stationary optimal control and state, respectively.

We consider two cases, when the controls are dependent on time and the case where are
independent on time. In both cases the optimal control problem consists in minimizing a
functional involving both the control and the measure of the difference between the state and
a desired stationary state, and terminal constraint. Then, the main idea of this chapter is to
prove that the optimal controls achieve to get the target state and remains on this situation
most of the time.

In the first case, we establish a result of exponential convergence of the optimality systems
associated to the Navier-Stokes equations. We prove, see Theorem 4.9 in Section 3.2, under
some appropriate smallness conditions of the optimal solutions for the stationary problem,
that both optimal evolutionary state and control converge to the respective optimal stationary
control and state in a local sense with an exponential rate.

For the second case, as we consider time-independent controls, using the Γ-convergence
we prove that the accumulation point of a sequence of controls for the evolutionary optimal
control problem is an optimal control for the stationary problem, see Theorem 4.11 in Section
3.3. In this case, we need to ensure the exponential stabilization of the solution of the
nonstationary Navier-Stokes problem to the solution of the stationary Navier-Stokes equation,
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under some smallness condition.

The smallness condition for the optimal state of the stationary equations is because it
is well known that the solution of the stationary Navier-Stokes system is unique when the
viscosity is large enough with respect to the right hand side [107]. If we remove this condition
we need to work with solutions for which the equation is locally unique. These solutions are
called nonsingular solutions, see, for instance, Casas et al. [35].

The study of this type of relationship is commonly used in many models of the fluid
mechanics, where the stationary model is considered instead of the evolutionary system.
Namely, the underlying idea is that when the time horizon is large enough, the evolutionary
optimal control are sufficiently close to the stationary optimal control.

For example, in aeronautics most of the techniques to solve shape optimization are based
on stationary models. In that case, is assumed or understood that the optimal shape is
close enough to the evolutionary optimal shape, see, for instance, [66]. There are no results
justifying such assumptions, specially for models from the fluids mechanics, as the Navier-
Stokes or Euler equations (see [72]).

A recent answer to this problem is given in [98]. The authors examined such questions in
the context of linear control problems both in the finite dimensional case as infinite dimen-
sional systems, including the linear heat and wave equations. They proved, under suitable
observability and controllability assumptions, that optimal controls and state converge expo-
nentially when the time is sufficiently large, to the corresponding stationary case. Porretta
and Zuazua in [98] mentioned that this type of property in the economy field, specifically in
econometry, is known as the turnpike property, concept introduced by P. Samuelson. In [108],
the authors proved the turnpike property in the case of nonlinear optimal control problem in
the finite-dimensional case.

Also, this type of approach can be observed in optimal design. We mention [15], where
the autohrs proved that when the time tends to infinity, the optimal design of coefficients
of parabolic dynamics converge to those of the elliptic steady state problem. This approach
use the classical Γ-convergence, because they consider coefficients which are independent of
time.

In this work, we consider the Navier-Stokes equations in two dimensions. Navier-Stokes
equations are useful because they describe the physics of many things of scientific and en-
gineering interest. They may be used to model the weather, ocean currents, water flow in
a pipe and air flow around a wing. The Navier-Stokes system in their full and simplified
forms help with the design of aircraft and cars, the study of blood flow, the design of power
stations, the analysis of pollution, among others.

It is well known that in the three-dimensional cases there are many open problems con-
nected with smoothness and uniqueness of weak solutions, both nonstationary as stationary
models. Hence, in this chapter we restrict our attention to the two-dimensional case. In
particular, we consider incompressible and newtonian fluids. Namely, the density remains
constant within a parcel of fluid that moves with the flow velocity and constant viscosity,
respectively. Obviously, the next step is consider both Euler as Navier-Stokes equations for
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compressible and viscous fluids. This type of fluids are more realistic in the field of aeronautic
(see [71]), but this models could be much more complex.

The literature of optimal control problem for the Navier-Stokes equations are very exten-
sive. We mention the work of [2] for evolution optimal control problems in fluids mechanics
in the case of two-dimensional flows. Also, the PhD thesis [64] and [112] for Navier-Stokes
equations. In the stationary case, we refer [1] and [45], and the references therein.

Since the main result of this chapter is in a local sense, for technical reasons, we need some
properties about the linearized Navier-Stokes equations. This equation is known as Oseen
equation or Stokes-Oseen equation. The importance of this equation for the study of the
Navier-Stokes system is fundamental, specially for the feedback stabilization of the Navier-
Stokes problem around an unstable stationary solution, see [24, 55, 56, 100]. In our case, the
Oseen equation is fundamental to obtain a positive response on the turnpike property for the
Navier-Stokes problem.

The outline of the chapter is a follows. In Section 4.2 we formulate the optimal control
problem for both nonstationary problem and stationary, and present existence results, first
order necessary and second order conditions. In Section 4.3, we state and prove the main
result of the chapter, see Theorem 4.9. Finally, in Section 4.4, we prove a turnpike property
in the special case when the controls are independent of time.

4.2 Optimal control problem and existence of solutions

In this section we introduce the optimal control problem for the evolutionary and stationary
Navier-Stokes problem in two dimensions. We show the existence of optimal solution and
state the theorems about the first-order optimality conditions. Besides, we prove that, in the
case when the tracking term is sufficiently small, the second derivative of the functional to
minimize is positive definite.

4.2.1 Evolutionary optimal control for Navier-Stokes equations

We recall that our analysis is in two dimension. In this case, the relation between the control
and the state is differentiable, which simplifies the analysis for the optimality conditions
(see below the Lemmas 4.2 and 4.3). For the three-dimensional case is more complicated
to derive some optimality conditions. A possibility, as in [33], is to work with the so-called
strong solutions of the Navier-Stokes problem. This type of solution is well known, see, for
instance, [29] Chapter V.2. The advantage of these solutions is that the uniqueness is known,
but the existence is still an open problem.

Firstly, we remember the nonstationary Navier-Stokes equations in two–dimension. Given
T > 0, we denote ΩT = Ω× (0, T ) and ΓT = ∂Ω× (0, T ). Under the framework introduced
in the Chapter 1, we consider the incompressible Navier-Stokes problem
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yt − µ∆y + (y · ∇)y +∇p = u , in QT ,

div y = 0 , in QT ,
y = 0 , on ΓT ,

y(x, 0) = y0(x) , x ∈ Ω,

(4.1)

where the forcing term (control) u belongs to L2(0, T ;H), the initial data y0 belongs to H,
and the kinematic viscosity µ > 0.

The Navier-Stokes equations (4.1) in QT can be written under the following form, following
the ideas in Chapter 2.{

dy(t)

dt
+ µAy(t) +By(t) = u(t) , t ≤ 0,

y(0) = 0 .
(4.2)

Let us introduce the optimal control tracking-type problem of the evolutionary Navier-
Stokes equations:

find uT ∈ L2(0, T ;H), yT is the solution of (4.2) associated to uT , minimizing the func-
tional

JT (u) =
1

2

∫ T

0

‖y(t)− xd‖2
L2(Ω)dt+

k

2

∫ T

0

‖u(t)‖2
L2(Ω)dt+ q0 · y(T ), (4.3)

where xd ∈ (L2(Ω))2 is desired state, q0 ∈ (L2(Ω))2 and k > 0 is a constant.

Let us remark that the controls u can act on all domain QT or on a subset of QT .

We observe that the problem (4.3) is a nonconvex optimization problem because the
solution mapping u 7→ yu is nonlinear. But we show that if the tracking term, ‖y(t)−xd‖L2(Ω),
is sufficiently small, then the Hessian of JT is positive definite.

Theorem 4.1 Let y0 ∈ V . There exists at least an element uT ∈ L2(0, T ;H), and yT ∈
C([0, T ];V ) ∩ L2(0, T ; (H2(Ω))2) such that the functional JT (u) attains its minimum at uT ,
and yT is the solution of (4.1) associated to uT .

Proof. The functional JT is bounded from below. Hence, there exists the infimum of JT .
Moreover, let us take a minimizing sequence (yn, un). Since

k

2

∫ T

0

‖un‖L2(Ω)dt ≤ JT (un) <∞,

we deduce that (un) is bounded in L2(0, T ;H) and, consequently, (yn) is bounded in
C([0, T ];V ) ∩ L2(0, T ; (H2(Ω))2) as well. Therefore, we can extract a subsequence, denoted
in the same way, converging weakly in L2(0, T ; (H2(Ω))2)× L2(0, T ;H) to (y∗, u∗).

Now, we need to prove that the pair (y∗, u∗) satisfies the equation (4.1). The only problem
is to pass to the limit in the nonlinear term (yn · ∇)yn. By the result in Chapter III in [107],
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we obtain a compactness property, this implies that yn → y∗ strongly in L2(0, T ;H). By
Lemma 3.2 Chapter III in [107], we obtain that

b(yn, yn, v)→ b(y∗y∗, v), as n→∞.

Then, taking into account the linearity and continuity of the other terms involved, the
limit (y∗, u∗) satisfies the state equations.

Finally, the objective functional consists of several norms, thus it is weakly semicontinuous
which implies

JT (u∗) ≤ lim inf JT (un) = inf JT (u).

Therefore, u∗ is an optimal solution, with y∗ the solution of (4.1) associated to u∗.

First-Order necessary optimality conditions

We now proceed to derive the first-order optimality conditions associated with the problem
(4.3). This is done by studying the Gâteaux derivative of the functional JT (u).

We will need, in the following, some results about the so-called control-to-state mapping.
The next two lemmas can be found in [2].

