

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

# DISEÑO ESTRUCTURAL PARA SIFÓN DE TOMA DE AGUA DE MAR DE CENTRAL TERMOELÉCTRICA A CARBÓN PC DE 375 MW

# MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL

# CATALINA ALEJANDRA HERRERA RUBIO

**PROFESOR GUÍA** HUGO BAESLER CORREA

**MIEMBROS DE LA COMISIÓN** JOSÉ GONZÁLEZ WILLSON FRANCISCO CASTRO GUTIÉRREZ

> SANTIAGO DE CHILE 2016

# RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE: Ingeniera Civil. POR: Catalina Alejandra Herrera Rubio. FECHA: 21/11/2016. PROFESOR GUÍA: Hugo Baesler Correa.

# DISEÑO ESTRUCTURAL PARA SIFÓN DE TOMA DE AGUA DE MAR DE CENTRAL TERMOELÉCTRICA A CARBÓN PC DE 275 MW

El objetivo de este trabajo es diseñar una estructura de soporte de sifón de captación de agua mar, utilizando las disposiciones sísmicas de la norma NCh2369 y paralelamente con ASCE 7, obtener los costos de inversión de cada estructura y comparar los resultados obtenidos entre ambas.

La estructura corresponde a un marco arriostrado excéntricamente por pilotes, para soportar la tubería. En la dirección transversal posee marcos excéntricos, y al final se ubican dos torres de succión de agua de mar.

La metodología consiste en diseñar la estructura en SAP2000, con las solicitaciones definidas a partir de ambas normas, verificar para obtener los factores de utilización de cada elemento y determinar el costo de inversión que implicaría un proyecto de esta envergadura.

Se utiliza un factor de reducción de la respuesta R igual a 3.5 y factor de amortiguamiento 3% para el diseño con NCh2369, obtenidos de la actualización de la norma NCh2369 en desarrollo. Para el diseño de ASCE 7-10 se utiliza factor de reducción de la respuesta R=4 y factor de amortiguamiento igual a 5%. El espectro de aceleraciones utilizado en el diseño se obtiene de un estudio de riesgo sísmico en Mejillones con  $S_{DS}$ =1.35 g,  $S_{D1}$ =0.5 g y  $T_{L}$ =1.8 s.

La estructura diseñada con norma ASCE 7-10 resulta de menor resistencia sísmica que el diseño con NCh2369Of2003, por ende se produce una situación de incumplimiento del diseño sísmico con los requisitos mínimos de la normativa legal exigida en el país.

Respecto a la diferencia en cuanto a costo de inversión, la estructura diseñada con ASCE 7-10 resulta un 10% más económica que el diseño obtenido con NCh2369Of2003, debido a que esta última requiere mayor cantidad de acero.

# AGRADECIMIENTOS

Primero agradecer a Dios por todo lo que me ha dado en la vida y permitirme terminar mi carrera. Gracias a mi familia; a mis padres María Betzabé Rubio Molina y Humberto Alejandro Herrera Meléndez, mis hermanos Flavio y Maira, y a mi pololo Aníbal Parra.

También quisiera agradecer a las siguientes personas, que de una u otra forma han sido importantes en este proceso:

- A mi profesor guía Hugo Baesler, por su apoyo académico y laboral.
- A los integrantes de la comisión el Señor José Manuel González y Francisco Castro, por su apoyo en el desarrollo de esta memoria.
- A Reinaldo Barriga, Ingeniero Civil Oceánico de la Universidad de Valparaíso, por sus consejos y amistad.
- A Manuel Rodríguez y Néstor Sepúlveda, ambos Ingeniero Civil de la Universidad de Chile, por su asesoría académica y en uso de SAP2000.
- A Carlos Peña, Ingeniero Civil de la Pontificia Universidad Católica por su apoyo académico, para el desarrollo de esta memoria.
- A Camilo Pinilla Ramos, Ingeniero Civil de la Universidad de Chile, por su apoyo durante las prácticas en IDIEM y como anterior profesor guía.
- A Leonardo Hueche, por su asesoría en los terrenos del trabajo de título anterior, que no pude concluir.
- A PMI Energy Service, por permitirme disponer de la información necesaria para el desarrollo de esta memoria.
- A todos los académicos de los que fui alumna en la FCFM de la Universidad de Chile.

# TABLA DE CONTENIDO

| 1 | Int  | rodu  | cción1                                |
|---|------|-------|---------------------------------------|
|   | 1.1  | Ger   | neralidades 1                         |
|   | 1.2  | Obj   | ietivos5                              |
|   | 1.2. | 1     | Objetivo general5                     |
|   | 1.2. | 2     | Objetivos específicos5                |
|   | 1.3  | Mo    | tivación5                             |
|   | 1.4  | Me    | todología6                            |
| 2 | Ant  | eced  | lentes del proyecto7                  |
|   | 2.1  | Ubi   | icación7                              |
|   | 2.2  | Des   | scripción de la estructura8           |
|   | 2.3  | Ant   | tecedentes geotécnicos10              |
|   | 2.4  | Cor   | ndiciones naturales del lugar 10      |
|   | 2.4  | .1    | Clima 10                              |
|   | 2.4  | .2    | Mareas11                              |
|   | 2.4  | .3    | Vientos11                             |
|   | 2.4  | .4    | Oleajes11                             |
|   | 2.4  | •5    | Corrientes12                          |
|   | 2.4  | .6    | Batimetría 12                         |
|   | 2.4  | •7    | Tsunami 12                            |
| 3 | Cri  | terio | s de diseño13                         |
|   | 3.1  | Car   | gas para el diseño de la estructura13 |
|   | 3.1. | 1     | Peso propio13                         |
|   | 3.1. | 2     | Agua en la tubería 13                 |
|   | 3.1. | 3     | Solicitación de viento 13             |
|   | 3.1. | 4     | Carga de tránsito 14                  |
|   | 3.1. | 5     | Solicitación por temperatura15        |
|   | 3.1. | 6     | Solicitación por oleaje15             |
|   | 3.1. | 7     | Sobrecarga por tsunami 16             |
|   | 3.1. | 8     | Solicitación sísmica                  |

| ç | 3.2  | Ma     | sa sísmica20                                                  |
|---|------|--------|---------------------------------------------------------------|
| ç | 3.3  | Coi    | nbinaciones de carga20                                        |
| ę | 3.4  | Efe    | cto P-delta23                                                 |
| S | 3.5  | Def    | formación sísmica25                                           |
|   | 3.5  | .1     | Deformaciones admisibles25                                    |
| ć | 3.6  | Ace    | ero estructural26                                             |
|   | 3.6  | .1     | Norma de diseño26                                             |
|   | 3.6  | .2     | Calidad del acero26                                           |
| 4 | Мо   | delo   | s y geometría27                                               |
| ۷ | 4.1  | Mo     | delo computacional27                                          |
|   | 4.1. | .1     | Estructura de soporte del sifón de captación de agua de mar27 |
|   | 4.1. | .2     | Estructura de las torres de captación de agua de mar29        |
| ۷ | 1.2  | Mo     | delo interacción suelo-pilote 31                              |
| 5 | Ana  | álisis | s estructural32                                               |
| 5 | 5.1  | Est    | ructura de soporte del sifón de captación de agua de mar32    |
|   | 5.1. | 1      | Reacciones en la base de la estructura32                      |
|   | 5.1. | 2      | Análisis modal34                                              |
|   | 5.1. | 3      | Peso sísmico35                                                |
|   | 5.1. | 4      | Verificación del corte basal36                                |
|   | 5.1. | 5      | Verificación de los elementos de acero37                      |
|   | 5.1. | 6      | Verificación de desplazamientos 41                            |
| 5 | 5.2  | Est    | ructura de torres de captación de agua de mar44               |
|   | 5.2  | .1     | Reacciones en la base de la estructura44                      |
|   | 5.2  | .2     | Análisis modal46                                              |
|   | 5.2  | .3     | Peso sísmico47                                                |
|   | 5.2  | •4     | Verificación del corte basal48                                |
|   | 5.2  | •5     | Verificación de los elementos de acero50                      |
|   | 5.2  | .6     | Verificación de deformaciones53                               |
| 6 | Pre  | sup    | uesto del proyecto56                                          |
| 7 | Ana  | álisis | s de resultados57                                             |
| 7 | 7.1  | Est    | ructura de soporte del sifón58                                |

| 7.2  | Estructura de las torres de captación de agua de mar | 63 |
|------|------------------------------------------------------|----|
| 7.3  | Costos de inversión                                  | 65 |
| 8 Co | nclusiones y recomendaciones                         | 66 |
| 8.1  | Discusión                                            |    |
| 8.2  | Conclusión                                           | 70 |
| 8.3  | Recomendaciones                                      | 72 |
| 9 Bi | bliografía                                           | 73 |

# ÍNDICE DE TABLAS

| Tabla 2-1: Condiciones climáticas10                                            |
|--------------------------------------------------------------------------------|
| Tabla 2-2: Oleaje de diseño11                                                  |
| Tabla 3-1: Sobrecarga de viento 13                                             |
| Tabla 3-2: Coeficientes de dilatación térmica 15                               |
| Tabla 3-3: Factor de importancia, I17                                          |
| Tabla 3-4: Factor de modificación de la respuesta, R                           |
| Tabla 3-5: Razón de amortiguamiento, $\xi$                                     |
| Tabla 3-6: Combinaciones de carga según NCh2369Of2003 21                       |
| Tabla 3-7: Combinaciones de carga según ASCE 7-1022                            |
| Tabla 3-8: Características del acero estructural26                             |
| Tabla 4-1: Parámetros para suelo diatomáceo 31                                 |
| Tabla 4-2: Cálculo de resortes para interacción suelo-pilote 31                |
| Tabla 5-1: Resumen reacciones estructura soporte de sifón NCh2369Of200332      |
| Tabla 5-2: Resumen reacciones estructura soporte de sifón ASCE 7-1033          |
| Tabla 5-3: Resumen análisis modal estructura soporte de sifón NCh2369Of2003 34 |
| Tabla 5-4: Resumen análisis modal estructura soporte de sifón ASCE 7-1035      |
| Tabla 5-5: Peso sísmico estructura soporte de sifón NCh2369Of200335            |
| Tabla 5-6: Peso sísmico estructura soporte de sifón ASCE 7-1036                |
| Tabla 5-7: Corte basal estructura soporte de sifón NCh236936                   |
| Tabla 5-8: Corte basal estructura soporte de sifón ASCE 7-1037                 |
| Tabla 5-9: Dimensiones pilotes y arriostramiento NCh2369Of200338               |
| Tabla 5-10: Dimensiones vigas NCh2369Of200339                                  |
| Tabla 5-11: Dimensiones de perfil L NCh2369Of200339                            |
| Tabla 5-12: Dimensiones pilotes y arriostramiento ASCE 7-10                    |
| Tabla 5-13: Dimensiones vigas ASCE 7-10 39                                     |
| Tabla 5-14: Dimensiones de perfil L ASCE 7-1039                                |
| Tabla 5-15: Factores de utilización y combinación que controla el diseño de    |
| estructura soporte de sifón40                                                  |

| Tabla 5-16: Deformaciones sísmicas máximas estructura soporte de sifón NCh236  | 9          |
|--------------------------------------------------------------------------------|------------|
|                                                                                | <b>¦1</b>  |
| Tabla 5-17: Deformaciones sísmicas máximas estructura soporte sifón ASCE 7-104 | <b>ļ</b> 1 |
| Tabla 5-18: Deformaciones verticales admisibles estructura soporte sifón4      | .2         |
| Tabla 5-19: Desplazamiento junta de dilatación de sifón 1 NCh2369Of20034       | .2         |
| Tabla 5-20: Desplazamiento junta de dilatación de sifón 2 NCh2369Of20034       | 3          |
| Tabla 5-21: Desplazamiento junta de dilatación de sifón 1 ASCE 7-104           | 3          |
| Tabla 5-22: Desplazamiento junta de dilatación de sifón 2 ASCE 7-104           | 3          |
| Tabla 5-23: Resumen reacciones torres de succión NCh2369Of20034                | 4          |
| Tabla 5-24: Resumen reacciones torres de succión ASCE 7-104                    | -5         |
| Tabla 5-25: Resumen análisis modal torres de captación NCh2369Of20034          | 6          |
| Tabla 5-26: Resumen análisis modal torres de captación ASCE 7-10 4             | ·7         |
| Tabla 5-27: Peso sísmicos torres de succión normas NCh2369Of20034              | ·7         |
| Tabla 5-28: Peso sísmicos torres de succión normas ASCE 7-104                  | 8          |
| Tabla 5-29: Corte basal torres de succión NCh2369Of20034                       | 8          |
| Tabla 5-30: Corte basal torres de succión ASCE 7-104                           | .9         |
| Tabla 5-31: Dimensiones pilotes y arriostramiento NCh2369Of2003 5              | 51         |
| Tabla 5-32: Dimensiones vigas NCh2369Of20035                                   | 51         |
| Tabla 5-33: Dimensiones de perfil L NCh2369Of20035                             | 51         |
| Tabla 5-34: Dimensiones pilotes y arriostramiento ASCE 7-105                   | 2          |
| Tabla 5-35: Dimensiones vigas ASCE 7-105                                       | 2          |
| Tabla 5-36: Dimensiones de perfil L ASCE 7-105                                 | 2          |
| Tabla 5-37: Factores de utilización torres de succión5                         | 3          |
| Tabla 5-38: Deformaciones sísmicas torres de succión NCh2369Of20035            | 3          |
| Tabla 5-39: Deformaciones sísmicas torres de succión ASCE 7-105                | 4          |
| Tabla 5-40: Deformaciones verticales admisibles torres de succión5             | 5          |
| Tabla 6-1: Resumen presupuesto NCh2369Of20035                                  | 6          |
| Tabla 6-2: Resumen presupuesto ASCE 7-105                                      | 6          |
| Tabla 7-1: Resumen parámetros de diseño NCh2369 y ASCE 7-105                   | 8          |
| Tabla 7-2: Dimensiones pilote más solicitado6                                  | 0          |
| Tabla 7-3: Esfuerzos internos máximos pilote6                                  | 0          |
| Tabla 7-4: Dimensiones viga Cepa para ambos diseños 6                          | <b>j</b> 1 |
| Tabla 7-5: Solicitaciones máximas en viga cepa 6                               | <b>j</b> 1 |
| Tabla 7-6: Dimensiones perfil L6                                               | 4          |
| Tabla 7-7: Esfuerzos internos máximos pilote 16                                | 4          |
| Tabla 8-1: Resumen parámetros de diseño NCh2369 y ASCE 7-106                   | 8          |
| Tabla 8-2: Resumen presupuesto NCh2369Of20037                                  | 0          |
| Tabla 8-3: Resumen presupuesto ASCE 7-107                                      | 71         |

# ÍNDICE DE ILUSTRACIONES

| Figura 1-1: Diagrama general de central termoeléctrica a carbón PC 1                 |
|--------------------------------------------------------------------------------------|
| Figura 1-2: Ciclo agua - vapor en central térmica2                                   |
| Figura 1-3: Sistema de circulación de agua4                                          |
| Figura 2-1: Mapa Bahía de Mejillones                                                 |
| Figura 2-2: Cepa transversal8                                                        |
| Figura 2-3: Vista en perfil de la estructura del sifón de captación de agua de mar9  |
| Figura 2-4: Torre de captación de agua de mar9                                       |
| Figura 3-1: Camión H estándar 14                                                     |
| Figura 3-2: Espectro de respuesta en Mejillones17                                    |
| Figura 3-3: Factor de corrección de Jacobsen20                                       |
| Figura 4-1: Vista en 3D del modelo en SAP2000                                        |
| Figura 4-2: Vista en planta del modelo en SAP200028                                  |
| Figura 4-3: Vista lateral del modelo en SAP200028                                    |
| Figura 4-4: Vista 3D de las torres de captación de agua de mar en SAP200029          |
| Figura 4-5: Vista de perfil de las torres de captación de agua de mar30              |
| Figura 4-6: Vista en planta de las torres de succión                                 |
| Figura 5-1: Perfiles estructura de soporte de sifón de captación de agua de mar38    |
| Figura 5-2: Distribución de perfiles Torres de succión de agua de mar50              |
| Figura 7-1: Espectro de aceleraciones de Mejillones 57                               |
| Figura 7-2: Pilote y viga cepa más solicitados en estructura de soporte del sifón de |
| captación59                                                                          |
| Figura 7-3: Elementos más solicitados en estructura de torres de captación de agua   |
| de mar63                                                                             |
| Figura 7-4: Comparación costo de inversión entre ambas estructuras65                 |

# 1 INTRODUCCIÓN

### **1.1 GENERALIDADES**

Una central termoeléctrica convencional puede utilizar combustible en base a carbón, obteniendo la energía mecánica para impulsar el giro del rotor del Turbogenerador, a partir del vapor a presión generado por la caldera del tipo PC o CFB (Circulated Fluid Bed).

Otro tipo de central termoeléctrica corresponde a las del tipo ciclo combinado, que generalmente operan en base a gas natural como combustible, con la opción de utilizar petróleo diésel como combustible de respaldo. En estas centrales se realiza la combustión del gas en Turbinas a partir de las cuales se produce la primera generación eléctrica del equipo CTG (Combustion Turbo Generation). Los gases de alta temperatura provenientes de la combustión en la Turbina, son conducidos mediante ductos a una Caldera recuperadora de calor (HRSG Heat Recovery Steam Generation) que genera vapor a presión, que se envía a un Turbogenerador convencional en base a vapor, obteniéndose una segunda fase de generación eléctrica. (Ver figura 1-1)



Figura 1-1: Diagrama general de central termoeléctrica a carbón PC

Los combustibles más utilizados por centrales termoeléctricas de este tipo en el país son carbón, gas natural y petróleo diésel (de respaldo).