Lemma 4.2 Let y0 be in V . The mapping u 7→ yu, from L2(0, T ;H) into L2(0, T ;V ), has a
Gâteaux derivative ((Dyu

Du
) ·h) in every direction h1 in L2(0, T ;H). Furthermore, (Dyu

Du
) ·h1 =

w(h1) is the solution of the linearized problem{
dw

dt
+ µAw +B′(yu) · w = h1 , t ≤ 0,

w(0) = 0 .
(4.4)

Finally, w is in L∞(0, T ;V ) ∩ L2(0, T ; (H2(Ω))2) and ‖B′(yu)w‖L2(V ′) ≤ c‖yu‖‖w‖.

Lemma 4.3 Let h1 be given in L2(0, T ;H), and let w(h1) be defined as above. Then, for
every h2 in L2(0, T ;H) we have∫∫

QT

(h2 · w(h1))(x, t)dxdt =

∫∫
QT

(w̃(h2) · h1)(x, t)dxdt,

where w̃(h2) is the solution of the adjoint linearized problem{
−dw̃
dt

+ µAw̃ +B′(yu)
∗ · w̃ = h2 , t ≤ 0,

w̃(T ) = 0 .
(4.5)
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Observation Writing systems (4.4) and (4.5) in a extended way, it is possible to express w
and w̃ as the respective solutions of the following equations:

wt − µ∆w + (yu · ∇)w + (w · ∇)yu +∇p = h1 , in QT ,
div w = 0 , in QT ,

w = 0 , on ΓT ,
w(x, 0) = 0 , x ∈ Ω,

(4.6)

and 
−w̃t − µ∆w̃ + (∇yu)T w̃ − (yu · ∇)w̃ +∇p̃ = h2 , in QT ,

div w̃ = 0 , in QT ,
w̃ = 0 , on ΓT ,

w̃(x, T ) = 0 , x ∈ Ω.

(4.7)

Using the last two Lemmas, Abergel and Temam [2] prove the following first-order opti-
mality condition for the optimal control problem (4.3). The proof can be obtained by the
usual approach.

Theorem 4.4 (see [2]) Let (yT , uT ) be an optimal pair for problem (4.3). The following
equality holds

uT + q = 0,

where q is the adjoint state that is the solution of the linearized adjoint problem
−qt − µ∆q + (∇yT )T q − (yT · ∇)q +∇p̃ = yT − xd , in QT ,

div q = 0 , in QT ,
q = 0 , on ΓT ,

q(x, T ) = q0 , x ∈ Ω.

(4.8)

Moreover, uT is in L∞(0, T ;V ) ∩ L2(0, T ; (H2(Ω))2).

Second order conditions

In the following result we assert positive definiteness of the Hessian provided that ‖y −
xd‖L2(0,T ;V ) is sufficiently small, a condition which is applicable to tracking type problems.

We observe that in [99] the authors proved that the functional to minimize is also positive
definite at least when the target and the initial data are small enough.

Theorem 4.5 If ‖y − xd‖L2(0,T ;V ) is sufficiently small, then the Hessian JT (u)′′ is positive
definite.

Proof. By Chapter 2 of [64], we have that the second Gâteaux derivative of JT is given by

JT (u)′′v2 =

∫∫
QT

|yv|2dxdt+

∫∫
QT

|v|2dxdt− 2

∫∫
QT

(yv · ∇)yv · qudxdt, (4.9)
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where yv is the solution of the linearized equation{
dyv
dt

+ µAyv +B′(yu) · yv = v , t ≤ 0,

v(0) = 0 ,
(4.10)

in the direction v, and qu the solution of the adjoint linearized problem{
−dqu
dt

+ µAqu +B′(yu)
∗ · qu = yu − xd , t ≤ 0,

qu(T ) = q0 .
(4.11)

Since B is of quadratic nature, we have that the second derivative of B is given by

B′′(y)y2
v = B′(yv)yv = 2B(yv).

Besides, we known that

‖B′(yv)yv‖L2(0,T ;V ′) ≤ C‖yv‖2
L2(0,T ;V ).

Moreover, the solution of the linearized equation (4.19) satisfy

‖yv‖L2(0,T ;V ) ≤ C‖v‖L2(0,T ;V ).

For the adjoint linearized problem (4.11) we obtain that

‖qu‖L2(0,T ;V ) ≤ C‖yu − xd‖L2(0,T ;V ).

Then, we conclude that the second derivative of JT can be estimated as

JT (u)′′v2 ≥
∫∫

QT

|yv|2dxdt+ (1− C‖yu − xd‖L2(0,T ;V ))

∫∫
QT

v2dxdt,

which gives the assertion.

4.2.2 Stationary optimal control problem for Navier-Stokes equa-
tions

We recall the Navier–Stokes equations in the stationary case. We consider the following
problem 

−µ∆y + (y · ∇)y +∇p = u , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
(4.12)
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where u ∈ (L2(Ω))2.

As for the nonstationary Navier-Stokes equations, our optimal control problem is to find
u, y being the solution of (4.12) associated to u, minimizing the functional

J(u) =
1

2
‖y − xd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), (4.13)

where xd ∈ (L2(Ω))2 is a target and α > 0 is a constant.

We are going to show that the optimal control problem (4.13) has a solution.

Theorem 4.6 There exists at least an element u ∈ L2(Ω), and y ∈ H2(Ω) ∩ V solution of
(4.12) associated to u, such that the functional J(u) attains its minimum at u.

Proof. The functional J is bounded below by zero. Then we can take a minimizing sequence
(yn, un). Is easy to see that α

2
‖un‖2 ≤ J(un) < ∞, which implies that the sequence (un) is

uniformly bounded in L2(Ω).

From the regularity of the Navier-Stokes problem we obtain that the sequence (yn) is
uniformly bounded in H2(Ω)∩ V , and then implies that we can extract a weakly convergent
subsequence, denoted in the same way (yn, un), such that

yn ⇀ y∗ in H2(Ω) ∩ V, un ⇀ u∗ in L2(Ω).

Now, we need to ensure that (y∗, u∗) is a solution of the Navier-Stokes problem. For this
steep we use the trilinear continuous form b. Thanks to the compact embedding H2(Ω)∩V ↪→
V and the continuity of b, we obtain that b(yn, yn, v) → b(y∗, y∗, v), as n → ∞. Then, we
have that (y∗, u∗) satisfies the Navier-Stokes problem.

Therefore, as J is weakly lower semicontinuous, the result is proved.

First-Order necessary optimality conditions

The following result of J. De los Reyes [45], shows the first-order optimality conditions in
the case of the stationary Navier-Stokes equations. This theorem is more general, since De
los Reyes consider the constrained optimal control problem. He proved the result based on
a result of Lagrange multipliers.

Theorem 4.7 (see [45]) Let (u, y) be an optimal solution for (4.13), such that µ >M(y),

where M(y) = sup
v∈V

|b(v, v, y)|
‖v‖2

V

. Then there exists q ∈ V such that satisfies the following
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optimality system in variational sense

−µ∆y + (y · ∇)y +∇p = −q , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
−µ∆q − (y · ∇)q + (∇y)T q +∇π = y − xd , in Ω

div q = 0 , in Ω,
q = 0 , on ∂Ω.

(4.14)

Moreover, (q, π) ∈ (H2(Ω))2 ×H1(Ω) and satisfies the estimate

‖q‖V ≤
c

µ−M(y)
‖y − xd‖L2(Ω). (4.15)

Observation The assumption µ >M(y) is a sufficient requirement for the satisfaction of
the regular point condition, see [114].

Second order conditions

The next result is relevant for our purposes. In the next section we use this result to prove
the turnpike property for a particular system, the Oseen equation.

Theorem 4.8 Assume that ‖y−xd‖V is sufficiently small and µ >M(y). Then, the Hessian
J(u)′′ is positive definite.

Proof. By Theorem 3.3 in [35], we have that the second Gâteaux derivative of J is given by

J ′′(u)v2 =

∫
Ω

|yv|2dx+

∫
Ω

|v|2dx− 2

∫
Ω

(yv · ∇)yv · qvdx, (4.16)

where yv is the solution of the linearized problem
−µ∆yv + (y · ∇)yv + (yv · ∇)y +∇pv = v , in Ω,

div yv = 0 , in Ω,
yv = 0 , on ∂Ω,

(4.17)

in the direction v, and qu the solution of the adjoint linearized problem
−µ∆qu + (∇y)T qu − (y · ∇)qu +∇p̃ = y − xd , in Ω,

div qu = 0 , in Ω,
qu = 0 , on ∂Ω,

(4.18)

Reasoning as in Theorem 4.5, using the Theorem 4.8, we deduce that

J ′′(u)v2 ≥
∫

Ω

|yv|2dx+ (1− C‖y − xd‖V )

∫
Ω

|v|2dx,

which implies the claim.
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4.3 Turnpike property for the two-dimensional Navier-

Stokes problem with time-dependent control

In this section we prove a turnpike result for the optimality system of Navier-Stokes problem,
under the condition that the initial and final states are close enough to the stationary primal
and dual state, respectively. Also, we need some assumption of smallness for the solution of
the stationary adjoint equation.

As in the paper of Porretta and Zuazua [99], the smallness condition is to ensure the
exponential turnpike property of the linearized optimality system. In [99], the authors prove
under the smallness of the target and the initial condition that the linearized optimality
system satisfies the turnpike property. However, by the quadratic nature of the nonlinear
term B, in this chapter we only assume the smallness of the tracking term.

From the results of Section 3.1, we have the following optimality system for the nonsta-
tionary Navier-Stokes equations (see Theorem 4.4)

yTt − µ∆yT + (yT · ∇)yT +∇pT = −qT , in QT ,
div yT = 0 , in QT ,

yT = 0 , on ΓT ,
yT (x, 0) = y0(x) , x ∈ Ω,

−qTt − µ∆qT − (yT · ∇)qT + (∇yT )T qT +∇πT = yT − xd , in QT ,
div qT = 0 , in QT ,

qT = 0 , on ΓT ,
qT (x, T ) = q0 , x ∈ Ω.

(4.19)

And, for the stationary Navier-Stokes problem, see Theorem 4.7, we obtain

−µ∆y + (y · ∇)y +∇p = −q , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
−µ∆q − (y · ∇)q + (∇y)T q +∇π = y − xd , in Ω

div q = 0 , in Ω,
q = 0 , on ∂Ω.

(4.20)

Now, we develop a local analysis around a given steady state optimal control (y, u).

We consider y = y+ z, p = p+ η, q = q+ϕ, and π = π+ ν. Then, the optimality system
linearized around the stationary solutions takes the form

zt − µ∆z + (y · ∇)z + (z · ∇)y +∇η = −ϕ , in QT ,
div z = 0 , in QT ,

z = 0 , on ΓT ,
z(x, 0) = z0 , in Ω,

−ϕt − µ∆ϕ− (y · ∇)ϕ+ (∇y)Tϕ+∇ν = z − (∇z)T q + (z · ∇)q , in QT ,
div ϕ = 0 , in QT ,

ϕ = 0 , on ΓT ,
ϕ(x, T ) = ϕ0 , in Ω,

(4.21)
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where z0 = y0 − y and ϕ0 = q0 − q.

We observe that the right hand side of the equation satisfied by ϕ in (4.21), can be written
using the definition of B as

(∇z)T q − (z · ∇)q = B′(z)∗q.

Since the nonlinear function B is of quadratic nature, we deduce that the derivative of
B′(z)∗q with respect to z is the same function B′(z)∗q. Then, the optimality system (4.21),
in the references case when ϕ0 = 0, can be expressed as a linear quadratic optimal control
problem, minimizing the functional

L(u) =
1

2

∫
QT

|z|2dxdt−
∫
QT

[(∇z)T q − (z · ∇)q]dxdt+
1

2

∫ T

0

‖v(t)‖2
L2(Ω)dt, (4.22)

such that (z, ϕ) is the unique solution of
zt − µ∆z + (y · ∇)z + (z · ∇)y +∇η = v , in QT ,

div z = 0 , in QT ,
z = 0 , on ΓT ,

z(x, 0) = z0 , in Ω.

For our purposes, we need to give the basic hypothesis such that the optimal control
problem for Oseen equation (4.22) satisfies the turnpike property. To ensure this, we will use
the result of Porretta and Zuazua [98]. In this paper the authors prove the turnpike property
for linear problems.

Consider the control problem for Oseen equation{
zt +Az = v , in (0, T ),

z(0) = z0 ,
(4.23)

where A is the Oseen operator defined by (2.62) and the control v is in L2(0, T ;H).

It is easy to prove that the Oseen operator satisfies

∃γ, ξ > 0 : 〈Az, z〉V ′,V + γ‖z‖2
H ≥ ξ‖z‖2

V ,∀x ∈ V. (4.24)

Also, if we assume that the initial data z0 is in Xσ and σ > 0 satisfies (2.64), we obtain
by Theorem 2.38 that the semigroup associated to the Oseen equation decays exponentially.

Then, there exists C > 0 such that for every solution z of (4.23) and z0 ∈ Xσ, we have

‖z(T )‖H ≤ C

(
‖z0‖H +

∫ T

0

‖v(s)‖V ′ds
)
. (4.25)

Besides, from the paper of Fursikov [56] we know that there exists a linear bounded
operator L : V → V such that the control v(t, ·) can be expressed by

v(t, ·) = Lz(t, ·)
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with the solution of (4.23) satisfying

‖z(t, ·)‖V ≤ c‖z0‖V e−σt, for t ≥ 0. (4.26)

Assuming that the tracking term ‖y − xd‖V is sufficiently small, the viscosity function
satisfies µ > M(y), and z0 ∈ Xσ, reasoning as in the proof of Theorem 4.8, we deduce
that the functional L is coercive. This implies, by Theorem 3.10 in [98], that the optimality
system (4.21) satisfies the turnpike property. Namely,

‖zT (t)‖L2(Ω) + ‖ϕT (t)‖L2(Ω) ≤ C(e−γt + e−γ(T−t)) , ∀t ∈ (0, T ).

Then, as in [98], we can define a linear bounded operator in (L2(Ω))2 as

P (T )z0 = ϕ(0)

such that

‖P (t)− P̂‖L((L2(Ω))2,(L2(Ω))2) ≤ Ce−2γt, (4.27)

for some constant C > 0 and γ > 0. P̂ being the corresponding operator for the infinite
horizon control problem.

Using the previous turnpike property for Oseen equation, we can state and prove the main
theorem of this chapter.

Theorem 4.9 We assume that the tracking term ‖y−xd‖V is sufficiently small, µ >M(y),
and z0 = y0 − y ∈ Xσ. Then, there exists some ε > 0 such that for every y0, q0 with

‖y0 − y‖L2(Ω) + ‖q0 − q‖L2(Ω) ≤ ε,

there exists a solution of the optimality system (4.19) such that

‖yT (t)− y‖L2(Ω) + ‖qT (t)− q‖L2(Ω ≤ C(e−γt + e−γ(T−t)), ∀t < T, (4.28)

where γ > 0 is the stabilizing rate of the linearized optimality system (4.21).

Proof. The proof follows the arguments of [98, 99].

The main idea of the proof is to consider a perturbed problem of (4.21) and then to
implement a fixed point argument, which gives the solutions of the optimality system (4.19).

Let X be the set

X = {(z, ϕ) : ‖z‖V + ‖ϕ‖V ≤M(e−γt + e−γ(T−t)), ∀t ∈ [0, T ]},

for some M ≤ 1. For (ẑ, ϕ̂) ∈ X, we consider

R1(ẑ) = −(ẑ · ∇)ẑ
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and

R2(ẑ, ϕ̂) = (ẑ · ∇)ϕ̂− (ϕ̂ · ∇)ẑ.

Note that the terms R1 and R2 can be expressed in an abstract way, namely

R1(ẑ) = −B(ẑ) , R2(ẑ, ϕ̂) = −B′(ẑ)∗ϕ̂.

Then, using the properties for the nonlinear form B, we obtain that

‖R1(ẑ)(t)‖L2(Ω) ≤ ‖R1(ẑ)(t)‖V ≤ c0M
2(e−2γt + e−2γ(T−t)),

‖R2(ẑ, ϕ̂)(t)‖L2(Ω) ≤ ‖R2(ẑ, ϕ̂)(t)‖V ≤ c1M
2(e−2γt + e−2γ(T−t)),

(4.29)

where c1 depend on ‖y‖V .

Besides, we define the operator

R(ẑ, ϕ̂) = (z, ϕ), (4.30)

where (z, ϕ) solve the problem

zt − µ∆z + (y · ∇)z + (z · ∇)y +∇η = −ϕ+R1(ẑ) , in QT ,
div z = 0 , in QT ,

z = 0 , on ΓT ,
z(x, 0) = z0 , in Ω,

−ϕt − µ∆ϕ− (y · ∇)ϕ+ (∇y)Tϕ+∇ν = z − (∇z)T q + (z · ∇)q
+R2(ẑ, ϕ̂) , in QT ,

div ϕ = 0 , in QT ,
ϕ = 0 , on ΓT ,

ϕ(x, T ) = ϕ0 , in Ω,

(4.31)

Then, we need to prove that the operator R has a fixed point which is a solution of (4.19)
and satisfies the estimate (4.28).

Define h as a solution of the equation
−ht − µ∆h− (y · ∇)h+ (∇y)Th+∇ν + P (T − t)h = P (T − t)R1(ẑ)

+R2(ẑ, ϕ̂) , in QT ,
div h = 0 , in QT ,

h = 0 , on ΓT ,
h(x, T ) = ϕ0 , in Ω.

(4.32)

Then, it is easy to prove that h satisfies

h = ϕ− P (T − t)z (4.33)
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in a weak sense, namely for all test function φ∫
Ω

h(t)φ =

∫
Ω

ϕ(t)φdx−
∫

Ω

z(t)[P (T − t)φ]dx.

We observe that h can be estimated as

h(t) = e−M(T−t)ϕ0 +

∫ T

t

eM(t−s))[P (T − s)R1(ẑ)(s) +R2(ẑ, ϕ̂)(s)]ds

−
∫ T

t

eM(t−s)[P̂ − P (T − s)]h(s)ds,

where Mv = −µ∆v − (y · ∇)v + (∇y)Tv + P̂ . We observe that M is exponentially stable
with rate γ. Using the estimates (4.27) and (4.29), we obtain

‖h(t)‖L2(Ω) ≤ e−γ(T−t)‖ϕ0‖L2(Ω) + cM2

∫ T

t

eγ(t−s)(e−2γs + e−2γ(T−s))ds

+

∫ T

t

eγ(t−s)e−2γ(T−s)‖h(s)‖L2(Ω)ds

≤ e−γ(T−t)‖ϕ0‖L2(Ω) + cM2[e−2γt + e−γ(T−t)]

+

∫ T

t

e−2γT+γt+γs‖h(s)‖L2(Ω)ds.

By the Gronwall inequality

‖h(t)‖L2(Ω) ≤ e−γ(T−t)‖ϕ0‖L2(Ω) + cM2[e−2γt + e−γ(T−t)]exp

(∫ T

t

e−2γT+γt+γsds

)
.

The last integral can be estimated easily by 1
γ
. Therefore

‖h(t)‖L2(Ω) ≤ e−γ(T−t)[‖ϕ0‖L2(Ω) + cM2] + cM2e−2γt. (4.34)

From the estimate for h we can find a similar estimate for z and ϕ. Indeed, observe that
z satisfies the following equation

zt − µ∆z + (y · ∇)z + (z · ∇)y + P̂ +∇η = (P̂ − P (T − t))z − h+R1(ẑ).