De la Turbina a vapor, en los casos de centrales tipo PC o tipo CFD, así como de la Turbina a vapor de las centrales ciclo combinado, sale vapor que se conduce al Condensador, equipo intercambiador de calor en el cual el vapor se transforma en agua condensado mediante el enfriamiento de circulación de agua fría de mar. Esta línea de proceso corresponde al ciclo de agua - vapor (Ver figura 1-2)



Figura 1-2: Ciclo agua - vapor en central térmica

El agua de condensado producido por el Condensador se envía a sistemas de tuberías y bombas para reingresarlo al proceso de producción de vapor de la Caldera.

Se requiere en el Condensador, un flujo constante de agua de mar refrigerante a baja temperatura en las tuberías interiores del equipo de intercambio de calor para mantener la producción de condensado, además de otras variables de proceso del sistema. El sistema de agua de circulación (CWS circulating water system) corresponde a un sistema principal de la central termoeléctrica, es decir, una falla local en el sistema del CWS, que paralice la circulación permanente del flujo de agua de enfriamiento que pasa por el Condensador, produce de inmediato la parada de la operación de la central termoeléctrica, suspendiéndose el suministro eléctrico a la red. De lo anterior, el sistema CWS de la central debe mantener continuidad operacional con sismos de servicio (de magnitud 7) y con el sismo de diseño (de magnitud 8.5), tanto la Central Termoeléctrica como sus estructuras, equipos, y el sistema CWS, no pueden tener daños que signifiquen una suspensión de la generación eléctrica de más de dos semanas, y en lo posible que se pueda restituir la operación de la central en pocos días. (Ver figura 1-3)

El sistema CWS está conformado por:

- Captación de agua de mar mediante sifón, tuberías y estructuras de soporte.
- Pozo de bombas, estructuras cajón de hormigón armado, en la cual se recibe el agua de mar proveniente del sifón, se realiza un filtrado y limpieza del agua de mar, se bombea el agua de mar hasta el Condensador junto al equipo Turbogenerador, mediante sistemas de tuberías enterradas. En el pozo de bombas hay equipos auxiliares como Grúa Gantry para operación y mantención de los equipos.
- Desde el condensador, se conduce por tuberías el agua de mar con unos 10°Centígrados de mayor temperatura, hasta un pozo de sello (Seal Pit).
- Desde el Seal Pit se descarga gravitacionalmente el agua de mar mediante tuberías enterradas en la parte terrestre y en terrenos de playa y fondo de mar cercano a la playa, para luego apoyarse en el fondo de mar y conducirse mediante tuberías la descarga del agua hasta una distancia de la playa, aprobado en el permiso ambiental.



Figura 1-3: Sistema de circulación de agua

El sistema de captación de agua de mar, contiene componentes como tuberías tipo sifón, que transportan el agua de mar desde un punto de toma hasta el pozo de bombas. Las tuberías del sifón se soportan sobre una estructura de acero marítima tipo muelle transparente, conformado longitudinalmente por vigas de soporte apoyadas en cepas transversales de pilotes hincados en el fondo de mar. Considera sistemas pilotes sismo resistente transversales como longitudinales.

Los ductos de aducción de agua de mar pueden ser construidos en diversos materiales, tales como acero, plásticos reforzados con fibra de vidrio (PRFV), polietileno de alta densidad con peso molecular alto y polietileno de alta densidad con peso molecular extra alto. En el caso de la presente memoria de título se considerará tuberías de sifón de acero.

#### 1.2 OBJETIVOS

## 1.2.1 Objetivo general

 Definir y comparar el método de diseño para estructura de soporte de sifón entre norma ASCE 7-10 y NCh2369Of2003.

#### 1.2.2 Objetivos específicos

- Definir el factor de modificación R y porcentaje de amortiguamiento a utilizar en el diseño del sifón de la central termoeléctrica, bajo normativa nacional.
- Conocer los montos de inversión de las estructuras y tuberías, según cada normativa de diseño utilizada, en caso de resultar las estructuras distintas.

## 1.3 MOTIVACIÓN

En el análisis sísmico de estructuras marítimas nacionales realizado en los últimos años, se establecen criterios de diseño que abarcan algunas disposiciones de las normativas estadounidense ASCE 7-10 y AISC 341, utilizando algunas disposiciones de la normativa nacional NCh2369Of2003. No parece adecuado que se tenga que utilizar disposiciones de dos códigos distintos para el diseño, por lo tanto interesa estudiar que solución de estructura resulta de aplicar los códigos ASCE 7-10 y NCH2369Of2003 de forma independiente.

El código ASCE 7-10 ha sido desarrollado a partir de una serie de investigaciones efectuadas en el estado de California, sus disposiciones permiten a las estructuras incursionar en el rango inelástico, permitiendo mayores deformaciones que la normativa NCh2369, que considera diseño elástico (ductilidad moderada) de los elementos. Esta última es una norma calibrada con el sismo de Valdivia 1960, y donde se tiene la experiencia de los diseños nacionales bajo norma NCh2369 han resistido de manera favorable los efectos de numerosos sismos severos posteriores.

La normativa nacional vigente no define de manera clara parámetros de diseño para estructuras marítimas, como es el caso de la razón de amortiguamiento y el factor de modificación de la respuesta, quedando principalmente a criterio del ingeniero, a menos que utilice los parámetros más restrictivos de la norma (R=2;  $\xi=2\%$ ). En el presente estudio se diseñará la estructura de soporte de un sifón de captación de agua de mar, bajo la normativa nacional NCh2369 y la normativa ASCE 7-10, definiendo a partir de ellas sus parámetros, con el fin de realizar los diseños y obtener como resultado las estructuras y costos de inversión asociados.

# 1.4 METODOLOGÍA

- Revisión bibliográfica y recopilación de antecedentes de condiciones locales del proyecto.
- Definir los criterios de diseño sísmico-estructural de la estructura de soporte del sifón de captación de agua, utilizando la norma chilena NCh2369Of2003 (actualizada) y la norma ASCE 7-10.
- Modelar utilizando el software SAP2000, utilizando los criterios de diseño definidos en el punto anterior, de cada norma.
- Verificar que el diseño, aplicando el método ASD, de la estructura cumpla adecuadamente con las solicitaciones a las que será sometida.
- Realizar un análisis comparativo económico de la estructura, diseñada con ambas normas.
- Discusión a partir de los resultados del método de diseño a utilizar considerando que la normativa NCh2369 es legalmente aplicable para estructuras de soporte de sifón.

# **2** ANTECEDENTES DEL PROYECTO

# 2.1 UBICACIÓN

El sifón de captación de agua de mar pertenece a una central termoeléctrica a carbón pulverizado de 375 MW bruto, emplazada en la bahía de Mejillones, región de Antofagasta.



Figura 2-1: Mapa Bahía de Mejillones

# 2.2 DESCRIPCIÓN DE LA ESTRUCTURA

La estructura consta de dos tuberías de acero, de 2,6 [m] de diámetro cada una, soportadas por cepas sísmicas transversales y longitudinales, moduladas cada 10 [m]. En la Figura 2-2 se muestra un corte típico de la cepa transversal:



Figura 2-2: Cepa transversal

La Figura 2-3 muestra una vista de perfil longitudinal de la estructura:



Figura 2-3: Vista en perfil de la estructura del sifón de captación de agua de mar

Para el análisis se modelará por separado la estructura que soporta al sifón a lo largo de toda su longitud, y las torres que resisten el sistema de captación de agua de mar, ubicadas al final de la estructura. En la Figura 2-4 se muestra un esquema de la torre de captación:



Figura 2-4: Torre de captación de agua de mar

# 2.3 ANTECEDENTES GEOTÉCNICOS

Estudios geotécnicos realizados en el sitio (Proyectos con participación de PMI Energy Services S.A), indican que el subsuelo marino está constituido por un estrato superficial de arenas sueltas, con un espesor que varía principalmente en el sentido perpendicular a la línea de la costa, bajo el cual se encuentra un limo de alta plasticidad con consistencia rígida a dura, correspondiente a depósitos de organismos unicelulares denominados diatomeas con partículas de origen volcánico. Este estrato denominado "limo diatomáceo" se halla con distintos grados de consistencia en todas las áreas marítimas exploradas en la bahía de Mejillones.

El estrato de arena posee un espesor constante de 2 m en toda la extensión de la obra y se presume que podría presentar licuación sísmica, por lo que no será considerado para la resistencia lateral sísmica de los pilotes.

## 2.4 CONDICIONES NATURALES DEL LUGAR

#### 2.4.1 Clima

Las características generales del litoral norte corresponden a una zona desértica con clima dominante marítimo, poca oscilación diaria de temperatura, nubosidad y humedad que se disipa a mediodía con soleamiento fuerte en las tardes.

Escasas precipitaciones que alcanzan los 2,6 mm anuales, no se registra la presencia de heladas ni nieve.

|                   | Enero  | Julio  |
|-------------------|--------|--------|
| Temperatura media | 20,5°C | 14,9°C |
| Oscilación diaria | 7,3°C  | 5,0°C  |
| Humedad relativa  | 72%    | 75%    |

| Tabla  | 2-1: | Cond  | iciones  | climáticas |
|--------|------|-------|----------|------------|
| I UNIU |      | 00110 | 10101100 | ommations  |

#### 2.4.2 Mareas

Según la tabla de mareas del SHOA, para el puerto de Antofagasta el nivel medio del mar corresponde a +0,8 m NRS y el rango de mareas en sicigias alcanza 1.6 m. De acuerdo a estudios realizados en el lugar, para la realización de la construcción de otros proyectos del sector se detalla que el nivel medio del mar en la localidad de la obra es de +0,888 m NRS, valor que será utilizado para el diseño.

## 2.4.3 Vientos

Los vientos en el área de Mejillones son predominantemente del Sur. Las mayores intensidades se asocian con las direcciones Sur y Suroeste. Para los diseños se utilizará la norma NCh432.

## 2.4.4 Oleajes

El oleaje en el sector del proyecto se caracteriza por generarse fuera de la bahía (tipo swell). El período pico del oleaje de tormenta se encuentra en el rango  $T_p=10$  s a 18 s.

En la Tabla 2-2 se muestran las condiciones de oleaje extremo en un punto frente a la captación.

| Casa        | $T_{r}$ | $H_s$ | $H_{max}$ | $T_{p}$ |
|-------------|---------|-------|-----------|---------|
| Caso        | [años]  | [m]   | [m]       | [s]     |
| Extremo     | 100     | 1,81  | 3,26      | 16      |
| Operacional | 2       | 1,30  | 2,34      | 16      |

#### 2.4.5 Corrientes

La correntometría Lagrangiana indica una magnitud media de 7,7 cm/s y máxima instantánea de 15,5 cm/s con dirección hacia el sector S-SE.

La correntometría Euleriana indica en invierno una magnitud media de 4,5 cm/s y máxima de 20 cm/s, ambas con dirección paralela a la línea de la costa. En verano la magnitud media alcanza 5 cm/s y la máxima 32 cm/s, ambas con dirección paralela a la línea de costa.

Para el cálculo de las cargas hidrodinámicas sobre la estructura que soporta al sifón, se estima que las cargas producidas por estas corrientes no son relevantes debido a su magnitud relativa frente al oleaje, a las bajas magnitudes registradas y la baja probabilidad que la corriente tenga la misma dirección que el oleaje.

## 2.4.6 Batimetría

La profundidad en el punto de la captación es de -8 m NRS, y la pendiente de fondo es de aproximadamente 4%.

#### 2.4.7 Tsunami

Para el diseño del sifón y de la estructura que lo soporta, se considerará una elevación de +10 m NRS, con una velocidad de escurrimiento máxima de 1,6 m/s, en dirección perpendicular al eje longitudinal del sifón.

Por tratarse de una onda larga, para la columna de agua se adopta una distribución uniforme de la velocidad de escurrimiento.

# **3 CRITERIOS DE DISEÑO**

# 3.1 CARGAS PARA EL DISEÑO DE LA ESTRUCTURA

### 3.1.1 Peso propio

Las cargas de peso propio corresponden a cargas permanentes de la estructura, materiales de construcción y equipos constantemente conectados a ella. Los pesos específicos de los materiales utilizados son:

> Hormigón armado: 2,5  $\begin{bmatrix} ton \\ m^3 \end{bmatrix}$ Acero estructural: 7,85  $\begin{bmatrix} ton \\ m^3 \end{bmatrix}$

## 3.1.2 Agua en la tubería

El agua de mar dentro de la tubería posee una densidad de:

$$\gamma_{\omega} = 1,025 \left[ \frac{t}{m^3} \right]$$

## 3.1.3 Solicitación de viento

La sobrecarga de viento se calcula de acuerdo a las disposiciones de la norma NCh432:

| Elemento | Coeficiente<br>de forma<br>Cf | Carga<br>[to | de viento<br>onf/m] |
|----------|-------------------------------|--------------|---------------------|
|          |                               | Extremo      | Operacional         |
| Pilotes  | 0,8                           | 0,028        | 0,0014              |
| Vigas    | 1,9                           | 0,066        | 0,0014              |
| Tubería  | 1,7                           | 0,059        | 0,0031              |

Tabla 3-1: Sobrecarga de viento

# 3.1.4 Carga de tránsito

Se considera que sobre la losa de hormigón deberá circular un camión AASHTO H2O, como el que se muestra en la Figura 3-1: Camión H estándar Figura 3-1, y una sobrecarga de 5 kN/m adicional:



Figura 3-1: Camión H estándar

## 3.1.5 Solicitación por temperatura

En condiciones normales de operación se adopta una variación térmica  $\pm 15^{\circ}C$ . Se utilizarán los coeficientes de dilatación térmica:

| m 11             | a c            | 1   | 1.1  |         | . / ·   |
|------------------|----------------|-----|------|---------|---------|
| Tabla 0_0.       | ( 'ootioiontoc | d D | d119 | atación | tormica |
| $1 a p a 5^{-2}$ | Counciences    | uc  | una  | atacion | unnua   |
| 0                |                |     |      |         |         |

| Tipo de material | coeficiente de dilatación térmica         |
|------------------|-------------------------------------------|
| Acero:           | 0,000012 ( <sup>1</sup> / <sub>°C</sub> ) |
| Hormigón:        | $0,000011 (1/_{\circ C})$                 |

### 3.1.6 Solicitación por oleaje

La fuerza del oleaje se calcula con la ecuación de Morison (Ecuación 3-1). Las velocidades y aceleraciones de los orbitales de oleaje se obtienen aplicando la teoría no lineal de Dean.

Los coeficientes de Morison,  $C_D$  y  $C_M$ , se obtienen de recomendaciones internacionales, considerando la dependencia del número de Keulegan-Carpenter.

$$F = F_D + F_I = C_D \cdot \frac{\rho}{2} \cdot A \cdot U \cdot |U| + C_m \cdot \rho \cdot V \cdot \frac{\partial U}{\partial t}$$
 Ecuación 3-1

Donde:

F: Fuerza hidrodinámica [kN].

C<sub>D</sub>: Coeficiente de arrastre.

C<sub>M</sub>: Coeficiente de inercia.

U: Velocidad del orbital del oleaje [m/s].

 $\rho$ : Densidad del agua de mar [ton/m<sup>3</sup>].

A: Dimensión del elemento puesta en la dirección del flujo [m<sup>2</sup>].

V: Volumen desplazado por el elemento [m3].

 $\frac{\partial U}{\partial t}$ : Aceleración del orbital del oleaje [m/s<sup>2</sup>].

#### 3.1.7 Sobrecarga por tsunami

Para calcular la sobrecarga de tsunami se considera que el perfil de carga es constante, debido a su condición de corriente horizontal permanente.

Se utiliza la ecuación de Morison simplificada, despreciando la componente inercial, con una velocidad máxima de 1,6 m/s.

$$F = C_D \cdot \frac{\rho}{2} \cdot A \cdot U \cdot |U|$$
 Ecuación 3-2

#### 3.1.8 Solicitación sísmica

## i. Espectro de diseño

El sector donde se emplaza el sifón de captación corresponde a un suelo tipo II, para una zona sísmica 3. El espectro de respuesta, obtenido mediante estudio sísmico para un suelo de estas características con amortiguamiento del 5% se define a continuación:

$$S_{a} = (0,55 + 10T) \cdot g \ si \ T \le 0,08 \ s$$
$$S_{a} = 1,35 \cdot g \ si \ 0.08 \ s \le T \le 1,8 \ s$$
$$S_{a} = \left(\frac{0,68}{T}\right) \cdot g \ si \ 0,5 \ s \le T \le 1,8 \ s$$
$$S_{a} = \frac{1,21}{T^{2}} \cdot g \ si \ 1,8 \ s \le T$$

En la figura 3-2 se muestra el espectro definido anteriormente, el cual es consistente con las definiciones dadas por la norma ASCE 7-10. Para el modelo analizado con las combinaciones de carga dadas por la norma chilena NCh2369Of2003, el espectro se reduce por un factor de 0,7, de modo de obtener valores de diseño equivalentes.



Figura 3-2: Espectro de respuesta en Mejillones

# ii. Factor de importancia

La clasificación según importancia es C1, aplicado a estructuras esenciales cuya falla puede causar detenciones prolongadas y pérdidas serias de producción. Por lo tanto el factor de importancia corresponde a:

|            |        | -  | _      | _       |   |
|------------|--------|----|--------|---------|---|
| Tabla 3-3: | Factor | de | import | tancia, | Ι |

| Norma         | Factor de importancia, I |
|---------------|--------------------------|
| NCh2369Of2003 | 1,2                      |
| ASCE 7-10     | 1,5                      |

## iii. Factor de modificación de la repuesta (R)

El factor de modificación de la respuesta utilizado para el diseño con normativa nacional, es el definido en la actualización de la norma NCh2369, por el Grupo 7 en el capítulo 12 de estructuras portuarias. En este capítulo se define valores específicos para el factor R y de amortiguamiento para la estructuración como la del soporte del sifón, correspondiente a vigas dispuestas sobre cuplas excéntricas de pilotes de acero (Ver anexo M).