Therefore, we obtain that

z(t) = e−N tz0 +

∫ t

0

e−N (t−s)[P̂ − P (T − s)]z(s)ds+

∫ t

0

e−N (t−s)(R1(ẑ)(s)− h(s))ds,
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where N v = −µ∆v + (y · ∇)v + (v · ∇)y + P̂ . We note that N satisfies the exponentially
decay with rate γ. Again, using the estimate (4.29), (4.27), and (4.34) we get

‖z(t)‖L2(Ω) ≤ e−γt‖z0‖L2(Ω) +

∫ t

0

e−γ(t−s)e−2γ(T−s)‖z(s)‖L2(Ω)ds

+ cM2

∫ t

0

e−γ(t−s)(e−2γ(T−s) + e−2γs)ds

+

∫ t

0

e−γ(t−s)[e−γ(T−s)(‖ϕ0‖L2(Ω) + cM2) + cM2e−2γs]ds

≤ e−γt‖z0‖L2(Ω) + cM2[e−2γ(T−t) + e−γt] + [‖ϕ0‖L2(Ω) + cM2]e−γ(T−t)

+

∫ t

0

e−2γT−γt+3γs‖z(s)‖L2(Ω)ds.

Applying again the Gronwall inequality, we obtain

‖z(t)‖L2(Ω) ≤ [‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) + cM2](e−γt + e−γ(T−t)). (4.35)

Using now that ϕ = h+ P (T − t)z, we get an estimate for ϕ

‖ϕ(t)‖L2(Ω) ≤ [‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) + cM2](e−γt + e−γ(T−t)). (4.36)

Now, we go back on the first equation of (4.31). Observe that

‖ − ϕ(t) +R1(ẑ)(t)‖L2 ≤ [‖z0‖L2 + ‖ϕ0‖L2 + cM2](e−γt + e−γ(T−t)). (4.37)

Then, by the regularity of the solution of the linearized problem, see Lemma 4.2, we have
that

‖z(t)‖H2(Ω) ≤ [‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) + cM2](e−γt + e−γ(T−t)). (4.38)

And, we can conclude that

‖z(t)‖V ≤ [‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) + cM2](e−γt + e−γ(T−t)).

Analogously, we obtain the same estimate for ϕ, namely

‖ϕ(t)‖V ≤ [‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) + cM2](e−γt + e−γ(T−t)).

Finally, we choose M ≤ 1 such that cM2 ≤ M
2

. Then, if we assume that the initial and
final state are close enough to the stationary primal and dual state, respectively, we obtain
that

c[‖z0‖L2(Ω) + ‖ϕ0‖L2(Ω) +M2] ≤M.

So, we deduce that the space X becomes an invariant convex subset of L2(0, T ; (L2(Ω))2).
Besides, we observe that operator R is continuous and compact, then we conclude the exis-
tence of a fixed point (z, ϕ) of R. It is easy to see that (z, ϕ) is a solution of the optimality
system (4.19). Then the proof is complete.
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Observation Since we develop a local analysis around the optimal solution for the stationary
problem, the turnpike property for Oseen equation is fundamental in our work. In this point is
fundamental the smallness assumption on the tracking term. If we remove the last condition,
we need to suppose that the optimality system (5.3) satisfy the turnpike property to ensure
our result.

An interesting problem is to prove the necessary and sufficient conditions to obtain the
turnpike property for the linearized optimality systems.

4.4 Turnpike property for the two-dimensional Navier-

Stokes problem with time-independent control

In this section we prove a turnpike property for the two-dimensional Navier-Stokes problem
in the particular case when the controls are independent on time.

The proof is different from that given in the previous section when the control function
depends on time. In this case, we obtain the result using the classical Γ-convergence, and a
standard stability property of the Navier-Stokes equation, see Theorem 4.10, under suitable
conditions of smallness of the data.

That technique is a general principle proved by Porretta and Zuazua [99] for the semilinear
heat equation. Of course, can also be employed for a larger class of semilinear problems
enjoying standard exponentially stability.

Let Ω ⊂ R2 be a bounded and simply connected domain, with boundary ∂Ω of class C2.
We consider the Navier-Stokes control problem

yt − µ∆y + (y · ∇)y +∇p = u(x) , in QT ,
div y = 0 , in QT ,

y = 0 , on ΓT ,
y(x, 0) = y0(x) , x ∈ Ω,

(4.39)

with controls u = u(x) independent of time.

We consider the optimal control problem min JT (u) =
1

2

∫ T

0

‖y(t)− z‖2
L2(Ω)dt+

T

2
‖u‖2

L2(Ω),

s. a. y solution of (4.39) and u ∈ C,
(4.40)

where C is a closed convex subset of (L2(Ω))2 and z ∈ (L2(Ω))2 denotes the desired state.

In addition, we consider the analogous stationary optimal control problem
−µ∆y + (y · ∇)y +∇p = u(x) , in Ω,

div y = 0 , in Ω,
y = 0 , on ∂Ω,

(4.41)
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together with the corresponding functional min J(u) =
1

2

(
‖y − z‖2

L2(Ω) + ‖u‖2
L2(Ω)

)
,

s. a. y solution of (4.41) and u ∈ C.
(4.42)

In both cases, we consider that C has the following form

C ≡ Uad := {u ∈ (L2(Ω))2 : ‖u‖ ≤ c(Ω)µ2, ∀x ∈ Ω}.

Observation In view of the Theorems 4.1 and 4.6, we note that in both cases the optima
are achieved. The only difference is that in this case we consider constrains on the controls.
However, since Uad is a convex closed subset of (L2(Ω))2, we assert the result using the
classical results of convex analysis.

For a given source term u which does not depend on time, we consider a steady solution
(y∞, p∞) ∈ ((H2(Ω))2∩V )×(H1(Ω)∩L2

0(Ω)) to the stationary Navier-Stokes problem. Then,
the solution (y, p) to (4.39) converge to (y∞, p∞) as t→∞, under suitable assumptions.

Theorem 4.10 There exists C > 0 and α > 0 depending only on Ω such that, under the
condition

‖∇y∞‖L2(Ω) ≤ Cµ,

there exists a unique weak solution (y, p) of (4.39) which satisfies

‖y(t)− y∞‖L2(Ω) ≤ ‖y0 − y∞‖L2(Ω)e
−αt, ∀t ≥ 0. (4.43)

Proof. Let (y, p) and (y∞, p∞) be the solution of the evolutionary and stationary Navier-
Stokes problem, respectively. Let y = y∞ + w and p = p∞ + q, where (w, q) solves the
problem

wt − µ∆w + (w · ∇)w + (y∞ · ∇)w + (w · ∇)y∞ +∇q = 0, in QT ,

div w = 0, in QT ,

w = 0, on ΓT ,

w(x, 0) = y0(x)− y∞, x ∈ Ω.

(4.44)

Multiplying the equation (4.44) by w and using the definition of b, we obtain∫
Ω

wt wdx− µ
∫

Ω

∇w w + b(w,w,w) + b(y∞, w, w) + b(w, y∞, w) = 0

and by Lemma 2.26, we deduce that

1

2

d

dt
‖w(t)‖2

L2(Ω) + µ‖∇w(t)‖2
L2(Ω) ≤ C‖∇y∞‖L2(Ω)‖w(t)‖L2(Ω)‖∇w(t)‖L2(Ω).
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We remind the following Young inequality

x1 · . . . · xn ≤ e1x
p1

1 + . . .+ en−1x
pn−1

n−1 + C(e1, . . . , en−1)xpnn ,

where p−1
1 + . . .+ p−1

n = 1 and e1, . . . , en−1, x1, . . . , xn. are positive real numbers.

Then, using the Young inequality for x1 = ‖∇y∞‖L2(Ω)‖w(t)‖L2(Ω), x2 = ‖∇w(t)‖L2(Ω),
e1 = 1

2µ
, e2 = µ

2
and p1 = p2 = 2, we obtain

d

dt
‖w(t)‖2

L2(Ω) + µ‖∇w(t)‖2
L2(Ω) ≤ C

1

µ
‖∇y∞‖2

L2(Ω)‖w(t)‖2
L2(Ω).

From the Poincaré inequality for the Stokes operator, see Proposition 2.19, we have that

d

dt
‖w(t)‖2

L2(Ω) +

(
C1µ−

C

µ
‖∇y∞‖2

L2(Ω)

)
‖w(t)‖2

L2(Ω) ≤ 0.

Provided that
C

µ2
‖∇y∞‖2

L2(Ω) ≤ C1, we have

d

dt
‖w(t)‖2

L2(Ω) + 2α‖w(t)‖2
L2(Ω) ≤ 0,

which finally gives

‖y(t)− y∞‖2
L2(Ω) ≤ ‖y0 − y∞‖2

L2(Ω)e
−2αt, ∀t ≥ 0.

Now, we can prove the following turnpike result for controls independent of time.

Theorem 4.11 Let (yTn , uTn) be an optimal solution of (4.40) for T = Tn. Then any
accumulation point (y∞, u∞), as n→∞, is an optimal solution of (4.42).

Proof. The main idea of the proof is to use the Γ-convergence, since we consider the control
function independent of time.

Then, let (Tn)n∈N be an increasing sequence of times converging to infinity. For each n ∈ N,
by Theorem 4.1 the optimal control problem (4.40) has at least a minimizer (yTn , uTn) ∈ Uad.
In particular, (uTn) is uniformly bounded in (L2(Ω))2, so we can extract a subsequence, still
labeled by n, such that

uTn ⇀ u∞, weakly in L2(Ω), as n→∞.

We claim that

lim
n→∞

1

Tn

(
1

2

∫ Tn

0

‖yTn(t)− z‖2
L2(Ω)dt+

Tn
2
‖uTn‖2

L2(Ω)

)
=

1

2

(
‖y∞ − z‖2

L2(Ω) + ‖u∞‖2
L2(Ω)

)
, (4.45)
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where y∞ solves 
−µ∆y∞ + (y∞ · ∇)y∞ +∇p∞ = u∞(x) , in Ω,

div y∞ = 0 , in Ω,
y∞ = 0 , on ∂Ω.

(4.46)

Observe that the previous limit is equivalent to saying that if we consider ITn and I the
values of the minimizers for the time dependent problem in [0, Tn] and the steady state,
respectively, then

lim
n→∞

ITn

Tn
= I.

Indeed, if ‖∇yTn‖L2(Ω) ≤ Cµ by Theorem 4.10 we have that

‖yTn − yTn‖L2(Ω) ≤ ‖y∞ − yTn‖L2(Ω)e
−αt, ∀t > 0, (4.47)

where ∇yTn satisfies
−µ∆yTn + (yTn · ∇)yTn +∇pTn = uTn(x) , in Ω,

div yTn = 0 , in Ω,
yTn = 0 , on ∂Ω.

(4.48)

We observe that from the regularity of the stationary Navier-Stokes problem, we have that

‖yTn‖H2(Ω) + ‖pTn‖H1(Ω) ≤ C(1 + ‖uTn‖3
L2(Ω)),

and in particular
‖∇yTn‖L2(Ω) ≤ C‖uTn‖L2(Ω).

Then, ‖∇yTn‖L2(Ω) ≤ Cµ. By Theorem 4.10, we obtain the estimate (4.47).

Now, we decompose
JTn(uTn)

Tn
− J(u∞) = Jn1 + Jn2 ,

where

Jn1 =
JTn(uTn)

Tn
− J(uTn), (4.49)

and

Jn2 = J(uTn)− J(u∞). (4.50)

We study the convergence of Jn1 and Jn2 as n→∞. First, we analyze Jn1 :

Jn1 =
1

Tn

(
1

2

∫ Tn

0

‖yTn(t)− z‖2
L2(Ω)dt+

Tn
2
‖uTn‖2

L2(Ω)

)
− 1

2
‖yTn − z‖2

L2(Ω) −
1

2
‖uTn‖2

L2(Ω)

=
1

2Tn

∫ Tn

0

‖yTn(t)− z‖2
L2(Ω)dt−

1

2
‖yTn − z‖2

L2(Ω).

94



Since uTn is uniformly bounded in (L2(Ω))2, from the regularity of the Navier-Stokes
problem, we obtain that yTn is uniformly bounded in (H2(Ω))2∩V , in particular, in (L2(Ω))2.
Then, using again the exponential stability property (4.47), we deduce that

In1 → 0 as n→∞.

For In2 we have

In2 = J(uTn)− J(u∞)

=
1

2
‖yTn − z‖2

L2(Ω) +
1

2
‖uTn‖2

L2(Ω) −
1

2
‖y∞ − z‖2

L2(Ω) −
1

2
‖u∞‖2

L2(Ω).

Since yTn is bounded in (H2(Ω))2 ∩ V , there exists some y∗ ∈ (H2(Ω))2 ∩ V and a subse-
quence of yTn such that

yTn ⇀ y∗ weakly in H2(Ω) ∩ V.

We know that the injection of V into (L2(Ω))2 is compact, so we have also

yTn → y∗ in the norm of L2(Ω).

Besides, the trilinear function b is continuous and by the Lemma 2.28, we obtain that
b(yTn , yTn , v) → b(y∗, y∗, v), for all v ∈ V . Finally, since uTn converge to u∞ ∈ Uad, by the
uniqueness of the Navier-Stokes problem, we obtain that y∗ = y∞. Therefore, we conclude
that

In2 → 0, as n→∞.

This completes the proof of the claim.

Now, we need to prove that u∞ is an optimal solution of (4.41). Indeed, by the weak
convergence of uTn we obtain that

‖u∞‖L2(Ω) ≤ lim inf
n→∞

‖uTn‖L2(Ω).

Also, we have that yTn weakly converges to y∞, as n→∞. Then,∥∥∥∥∥
∫ Tn

0
yTn(t)dt

Tn
− y∞

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
∫ Tn

0
yTn(t)dt

Tn
− yTn

∥∥∥∥∥
L2(Ω)

+ ‖yTn − y∞‖L2(Ω),

and we obtain that ∫ Tn
0
yTn(t)dt

Tn
→ y∞ in L2(Ω), as n→∞.

Then, necessarily we have

J(u∞) ≤ lim inf
n→∞

JTn(uTn)

Tn
.
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Therefore, using the claim (4.45), we obtain

J(u∞) ≤ I

and finally, u∞ is a minimizer for the steady state problem, with y∞ the associated state.

Observation We observe that the proof of the Theorem 4.11 uses the exponential stabi-
lization result (Theorem 4.10) in many times. We know that in the three-dimensional case
this property is also true for strong solutions, but under more smallness condition of the
stationary solutions. This implies that the three-dimensional case is more complex that the
two-dimensional problem.

Observation Note that we considered the L2-norm in the tracking term on the functional to
minimize. However, in the three-dimensional case, this choice is not correct because there is
no way to assure the optimal state to be a strong solution of the evolutionary Navier-Stokes
problem. The good choice would be, for instance [33],

J(u) =
1

8

∫ T

0

(∫
Ω

|y − xd|4dx
)2

dt+
T

2
‖u‖L2(Ω),

with xd ∈ L8([0, T ]; (L4(Ω))3).
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Chapter 5

Inverse Viscosity Boundary Value
Problem for the Evolutionary Stokes
Equation

5.1 Introduction

In this chapter, we address the question of the unique determination of the viscosity function
in an incompressible fluid described by the evolutionary Stokes equations in three dimensions,
proving that, as the time–horizon tends to infinity, thus the determination of the viscosity is
reduced to prove the identification of the viscosity for the stationary case. This strategy is
close to the work of Isakov [69]. Isakov studied the inverse parabolic identifiability problem of
a coefficient from the knowledge of the Dirichlet–to–Neumann map. His method make use of
the stabilization of solutions of parabolic problems when the time–horizon tends to infinity,
reducing the inverse parabolic problems to inverse elliptic problems with parameters.

Namely, one can simply consider the steady–state Stokes problem, forgetting the time
dependence, and take the corresponding steady–state inverse problem as an approximation
of this time evolution ones. This principle of replacing the time–dependent inverse problem
by the steady–state one is not very common in the literature of inverse problem, the usual
approaches are to construct the appropriate complex geometrical optics solutions and prove
some result of density of the solutions or the gradient of the solutions, see [76] and the
reference therein, and the other way is the use of suitable Carleman estimates, see [106].

Nevertheless, this kind of approach is related to the called turnpike property, in the context
of optimal control problem. This property, which establishes that, under certain conditions,
the optimal solution of a control problem remains exponentially close to the optimal solution
of the steady–state problem, for most of the time. For instance, in [98] Porreta and Zuazua
studied this phenomenon in the context of linear ODE and PDE (heat and wave equation),
in that case they prove, under suitable controllability and observability assumptions, that
the evolutionary optimal control and state, exponentially converge as the time–horizon tends
to infinity to the ones of the corresponding steady state model. Besides, in [108] Trelat and
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Zuazua shows the similar property in the context of nonlinear ODE, we refer to [113] and
references therein for an extensive literature for the turnpike property. This tool has been
studied in other contexts, for instance, in the context of identification of optimal materials for
heat equation. In [15] it was proved that for large time optimization horizons, such processes
can be approximated by the optimal steady–state ones, using the Γ–convergence ensuring
the convergence of optimizers from parabolic towards elliptic.

On the other hand, the inverse problem for fluids mechanics models was studied by several
authors. In the context of the inverse Stokes equations, Heck, Li and Wang [62] proved a
global identifiability of the viscosity parameter in the stationary three–dimensional case, by
boundary measurements reducing the stationary Stokes system, which contains two equations
with different orders, into a second order decoupled systems (matrix–valued Schrödinger equa-
tions) and then constructed exponentially growing solutions for matrix–valued Schrödinger
equations using the result of Eskin and Ralston [47, 48] for the linear isotropic elasticity
problem. Moreover in [52] Fan et al. consider the inverse problem of determining a viscos-
ity coefficient in the Navier–Stokes equation by observation data in a neighborhood of the
boundary, and they obtain Lipschitz stability by the Carleman estimates in Sobolev spaces
of negative order.

In [68] the authors prove the global uniqueness for the viscosity in two cases, station-
ary Navier–Stokes equations and Lamé system in two dimensions. They used the classical
Dirichlet–to–Neumann map for the solution of the stationary Navier–Stokes system, namely

Λµ(g) =

(
∂u

∂n
, p

)
|∂Ω,

where g is the Dirichlet boundary condition and (u, p) is the solution of the Navier–Stokes
problem. However, this boundary measurements are unnatural, as indicated in [79]. The
authors in [79] consider the more natural boundary measurements, the Cauchy forces than
the Dirichlet–to–Neumann map. Besides, they obtain also a global uniqueness of the viscosity
for the stationary Stokes and Navier–Stokes system in the two–dimensional case. In three
dimension, Li and Wang [80] proved the global uniqueness of the viscosity in an incompressible
fluid described by the stationary Navier–Stokes equations using the Cauchy forces instead
of the Dirichlet–to–Neumann map, and they considering small boundary condition to ensure
the existence and uniqueness of solution. They proved the global determination reducing the
problem to the Stokes system.