De acuerdo a la norma ASCE 7-10, la estructura de soporte del sifón de captación debe cumplir con los requisitos del capítulo15 "Seismic design requirements for nonbuilding structures", donde se define un R igual a 3 <sup>1</sup>/<sub>2</sub> para un marco de momento concéntrico, mientras que no se especifica ningún valor para estructuras excéntricas como la utilizada para el soporte del sifón de captación.

Por otra parte, en el capítulo 12 de la norma ASCE 7-10, correspondiente a "Seismic design requirements for building structures" se define un factor R igual a 8 para estructuras formadas por marcos de momento excéntricos. En base a lo descrito anteriormente es que la estructura correspondiente a la norma ASCE 7-10 se diseña con R igual a 4, valor que es cercano al definido para el caso de un marco concéntrico, de modo de obtener un diseño acorde a las disposiciones de la normativa estadounidense, pero adaptado a la realidad nacional.

| Tabla 3-4: | Factor  | de | modificaci | ón | de | la | resi | ouesta. | R |
|------------|---------|----|------------|----|----|----|------|---------|---|
|            | I UCCOI | au | mound      |    | au | 14 |      | Jacota  |   |

| Norma     | Factor de modificación de la respuesta, R |
|-----------|-------------------------------------------|
| NCh2369   | 3,5                                       |
| ASCE 7-10 | 4                                         |

# iv. Razón de amortiguamiento (ξ)

La actualización de la norma NCh2369 (en desarrollo), en el capítulo 12 de estructuras portuarias (Grupo 7) define una razón de amortiguamiento del 3% para las estructuras correspondiente a la de soporte del sifón de captación (Ver anexo M).

La norma ASCE 7-10, por otra parte, define una razón de amortiguamiento de 5% para todo tipo de estructuras.

| Norma     | Razón de amortiguamiento, $\xi$ |
|-----------|---------------------------------|
| NCh2369   | 3%                              |
| ASCE 7-10 | 5%                              |

### v. Corte mínimo

De acuerdo a la norma chilena NCh2369Of2003, el corte basal no puede ser menor al valor mostrado a continuación:

$$Q_{\min} = 0.25 \cdot I \cdot \frac{A_0}{g} \cdot P$$
 Ecuación 3-3

En caso que el esfuerzo de corte basal resulte menor que el valor determinado anteriormente, todas las deformaciones y esfuerzos se deben multiplicar por el cuociente  $Q_{min}/Q_0$ , para efectos de diseño.

ASCE 7-10 establece que el corte basal se define como:

| $V = C_s \cdot W$ | Ecuación 3-4 |
|-------------------|--------------|
|-------------------|--------------|

El valor de  $C_s$  no puede ser menor a:

$$C_s = 0.044 \cdot S_{DS} \cdot I_e \ge 0.01$$

Ecuación 3-5

# 3.2 MASA SÍSMICA

La masa sísmica considerada para el análisis modal espectral corresponderá a:

- 100% del peso propio de la estructura y sobrecargas permanentes
- 100% Agua interior de tubería del sifón, cuando corresponda.
- Masa inductiva de agua en los pilotes.

Para considerar la masa inductiva se utiliza el texto "Fundamentals of Earthquake Engineering", Nathan M. Newmark – Emilio Rosenblueth (1964). Capítulo 6.4 Vibration Submarine Structures. La masa virtual o inductiva del agua alrededor del pilote se considera como la masa de un cilindro igual al analizado, ponderada por el factor de corrección de Jacobsen, que depende del radio del pilote y su altura sumergida. De acuerdo a la Figura 3-3, el factor de corrección utilizado es 0,5.



Figura 3-3: Factor de corrección de Jacobsen

## 3.3 COMBINACIONES DE CARGA

Los estados de carga del modelo del sifón son los descritos a continuación:

PP: Peso propio de la estructura.

T: Solicitación por variación de temperatura.

Sif\_Op: Peso del agua dentro del sifón.

(Wa+W)<sub>max</sub>: Solicitación por oleaje y viento máximo actuando en la dirección X, longitudinal a la estructura de soporte del sifón.

(Wa+W)<sub>Op</sub>: Solicitación por oleaje y viento operacional actuando en la dirección X, longitudinal a la estructura de soporte del sifón.

S<sub>x</sub>: Sismo actuando en dirección longitudinal a la estructura de soporte del sifón.

Sy: Sismo actuando en dirección transversal a la estructura de soporte del sifón.

Sz: Sismo vertical.

T<sub>s</sub>: Solicitación de tsunami, actuando en la dirección transversal a la estructura de soporte del sifón.

SC: Sobrecarga vertical sobre el tablero de hormigón.

Las combinaciones de carga utilizadas en el modelo diseñado con la norma chilena NCh2369Of2003 para el método de diseño ASD, son las que se muestran a continuación:

| NCh2369_ASD    |     | Estados de carga |        |                       |                      |                           |                           |                           |     |      |
|----------------|-----|------------------|--------|-----------------------|----------------------|---------------------------|---------------------------|---------------------------|-----|------|
| Comb. De carga | PP  | Т                | Sif_Op | (Wa+W) <sub>max</sub> | (Wa+W) <sub>Op</sub> | $\mathbf{S}_{\mathbf{x}}$ | $\mathbf{S}_{\mathbf{y}}$ | $\mathbf{S}_{\mathrm{z}}$ | Ts  | SC   |
| Normal         | 1,0 | 1,0              | 1,0    | -                     | 1,0                  | -                         | -                         | -                         | -   | 1,0  |
| Sísmica1       | 1,0 | -                | 1,0    | -                     | 1,0                  | 0,3                       | 1,0                       | 1,0                       | -   | 0,25 |
| Sísmica2       | 1,0 | -                | 1,0    | -                     | 1,0                  | 1,0                       | 0,3                       | 1,0                       | -   | 0,25 |
| Tsunami sifón  | 1.0 |                  | 1.0    |                       |                      |                           |                           |                           | 1.0 |      |
| lleno          | 1,0 | -                | 1,0    | -                     | -                    | -                         | -                         | -                         | 1,0 | -    |
| Tsunami sifón  | 1.0 |                  |        |                       |                      |                           |                           |                           | 1.0 |      |
| vacío          | 1,0 | -                | -      | -                     | -                    | -                         | -                         | -                         | 1,0 | -    |
| Oleaje máximo  | 1,0 | 1,0              | 1,0    | 1,0                   | -                    | -                         | -                         | -                         | -   | -    |

Tabla 3-6: Combinaciones de carga según NCh2369Of2003

De acuerdo a lo estipulado en la actualización (2016) de la norma NCh2369Of2003, para el diseño de vigas y columnas se debe amplificar la solicitación sísmica horizontal por el factor de sobrerresistencia  $\Omega_0 = 2$ .

Las combinaciones de carga utilizadas en el modelo diseñado con la norma estadounidense ASCE 7-10 para el método de diseño ASD, son las que se muestran a continuación:

| ASCE 7-       |     |     |                |                                         | Fetados do   | oorao            |        |         |       |      |
|---------------|-----|-----|----------------|-----------------------------------------|--------------|------------------|--------|---------|-------|------|
| 10_ASD        |     |     |                |                                         | Estados de C | laiga            |        |         |       |      |
| Comb. De      | РР  | Т   | Sif Op         | (Wa+W) <sub>max</sub>                   | (Wa+W)on     | Sx               | Sv     | $S_{z}$ | Ts    | SC   |
| carga         |     | -   | 511 <u></u> 0p | ( ) · · · · · · · · · · · · · · · · · · | (III III)op  | $\sim_{\Lambda}$ | Σy     | ~2      | 10    | 20   |
| Normal        | 1,0 | 1,0 | 1,0            | -                                       | 1,0          | -                | -      | -       | -     | 1,0  |
| Ambiental 1   | 1,0 | 1,0 | -              | -                                       | -            | -                | -      | -       | -     | -    |
| Ambiental 2   | 1,0 | -   | 1,0            | 0,7                                     | -            | -                | -      | -       | -     | -    |
| Ambiental 3   | 1,0 | -   | 1,0            | 0,525                                   | -            | -                | -      | -       | -     | 0,75 |
| Ambiental 4   | 0,6 | -   | 0,6            | 0,7                                     | -            | -                | -      | -       | -     | -    |
| Sísmica 1     | 1,0 | -   | 1,0            | -                                       | 0,525        | 0,525            | 0,1575 | 0,525   | -     | 0,75 |
| Sísmica 2     | 1,0 | -   | 1,0            | -                                       | 0,525        | 0,1575           | 0,525  | 0,525   | -     | 0,75 |
| Sísmica 3     | 1,0 | -   | 1,0            | -                                       | 0,7          | 0,7              | 0,21   | 0,7     |       | -    |
| Sísmica 4     | 1,0 | -   | 1,0            | -                                       | 0,7          | 0,21             | 0,7    | 0,7     |       | -    |
| Tsunami       | 1.0 |     | 1.0            |                                         | 1.0          |                  |        |         | 0 595 | 0.75 |
| sifón lleno 1 | 1,0 | -   | 1,0            | -                                       | 1,0          | -                | -      | -       | 0,525 | 0,/5 |
| Tsunami       | 1.0 |     |                |                                         | 1.0          |                  |        |         | 0 595 | 0.75 |
| sifón vacío 1 | 1,0 | -   | -              | -                                       | 1,0          | -                | -      | -       | 0,525 | 0,/5 |
| Tsunami       | 1.0 |     | 1.0            |                                         | 1.0          |                  |        |         | 07    |      |
| sifón lleno 2 | 1,0 | -   | 1,0            | -                                       | 1,0          | -                | -      | -       | 0,/   | -    |
| Tsunami       | 1.0 |     |                |                                         | 1.0          |                  |        |         | 07    |      |
| sifón vacío 2 | 1,0 | -   | -              | -                                       | 1,0          | -                | -      | -       | 0,/   | -    |
| Tsunami       | 0.6 |     | 0.6            |                                         | 1.0          |                  |        |         | 07    |      |
| sifón lleno 3 | 0,0 | -   | 0,0            | -                                       | 1,0          | -                | -      | -       | 0,/   | -    |
| Tsunami       | 0.6 |     |                |                                         | 1.0          |                  |        |         | 07    |      |
| sifón vacío 3 | 0,0 | _   | -              | -                                       | 1,0          | -                | -      | -       | 0,/   | -    |

Tabla 3-7: Combinaciones de carga según ASCE 7-10

La norma ASCE 7-10 considera la inclusión del factor de sobrerresistencia  $(\Omega)$  para el diseño de ciertos elementos, aumentando la solicitación sísmica. Para la estructura analizada en esta memoria el factor de sobrerresistenia corresponde a  $\Omega=2$ .

En el caso de la estructura de soporte del sifón de captación se debe aplicar este factor en el diseño de los pilotes y la viga cepa, tal y como indica la norma AISC 341 para el caso de estructuras excéntricas.

En el diseño de las torres de captación de agua de mar se debe amplificar la solicitación sísmica para diseñar las vigas y columnas.

La combinación sísmica que incluye el factor de sobrerresistencia es la siguiente:

$$(1 + 0.14S_{DS})D + H + F + 0.7\Omega_0Q_E$$

$$(1 + 0.105S_{DS})D + H + F + 0.525\Omega_0Q_E + 0.75L + 0.75(L_r \circ S \circ R)$$

$$(0,6 - 0,14S_{DS})D + 0,7\Omega_0Q_E + H$$

# 3.4 EFECTO P-DELTA

El efecto P-delta es causado por los efectos de segundo orden de la estructura, que producen un aumento en las deflexiones horizontales y en las fuerzas internas.

De acuerdo a la sección 6.4 de la Norma Chilena NCh236oOf2003, el efecto Pdelta se debe considerar cuando las deformaciones sísmicas excedan el siguiente valor:

 $d = 0.015 \ h$ 

Ecuación 3-6

La norma ASCE 7-10 establece que no se requiere considerar el efecto Pdelta siempre y cuando el coeficiente de estabilidad ( $\theta$ ) sea igual o menor a 0,1.

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$
 Ecuación 3-7

Donde:

 $P_x$ : Carga vertical total de diseño.

∆: Desplazamiento relativo de diseño.

 $I_e$ : Factor de importancia de la estructura.

 $V_x$ : Corte sísmico actuando en el nivel x.

 $h_{sx}$ : Altura del piso bajo el nivel x.

 $C_d:$  Factor de amplificación de deflexiones, correspondiente a 4 para este tipo de estructura.

# 3.5 DEFORMACIÓN SÍSMICA

La deformación sísmica se obtendrá directamente de lo entregado en el modelo del programa SAP2000 con un R=1, y se verifica para que cumpla los límites establecidos por cada normativa.

### 3.5.1 Deformaciones admisibles

La norma chilena NCh2369 establece que las deformaciones horizontales para estructuras de acero no deben superar el límite establecido a continuación:

 $d = 0.015 \cdot h$ 

La norma ASCE establece que las deformaciones horizontales de una estructura clasificada como categoría de riesgo IV debe ser menor a:

 $d = 0.010 \cdot h$ 

Las deformaciones verticales deben ser menores a:

Vigasycañe rías : L / 300

Pisos = L / 300

Ecuación 3-9

Ecuación 3-11

Ecuación 3-10

Ecuación 3-8

#### 3.6 ACERO ESTRUCTURAL

### 3.6.1 Norma de diseño

El diseño en acero se ha realizado de acuerdo a la norma del American Institute of Steel Construction, AISC 360-10.

## 3.6.2 Calidad del acero

El acero para viga, jackets y soportes del sifón utilizado es de calidad ASTM A36. Para pilotes, el acero es de calidad API 5L Grado X42.

En la tabla 3-7 se muestran las tensiones características de ambos tipos de acero.

| Tipo de acero | Fy<br>[MPa] |
|---------------|-------------|
| A36           | 248         |
| API 5L        | 289         |

Tabla 3-8: Características del acero estructural

La aplicación de pintura e implementación de un sistema de protección catódica en el diseño de la estructura se considera como un sobreespesor de 3 mm en los pilotes y 2 mm en vigas para pérdida por corrosión.

# **4 MODELOS Y GEOMETRÍA**

## 4.1 MODELO COMPUTACIONAL

#### 4.1.1 Estructura de soporte del sifón de captación de agua de mar

El modelo tridimensional se desarrolla utilizando el software SAP2000. La estructura consta de un puente de acceso estructurado con cepas cada 10 m. Las cepas transversales (120) están estructuradas con dos pilotes inclinados en 1:3 y un pilote vertical. Los pilotes inclinados de estas cepas son desviados 16° en planta para evitar interferencias con los pilotes verticales. Las cepas longitudinales (3) están estructuradas con cuatro pilotes inclinados en 1:3, y un pilote vertical. Los pilotes se incorporan como elementos frame y se modelan mediante resortes para la interacción suelo - pilote.

Las cepas transversales y longitudinales son vigas de acero, modeladas como elemento frame apoyadas sobre los pilotes.

Entre cepas, se estructura una plataforma horizontal compuesta de vigas longitudinales, de uniones rígidas y diagonales de arriostramiento rotuladas en sus extremos. Esta plataforma es encargada de soportar la losa del puente de acceso, permitiendo compatibilizar deformaciones longitudinales y transversales de toda la estructura.

El centro de la tubería se encuentra al nivel +5,6 m NRS, se apoya cada 5 m sobre soportes fijos a la estructura, permitiendo que la tubería deslice libremente en sentido longitudinal, restringiendo en sentido transversal.

La losa del puente de acceso fue modelada por un elemento tipo Shell, de 25 cm de espesor.



Figura 4-1: Vista en 3D del modelo en SAP2000.



Figura 4-2: Vista en planta del modelo en SAP2000



Figura 4-3: Vista lateral del modelo en SAP2000.
### 4.1.2 Estructura de las torres de captación de agua de mar

En la Figura 4-4 se muestra el modelo de las dos torres de captación, unidas a la estructura de puente mediante el sifón de captación. Cada torre se compone de cuatro pilotes insertados en un jacket, modelados como una estructura cilíndrica de diámetro y espesor equivalente a la suma respectiva entre el pilote y el jacket.

Se incluye en el esquema la última cepa de la estructura de puente, donde se apoyan ambas tuberías.



Figura 4-4: Vista 3D de las torres de captación de agua de mar en SAP2000



Figura 4-5: Vista de perfil de las torres de captación de agua de mar



Figura 4-6: Vista en planta de las torres de succión

## 4.2 MODELO INTERACCIÓN SUELO-PILOTE

La interacción suelo-pilote es modelada con resortes espaciados cada 1 m, calculados de acuerdo a las recomendaciones del código API RP2a para suelos cohesivos. En la tabla 4-2, se muestra la rigidez de cada resorte, en función de la profundidad y el diámetro. Se modelaron 15 resortes por pilote, separados a 1 m entre sí.

| Penetración en<br>diatomita [m] | Peso unitario<br>boyante [t/m3] | Resistencia al corte no<br>drenado [t/m2] | Deformación<br>unitaria 50% [%] |
|---------------------------------|---------------------------------|-------------------------------------------|---------------------------------|
| 0-4                             | 0.4                             | 10                                        | 1.3                             |
| 4-14                            | 0.6                             | 20                                        | 2                               |
| 14-más                          | 0.6                             | 20                                        | 3                               |

Tabla 4-1: Parámetros para suelo diatomáceo

| Resort   | tes soft-clay |              |              |              |
|----------|---------------|--------------|--------------|--------------|
| D [m]    | 0,66          | 0,71         | 0,51         | 0,81         |
| H<br>[m] | K<br>[ton/m]  | K<br>[ton/m] | K<br>[ton/m] | K<br>[ton/m] |
| 1        | 860           | 848          | 912          | 828          |
| 2        | 1037          | 1012         | 1140         | 972          |
| 3        | 1214          | 1177         | 1369         | 1117         |
| 4        | 1391          | 1342         | 1598         | 1262         |
| 5        | 2031          | 1951         | 2367         | 1821         |
| 6        | 2259          | 2163         | 2663         | 2007         |
| 7        | 2488          | 2376         | 2958         | 2194         |
| 8        | 2716          | 2588         | 3254         | 2380         |
| 9        | 2945          | 2801         | 3550         | 2567         |
| 10       | 3173          | 3013         | 3846         | 2753         |
| 11       | 3402          | 3226         | 4141         | 2940         |
| 12       | 3630          | 3438         | 4437         | 3126         |
| 13       | 3859          | 3651         | 4733         | 3313         |
| 14       | 2725          | 2576         | 3353         | 2333         |
| 15       | 2877          | 2717         | 3550         | 2457         |

Tabla 4-2: Cálculo de resortes para interacción suelo-pilote

# 5 ANÁLISIS ESTRUCTURAL

# 5.1 ESTRUCTURA DE SOPORTE DEL SIFÓN DE CAPTACIÓN DE AGUA DE MAR

# 5.1.1 Reacciones en la base de la estructura

En las tabla 5-1 y 5-2, se muestran las reacciones obtenidas cada diseño:

| Load Case            | Fx       | Fy       | Fz       | Mx       | Му         | Mz         |
|----------------------|----------|----------|----------|----------|------------|------------|
| Load Case            | [tonf]   | [tonf]   | [tonf]   | [tonf m] | [tonf m]   | [tonf m]   |
| TEMPERATURA          | 0,00     | 0,00     | 0,00     | 0,00     | 345,66     | -14,84     |
| PESO PROPIO          | 0,00     | 0,00     | 3177,22  | 5696,72  | -358087,87 | 13,12      |
| TSUNAMI_Y            | 0,00     | -256,26  | 0,00     | -137,50  | -9,77      | -30807,05  |
| SIF_OP               | 0,00     | 0,00     | 3079,68  | -248,50  | -356800,63 | 0,98       |
| OLA_MAX_X            | 665,71   | 0,00     | 0,00     | 0,00     | -3116,93   | -1584,71   |
| WIND_MAX_X           | 100,59   | 0,00     | 0,00     | 0,00     | -119,18    | -188,84    |
| SISMOH_X             | 1401,10  | 74,68    | 1,56     | 37,96    | 3116,08    | 8988,44    |
| SISMOH_Y             | 74,68    | 2351,68  | 16,04    | 1357,19  | 3387,93    | 268698,00  |
| SISMOV_Z             | 0,16     | 1,65     | 9,79     | 72,07    | 1762,48    | 324,21     |
| TSUNAMI_Z            | 0,00     | 0,00     | -2415,19 | 282,29   | 268304,92  | 4,59       |
| VIENTO_OP_X          | 50,49    | 0,00     | 0,00     | 0,00     | -60,07     | -94,91     |
| OLA_OP_X             | 213,29   | 0,00     | 0,00     | 0,00     | -1120,76   | -539,71    |
| Normal_ASD           | 263,79   | 0,00     | 6256,91  | 5448,22  | -715723,67 | -635,36    |
| Normal_ASD           | 263,79   | 0,00     | 6256,91  | 5448,22  | -715723,67 | -635,36    |
| Sísmica1_ASD         | 1687,45  | 781,83   | 6273,07  | 5965,41  | -710174,39 | 89301,53   |
| Sísmica1_ASD         | -1159,88 | -781,83  | 6240,74  | 4931,03  | -721964,27 | -90542,57  |
| Tsunami_con_agua_ASD | 0,00     | -256,26  | 3841,72  | 5593,01  | -446593,35 | -30788,35  |
| Tsunami_sin_agua_ASD | 0,00     | -256,26  | 762,03   | 5841,51  | -89792,72  | -30789,33  |
| Oleaje_max_ASD       | 766,30   | 0,00     | 6256,91  | 5448,22  | -717778,94 | -1774,29   |
| Sísmica2_ASD         | 758,96   | 2375,73  | 6283,20  | 6888,87  | -709984,09 | 271098,23  |
| Sísmica2_ASD         | -231,38  | -2375,73 | 6230,61  | 4007,57  | -722154,57 | -272339,27 |
| Sismica1_omega_ASD   | 3110,95  | 1562,02  | 6279,44  | 6410,54  | -706041,94 | 178899,37  |
| Sismica1_omega_ASD   | -2583,38 | -1562,02 | 6234,37  | 4485,90  | -726096,73 | -180140,41 |
| Sismica2_omega_ASD   | 1253,97  | 4749,81  | 6299,71  | 8257,46  | -705661,33 | 542492,77  |
| Sismica2_omega_ASD   | -726,40  | -4749,81 | 6214,10  | 2638,98  | -726477,33 | -543733,80 |

Tabla 5-1: Resumen reacciones estructura soporte de sifón NCh2369Of2003

|                       | Fx       | Fv       | Fz       | Mx       | Mv         | Mz         |
|-----------------------|----------|----------|----------|----------|------------|------------|
| Load Case             | [tonf]   | [tonf]   | [tonf]   | [tonf m] | [tonf m]   | [tonf m]   |
| TEMPERATURA           | 0,00     | 0,00     | 0,00     | 0,00     | 335,81     | -14,89     |
| PESO PROPIO           | 0,00     | 0,00     | 3020,46  | 5569,09  | -340853,64 | 11,18      |
| TSUNAMI_Y             | 0,00     | -256,26  | 0,00     | -137,50  | -10,10     | -30812,04  |
| SIF_OP                | 0,00     | 0,00     | 3079,68  | -248,50  | -356812,84 | 1,74       |
| OLA_MAX_X             | 665,71   | 0,00     | 0,00     | 0,00     | -3116,59   | -1584,64   |
| WIND_MAX_X            | 100,59   | 0,00     | 0,00     | 0,00     | -119,09    | -188,83    |
| SISMOH_X              | 1882,76  | 81,77    | 17,92    | 110,64   | 4226,93    | 10043,26   |
| SISMOH_Y              | 81,77    | 2886,08  | 61,50    | 2026,27  | 10783,55   | 325912,88  |
| TSUNAMI_Z             | 0,00     | 0,00     | -2415,19 | 282,29   | 268314,29  | 4,52       |
| VIENTO_OP_X           | 50,49    | 0,00     | 0,00     | 0,00     | -60,02     | -94,91     |
| OLA_OP_X              | 213,29   | 0,00     | 0,00     | 0,00     | -1120,65   | -539,66    |
| Sismo_V               | 0,00     | 0,00     | -815,52  | -1503,66 | 92030,48   | -3,02      |
| Normal_ASD            | 263,79   | 0,00     | 6100,14  | 5320,59  | -698511,35 | -636,54    |
| Normal_ASD            | 263,79   | 0,00     | 6100,14  | 5320,59  | -698511,35 | -636,54    |
| Sísmica1_ASD          | 477,95   | 1528,07  | 5707,10  | 5612,39  | -643643,23 | 172364,26  |
| Sísmica1_ASD          | -200,98  | -1528,07 | 5636,88  | 3449,96  | -656297,44 | -173007,89 |
| Tsunami1_con_agua_ASD | 521,14   | 254,25   | 4842,57  | 5676,55  | -556021,08 | 27214,65   |
| Tsunami1_con_agua_ASD | 6,43     | -523,33  | 4821,76  | 5116,67  | -559953,83 | -60805,85  |
| Tsunami1_sin_agua_ASD | 521,14   | 254,25   | 1762,89  | 5925,05  | -199208,24 | 27212,91   |
| Tsunami1_sin_agua_ASD | 6,43     | -523,33  | 1742,08  | 5365,17  | -203140,99 | -60807,59  |
| Ambiental1_ASD        | 0,00     | 0,00     | 3020,46  | 5569,09  | -340517,83 | -3,71      |
| Ambiental2_ASD        | 536,41   | 0,00     | 6100,14  | 5320,59  | -699931,46 | -1228,51   |
| Ambiental3_ASD        | 402,30   | 0,00     | 6100,14  | 5320,59  | -699365,22 | -918,16    |
| Ambiental3_ASD        | 402,30   | 0,00     | 6100,14  | 5320,59  | -699365,22 | -918,16    |
| Ambiental4_ASD        | 536,41   | 0,00     | 3660,08  | 3192,36  | -420864,87 | -1233,68   |
| Ambiental4_ASD        | 536,41   | 0,00     | 3660,08  | 3192,36  | -420864,87 | -1233,68   |
| Sismica3_ASD          | 1519,75  | 663,32   | 5554,73  | 4771,00  | -628848,22 | 75038,59   |
| Sismica3_ASD          | -1150,45 | -663,32  | 5503,82  | 3765,07  | -639295,02 | -75905,38  |
| Tsunami2_con_agua_ASD | 607,58   | 339,99   | 4423,41  | 5795,91  | -508407,39 | 36605,41   |
| Tsunami2_con_agua_ASD | -80,01   | -698,76  | 4395,61  | 5047,99  | -513661,06 | -80979,24  |
| Tsunami2_sin_agua_ASD | 607,58   | 339,99   | 1343,72  | 6044,41  | -151594,55 | 36603,67   |
| Tsunami2_sin_agua_ASD | -80,01   | -698,76  | 1315,93  | 5296,49  | -156848,22 | -80980,98  |
| Tsunami3_con_agua_ASD | 607,58   | 339,99   | 1983,35  | 3667,67  | -229340,80 | 36600,24   |
| Tsunami3_con_agua_ASD | -80,01   | -698,76  | 1955,55  | 2919,75  | -234594,47 | -80984,41  |
| Tsunami3_sin_agua_ASD | 607,58   | 339,99   | 135,54   | 3816,77  | -15253,09  | 36599,20   |
| Tsunami3_sin_agua_ASD | -80,01   | -698,76  | 107,74   | 3068,85  | -20506,76  | -80985,45  |
| Sismica4_ASD          | 637,27   | 2037,43  | 5576,09  | 5709,66  | -625635,47 | 229814,70  |
| Sismica4_ASD          | -267,97  | -2037,43 | 5482,46  | 2826,41  | -642507,76 | -230681,49 |
| Sismica2_ASD          | 1139,82  | 497,49   | 5691,08  | 4908,40  | -646052,78 | 56282,17   |
| Sismica2_ASD          | -862,84  | -497,49  | 5652,90  | 4153,95  | -653887,88 | -56925,81  |

Tabla 5-2: Resumen reacciones estructura soporte de sifón ASCE 7-10

| Load Case          | Fx       | Fy       | Fz      | Mx      | My         | Mz         |
|--------------------|----------|----------|---------|---------|------------|------------|
|                    | [tonf]   | [tonf]   | [tonf]  | [tonf]  | [tonf]     | [tonf]     |
| Sismica1_omega_ASD | 817,42   | 3056,14  | 6179,87 | 7500,58 | -686705,81 | 345051,95  |
| Sismica1_omega_ASD | -540,44  | -3056,14 | 6039,43 | 3175,70 | -712014,24 | -345692,34 |
| Sismica3_omega_ASD | 2854,86  | 1326,64  | 6163,74 | 6349,91 | -689477,74 | 150512,74  |
| Sismica3_omega_ASD | -2485,55 | -1326,64 | 6061,91 | 4338,05 | -710371,34 | -151375,21 |
| Sismica4_omega_ASD | 1089,89  | 4074,86  | 6206,45 | 8227,24 | -683052,26 | 460064,96  |
| Sismica4_omega_ASD | -720,59  | -4074,86 | 6019,20 | 2460,73 | -716796,83 | -460927,43 |
| Sismica2_omega_ASD | 2141,14  | 994,98   | 6147,84 | 6092,58 | -691524,93 | 112887,78  |
| Sismica2_omega_ASD | -1864,17 | -994,98  | 6071,47 | 4583,69 | -707195,13 | -113528,17 |

#### 5.1.2 Análisis modal

Se selecciona la cantidad de modos donde se alcanza al menos el 90% de la masa modal. La estructura diseñada con el espectro de la norma chilena NCh2369 y con la norma ASCE7-10 cumple esta condición en el modo 4, como se muestra a continuación:

| Modo | Período | UX    | UY    | UZ   | SumUX | SumUY |
|------|---------|-------|-------|------|-------|-------|
| Modo | [s]     | [%]   | [%]   | [%]  | [%]   | [%]   |
| 1    | 0,36    | 26,92 | 0,00  | 0,00 | 26,92 | 0,00  |
| 2    | 0,35    | 25,38 | 0,00  | 0,00 | 52,31 | 0,00  |
| 3    | 0,29    | 0,05  | 88,55 | 0,00 | 52,35 | 88,55 |
| 4    | 0,26    | 0,03  | 0,00  | 0,01 | 52,38 | 88,55 |
| 5    | 0,22    | 1,66  | 0,01  | 0,00 | 54,04 | 88,56 |
| 6    | 0,21    | 7,46  | 0,05  | 0,00 | 61,50 | 88,60 |
| 7    | 0,20    | 16,29 | 0,12  | 0,00 | 77,78 | 88,73 |
| 8    | 0,20    | 0,05  | 0,03  | 0,00 | 77,83 | 88,76 |
| 9    | 0,20    | 0,96  | 0,01  | 0,00 | 78,80 | 88,77 |
| 10   | 0,19    | 0,00  | 0,04  | 0,00 | 78,80 | 88,81 |
| •••  | •••     | •••   | •••   | •••  | •••   | •••   |
| 70   | 0,10    | 0,00  | 0,00  | 0,05 | 0,85  | 0,90  |

Tabla 5-3: Resumen análisis modal estructura soporte de sifón NCh2369Of2003

| Modo | Período | UX    | UY    | UZ   | SumUX | SumUY |
|------|---------|-------|-------|------|-------|-------|
| Mouo | [s]     | [%]   | [%]   | [%]  | [%]   | [%]   |
| 1    | 0,36    | 27,58 | 0,00  | 0,00 | 27,58 | 0,00  |
| 2    | 0,35    | 25,99 | 0,00  | 0,00 | 53,57 | 0,00  |
| 3    | 0,30    | 0,03  | 89,10 | 0,00 | 53,61 | 89,10 |
| 4    | 0,26    | 0,03  | 0,09  | 0,02 | 53,64 | 89,18 |
| 5    | 0,21    | 25,19 | 0,14  | 0,00 | 78,83 | 89,33 |
| 6    | 0,20    | 0,52  | 0,01  | 0,00 | 79,35 | 89,33 |
| 7    | 0,19    | 0,03  | 0,00  | 0,00 | 79,38 | 89,33 |
| 8    | 0,18    | 0,01  | 0,00  | 0,00 | 79,39 | 89,33 |
| 9    | 0,18    | 0,00  | 0,00  | 0,00 | 79,39 | 89,34 |
| 10   | 0,18    | 0,00  | 0,00  | 0,00 | 79,39 | 89,34 |
| •••  | •••     | •••   |       | •••  | •••   |       |
| 27   | 0,15    | 0,00  | 0,05  | 1,16 | 79,55 | 90,02 |

Tabla 5-4: Resumen análisis modal estructura soporte de sifón ASCE 7-10

# 5.1.3 Peso sísmico

En la Tabla 5-5, se muestra el peso sísmico obtenido en el diseño realizado con la norma NCh2369Of2003:

| Tabla 5-5: Peso sísmi     | co estructura soporte                                                                                           | e de sifón NCh236 | 90f2003  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------|
| - 40-40 0 0 - 200 0 - 200 | to the detail of the second |                   | /******* |

| Load Case              | Peso Sísmico<br>[tonf] |
|------------------------|------------------------|
| PESO PROPIO            | 3177,22                |
| SIF_OP                 | 3079,68                |
| Masa inductiva de agua | 23,24                  |
| Total [tonf]           | 6280,28                |

En la Tabla 5-6 se muestra el peso sísmico obtenido en el diseño realizado con la norma ASCE 7-10

| Load Case              | Peso Sísmico<br>[tonf] |
|------------------------|------------------------|
| PESO PROPIO            | 3020,46                |
| SIF_OP                 | 3079,68                |
| Masa inductiva de agua | 23,24                  |
| Total [tonf]           | 6123,51                |

Tabla 5-6: Peso sísmico estructura soporte de sifón ASCE 7-10

# 5.1.4 Verificación del corte basal

El corte basal para la estructura diseñada con los requisitos de la norma NCh2369Of2003 es el mostrado a continuación:

Tabla 5-7: Corte basal estructura soporte de sifón NCh2369

| Load Case | Fx<br>[tonf] | Fy<br>[tonf] | Qo<br>[tonf] |
|-----------|--------------|--------------|--------------|
| SISMOH_X  | 1401,10      | 74,68        | 1403,09      |
| SISMOH_Y  | 74,68        | 2351,68      | 2352,86      |

El corte basal mínimo corresponde a:

 $Q_{min} = 1036,25 \ tonf$ 

Por lo tanto el corte basal de la estructura cumple con el límite inferior indicado por normativa.