In this chapter, we analyze the parameter identification of the viscosity for the three–
dimensional evolutionary Stokes equations. Mathematically, let Ω ⊂ R3 be an open bounded
connected domain with boundary ∂Ω ∈ C2, assume also that Ω is filled with an incompressible
fluid. Given T > 0, let u = (u1, u2, u3) be the velocity vector field and the scalar function p,
representing the pressure, satisfying the initial boundary value problem

ut − div (σµ(u, p)) = 0 , in Ω× (0, T ),
div u = 0 , in Ω× (0, T ),

u = g , on ∂Ω× (0, T ),
u(x, 0) = u0(x) , in Ω,

(5.1)

where σµ(u, p) = 2µe(u)− pI is the stress tensor and e(u) = ((∇u) + (∇u)T )/2 is the strain
tensor. Here µ(x) > µ0 > 0 is the kinematic viscosity function. The exact regularity of µ

98



will be specified as we go along. Let g ∈ C1(0, T, (H3/2(∂Ω))3) satisfying the compatibility
condition ∫

∂Ω

g · nds = 0,

where n is the unit outer normal of ∂Ω and u0 ∈ H, then there exists (u, p) ∈ L2(0, T ; (H2(Ω))3)×
L2(0, T ;H1(Ω)) the unique solution of (5.1), see Chapter 1.

We are interested in the inverse problem of determining µ from the knowledge of boundary
measurements. Mathematically, the boundary measurements are encoded in the Cauchy data
of all solutions satisfying (5.1). Precisely, we define the set

Sµ = {(u|∂Ω, σµ(u, p)n|∂Ω)} ⊂ (H3/2(∂Ω))3 × (H1/2(∂Ω))3, (5.2)

where (u, p) is the solution of (5.1). Then, our inverse problem is to determine µ from the
knowledge of the operator Sµ.

As we mention before, the idea is to obtain an identifiability result of the viscosity using
Sµ above defined, based on the uniqueness given in the stationary case. Namely, we consider
the stationary Stokes problem

−div (σµ(u, p)) + λu = 0 , in Ω,
div u = 0 , in Ω,

u = g0 , on ∂Ω,
(5.3)

where g0 ∈ (H3/2(∂Ω))3 satisfying the compatibility condition, λ > 0 is a constant and
σµ(v, q) as before, and let SEµ the Cauchy data of all solutions satisfying (5.3).

The question we address is as follows: can we get identifiability of the viscosity function
of the evolutionary Stokes equation from the stationary problem as the horizon time goes to
infinity?

The first step to prove the uniqueness of the viscosity, is to show the identifiability in
the stationary case, namely for the system (5.3). In order to satisfy the hypotheses for the
construction of exponentially growing solutions given by Eskin and Ralston [47, 48], we need
to consider a suitable regularity for the viscosity, given by the following hypothesis.

(H1) Let µ1 and µ2 be two viscosity functions. We assume that

µ1, µ2 ∈ Cn0(Ω), ∀n0 ≥ 8,

µi ≥ µ0 > 0, ∀i = 1, 2,

µ1(x) = µ2(x), ∀x ∈ ∂Ω.

Based on [62] and [47, 48], we have the following result, which will be shown in Section 2.

Theorem 5.1 Let (u, p) be the solution to the stationary Stokes problem (5.3). Assume that
µ1(x) and µ2(x) are two viscosity function satisfying (H2). Let SEµ1

and SEµ2
be the Cauchy

data associated with µ1 and µ2, respectively. If SEµ1
= SEµ2

, then µ1 = µ2.
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We remark that Theorem 5.1 is a generalization of work by Heck, Li, and Wang [62]. In this
paper the authors prove a similar result for the stationary Stokes equation (Theorem 1.1, [62]),
but they consider the Stokes equation without perturbation, namely, −div (σµ(u, p)) = 0, in
Ω, and the additional condition on the viscosity function

∂αµ1(x) = ∂αµ2(x), ∀x ∈ ∂Ω, |α| ≤ 1. (5.4)

We note that our result relax the hypothesis (5.4) for the viscosity function on the boundary,
because we need only that µ1 = µ2 on ∂Ω, unlike the work of Heck.

The rest of the chapter is organized as follows. In Section 5.2 we prove the global identifia-
bility of the viscosity function when the fluid is described by the stationary Stokes equations,
Theorem 5.1. Finally, in Section 5.3 we state our future work.

5.2 Proof of Theorem 5.1

The main idea for the proof of Theorem 5.1 is the construction of the classical exponentially
growing solutions for the Stokes system. The difficulties in the such construction is that
we are dealing with a systems of PDEs. Following the approach given by Uhlmann [110],
we reduced the system into a second order decoupled matrix–valued Schrödinger equations.
Using the results given by [47, 48], we can construct this special solutions.

The proof of the Theorem 5.1 is a slightly different with respect to that one proved by
Heck et al. [62]. Our proof have the difficulties that in each step we need to add more terms
of the viscosity. This changes all matrices that appears in our calculations. At the end, we
can reduced the assumptions on the viscosity on the boundary, because these terms help, in
some way, to the conclusion of the proof.

Proof. Theorem 5.1.

The proof closely follows the arguments of [62, 48]. For simplicity and without loss of
generality, we consider the case λ = 1. Let SEµ1

and SEµ2
be the Cauchy data associated

with µ1 and µ2, respectively. Denote by (u1, p1) and (u2, p2) the solutions. The duality pair
between H3/2(∂Ω) and H1/2(∂Ω) will be denoted by 〈·, ·〉. Using the Green’s formula, we
obtain

〈u2, σµ1(u1, p1)〉 =

∫
Ω

(µ1(x)e(u2) · e(u1)− div (u2)p2)dx−
∫

Ω

u1 · u2dx

=

∫
Ω

µ1(x)e(u2) · e(u1)dx−
∫

Ω

u1 · u2dx.

and

〈u1, σµ2(u2, p2)〉 =

∫
Ω

(µ2(x)e(u2) · e(u1)− p2div (u1))dx−
∫

Ω

u2 · u1dx

=

∫
Ω

µ2(x)e(u2) · e(u1)dx−
∫

Ω

u2 · u1dx.
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Then, if SEµ1
= SEµ2

, we conclude that∫
Ω

(µ1 − µ2)e(u2) · e(u1)dx = 0. (5.5)

We observe that if we denote by V1(µ1, µ2) = span{e(u1)·e(u2) : ui ∈ (H2(Ω))3, ui solution
of (5.3)}. Then, note that a practical way to prove the identifiability of the viscosity is to
show that the space V1 is dense in L1(Ω), see [76].

However, for our purposes is better to use another systems of equations in place of (5.3).
Inspired by the isotropic elasticity system, see [48, 110], thus we consider the new functions
(w, f) such that

u = µ−1/2w + µ−1∇f − f∇µ−1,

and we must check which equation must fulfill (w, f) such that (u, p) is solution of (5.3). We
need that u satisfies the divergence condition, namely,

0 = div u = µ−1∆f + µ−1/2div w −∆µ−1f +∇µ−1/2 · w.

Now, we compute the Cauchy tensor componentwise

2µe(u)jk = µ(∂ku
j + ∂ju

k)

= µ∂k(µ
−1/2wj + µ−1∂jf − f∂jµ−1) + µ∂j(µ

−1/2wk + µ−1∂kf − f∂kµ−1)

= µ(∂kµ
−1/2wj + µ−1/2∂kw

j + ∂kµ
−1∂jf + µ−1∂2

jkf

− ∂jµ−1∂kf − f∂2
jkµ
−1 + ∂jµ

−1/2wk + µ−1/2∂jw
k

+ ∂jµ
−1∂kf + µ−1∂2

jkf − ∂kµ−1∂jf − f∂2
jkµ
−1)

= −∂kµ1/2wj − ∂jµ1/2wk + µ1/2(∂jw
k + ∂kw

j) + 2∂2
jkf − 2µ∂2

jkµ
−1f.

Then, we have∑
j

∂j(2µe(u)jk) = µ1/2∆wk + ∂k(∇µ1/2 · w + µ1/2div w + 2∆f)− 2∂kµ
1/2div w

−
∑
j

2µ∂2
jkµ
−1∂jf − 2

∑
j

∂2
jkµ

1/2wj −∆µ1/2wk − 2
∑
j

(∂jµ∂
2
jkµ
−1 + µ∂3

jjkµ
−1)f.

From [110], we know that functions (w, f) are related to functions (u, p). In fact, for
different (u, p) we have different (w, f) and obviously a different equation which is satisfied
by (w, f). As in the equation (5.5) does not shown the pressure, we hence some freedom
in choosing it such that (w, f) satisfy an equation which is easy to attack. In fact, we can
consider

p = ∇µ1/2 · w + µ1/2div w + 2∆f = div (µ1/2w) + 2∆f,

then (
u
p

)
=

(
µ−1/2w + µ−1∇f − f∇µ−1

div (µ1/2w) + 2∆f

)
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is a solution of (5.3) and (w, f) satisfies

∆

(
w
f

)
+ A1(x)

(
∇f

div w

)
+ A0(x)

(
w
f

)
= 0, (5.6)

where

A1(x) =

(
−2µ1/2∇2µ−1 + µ−1 −µ−1∇µ

0 µ1/2

)
and

A0(x) =

(
−2µ−1/2∇2µ1/2 − µ−1/2∆µ1/2 + µ−1/2 −4∇µ1/2∇2µ−1 − 2µ1/2∇3µ−1 −∇µ−1

µ(∇µ−1/2)T −µ∆µ−1

)
.

We note that (5.6) is a matrix–valued Schrödinger equation. Moreover, if µ ∈ Cn0(Ω)
and µ > 0, then A1 ∈ Cn0−2(Ω) and A0 ∈ Cn0−3(Ω). Now, we shall construct exponentially
growing solutions with large parameter for (5.6) and (5.3).

Since it is convenient to work in the whole space R3 instead of Ω, we pick up a large
domain Ω̃ ⊃ Ω, and extend µ to R3 by preserving its smoothness.