El corte basal para la estructura diseñada con los requisitos de la norma ASCE 7-10 es el mostrado a continuación:

| Load Case | Fx      | Fy      | Qo      |
|-----------|---------|---------|---------|
|           | [toni]  | [toni]  | [toni]  |
| SISMOH_X  | 1882,76 | 81,77   | 1884,53 |
| SISMOH_Y  | 81,77   | 2886,08 | 2887,24 |

Tabla 5-8: Corte basal estructura soporte de sifón ASCE 7-10

El corte basal mínimo corresponde a:

$$Q_{min} = 557,73 \ tonf$$

Por lo tanto el corte basal de la estructura cumple con el límite inferior indicado por normativa.

#### 5.1.5 Verificación de los elementos de acero

El detalle de la verificación estructural de elementos se encuentra en anexo. En la Figura 5-1 se muestra la distribución de perfiles de la estructura. Los nombres de los perfiles de acuerdo a los colores que se observan en la figura son los siguientes:

Amarillo: Pilote 1 Verde: Pilote 2 Azul: Pilote 3 Rojo: Pilote vertical Rosado: Viga cepa Naranjo: Viga transversal Verde: Viga longitudinal Celeste: Arriostramiento Morado: Perfil L



Figura 5-1: Perfiles estructura de soporte de sifón de captación de agua de mar

# i. Dimensiones de los elementos

Los perfiles utilizados en la estructura de soporte del sifón diseñada con la norma chilena NCh2369Of2003, son los que se muestran a continuación:

| Elemento        | D [m] | t [mm] |
|-----------------|-------|--------|
| Pilote 1        | 1,30  | 20     |
| Pilote 2        | 0,95  | 25     |
| Pilote 3        | 0,82  | 20     |
| Pilote vertical | 0,60  | 15     |
| Arriostramiento | 0,16  | 17     |

Tabla 5-9: Dimensiones pilotes y arriostramiento NCh2369Of2003

| Elemento          | H [mm] | b [mm] | tw [mm] | tf [mm] |
|-------------------|--------|--------|---------|---------|
| Viga cepa         | 900    | 900    | 46      | 50      |
| Viga transversal  | 600    | 600    | 22      | 26      |
| Viga longitudinal | 600    | 600    | 18      | 24      |

Tabla 5-10: Dimensiones vigas NCh2369Of2003

## Tabla 5-11: Dimensiones de perfil L NCh2369Of2003

|          | b [mm] | t [mm] |
|----------|--------|--------|
| perfil L | 100    | 8      |

Los perfiles utilizados en la estructura diseñada con la norma ASCE 7-10, son los que se muestran a continuación:

Tabla 5-12: Dimensiones pilotes y arriostramiento ASCE 7-10

| Elemento        | D [m] | t [mm] |
|-----------------|-------|--------|
| Pilote 1        | 1,50  | 15     |
| Pilote 2        | 0,85  | 20     |
| Pilote 3        | 0,78  | 18     |
| Pilote vertical | 0,66  | 18     |
| Arriostramiento | 0,16  | 15     |
|                 |       |        |

Tabla 5-13: Dimensiones vigas ASCE 7-10

| Elemento          | H [mm] | b [mm] | tw [mm] | tf [mm] |
|-------------------|--------|--------|---------|---------|
| Viga cepa         | 900    | 900    | 42      | 44      |
| Viga transversal  | 600    | 600    | 22      | 24      |
| Viga longitudinal | 600    | 600    | 18      | 24      |

Tabla 5-14: Dimensiones de perfil L ASCE 7-10

|          | b [mm] | t [mm] |
|----------|--------|--------|
| perfil L | 100    | 8      |

## ii. Factores de utilización de los elementos

El diseño se ha realizado de modo que los factores de utilización de ambas estructuras sean similares, para comparar respecto a costo su diferencia.

Los factores de utilización obtenidos para los elementos de la estructura diseñada con las normativas correspondientes a cada norma se muestran a continuación:

| Fromo             | 1    | NCh2369Of2003      |      | ASCE 7—10          |
|-------------------|------|--------------------|------|--------------------|
| FU Com            |      | Combinación        | FU   | Combinación        |
| Arriostramiento   | 0,93 | Normal_ASD         | 0,96 | Ambiental1_ASD     |
| Perfil L          | 0,86 | Normal_ASD         | 0,86 | Normal_ASD         |
| Pilote 1          | 0,95 | Sismica2_omega_ASD | 0,93 | Sismica4_omega_ASD |
| Pilote 2          | 0,83 | Sismica2_omega_ASD | 0,8  | Sismica4_omega_ASD |
| Pilote 3          | 0,89 | Sismica2_omega_ASD | 0,86 | Sismica4_omega_ASD |
| Pilote vertical   | 0,55 | Sismica1_omega_ASD | 0,66 | Sismica4_omega_ASD |
| Viga cepa         | 0,85 | Sismica2_omega_ASD | 0,84 | Sismica4_omega_ASD |
| Viga transversal  | 0,25 | Sismica2_omega_ASD | 0,22 | Sismica4_ASD       |
| Viga longitudinal | 0,46 | Normal_ASD         | 0,44 | Normal_ASD         |

# Tabla 5-15: Factores de utilización y combinación que controla el diseño de estructura soporte de sifón

#### 5.1.6 Verificación de desplazamientos

Las deformaciones máximas producidas por el sismo en cada dirección para cada modelo se muestran a continuación:

Tabla 5-16: Deformaciones sísmicas máximas estructura soporte de sifón NCh2369

| Load Case | Max U1<br>[mm] | Max U2<br>[mm] | Max U3<br>[mm] |
|-----------|----------------|----------------|----------------|
| SISMOH_X  | 59,44          | 3,10           | 4,14           |
| SISMOH_Y  | 5,08           | 45,99          | 42,81          |
| SISMOV_Z  | 0,53           | 1,10           | 0,86           |

Tabla 5-17: Deformaciones sísmicas máximas estructura soporte sifón ASCE 7-10

| Load Case | Max U1<br>[mm] | Max U2<br>[mm] | Max U3<br>[mm] |
|-----------|----------------|----------------|----------------|
| SISMOH_X  | 84,76          | 4,26           | 6,46           |
| SISMOH_Y  | 7,34           | 69,09          | 65,37          |
| SISMOV_Z  | 1,21           | 1,02           | 3,42           |

#### i. Desplazamientos horizontales

De acuerdo a la NCh2369 las deformaciones horizontales no pueden ser mayores a la indicada en la Ecuación 3-8.

Se considera como altura de la estructura un promedio entre su altura mayor y menor, es decir h=8,801. Por lo tanto, la máxima deformación admisible es d=132.02 [mm], valor que efectivamente es mayor que las deformaciones sufridas por la estructura, por lo que no se debe considerar el efecto P- $\Delta$  para este caso.

La norma ASCE 7-10 establece que para estructuras no deben ser mayores al límite dado en la Ecuación 3-9, obteniendo un desplazamiento horizontal admisible de 88,01 mm, el cual es mayor a las deformaciones sufridas por la estructura de la Tabla 5-16.

### ii. Desplazamientos verticales

Las deformaciones verticales admisibles de cada elemento son las de la Tabla 5-18 de acuerdo a Ecuación 3-10 y Ecuación 3-11.

| Elemento          | Largo<br>[m] | ∆adm<br>[mm] |
|-------------------|--------------|--------------|
| Arriostramiento   | 5,93         | 19,77        |
| Perfil L          | 2,90         | 9,67         |
| Viga cepa         | 16,41        | 54,70        |
| Viga transversal  | 6,30         | 21,00        |
| Viga longitudinal | 5,00         | 16,67        |

Tabla 5-18: Deformaciones verticales admisibles estructura soporte sifón

Las máximas deformaciones verticales son las entregadas en la Tabla 5-16, y son menores que las máximas deformaciones admisibles para la estructura de la Tabla 5-18.

#### iii. Desplazamiento en la junta de dilatación

Las deformaciones producidas debido al sismo en la junta de dilatación ubicada al final de la tubería son las entregadas a continuación:

| Sifón 1 |         |         |         |
|---------|---------|---------|---------|
|         | U1 [mm] | U2 [mm] | U3 [mm] |
| Sx      | 7,60    | 1,20    | 0,40    |
| Sy      | 0,00    | 30,40   | 11,60   |
| Sz      | 0,00    | 0,12    | 0,20    |

Tabla 5-19: Desplazamiento junta de dilatación de sifón 1 NCh2369Of2003

| Sifón 2 |         |         |         |
|---------|---------|---------|---------|
|         | U1 [mm] | U2 [mm] | U3 [mm] |
| Sx      | 2,00    | 0,28    | 0,11    |
| Sy      | 0,00    | 30,40   | 11,60   |
| Sz      | 0,00    | 0,00    | 0,05    |

Tabla 5-20: Desplazamiento junta de dilatación de sifón 2 NCh2369Of2003

Tabla 5-21: Desplazamiento junta de dilatación de sifón 1 ASCE 7-10

| Sifón 1 |         |         |         |
|---------|---------|---------|---------|
|         | U1 [mm] | U2 [mm] | U3 [mm] |
| Sx      | 9,60    | 1,60    | 0,40    |
| Sy      | 0,00    | 39,60   | 16,00   |
| Sz      | 0,00    | 0,02    | 1,20    |
|         |         |         |         |

Tabla 5-22: Desplazamiento junta de dilatación de sifón 2 ASCE 7-10

| Sifón 2                |         |         |         |
|------------------------|---------|---------|---------|
|                        | U1 [mm] | U2 [mm] | U3 [mm] |
| Sx                     | 2,40    | 0,36    | 0,13    |
| $\mathbf{S}\mathbf{y}$ | 0,00    | 39,60   | 16,00   |
| Sz                     | 0,32    | 0,00    | 0,32    |
|                        |         |         |         |

# 5.2 ESTRUCTURA DE TORRES DE CAPTACIÓN DE AGUA DE MAR

# 5.2.1 Reacciones en la base de la estructura

En la tabla 5-14 y 5-15, se muestran las reacciones obtenidas para cada diseño:

| Load Case          | Fx      | Fy      | Fz      | Mx       | M         | Mz       |
|--------------------|---------|---------|---------|----------|-----------|----------|
|                    | [tonf]  | [tonf]  | [tonf]  | [tonf m] | [tonf m]  | [tonf m] |
| Peso_Propio        | 0,00    | 0,00    | 500,88  | 933,45   | -3930,95  | -17,51   |
| Viento_max_X       | -12,00  | 0,00    | 0,00    | 0,00     | -123,64   | -18,96   |
| Temperatura        | 0,00    | 0,00    | 0,00    | 0,00     | 0,00      | -0,85    |
| Tsunami_Y          | 0,00    | -213,99 | 0,00    | 1094,18  | 0,00      | -1454,98 |
| Sx                 | 437,84  | 36,79   | 13,40   | 242,04   | 2526,42   | 1011,27  |
| Sy                 | 36,79   | 485,36  | 2,96    | 2871,42  | 253,11    | 3468,11  |
| Sz                 | 1,23    | 0,26    | 2,65    | 8,09     | 5,31      | 2,82     |
| SIF_OP             | 0,00    | 0,00    | 283,20  | 541,86   | -2540,17  | -27,65   |
| Tsunami_Z          | 0,00    | 0,00    | -283,20 | -541,86  | 2540,17   | 27,65    |
| Viento_op_X        | -6,46   | 0,00    | 0,00    | 0,00     | -63,82    | 10,02    |
| ola_op_X           | -68,20  | 0,00    | 0,00    | 0,00     | -282,49   | 106,76   |
| ola_max_X          | -124,75 | 0,00    | 0,00    | 0,00     | -576,65   | 193,64   |
| Normal_ASD         | -74,66  | 0,00    | 784,08  | 1475,31  | -6817,43  | 70,77    |
| Sismica1_ASD       | 375,44  | 182,66  | 801,01  | 2586,86  | -4209,76  | 2126,14  |
| Sismica1_ASD       | -524,76 | -182,66 | 767,14  | 363,76   | -9425,10  | -1982,91 |
| Ts_sif_lleno_ASD   | 0,00    | -213,99 | 500,88  | 2027,63  | -3930,95  | -1472,50 |
| Ts_sif_vacio_ASD   | 0,00    | -213,99 | 217,69  | 1485,77  | -1390,78  | -1444,84 |
| Ola_max_ASD        | -136,75 | 0,00    | 784,08  | 1475,31  | -7171,42  | 128,67   |
| Sismica1_omega_ASD | 824,32  | 365,06  | 815,30  | 3690,33  | -1607,41  | 4177,84  |
| Sismica1_omega_ASD | -973,64 | -365,06 | 752,86  | -739,70  | -12027,46 | -4034,61 |
| Sismica2_ASD       | 94,71   | 496,66  | 793,71  | 4427,43  | -5801,08  | 3845,92  |
| Sismica2_ASD       | -244,03 | -496,66 | 774,44  | -1476,81 | -7833,78  | -3702,69 |
| Sismica2_omega_ASD | 262,85  | 993,05  | 800,69  | 7371,46  | -4790,05  | 7617,41  |
| Sismica2_omega_ASD | -412,17 | -993,05 | 767,46  | -4420,84 | -8844,81  | -7474,18 |

Tabla 5-23: Resumen reacciones torres de succión NCh2369Of2003

| Load Case          | Fx      | Fy      | Fz      | Mx       | My        | Mz       |
|--------------------|---------|---------|---------|----------|-----------|----------|
|                    | [tonf]  | [tonf]  | [tonf]  | [tonf m] | [tonf m]  | [tonf m] |
| Peso_Propio        | 0,00    | 0,00    | 498,33  | 929,50   | -3920,80  | -16,26   |
| Viento_max_X       | -12,00  | 0,00    | 0,00    | 0,00     | -123,64   | -16,74   |
| Temperatura        | 0,00    | 0,00    | 0,00    | 0,00     | 0,00      | -0,79    |
| Tsunami_Y          | 0,00    | -213,99 | 0,00    | 1094,18  | 0,00      | -1455,43 |
| Sx                 | 613,34  | 51,18   | 18,38   | 338,06   | 3600,10   | 1412,26  |
| Sy                 | 51,18   | 680,46  | 3,68    | 4098,45  | 352,39    | 4873,26  |
| SIF_OP             | 0,00    | 0,00    | 283,20  | 541,86   | -2540,17  | -25,65   |
| Tsunami_Z          | 0,00    | 0,00    | -283,20 | -541,86  | 2540,17   | 25,65    |
| Viento_op_X        | -6,46   | 0,00    | 0,00    | 0,00     | -63,82    | 10,01    |
| ola_op_X           | -68,20  | 0,00    | 0,00    | 0,00     | -282,49   | 106,62   |
| ola_max_X          | -124,75 | 0,00    | 0,00    | 0,00     | -576,65   | 193,38   |
| $\mathbf{SV}$      | 0,00    | 0,00    | -137,54 | -256,54  | 1082,14   | 4,49     |
| Normal_ASD         | -74,66  | 0,00    | 781,53  | 1471,36  | -6807,28  | 73,93    |
| Ambiental1_ASD     | 0,00    | 0,00    | 498,33  | 929,50   | -3920,80  | -17,05   |
| Ambiental2_ASD     | -95,73  | 0,00    | 781,53  | 1471,36  | -6951,18  | 81,74    |
| Sismica3_ASD       | 387,83  | 178,72  | 698,89  | 2389,10  | -3351,82  | 2054,83  |
| Sismica3_ASD       | -492,35 | -178,72 | 671,61  | 194,46   | -8539,96  | -1969,09 |
| Sismica1_ASD       | 274,07  | 134,04  | 719,55  | 2159,67  | -4207,02  | 1556,89  |
| Sismica1_ASD       | -386,06 | -134,04 | 699,09  | 513,69   | -8098,13  | -1461,05 |
| Ts1_lleno_ASD      | 41,63   | -21,76  | 587,15  | 2634,37  | -4337,48  | 173,84   |
| Ts1_lleno_ASD      | -190,95 | -277,83 | 579,43  | 1081,59  | -5720,85  | -2026,09 |
| Ts1_vacio_ASD      | 41,63   | -21,76  | 303,95  | 2092,51  | -1797,31  | 199,48   |
| Ts1_vacio_ASD      | -190,95 | -277,83 | 296,24  | 539,73   | -3180,68  | -2000,45 |
| Ts2_lleno_ASD      | 41,63   | -21,76  | 274,54  | 2045,83  | -1753,09  | 190,60   |
| Ts2_lleno_ASD      | -190,95 | -277,83 | 266,82  | 493,05   | -3136,46  | -2009,33 |
| Ts2_vacio_ASD      | 41,63   | -21,76  | 104,62  | 1720,71  | -228,99   | 205,99   |
| Ts2_vacio_ASD      | -190,95 | -277,83 | 96,90   | 167,93   | -1612,36  | -1993,94 |
| Sismica2_ASD       | 67,48   | 365,30  | 714,14  | 3541,61  | -5400,56  | 2828,81  |
| Sismica2_ASD       | -179,47 | -365,30 | 704,50  | -868,26  | -6904,60  | -2732,97 |
| Sismica4_ASD       | 112,37  | 487,07  | 691,68  | 4231,69  | -4943,20  | 3750,73  |
| Sismica4_ASD       | -216,89 | -487,07 | 678,82  | -1648,13 | -6948,58  | -3664,98 |
| Sismica1_omega_ASD | 604,14  | 268,09  | 729,77  | 2982,66  | -2261,47  | 3065,86  |
| Sismica1_omega_ASD | -716,13 | -268,09 | 688,87  | -309,30  | -10043,69 | -2970,03 |
| Sismica2 omega ASD | 190,95  | 730,61  | 718,97  | 5746,54  | -4648,54  | 5609,70  |
| Sismica2_omega_ASD | -302,94 | -730,61 | 699,67  | -3073,19 | -7656,62  | -5513,86 |
| Sismica3_omega_ASD | 827,91  | 357,45  | 712,52  | 3486,42  | -757,74   | 4066,80  |
| Sismica3_omega_ASD | -932,44 | -357,45 | 657,98  | -902,86  | -11134,04 | -3981,05 |
| Sismica4_omega_ASD | 276,99  | 974,15  | 698,11  | 7171,60  | -3940,50  | 7458,58  |
| Sismica4_omega_ASD | -381,52 | -974,15 | 672,39  | -4588,04 | -7951,28  | -7372,83 |