Let α, β and l be pairwise orthogonal vectors in R3 with |α| = |β| = 1. We set θ =

α + iβ and for τ � 0 we set ρ1(τ) = l
2

+
√
τ 2 − |l|2

4
α and ζ1(τ) = ρ1 + iτβ. Note that

limτ→∞ τ
−1ζ1(τ) = θ.

Then, we can construct the exponentially growing solutions using the following result,
which was proved in [48].

Lemma 5.2 (Section 2, [48]) Consider the Schrödinger equation with external Yang–Mills
potential

Lu := −∆u− 2iA(x) · ∂
∂x
u+B(x)u = 0, x ∈ Ω̃ ⊂ R3,

where A(x) ∈ Cn1(Ω̃) and B(x) ∈ Cn1−1(Ω̃), n1 ≥ 6. One can construct solutions of the form

u = eix·ζ1v = eix·ζ1(C0(x, θ)p(θ · x) +O(
1

τ
))

where C0 ∈ Cn1(Ω̃) is solution of

iθ · ∂
∂x
C0(x, θ) = θ · A(x)C0(x, θ)

with detC0 6= 0, p(z) is an arbitrary polynomial in complex variable z, and O( 1
τ
) is the term

bounded by C 1
τ

in Hk(Ω̃), 0 ≤ k ≤ n1 − 2.

From this Lemma we can construct the exponentially growing solutions to (5.6) for µ = µ1,
that is (

w1

f1

)
= eix·ζ1v1
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with

v1 =:

(
r1(x, ζ1)
s1(x, ζ1)

)
= C1(x, θ)g1(θ · x) +O(τ−1)

where C1 is an invertible matrix satisfying

−2θ · ∇C1(x, θ) =

(
−2µ

1/2
1 ∇2µ−1

1 + µ−1
1 −µ−1

1 ∇µ1

0 µ
1/2
1

)(
03×3 θ
θT 0

)
C1(x, θ) (5.7)

in Ω̃ and g1(z) is an arbitrary polynomial in complex variable z. Similarly, let ρ2(τ) =
l
2

+
√
τ 2 − |l|2

4
α and ζ2(τ) = ρ2 − iτβ. Note that limτ→∞ τ

−1ζ2(τ) = θ. We construct the

exponentially growing solutions to (5.6) for µ = µ2(
w2

f2

)
= eix·ζ2v2

with

v2 =:

(
r2(x, ζ1)
s2(x, ζ1)

)
= C2(x, θ)g2(θ · x) +O(τ−1)

where C2 is an invertible matrix satisfying

−2θ · ∇C2(x, θ) =

(
−2µ

1/2
2 ∇2µ−1

2 + µ−1
2 −µ−1

2 ∇µ2

0 µ
1/2
2

)(
03×3 θ

θ
T

0

)
C2(x, θ)

in Ω̃ and g2(z) is an arbitrary polynomial in complex variable z. To simplify, we denotes

C3(x, θ) = C2(x, θ). Then we obtain

−2θ · ∇C3(x, θ) =

(
−2µ

1/2
2 ∇2µ−1

2 + µ−1
2 −µ−1

2 ∇µ2

0 µ
1/2
2

)(
03×3 θ
θT 0

)
C3(x, θ). (5.8)

We substitute the previous solutions into (5.5). We denote by

H(u1, u2) =

∫
Ω

(µ1 − µ2)e(u2) · e(u1)dx.

Then we prove the indentifiability of µ(x) from

lim
τ→∞

τ−2H(u1, u2) = 0.

To express the result in more compact form, denotes(
r

(0)
1 (x, θ)

s
(0)
1 (x, θ)

)
= C1(x, θ)g1(θ · x),

(
r

(0)
3 (x, θ)

s
(0)
3 (x, θ)

)
=

(
r

(0)
2 (x, θ)

s
(0)
2 (x, θ)

)
= C2(x, θ)g2(θ · x).
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Then (
r

(0)
3 (x, θ)

s
(0)
3 (x, θ)

)
= C3(x, θ)g3(θ · x),

where we take g3(z) = g2(z). We define(
R

(0)
1 (x, θ)

s
(0)
1 (x, θ)

)
=

(
µ
−1/2
1 θ · r(0)

1

s
(0)
1

)
,

(
R

(0)
3 (x, θ)

s
(0)
3 (x, θ)

)
=

(
µ
−1/2
2 θ · r(0)

3

s
(0)
3

)
.

With this notations, we obtain from (5.7) and (5.8)

θ · ∇
(
R1

s1

)
=

(
0 (θ · ∇)2µ−1

1 + 1
2
µ
−3/2
1

−1
2
µ1 0

)(
R1

s1

)
(5.9)

and

θ · ∇
(
R3

s3

)
=

(
0 (θ · ∇)2µ−1

2 + 1
2
µ
−3/2
2

−1
2
µ2 0

)(
R3

s3

)
. (5.10)

From Lemma 2.1 in [48], we get

0 = lim
τ→∞

τ−2H(u1, u2) =

∫
Ω

eix·l(R3, s3)V (x, θ)

(
R1

s1

)
dx, (5.11)

where

V (x, θ) =
1

2

(
1

µ2

− 1

µ1

)(
0 θ · ∇µ2

θ · ∇µ1 µ1(θ · ∇)2µ−1
1 + µ2(θ · ∇)2µ−1

2 + 1
4
µ
−1/2
1 + 1

4
µ
−1/2
2

)
.

(5.12)

Arguying as in [48], we can take(
R1

s1

)
= C̃1(x, θ)g̃1(θ · x) ,

(
R3

s3

)
= C̃3(x, θ)g̃3(θ · x)

where C̃1 and C̃3 are invertible 2 × 2 matrix solutions of (5.9) and (5.10), respectively, and
g̃1 and g̃3 are two arbitrary vector of polynomials of z. Thus, (5.11) can be written as∫

Ω

eix·lg̃T3 (θ · x)C̃T
3 (x, θ)V (x, θ)C̃1(x, θ)g̃1(θ · x)dx = 0. (5.13)

As in [48], we take advantage of the freedom of choosing θ, using the next parameterization.
Denote by ξ(s)

ξ(s) =

(
1

2
(s− s−1),

i

2
(s+ s−1), 1

)T
, s ∈ C \ {0}.
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Note that ξ(s) · ξ(s) = 0 and Re(ξ(s)) 6= 0. We have that θ = |Re(ξ(s))|−1ξ(s).

Let (x′1, x
′
2, x⊥) be coordinates in R3, where x′1 = x ·α, x′2 = x ·β and x⊥ = x−x′1α−x′2β.

Following the ideas of [48], we define the matrix

B(x, ξ(s)) = P (C̃T
3 (x, ξ(s))V (x, ξ(s))C̃1(x, ξ(s)))

where P (s) denotes the operator

P (s)f =
1

(2π)3

∫
R3

(Ff)(η)eix·η

iη · ξ(s)
dη.

Note that

ξ(s) · ∇Pf = f , ∀f ∈ L2
c(R3). (5.14)

Next, we define f1(x′1, x
′
2, x⊥) the function f(x) in the new coordinates. Then

(Pf)1(x′1, x
′
2, x⊥) = |Re(ξ(s))|−1Πf1, (5.15)

where Π is the Cauchy operator

(Πf1)(z, x⊥) =
1

π

∫
R2

f1(y, x⊥)

z − y
dy′1dy

′
2, (5.16)

with z = x′1 + ix′2 and y = y′1 + iy′2. Since V is supported in the ball of radio R, BR, using the
representation of P (s) to compute the Laurent series for B(z, x⊥, ξ(s)) in {|z| > R}, one sees
that each term in the Laurent series vanishes for |x| > R. Then Lemma 6.1 in [48], implies
that

B′(x, ξ(s)) = (C̃T
3 )−1(x, ξ(s))B(x, ξ(s))C̃−1

1 (x, ξ(s)) (5.17)

is analytic in s on C \ {0}.

Next we study the homogeneity of B′(x, ξ(s)) in θ. By (5.9) and (5.10), we obtain that

C̃1(x, λθ) =

(
1 0
0 λ−1

)
C̃1(x, θ) , C̃3(x, λθ) =

(
1 0
0 λ−1

)
C̃3(x, θ)

and (5.12) implies

V (x, λθ) =

(
1 0
0 λ

)
V (x, θ)

(
1 0
0 λ

)
.

From the definition of P , we have

B′(x, λθ) =

(
1 0
0 λ

)
B′(x, θ)

λ

(
1 0
0 λ

)
.
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Then if

B′(x, θ) =

(
B′11 B′12

B′21 B′22

)
we have B′jk(x, λθ) = λj+k−3B′jk(x, θ) for j, k = 1, 2. Thus Liouville’s theorem implies that
B′11 = 0, B′12 and B′21 are functions of x alone, and

B′22(x, ξ(s)) =
∑
|k|≤1

skB′22k(x).

In view of the homogeneity of the entries of B′ in z we conclude

B′(x, θ) =

(
0 b12(x)

b21(x) b22(x) · θ

)
.

From (5.9),(5.10), and (5.14), one gets

θ · ∇B′ = −
(

0 −1
2
µ2

(θ · ∇)2µ−1
2

)
B′ + V −B′

(
0 (θ · ∇)2µ−1

1

−1
2
µ1 0

)
.