Tabla 5-24: Resumen reacciones torres de succión ASCE 7-10

# 5.2.2 Análisis modal

Se selecciona la cantidad de modos en la que se alcanza, al menos, el 90% de la masa modal. Esta condición se cumple en el modo 7, para ambos diseños:

| Modo | Periodo<br>[s] | UX<br>[%] | UY<br>[%] | UZ<br>[%] | SumUX<br>[%] | SumUY<br>[%] |
|------|----------------|-----------|-----------|-----------|--------------|--------------|
| 1    | 1,44           | 1,07      | 0,00      | 0,69      | 1,07         | 0,00         |
| 2    | 1,19           | 0,02      | 0,00      | 16,97     | 1,09         | 0,00         |
| 3    | 0,80           | 1,53      | 4,76      | 0,01      | 2,62         | 4,76         |
| 4    | 0,45           | 47,66     | 0,02      | 0,04      | 50,29        | 4,78         |
| 5    | 0,42           | 2,00      | 70,38     | 0,02      | 52,29        | 75,16        |
| 6    | 0,41           | 32,38     | 1,78      | 0,17      | 84,67        | 76,95        |
| 7    | 0,41           | 5,19      | 13,95     | 0,01      | 89,85        | 90,89        |
| 8    | 0,31           | 0,02      | 0,00      | 0,00      | 89,88        | 90,90        |
| 9    | 0,31           | 0,87      | 0,03      | 0,00      | 90,75        | 90,93        |
| 10   | 0,30           | 1,03      | 0,00      | 0,00      | 91,78        | 90,93        |

Tabla 5-25: Resumen análisis modal torres de captación NCh2369Of2003

| Modo | Periodo<br>[s] | UX<br>[%] | UY<br>[%] | UZ<br>[%] | SumUX<br>[%] | SumUY<br>[%] |
|------|----------------|-----------|-----------|-----------|--------------|--------------|
| 1    | 1,44           | 1,07      | 0,00      | 0,70      | 1,07         | 0,00         |
| 2    | 1,19           | 0,02      | 0,00      | 16,99     | 1,09         | 0,00         |
| 3    | 0,80           | 1,54      | 4,75      | 0,01      | 2,63         | 4,75         |
| 4    | 0,45           | 47,67     | 0,02      | 0,04      | 50,30        | 4,77         |
| 5    | 0,42           | 1,86      | 71,35     | 0,02      | 52,17        | 76,12        |
| 6    | 0,41           | 32,31     | 1,70      | 0,16      | 84,48        | 77,83        |
| 7    | 0,40           | 5,39      | 13,01     | 0,01      | 89,87        | 90,83        |
| 8    | 0,31           | 0,02      | 0,00      | 0,00      | 89,90        | 90,83        |
| 9    | 0,31           | 0,77      | 0,06      | 0,00      | 90,67        | 90,89        |
| 10   | 0,30           | 1,13      | 0,00      | 0,00      | 91,80        | 90,89        |

Tabla 5-26: Resumen análisis modal torres de captación ASCE 7-10

## 5.2.3 Peso sísmico

El peso sísmico de la estructura diseñada bajo los requerimientos de la NCh2369Of2003 corresponde a:

Tabla 5-27: Peso sísmicos torres de succión normas NCh2369Of2003

| Load Case              | Peso sísmico |
|------------------------|--------------|
|                        | [tonf]       |
| Peso Propio            | 500,88       |
| SIF_OP                 | 283,20       |
| Masa inductiva de agua | 24,10        |
| Total [tonf]           | 808,18       |

El peso sísmico de la estructura diseñada bajo los requerimientos de la ASCE 7-10 corresponde a:

| Load Case              | Peso sísmico<br>[tonf] |
|------------------------|------------------------|
| Peso Propio            | 498,33                 |
| SIF_OP                 | 283,20                 |
| Masa inductiva de agua | 24,1                   |
| Total [tonf]           | 805,63                 |

Tabla 5-28: Peso sísmicos torres de succión normas ASCE 7-10

## 5.2.4 Verificación del corte basal

El corte basal para la estructura diseñada con los requisitos de la norma NCh2369Of2003 es el mostrado a continuación:

Tabla 5-29: Corte basal torres de succión NCh2369Of2003

| Load Case | Fx<br>[tonf] | Fy<br>[tonf] | Qo<br>[tonf] |
|-----------|--------------|--------------|--------------|
| Sx        | 437,84       | 36,79        | 439,38       |
| Sy        | 36,79        | 485,36       | 486,75       |

El corte basal mínimo de acuerdo a la norma NCh2369Of2003 corresponde a:

$$Q_{min} = 133,35 \ tonf$$

Por lo tanto el corte basal cumple con el límite inferior definido por normativa.

El corte basal para la estructura diseñada con los requisitos de la norma ASCE 7-10 es el mostrado a continuación:

| Load Case              | Fx     | Fy     | Qo     |
|------------------------|--------|--------|--------|
| Loau Case              | [tonf] | [tonf] | [tonf] |
| Sx                     | 613,34 | 51,18  | 615,47 |
| $\mathbf{S}\mathbf{y}$ | 51,18  | 680,46 | 682,39 |

Tabla 5-30: Corte basal torres de succión ASCE 7-10

El corte basal mínimo de acuerdo a la norma ASCE 7-10 corresponde a:

$$Q_{min} = 73,37 \ tonf$$

Por lo tanto el corte basal cumple con el límite inferior definido por normativa.

# 5.2.5 Verificación de los elementos de acero

El detalle de la verificación estructural de elementos se encuentra en anexo. En la Figura 5-2 se muestra la distribución de perfiles de la estructura. Los nombres de los perfiles de acuerdo a los colores que se observan en la figura son los siguientes:

Rojo: Jacket

Verde: Arriostramiento

Rosado: Diagonal superior

Azul: Viga superior

Morado: Viga inferior

Verde claro: Viga inferior 2

Rosado: Perfil L



Figura 5-2: Distribución de perfiles Torres de succión de agua de mar

## i. Dimensiones de los elementos

Los perfiles utilizados en la estructura de succión de agua de mar, diseñada con la norma chilena NCh2369Of2003, son los que se muestran a continuación:

| Elemento          | D [m] | t [mm] |
|-------------------|-------|--------|
| Jacket            | 1,016 | 16     |
| Pilote            | 0,813 | 20     |
| Arriostramiento   | 0,406 | 12     |
| Diagonal superior | 0,204 | 32     |

Tabla 5-31: Dimensiones pilotes y arriostramiento NCh2369Of2003

Tabla 5-32: Dimensiones vigas NCh2369Of2003

| Elemento        | H [mm] | b [mm] | tw [mm] | tf [mm] |
|-----------------|--------|--------|---------|---------|
| Viga superior   | 900    | 900    | 38      | 40      |
| viga inferior   | 600    | 600    | 24      | 26      |
| viga inferior 2 | 600    | 350    | 26      | 28      |

Tabla 5-33: Dimensiones de perfil L NCh2369Of2003

|          | b [mm] | t [mm] |
|----------|--------|--------|
| perfil L | 300    | 18     |

Los perfiles utilizados en la estructura diseñada con la norma ASCE 7-10, son los que se muestran a continuación:

| Elemento          | D [m] | t [mm] |
|-------------------|-------|--------|
| Jacket            | 1,016 | 14     |
| Pilote            | 0,813 | 20     |
| Arriostramiento   | 0,350 | 15     |
| Diagonal superior | 0,200 | 30     |

Tabla 5-34: Dimensiones pilotes y arriostramiento ASCE 7-10

Tabla 5-35: Dimensiones vigas ASCE 7-10

| Elemento           | H [mm] | b [mm] | tw [mm] | tf [mm] |
|--------------------|--------|--------|---------|---------|
| Viga<br>superior   | 900    | 900    | 42      | 44      |
| viga<br>inferior   | 600    | 600    | 24      | 26      |
| viga<br>inferior 2 | 500    | 350    | 20      | 24      |

Tabla 5-36: Dimensiones de perfil L ASCE 7-10

|          | b [mm] | t [mm] |
|----------|--------|--------|
| perfil L | 250    | 18     |

# ii. Factores de utilización de los elementos

Los factores de utilización obtenidos para los elementos de la estructura diseñada con las normativas correspondientes a cada norma se muestran en la tabla 5-25.

| Enomo             | N    | NCh2369Of2003      |      | ASCE 7-10          |  |
|-------------------|------|--------------------|------|--------------------|--|
| Frame             | FU   | Combinación        | FU   | Combinación        |  |
| Perfil L          | 0,94 | Sismica1_ASD       | 0,91 | Sismica3_ASD       |  |
| Arriostramiento   | 0,86 | Sismica1_ASD       | 0,81 | Sismica3_ASD       |  |
| Diagonal superior | 0,85 | Sismica1_ASD       | 0,86 | Sismica3_ASD       |  |
| Viga superior     | 0,56 | Sismica2_omega_ASD | 0,49 | Sismica4_omega_ASD |  |
| Viga inferior     | 0,61 | Sismica1_ASD       | 0,63 | Sismica3_ASD       |  |
| Viga inferior 2   | 0,57 | Sismica1_ASD       | 0,40 | Sismica3_ASD       |  |
| Jacket + Pilote   | 0,77 | Sismica1_omega_ASD | 0,75 | Sismica3_omega_ASD |  |

Tabla 5-37: Factores de utilización torres de succión

### 5.2.6 Verificación de deformaciones

Las deformaciones dadas por el sismo para cada modelo son las que se presentan a continuación:

| Tabla 5-38: Deformaciones | sísmicas torres | de succión | NCh2369Of2003 |
|---------------------------|-----------------|------------|---------------|
|---------------------------|-----------------|------------|---------------|

| Load Case              | Max U1<br>[mm] | Max U2<br>[mm] | Max U3<br>[mm] |
|------------------------|----------------|----------------|----------------|
| Sx                     | 77,23          | 10,83          | 13,58          |
| $\mathbf{S}\mathbf{y}$ | 8,16           | 59,71          | 9,31           |
| Sz                     | 1,60           | 0,41           | 12,24          |

| Load Case              | Max U1<br>[mm] | Max U2<br>[mm] | Max U3<br>[mm] |
|------------------------|----------------|----------------|----------------|
| Sx                     | 122,77         | 17,32          | 21,65          |
| $\mathbf{S}\mathbf{y}$ | 12,98          | 95,32          | 14,72          |
| Sz                     | 12,98          | 1,17           | 11,09          |

Tabla 5-39: Deformaciones sísmicas torres de succión ASCE 7-10

#### i. Deformaciones horizontales

La altura de la estructura es igual a 12,801 [m]. Por lo tanto, de acuerdo a la norma chilena NCh2369 la máxima deformación admisible es d=192.02 [mm], (Ecuación 3-8), valor que efectivamente es mayor que las deformaciones sufridas por la estructura, y además de acuerdo a la Ecuación 3-6 no se requiere considerar el efecto P- $\Delta$  para este caso.

La deformación admisible máxima dada por la norma ASCE 7-10 corresponde a la expuesta en la Ecuación 3-9, correspondiente a 128,1 [mm], por lo tanto la estructura cumple con el límite establecido.

## ii. Deformaciones verticales

Las deformaciones verticales admisibles de cada elemento son las de la tabla 5-24, de acuerdo a las ecuaciones 3-15 y 3-16.

| Elemento          | Largo [m] | ∆adm<br>[mm] |
|-------------------|-----------|--------------|
| Perfil L          | 3,16      | 10,53        |
| Arriostramiento   | 5,88      | 19,61        |
| Diagonal superior | 4,70      | 15,67        |
| Viga Superior     | 1,20      | 4,00         |
| Viga inferior     | 11,43     | 38,11        |
| Viga inferior 2   | 2,80      | 9,33         |

Tabla 5-40: Deformaciones verticales admisibles torres de succión

Las máximas deformaciones verticales son las entregadas en las tablas 5-22 y 5-23, que son menores que las máximas deformaciones admisibles para la estructura de la tabla 5-24.

# **6 PRESUPUESTO DEL PROYECTO**

A continuación se muestra un resumen de los presupuestos de la estructura diseñada con el espectro obtenido de la norma chilena NCh2369Of2003 y estadounidense ASCE 7-10. El detalle se encuentra en anexos K y L.

| Nº | Ítem                               | Total [US\$] |
|----|------------------------------------|--------------|
| 1  | Instalación de faena               | 857.382      |
| 2  | Estructura soporte para sifón      | 10.493.952   |
| 3  | Torres de captación de agua de mar | 7.904.907    |
| 4  | Tubería                            | 1.159.422    |
|    | Total [US\$]                       | 20.415.664   |

Tabla 6-1: Resumen presupuesto NCh2369Of2003

| Tabla 6-2: Resumen | presupuesto ASCE 7-10 |
|--------------------|-----------------------|
|--------------------|-----------------------|

| N° | Ítem                             | Total [US\$] |
|----|----------------------------------|--------------|
| 1  | Instalación de faena             | 857.382      |
| 2  | Estructura soporte para sifón    | 9.109.865    |
| 3  | Torres de succión de agua de mar | 7.164.727    |
| 4  | Tubería                          | 1.159.422    |
|    | Total [US\$]                     | 18.291.398   |

# 7 ANÁLISIS DE RESULTADOS

Las estructuras obtenidas con ambas normas fueron diseñadas con el mismo espectro, el cual fue obtenido de un estudio de riesgo sísmico. Para el diseño con la norma NCh2369Of2003 el espectro ha sido reducido por un factor 0,7 para ser consistente con las combinaciones sísmicas definidas en la normativa.



Figura 7-1: Espectro de aceleraciones de Mejillones

Las estructuras han resultado diferentes entre sí, debido a que cada norma posee definiciones distintas de sus parámetros de diseño, como el factor de reducción de la respuesta (R), factor de amortiguamiento ( $\xi$ ), factor de importancia (I), combinaciones de carga, entre otros. A continuación se muestran los parámetros de diseño para cada estructura:

|           | NCh2369                | ASCE 7-10    |
|-----------|------------------------|--------------|
| R         | 3,5                    | 4            |
| ξ         | 3%                     | 5%           |
| Ι         | 1,2                    | 1,5          |
| $Q_{min}$ | $0, 1 \cdot I \cdot P$ | 0,06 · I · P |

Tabla 7-1: Resumen parámetros de diseño NCh2369 y ASCE 7-10

# 7.1 ESTRUCTURA DE SOPORTE DEL SIFÓN

La estructura de soporte del sifón diseñada con los requerimientos de la norma NCh2369 resulta con perfiles mayores que la estructura diseñada con norma ASCE 7-10. La principal diferencia se genera en el diseño de los pilotes, donde la solicitación sísmica dada por la norma NCh2369 resulta mayor.

En la Figura 7-2 se muestra el pilote y la viga de la cepa más solicitada:



Figura 7-2: Pilote y viga cepa más solicitados en estructura de soporte del sifón de captación

El pilote más solicitado en ambos diseños, es que se encuentra destacado en rojo en la Figura 7-2. Con un diámetro D=1300 mm y espesor e=20 mm, posee un factor de utilización 0,95 en el diseño con NCh2369, y con un diámetro D=1500 mm y espesor e=15 mm posee un factor de utilización 0,93 en la estructura diseñada con ASCE 7-10.

A continuación se muestran las dimensiones y los esfuerzos generados en este elemento en cada caso:

Tabla 7-2: Dimensiones pilote más solicitado

| Norma         | D [mm] | t [mm] |
|---------------|--------|--------|
| NCh2369Of2003 | 1300   | 20     |
| ASCE 7-10     | 1500   | 15     |

Tabla 7-3: Esfuerzos internos máximos pilote

| Esfuerzo    | NCh2369Of2003 | ASCE 7-10 |
|-------------|---------------|-----------|
| Vx [tonf]   | 48,35         | 36,20     |
| Vy [tonf]   | 15,77         | 11,80     |
| Mx [tonf m] | 236,80        | 178,02    |
| My [tonf m] | 78,00         | 54,00     |
| Pu [tonf]   | 465,10        | 418,40    |

En ambos diseños el pilote trabaja principalmente a compresión. Para este tipo de estructuras (Marco arriostrado excéntricamente), se debe aplicar el factor de sobrerresistencia ( $\Omega$ =2) a la solicitación sísmica horizontal para el diseño de viga y pilote. La combinación que determina el diseño del pilote para cada norma se muestra a continuación:

- NCh2369Of2003: Combinación sísmica

 $PP + Agua sifon + Ola op X + Viento op X + 2(0,3 \cdot Sx + Sy) + Sz + 0,25 SC$ 

- ASCE 7-10: Combinación sísmica

 $(1 + 0.105S_{DS})(PP + Agua sif \acute{o}n) + 0.7(Ola op X + Viento op X) + 2 \cdot 0.7(0.3 \cdot Sx + Sy) + Sz$ 

El diseño de las vigas de la cepa de la estructura de soporte del sifón, está determinado por combinaciones de carga sísmica.

Las dimensiones de la viga de la cepa y los esfuerzos internos de diseño se presentan a continuación:

Tabla 7-4: Dimensiones viga Cepa para ambos diseños

| viga cepa     | H [mm] | b [mm] | tw [mm] | tf [mm] |
|---------------|--------|--------|---------|---------|
| NCh2369Of2003 | 900    | 900    | 46      | 50      |
| ASCE 7-10     | 900    | 900    | 42      | 44      |

| Esfuerzos   | NCh2369Of2003 | ASCE 7-10 |
|-------------|---------------|-----------|
| Vx [tonf]   | 306,90        | 273,20    |
| Vy [tonf]   | 2,30          | 1,40      |
| Mx [tonf m] | 30,45         | 49,80     |
| My [tonf m] | 16,02         | 12,20     |
| Pu [tonf]   | 92,36         | 77,40     |

Tabla 7-5: Solicitaciones máximas en viga cepa

La combinación que determina el diseño de la viga de la cepa para cada norma se muestra a continuación:

- NCh2369Of2003: Combinación sísmica

 $PP + Agua sifon + Ola op X + Viento op X + 2(0,3 \cdot Sx + Sy) + Sz + 0,25 SC$ 

- ASCE 7-10: Combinación sísmica

 $(1 + 0.105S_{DS})(PP + Agua sif \acute{o}n) + 0.7(Ola op X + Viento op X) + 2 \cdot 0.7(0.3 \cdot Sx + Sy) + 0.7 \cdot (Sz$ 

# 7.2 ESTRUCTURA DE LAS TORRES DE CAPTACIÓN DE AGUA DE MAR

El diseño de las torres de captación de agua de mar está determinado por la solicitación sísmica. El diseño de mayor capacidad se obtuvo para la estructura NCh2369Of2003.

Para este tipo de estructuras, se debe aplicar el factor de sobrerresistencia a la solicitación sísmica horizontal en el diseño de viga y columna.

En la Figura 7-3 se muestran en rojo los elementos más solicitados de estructura de las torres de captación de mar:



Figura 7-3: Elementos más solicitados en estructura de torres de captación de agua de mar

En esta estructura el perfil L, que arriostra la base de la torre resulta ser el elemento con mayor factor de utilización (FU) para ambos diseños. Con un factor de utilización 0,94 para el diseño con NCh2369 y un factor de utilización de 0,91 para el diseño con ASCE 7. Las dimensiones y esfuerzos internos de este elemento se muestran a continuación:

Tabla 7-6: Dimensiones perfil L

| Norma         | b [mm] | t [mm] |
|---------------|--------|--------|
| NCh2369Of2003 | 300    | 18     |
| ASCE 7-10     | 250    | 18     |

Tabla 7-7: Esfuerzos internos máximos pilote 1

| Esfuerzo    | NCh2369Of2003 | ASCE 7-10 |
|-------------|---------------|-----------|
| Vx [tonf]   | 0,15          | 0,05      |
| Vy [tonf]   | 0,90          | 0,30      |
| Mx [tonf m] | 0,40          | 0,14      |
| My [tonf m] | 2,90          | 0,80      |
| Pu [tonf]   | 47,70         | 41,70     |

La combinación que controla el diseño del perfil L para cada norma se muestra a continuación:

- NCh2369: Combinación sísmica

 $PP + Agua sif \acute{o}n + Ola op X + Viento op X + Sx + 0,3 \cdot Sy + Sz + 0,25 SC$ 

- ASCE 7-10: Combinación sísmica

 $PP + Agua \, sif \circ n + 0.7 \, Ola \, op \, X + 0.7 \, Viento \, op \, X + 2 \cdot 0.7 (\, Sx + 0.3 \cdot Sy + Sz)$
Ambos diseños se encuentran controlados por la solicitación sísmica, siendo la estructura NCh2369 de mayor capacidad que la ASCE 7.

# 7.3 COSTOS DE INVERSIÓN

Como se observa el costo de la estructura diseñada con los requerimientos de la norma nacional NCh2369Of2003 es un 10% mayor que la estructura diseñada bajo los requisitos de la norma ASCE 7-10.



Figura 7-4: Comparación costo de inversión entre ambas estructuras

# 8 CONCLUSIONES Y RECOMENDACIONES

Para diseño sismo-resistente en Chile, se debe cumplir con los requerimientos mínimos establecidos en la norma NCh2369Of2003, correspondiendo a una exigencia legal a cumplir por los proyectos y contratos de inversión, sin embargo algunos proyectos industriales utilizan las disposiciones de la norma norteamericana ASCE 7-10. Hacer uso de una normativa diferente a la nacional para un diseño sísmico - estructural, conlleva a la posibilidad que la estructura diseñada no cumpla con los requerimientos mínimos que se exigen en el país.

En el presente trabajo de título se ha diseñado una estructura de soporte de sifón de captación de agua de mar, cumpliendo los requisitos de la norma NCh2369Of2003, y paralelamente, con los requisitos de la norma ASCE 7-10.

Del resultado de aplicar los diseños con ambas normas, se ha obtenido que los requisitos de la norma nacional NCh2369Of2003 son más exigentes, resultando una estructura de mayor capacidad resistente, que la diseñada con la norma ASCE 7-10.

La norma NCh2369Of2003 establece en el punto 4.1.1.b que las disposiciones de diseño de la norma, aplicadas en conjunto con las normas de diseño específicas de cada material, están orientadas al cumplimiento de los objetivos de protección de vida en la industria y continuidad de operación en la industria, este último no se encuentra como filosofía inicial, ni explícito en la norma ASCE 7-10.

El detallamiento de los objetivos de la NCh2369 se muestra a continuación:

# Protección de vida en la industria:

Evitar el colapso de estructuras para sismos más severos que el sismo de diseño.

- Evitar incendios, explosiones o emanaciones de gases y líquidos tóxicos.
- Proteger el medio ambiente.
- Asegurar la operatividad de las vías de escape durante la emergencia sísmica.

# Continuidad de operación en la industria:

- Mantener los procesos y servicios esenciales.
- Evitar o reducir a un tiempo mínimo la paralización de la operación de la industria.
- Facilitar la inspección y reparación de los elementos dañados.

# 8.1 DISCUSIÓN

El objetivo básico de todas las normativas sísmicas es establecer los requisitos mínimos para que los sistemas estructurales sean capaces de resistir deformaciones sin colapsar, de este modo es posible proteger a las personas y equipos al interior de una estructura. Cumpliendo dicho objetivo básico, cada norma puede ser más o menos exigente, de acuerdo a la filosofía de diseño que persigue. Por un lado la norma NCh2369 hace uso de la resistencia de los elementos, e intenta que las incursiones en el rango plástico de deformaciones sean menores, mientras que las exigencias de la norma ASCE 7-10 permiten un mayor uso de la ductilidad de la estructura. En consecuencia, el nivel de resistencia sísmica de ASCE 7-10 resulta ser menor en comparación a la norma NCh2369, debido a las diferencias en sus parámetros de diseño, tales como: Factor de reducción de la respuesta, factor de amortiguamiento, combinaciones de carga y límite inferior del corte basal.

La norma ASCE 7-10 considera valores mayores del factor de reducción de respuesta R que la norma NCh2369. Es importante considerar que en este trabajo en particular se ha diseñado con un factor de modificación de la respuesta R=4 para ASCE 7-10, evitando así mayores incursiones en el rango plástico. Sin embargo, ASCE 7-10 permite definir valores del factor de reducción de respuesta hasta R=8 para una estructura de marco arriostrado excéntrico, como la estructura de soporte del sifón considerada, con lo cual se podría reducir considerablemente la solicitación sísmica. Por otra parte, la actualización de la norma NCh2369Of2003 en desarrollo, permite un valor máximo del factor de reducción de respuesta R=3,5 para este tipo de estructuración.

El factor de amortiguamiento en la norma ASCE 7-10 corresponde a un 5% para cualquier tipo de estructura. En cambio, la norma NCh2369Of2003 define distintos factores de amortiguamiento, que varían dependiendo del material y el tipo de estructura. En el caso de la tipología de estructura usada para el sifón de captación de agua de mar, el factor de amortiguamiento corresponde a 3%.

En la tabla 8-1 se entrega un resumen de los parámetros utilizados en el diseño de ambas estructuras:

|           | NCh2369                | ASCE 7-10    |
|-----------|------------------------|--------------|
| R         | 3,5                    | 4            |
| ξ         | 3%                     | 5%           |
| Ι         | 1,2                    | 1,5          |
| $Q_{min}$ | $0, 1 \cdot I \cdot P$ | 0,06 · I · P |

Tabla 8-1: Resumen parámetros de diseño NCh2369 y ASCE 7-10

Las combinaciones de carga definidas en cada normativa difieren entre sí, siendo la combinación de carga sísmica la que controla el diseño. A continuación se muestran las combinaciones de carga sísmica principales:

- NCh2369Of2003: Combinación de carga sísmica (Estructura de soporte del sifón de captación)

 $PP + Agua sifón + Ola op X + Viento op X + 0,3 \cdot Sx + Sy + Sz + 0,25 SC$ 

- ASCE 7-10: Combinación de carga sísmica (Estructura de soporte del sifón de captación)

 $(1+0,105S_{DS})(PP + Agua sifón) + 0,7(Ola op X + Viento op X) + 0,7(0,3 \cdot Sx + Sy+Sz$ 

El diseño de las torres de captación de agua de mar está controlado completamente por la solicitación sísmica:

- NCh2369: Combinación de carga sísmica

 $PP + Agua sif \acute{o}n + Ola op X + Viento op X + 0,3 \cdot Sx + Sy + Sz + 0,25 SC$ 

- ASCE 7-10: Combinación de carga sísmica

 $PP + Agua sifon + 0.7 Ola op X + 0.7 Viento op X + 0.7 (0.3 \cdot Sx + Sy + Sz)$ 

Un aspecto relevante en el diseño de estructuras y sistemas de centrales termoeléctricas, es mantener la continuidad operacional de los equipos (pocos daños y reparables en corto plazo), para el sismo de diseño que estipula la norma NCh2369Of2003. Por este motivo es importante identificar el objetivo de un diseño, de manera de decidir la estructuración geométrica y los criterios de diseño adecuados, que permitan reducir al mínimo los tiempos de detención de los equipos.

# 8.2 CONCLUSIÓN

El costo de inversión de la estructura diseñada con los requerimientos de la norma nacional NCh2369Of2003 es un 10% mayor que la estructura diseñada bajo los requisitos de la norma ASCE 7-10, tal y como es de esperar, debido a que la estructura diseñada con NCh2369 requiere mayor cantidad de acero y cumplen con continuidad operacional y pocos daños (reparables en corto plazo) con el sismo de diseño.

Es importante optimizar los diseños de manera que resulten funcionales y económicos, pero cumpliendo las exigencias reglamentarias mínimas. Por esta razón, aunque la estructura ASCE 7-10 sea más económica, no resulta factible, pues no cumple con los requerimientos mínimos del diseño sísmico - estructural que exige la legislación en Chile.

| N° | Ítem                               | Total [US\$] |
|----|------------------------------------|--------------|
| 1  | Instalación de faena               | 857.382      |
| 2  | Estructura soporte para sifón      | 10.493.952   |
| 3  | Torres de captación de agua de mar | 7.904.907    |
| 4  | Tubería                            | 1.159.422    |
|    | Total [US\$]                       | 20.415.664   |

| Tabla 8-2: | Resumen | presupuesto | NCh2369Of2003  |
|------------|---------|-------------|----------------|
|            |         | 1 1         | <b>U U U U</b> |

| N° | Ítem                             | Total [US\$] |
|----|----------------------------------|--------------|
| 1  | Instalación de faena             | 857.382      |
| 2  | Estructura soporte para sifón    | 9.109.865    |
| 3  | Torres de succión de agua de mar | 7.164.727    |
| 4  | Tubería                          | 1.159.422    |
|    | Total [US\$]                     | 18.291.398   |

ASCE 7-10 no corresponde a una norma de estructuras marítimas propiamente tal, sin embargo actualmente se utilizan sus disposiciones en estructuras de este tipo diseñadas en Chile, con lo cual, como se ha visto en el desarrollo de este trabajo, la estructura resulta ser de menor capacidad que la de aplicar la normativa nacional, y por ende se produce una situación de incumplimiento del diseño sísmico con los requisitos mínimos de la normativa legal exigida en el país. Por otra parte, la actualización de la norma NCh2369 en desarrollo, detalla la tipología de las estructuras marítimas y portuarias, y en particular considera la estructuración utilizada en esta memoria para el sifón de captación de agua de mar.

En la estructura diseñada en esta memoria es necesario proteger las tuberías, puesto que forman parte de un sistema principal de la operación de la central, el sistema de agua de circulación con el sifón de captación. Por lo tanto en caso de solicitaciones mayores al sismo de diseño e incursiones en el rango plástico, se considera que se produzca la primera falla de la estructura en el pilote y no en la viga de soporte de los equipos. Para que esto suceda, se ha diseñado de modo que la resistencia de la viga sea equivalente a 1,2 veces la resistencia del pilote, como establece la actualización de la norma NCh2369.

La norma ASCE 7-10 no estipula como exigencia de diseño el concepto de continuidad operacional en su filosofía inicial de norma, por lo que no garantiza para una instalación industrial como son las centrales termoeléctricas una condición que es esencial del punto de vista comercial de los inversionistas generadores, así como del país respecto a la continuidad de suministro eléctrico.

# 8.3 RECOMENDACIONES

Actualmente existen estudios recientes en desarrollo por MOP, con respecto a la solicitación generada por el tsunami sobre las estructuras, que estarían recomendando considerar los siguientes estados de carga:

- Impacto inicial: Incluye las fuerzas laterales debidas al arribo de la ola, actuando como carga puntual en el centroide del área proyectada:
  - Impacto del frente de olas
  - Impacto por objetos flotantes
- Post impacto: Incluye las fuerzas debido al flujo alrededor de la estructura:
  - Fuerza hidrodinámica de arrastre
  - Impacto por objetos flotantes
  - Fuerza por apilamiento de objetos flotantes

Además se deben considerar las solicitaciones hidrostáticas y fuerzas verticales boyante, o de levantamiento vertical según corresponda.

Estas formulaciones no alcanzaron a ser incluidas en este trabajo, ya que se ha considerado en la evaluación del comportamiento de la estructura ante tsunami de acuerdo a la práctica que se lleva a cabo hoy en día a nivel nacional. Sin embargo, se recomienda que se estudie el impacto de estas nuevas combinaciones de carga sobre la estructura diseñada con NCh2369Of2003. Es posible que con las nuevas solicitaciones de tsunami, las estructuras de soporte de sifón queden controlado su diseño por tsunami.

# 9 BIBLIOGRAFÍA

- American Institute Of Steel Construction. (2010). *ANSI/AISC 360-10, Specification for Structural Steel Buildings*. Chicago, Illinois.
- American Petroleum Institute. (2000). API RP2a, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - Working Stress Design. Washington, E.E.U.U.
- American Society of Civil Engineers. (2010). *Asce Standard, ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures.* Reston, Virginia, Estados Unidos.
- Chopra, K. A. (1995). *Dynamics of Structures: Theory and Applications to Earthquake Engineering*. New Jersey, E.E.U.U.: Prentice Hall.
- Clough, R. W. (1995). *Dynamics of Structures*. Computers & Structures, Inc. Tercera edición: E.E.U.U.
- Elgueta Huinao, Marcelo Andrés. (2009). Criterios de elección y diseño de chimeneas de hormigón armado para centrales termoeléctricas a carbón de 350 MW en Chile. Memoria para optar al título de Ingeniero Civil. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile.
- Guerrero Isota, Cristián Excequiel. (2013). Túneles bajo el nivel del mar para soluciones anti-tsunami en sistema de agua de enfriamiento en centrales termoeléctrica a carbón. Memoria para optar al título de Ingeniero Civil. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Santiago, Chile.
- Instituto Nacional de Normalización, INN-Chile. (1971). Norma Chilena Oficial NCh3171Of2010, Diseño estructural - Disposiciones generales y combinaciones de carga. Santiago, Chile.
- Instituto Nacional de Normalización, INN-Chile. (1986). Norma Chilena Oficial NCh1537Of1986, Diseño estructural de edificios - Cargas permanentes y Sobrecargas de uso. Santiago, Chile.
- Instituto Nacional de Normalización, INN-Chile. (2003). Norma Chilena Oficial NCh2369Of2003, Diseño sísmico de estructuras e instalaciones industriales. Santiago, Chile.
- Instituto Nacional de Normalización, INN-Chile. (2010). Norma Chilena Oficial NCh432Of2010, Diseño estructural-Cargas de viento. Santiago, Chile.

Proyectos realizados por PMI Energy Services S.A. (s.f.).

- Rodríguez Pinna, Tulio. (2008). *Diseño de toma de agua para central de ciclo combinado con refrigeración en ciclo cerrado. Memoria para optar al título de Ingeniero Industrial*. Universidad Pontificia Comillas, Escuela Técnica Superior de Ingeniería (ICAI), Madrid, España.
- Vielma Pérez, J.C., Lobo Quintero, W, Rivero Rivero, P. (2006). Factores de reducción de respuesta por ductilidad de estructuras con comportamiento histerético. *Sul-Americana de Engenharia Estrutural*, 31-48.