Denote by

V (x, θ) =

(
v11 v12

v21 v22

)
,

and following the method in [48], we conclude that

−1

2
µ2b21 −

1

2
µ1b12 = v11 = 0, (5.18)

θ · ∇b12 −
1

2
µ2b22 · θ = v12, (5.19)

θ · ∇b21 −
1

2
µ1b22 · θ = v21, (5.20)

θ · ∇(b22 · θ) + (θ · ∇)2µ−1
1 b21 + (θ · ∇)2µ−1

2 b12 +
1

2
µ
−3/2
1 b21 +

1

2
µ
−3/2
2 b12 = v22. (5.21)

From (5.18)-(5.21) we prove that µ1 = µ2. Applying θ · ∇ to (5.18) we obtain

θ · ∇µ1b12 + µ1θ · ∇b12 + θ · ∇µ2b21 + µ2θ · ∇b21 = 0. (5.22)

Now, using (5.19) and (5.20) to cancel b22 · θ, implies

µ1θ · ∇b12 − µ2θ · ∇b21 = µ1v12 − µ2v21. (5.23)

Putting together (5.22) and (5.23) we have

θ · ∇µ1b12 + θ · ∇µ2b21 + 2µ1θ · ∇b12 = µ1v12 − µ2v21. (5.24)
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Solving (5.18) gives

b21 = −µ1

µ2

b12.

Putting the previous expression, the expressions v12 and v21 of (5.12), in (5.24) we obtain

2
√
µ1µ2θ · ∇

(√
µ1

µ2

b12

)
= −√µ1µ2θ · ∇

(√
µ1

µ2

)
−√µ1µ2θ · ∇

(√
µ2

µ1

)
.

Since b12 = 0 and µ1 = µ2 on ∂Ω, by the uniqueness of the Cauchy problem we have

2

√
µ1

µ2

b12 = −
√
µ1

µ2

−
√
µ2

µ1

+ 2,

that is,

b12 = −1

2

(
1 +

µ2

µ1

− 2

√
µ2

µ1

)
. (5.25)

Similarly, we have

b21 =
1

2

(
1 +

µ1

µ2

− 2

√
µ1

µ2

)
. (5.26)

Thus, replacing (5.25) and (5.26) in (5.19), implies that

b22 · θ =
2

µ2

θ · ∇
(
µ2

µ1

)
+ θ · ∇µ−1

2 − θ · ∇µ−1
1 . (5.27)

On the other hand, from v22 of (5.12), using (5.25) and (5.26), in (5.21), implies

θ · ∇(b22 · θ) +

(
1−

√
µ1

µ2

)
(θ · ∇)2µ−1

1 −
(

1−
√
µ2

µ1

)
(θ · ∇)2µ−1

2 +

3

8

(
1

µ
3/2
1

− 1

µ
3/2
2

)
+

5

8

(
1

µ
1/2
1 µ2

− 1

µ
1/2
2 µ1

)
= 0. (5.28)

Putting together (5.26) and (5.27) we obtain

θ · ∇
(

2

µ2

θ · ∇
(
µ1

µ2

))
=

√
µ1

µ2

(θ · ∇)2µ−1
1 −

√
µ2

µ1

(θ · ∇)2µ−1
2

− 3

8

(
1

µ
3/2
1

− 1

µ
3/2
2

)
− 5

8

(
1

µ
1/2
1 µ2

− 1

µ
1/2
2 µ1

)
.
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Note that

2

µ2

θ · ∇
(
µ1

µ2

)
=

√
µ1

µ2

θ · ∇µ−1
1 −

√
µ2

µ1

θ · ∇µ−1
2 ,

then

θ · ∇
(

2

µ2

θ · ∇
(
µ1

µ2

))
= θ · ∇

(√
µ1

µ2

)
θ · ∇µ−1

1 +

√
µ1

µ2

(θ · ∇)2µ−1
1

− θ · ∇
(√

µ2

µ1

)
θ · ∇µ−1

2 −
√
µ2

µ1

(θ · ∇)2µ−1
2 .

Therefore

θ · ∇
(√

µ1

µ2

)
θ · ∇µ−1

1 − θ · ∇
(√

µ2

µ1

)
θ · ∇µ−1

2 +
3

8

(
1

µ
3/2
1

− 1

µ
3/2
2

)
+

5

8

(
1

µ
1/2
1 µ2

− 1

µ
1/2
2 µ1

)
= 0. (5.29)

It is easy to prove that

θ · ∇
(√

µ1

µ2

)
θ · ∇µ−1

1 =
1

2µ2
1µ2
√
µ1µ2

(µ2θ · ∇µ1 − µ1θ · ∇µ2)θ · ∇µ1

and

θ · ∇
(√

µ2

µ1

)
θ · ∇µ−1

2 =
1

2µ2
2µ1
√
µ1µ2

(µ2θ · ∇µ1 − µ1θ · ∇µ2)θ · ∇µ2.

From (5.29) we obtain

4[(µ2θ · ∇µ1)2 − (µ1θ · ∇µ2)2] + 3µ1µ2(µ
3/2
2 − µ3/2

1 ) + 5(
√
µ1 −

√
µ2)µ

3/2
1 µ

3/2
2 = 0. (5.30)

Note that the equation (5.30) is true for all θ, in particular, for all εθ, with ε > 0. Then,

4ε2(µ2θ · ∇µ1)2 − (µ1θ · ∇µ2)2] + 3µ1µ2(µ
3/2
2 − µ3/2

1 ) + 5(
√
µ1 −

√
µ2)µ

3/2
1 µ

3/2
2 = 0.

Taking limit ε→ 0, we obtain

3µ1µ2(µ
3/2
2 − µ3/2

1 ) + 5(
√
µ1 −

√
µ2)µ

3/2
1 µ

3/2
2 = 0.

Let φ =
√
µ1 and ψ =

√
µ2. Then

3φ2ψ2(ψ3 − φ3) + 5(φ− ψ)φ3ψ3 = 0,
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thus

(ψ − φ)φ2ψ2[3(φ2 + ψφ+ ψ2)− 5φψ] = 0,

therefore

(ψ − φ)φ2ψ2[3φ2 + 3ψ2 − 2φψ] = 0.

Suppose that µ1 6= µ2 in Ω. Then

3(φ2 + ψφ+ ψ2)− 5φψ = 0,

thus

2(ψ2 + φ2) + (φ2 + ψ2 − 2ψφ) = 0.

Since φ2 + ψ2 − 2ψφ ≥ 0, we obtain that

φ2 + ψ2 ≤ 0,

which is a contradiction. Therefore, φ = ψ, that is,

µ1 = µ2 , in Ω.

5.3 Perspective

As mentioned in the introduction, we are interested in the identification of the viscosity
function for the evolutionary case. One idea for this result is to use the approach given by
Isakov [69]. Namely, we want to obtain the identifiability of viscosity when the time horizon
tends to infinity, reducing the inverse evolutionary problem to inverse stationary problem.
For this, its necessary to obtain a result of stabilization of solutions, but the big problem is
that the viscosity function play a important role in the convergence of solutions when time
tends to infinity. In particular, we lose that the pressure is a harmonic function.

Another approach is to formulate the problem from the point of view of the optimal control
theory, specifically use the approach of the turnpike property. In this case, the problem arises
to ensure the uniqueness of the optimal viscosity function for the evolutionary case.
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Chapter 6

Conclusions

In this Thesis we have applied theoretical results about the inverse and control problems on
some models in the fluid mechanics field. In particular, we have focused on the Stokes and
Navier–Stokes equations. We conclude this Thesis with some final remarks and perspectives
related to these subjects.

• In Chapter 3 we studied the geometric inverse problem related to the stationary Stokes
equations. Specifically, we analyzed the size estimates, lower and upper bounds, prob-
lem for an inclusion immersed in a bounded domain fulfilled with a incompressible
viscous fluid. Our results rely in a series of theoretical inequalities. In fact, the lower
bound are based on the application of Rellich’s identity for the Stokes system, an ap-
propriate Poincaré type inequality and interior estimate for the gradient of the solution.
On the other hand, the upper estimates are based on a variational technical inequality
associated to the Stokes equations, Lipschitz propagation of smallness (consequence of
a three–spheres inequality) and Korn’s inequality.

As we mentioned in the Chapter 3, the upper bound on our volume estimates is different
with respect to the result proved by Alessandrini et al. [13]. The authors show that the
upper estimate can be realized in a better way, without using a priori information on
the obstacle. However, this improvement is a consequence of the doubling inequality
for the conductivity problem, which, as far as we know, is not yet proven to the Stokes
equations.

Besides, we have studied some numerical experiments about the size estimates, but only
experiments. In a future work (in progress) following the guidelines drawn up in this
Chapter, an extended numerical investigation will be performed in order to prove the
effectiveness of this approach. We will analyze the sensitivity with respect to various
relevant parameters.

• In Chapter 4 we have analyzed the large–time behavior of some optimal control prob-
lem for the incompressible viscous evolutionary Navier–Stokes equations in the two–
dimensional case. We proved, under certain smallness condition, that the optimal
solution of the nonsteady optimality system satisfies the turnpike property in a local
sense.
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Our result are based strongly on an appropriate definition of the functional to minimize,
that is, consider a tracking–type optimal control problem with terminal constraint.
This implies that when linearize the optimality system, we can translate the system as
a optimal control problem for the Oseen equations. Besides, using that the nonlinear
term is of quadratic order, we need only assume the smallness condition on the tracking
term of the analogous stationary optimal problem.

A future work (in progress) is to consider a similar problem, but for optimal design
approach. This will help us to understand, mathematically speaking, why in the aero-
nautic field the optimal aircraft design are based on stationary models. We will analyze
different models before to the treatment to the Navier–Stokes equations, for instance,
we will studied the optimal design of coefficient in the finite dimensional case and op-
timal design in the context of parabolic equations.

• In Chapter 5 we have studied the parameter identification question for the evolutionary
Stokes system. First, we analyzed the problem of the viscosity identifiability problem in
the stationary case using the technique given by Uhlmann [110], that is the construction
of special solutions for the problem. Then, in a work in progress, we will studied the
identification of the viscosity for the evolutionary equation when we consider the time
tends to infinity. We hope to have a result of this property using the idea of Isakov [69]
for the parabolic case.
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