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

# Anexos

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

# Anexo A: Verificación Estructural de Pilote de Estructura de Soporte de Sifón Diseñada con Norma NCh2369Of2003

# VERIFICACIÓN DE PILOTE NCH2369

## **DEFINICIONES**

- D: Diámetro
- t: Espesor
- E: Módulo de elasticidad
- fy: Tensión nominal de fluencia
- L: Largo del pilote

# <u>INPUT</u>

## Solicitaciones máximas

| $V_{ux} := 48.35$ tonnef                              | Corte en la dirección X     |
|-------------------------------------------------------|-----------------------------|
| $V_{uy} \approx 15.77$ tonnef                         | Corte en la dirección Y     |
| $M_{ux} \coloneqq 236.8 \text{tonnef} \cdot \text{m}$ | Momento en dirección X      |
| $M_{uy} \coloneqq 78 tonnef \cdot m$                  | Momento en dirección Y      |
| $P_u := 465.1$ tonnef                                 | Esfuerzo axial (compresión) |

# MATERIALES

$$E := 2038.902 \frac{\text{tonnef}}{\text{cm}^2}$$

$$f_{y} \coloneqq 2.953 \frac{\text{tonnef}}{\text{cm}^{2}}$$

$$\underline{\text{GEOMETRIA}}$$

$$\underline{c_{x}} \coloneqq 3\text{mm}$$

$$\underline{D_{p}} \coloneqq 1.3\text{m}$$

Diámetro pilote Espesor pilote Largo pilote

Efecto de corrosión

# PANDEO GLOBAL

 $\mathbf{t} \coloneqq 0.02\mathbf{m} - \mathbf{c}$ 

L = 5.0815 m

| $K_{X} \coloneqq 0.8$ | Empotrado - Rotulado |
|-----------------------|----------------------|
|                       |                      |

# $K_v := 0.65$ Empotrado - Empotrado

#### ESFUERZO COMBINADO

- d := 9.89mm Deformación de la estructura
- h := 4.801 r Altura del piso o entre dos puntos ubicados sobre una misma vertical

## **PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN**

$$D \coloneqq D_p - 2 \cdot c$$
$$D_i \coloneqq D - 2 \cdot t$$

$$A_{g} \coloneqq \frac{\pi \cdot \left(D^{2} - D_{i}^{2}\right)}{4} \qquad A_{g} = 0.07 \cdot m^{2}$$

$$I \coloneqq \frac{\pi \left(D^{4} - D_{i}^{4}\right)}{64} \qquad I = 1.39 \times 10^{6} \cdot cm^{4}$$

$$S_{m} \coloneqq \frac{I}{\frac{D}{2}} \qquad S = 2.15 \times 10^{4} \cdot cm^{3}$$

$$Z \coloneqq \frac{\left(D^{3} - D_{i}^{3}\right)}{6} \qquad Z = 2.77 \times 10^{4} \cdot cm^{3}$$

$$r \coloneqq \sqrt{\frac{I}{1}} = 45.15 \cdot cm$$

$$r := \sqrt{\frac{1}{A_g}} = 45.15 \cdot cr$$

# VERIFICACIÓN A COMPRESIÓN

#### Verificar pandeo global

$$\lambda_{\mathbf{X}} \coloneqq \frac{K_{\mathbf{X}} \cdot \mathbf{L}}{r} = 9 \qquad \qquad \lambda_{\mathbf{y}} \coloneqq \frac{K_{\mathbf{y}} \cdot \mathbf{L}}{r} = 7.32 \qquad \qquad \lambda \coloneqq \max(\lambda_{\mathbf{X}}, \lambda_{\mathbf{y}}) = 9$$

$$ver1 := \begin{array}{c} "Ok" & \text{if} \ \lambda \leq 200 \end{array}$$

ver1 = "Ok"

"Pandeo global" otherwise

#### Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 2.43 \times 10^4 \cdot MPa$ 

#### Verificar pandeo local

Elemento atiesado Q=Qa(Qs=1)

$$\begin{split} \lambda_{f} &\coloneqq \frac{D}{t} = 76.12 \\ \lambda_{r} &\coloneqq 0.11 \frac{E}{f_{y}} = 75.95 \\ Q_{a} &\coloneqq \frac{0.038 \cdot E}{f_{y} \cdot \left(\frac{D}{t}\right)} + \frac{2}{3} \\ Q &\coloneqq \left| \begin{array}{c} 1 \quad \text{if } \lambda_{f} \leq \lambda_{r} \\ Q_{a} \quad \text{otherwise} \end{array} \right| Q &= 1.01 \\ Q_{a} \quad \text{otherwise} \\ F_{cr} &\coloneqq \left| \begin{array}{c} \text{if } Q \neq 1 \\ Q \cdot 0.658 & F_{e} \cdot f_{y} \quad \text{if } Q \cdot \frac{f_{y}}{F_{e}} \leq 2.25 \\ 0.877 \cdot F_{e} \quad \text{if } Q \cdot \frac{f_{y}}{F_{e}} > 2.25 \\ \text{if } Q &= 1 \\ \left| \begin{array}{c} \frac{f_{y}}{Q \cdot 0.658} & F_{y} & \text{if } \frac{f_{y}}{F_{e}} \leq 2.25 \\ 0.877 \cdot F_{e} & \text{if } Q \cdot \frac{f_{y}}{F_{e}} \leq 2.25 \\ 0.877 F_{e} & \text{if } \frac{f_{y}}{F_{e}} > 2.25 \\ 0.877 F_{e} & \text{if } \frac{f_{y}}{F_{e}} > 2.25 \\ \end{array} \end{split}$$

 $F_{cr} = 291.41 \cdot MPa$ 

**Resistencia nominal**  $P_n := F_{cr} \cdot A_g = 2.03 \times 10^3 \cdot \text{tonnef}$ 

Resistencia de diseño

Ω.:= 1.67

 $P_{n.\Omega}\coloneqq \frac{P_n}{\Omega} = 1.21 \times 10^3 \cdot \text{tonnef} \qquad \text{Resistencia nominal de compresión}$ 

#### Factor de utilización

$$FU1 := \frac{P_u}{P_{n,\Omega}} \qquad FU1 = 0.38 \qquad \text{Factor de utilización por compresión}$$
$$ver2 := \begin{vmatrix} "Ok" & \text{if } P_{n,\Omega} \ge P_u \\ "Rediseñar" & \text{otherwise} \end{vmatrix} \qquad ver2 = "Ok"$$

# **VERIFICACIÓN A FLEXIÓN**

ver3 := 
$$|'Ok''|$$
 if  $\frac{D}{t} < \frac{0.45 \cdot E}{f_y}$ 

"Diseñar con otra sección de la norma (modificar código)" otherwise

$$ver3 = "Ok"$$

#### Pandeo local

$$\lambda_p \coloneqq 0.07 \cdot \frac{E}{f_y} \qquad \qquad \lambda r \ \coloneqq 0.31 \cdot \frac{E}{f_y}$$

#### Fluencia

 $\mathbf{M}_p\coloneqq \mathbf{f}_y{\cdot}\mathbf{Z}$ 

$$M_{n1} := M_p$$
  $M_{n1} = 818.69 \cdot \text{tonnef } \cdot \text{m}$ 

#### Pandeo local

$$\begin{split} F_{crf} &\coloneqq \frac{0.33 \cdot E}{\left(\frac{D}{t}\right)} \\ M_{n2} &\coloneqq \left[ \left[ \frac{0.021 \cdot E}{\left(\frac{D}{t}\right)} + f_y \right] \cdot S \right] & \text{if } \lambda_p \leq \lambda_f \leq \lambda_r \\ \left(F_{crf} \cdot S\right) & \text{if } \lambda_f > \lambda_r \\ M_{n1} & \text{otherwise} \end{split}$$

# Momento nominal

 $M_n \coloneqq \min(M_{n1}, M_{n2})$   $M_n = 818.69 \cdot \text{tonnef } \cdot \text{m}$ 

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

# Momento de diseño

<u>Ω</u>:= 1.67

$$M_{n,\Omega} := \frac{M_n}{\Omega} = 490.23 \cdot \text{tonnef} \cdot \text{m}$$

$$M_u := \max(M_{ux}, M_{uy})$$

 $\begin{array}{ll} \mathrm{ver4} \coloneqq & \| \mathrm{'Ok''} & \mathrm{if} \ M_u \leq \mathrm{M}_{n.\Omega} \\ & \| \mathrm{'Rediseñar''} & \mathrm{otherwise} \end{array}$ 

ver4 = "Ok"

Factor de utilización

FU2 := 
$$\frac{M_u}{M_{n.\Omega}}$$
 FU2 = 0.48  $M_u = 236.8 \cdot \text{tonnef} \cdot \text{m}$ 

# VERIFICACIÓN A CORTE

$$L_V \coloneqq \frac{L}{2}$$

$$\begin{split} F_{crc1} &\coloneqq \frac{1.6 \cdot E}{\sqrt{\frac{5}{D} \cdot \left(\frac{D}{t}\right)^{\frac{5}{4}}}} & F_{crc2} &\coloneqq \frac{0.78 \cdot E}{\left(\frac{D}{t}\right)^2} & F_{crc3} &\coloneqq \max(F_{crc1}, F_{crc2}) \\ F_{crc} &\coloneqq \begin{bmatrix} F_{crc3} & \text{if } F_{crc3} &\leq 0.6 \cdot f_y \\ (0.6 \cdot f_y) & \text{otherwise} \end{bmatrix} & F_{crc} &= 173.75 \cdot \text{MPa} \end{split}$$

#### Esfuerzo nominal

$$V_{n} \coloneqq F_{crc} \cdot \frac{A_{g}}{2}$$
$$\Omega_{c} \coloneqq 1.67$$

$$\begin{split} V_{n.\Omega} &\coloneqq \Omega_{c} \cdot V_{n} & V_{n.\Omega} = 1.01 \times 10^{3} \cdot \text{tonnef} \\ V_{u} &\coloneqq \max \Bigl( V_{ux}, V_{uy} \Bigr) \end{split}$$

ver5 := 
$$|"Ok" \text{ if } V_u \leq V_{n,\Omega}$$
 ver5 = "Ok"  
"Rediseñar" otherwise

 $FU3 := \frac{V_u}{V_u} \qquad FU3 = 0.05$ 

$$V_{n,\Omega}$$

# ESFUERZO COMBINADO

Efecto P-Δ

ver6 := "Considerar effecto P- 
$$\Delta$$
" if d > 0.015 h  
"No considerar effecto P-  $\Delta$ " otherwise

ver6 = "No considerar efecto P-  $\Delta$ "

$$FU4 := \left[ \frac{P_r}{P_c} + \frac{8}{9} \cdot \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\left[ \frac{P_r}{2 \cdot P_c} + \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] \text{ if } \frac{P_r}{P_c} < 0.2$$

FU4 = 0.95

ver7 := 
$$\begin{vmatrix} "Ok" & \text{if } FU4 \le 1 \\ "Rediseñar" & \text{otherwise} \end{vmatrix}$$
  
ver7 = "Ok"

#### Factor de utilización

FU := max(FU1, FU2, FU3, FU4)

FU = 0.95

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

Anexo B: Verificación Estructural de Pilote de Estructura de Soporte de Sifón Diseñada con Norma ASCE 7-10

# VERIFICACIÓN DE PILOTE ASCE 7-10

#### **DEFINICIONES**

D: Diámetro

t: Espesor

- E: Módulo de elasticidad
- fy: Tensión nominal de fluencia

L: Largo del pilote

# <u>INPUT</u>

## Solicitaciones máximas

| $V_{ux} \coloneqq 11.8$ tonnef             | Corte en la dirección X     |
|--------------------------------------------|-----------------------------|
| V <sub>uy</sub> := 36.2tonnef              | Corte en la dirección Y     |
| $M_{ux} \coloneqq 178.02$ tonnef $\cdot n$ | Momento en dirección X      |
| $M_{uy} \coloneqq 54$ tonnef $\cdot m$     | Momento en dirección Y      |
| $P_u \coloneqq 418.4$ tonnef               | Esfuerzo axial (compresión) |

# MATERIALES

$$E \coloneqq 2038.902 \frac{\text{tonnef}}{\text{cm}^2}$$

$$f_y := 2.953 \frac{\text{tonnef}}{\text{cm}^2}$$

# <u>GEOMETRÍA</u>

Efecto de corrosión ci≔ 3mm Diámetro pilote  $D_p := 1.5m$ Espesor pilote  $\mathbf{t} \coloneqq 0.015 \mathbf{m} - \mathbf{c}$ 

#### Largo pilote L∷= 5.93m

# PANDEO GLOBAL

| $K_{X} \coloneqq 0.8$ | Empotrado - Rotulado  |
|-----------------------|-----------------------|
| $K_y := 0.65$         | Empotrado - Empotrado |

#### **ESFUERZO COMBINADO**

- Deformación de la estructura d := 13.52mm
- h := 4.801m Altura del piso o entre dos puntos ubicados sobre una misma vertical

# PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN

 $D \coloneqq D_p - 2 \cdot c$  $D_i := D - 2 \cdot t$ 

$$A_{g} := \frac{\pi \cdot \left(D^{2} - D_{i}^{2}\right)}{4} \qquad A_{g} = 0.06 \cdot m^{2}$$

$$I := \frac{\pi \left(D^{4} - D_{i}^{4}\right)}{64} \qquad I = 1.53 \times 10^{6} \cdot cm^{4}$$

$$S_{m} := \frac{I}{\frac{D}{2}} \qquad S = 2.05 \times 10^{4} \cdot cm^{3}$$

$$Z := \frac{\left(D^{3} - D_{i}^{3}\right)}{6} \qquad Z = 2.64 \times 10^{4} \cdot cm^{3}$$

$$r := \sqrt{\frac{I}{A_{g}}} = 52.4 \cdot cm$$

# **VERIFICACIÓN A COMPRESIÓN**

Verificar pandeo global

$$\lambda_{\mathbf{x}} \coloneqq \frac{K_{\mathbf{x}} \cdot \mathbf{L}}{r} = 9.05 \qquad \qquad \lambda_{\mathbf{y}} \coloneqq \frac{K_{\mathbf{y}} \cdot \mathbf{L}}{r} = 7.36 \qquad \qquad \lambda \coloneqq \max(\lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}) = 9.05$$

ver1 := 
$$|'Ok'' \text{ if } \lambda \leq 200$$

"Pandeo global" otherwise

#### Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 2.41 \times 10^4 \cdot MPa$ 

## Verificar pandeo local

Elemento atiesado Q=Qa(Qs=1)

$$\begin{split} \lambda_{\mathbf{f}} &\coloneqq \frac{\mathbf{D}}{\mathbf{t}} = 124.5 \\ \lambda_{\mathbf{r}} &\coloneqq 0.11 \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}} = 75.95 \\ \mathbf{Q}_{\mathbf{a}} &\coloneqq \frac{0.038 \cdot \mathbf{E}}{\mathbf{f}_{\mathbf{y}} \cdot \left(\frac{\mathbf{D}}{\mathbf{t}}\right)} + \frac{2}{3} \\ \mathbf{Q} &\coloneqq \begin{bmatrix} 1 & \text{if } \lambda_{\mathbf{f}} \leq \lambda_{\mathbf{r}} & \mathbf{Q} = 0.88 \\ \mathbf{Q}_{\mathbf{a}} & \text{otherwise} \end{bmatrix} \\ \mathbf{F}_{\mathbf{cr}} &\coloneqq \begin{bmatrix} \text{if } \mathbf{Q} \neq 1 \\ & \mathbf{Q} \cdot 0.658 & \mathbf{F}_{\mathbf{e}} \cdot \mathbf{f}_{\mathbf{y}} & \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \leq 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & \text{if } \mathbf{Q} = 1 \\ & \begin{bmatrix} \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.87 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}} \\ & 0.8 \cdot \mathbf{F}_{\mathbf{e}} & \mathbf{F}_{\mathbf{e}}$$

 $F_{cr} = 252.97 \cdot MPa$ 

Resistencia nominal

 $P_n := F_{cr} \cdot A_g = 1.44 \times 10^3 \cdot \text{tonnef}$  **Resistencia de diseño**  $\Omega := 1.67$ 

 $P_{n.\Omega} := \frac{P_n}{\Omega} = 863 \cdot \text{tonnef}$ 

Resistencia nominal de compresión

## Factor de utilización

$$FU1 := \frac{P_u}{P_{n,\Omega}} \qquad FU1 = 0.48 \qquad \text{Factor de utilización por compresión}$$
$$ver2 := \left| \begin{array}{c} "Ok" & \text{if } P_{n,\Omega} \ge P_u \\ "Rediseñar" & \text{otherwise} \end{array} \right| \qquad ver2 = "Ok"$$

# **VERIFICACIÓN A FLEXIÓN**

ver3 := 
$$|'Ok'' \text{ if } \frac{D}{t} < \frac{0.45 \cdot E}{f_y}$$

"Diseñar con otra sección de la norma (modificar código)" otherwise

$$ver3 = "Ok"$$

Pandeo local

$$\lambda_p \coloneqq 0.07 \cdot \frac{E}{f_y} \qquad \qquad \lambda r \ \coloneqq 0.31 \cdot \frac{E}{f_y}$$

Fluencia

 $\mathbf{M}_p\coloneqq \mathbf{f}_y{\cdot}\mathbf{Z}$  $M_{n1} := M_p$   $M_{n1} = 778.3$ 

$$M_{n1} = 778.31 \cdot \text{tonnef} \cdot \text{m}$$

#### Pandeo local

$$\begin{split} F_{crf} &\coloneqq \frac{0.33 \cdot E}{\left(\frac{D}{t}\right)} \\ M_{n2} &\coloneqq \left[ \boxed{\left[\frac{0.021 \cdot E}{\left(\frac{D}{t}\right)} + f_y\right]} \cdot S \right] & \text{if } \lambda_p \leq \lambda_f \leq \lambda_r \\ & \left(F_{crf} \cdot S\right) & \text{if } \lambda_f > \lambda_r \\ & M_{n1} & \text{otherwise} \end{split}$$

Momento nominal

$$M_n := \min(M_{n1}, M_{n2})$$
  $M_n = 778.31 \cdot \text{tonnef} \cdot m$ 

#### Momento de diseño

 $\Omega \approx 1.67$ 

$$\mathbf{M}_{\mathbf{n}.\Omega} \coloneqq \frac{\mathbf{M}_{\mathbf{n}}}{\Omega} = 466.05 \cdot \mathsf{tonnef} \cdot \mathbf{m}$$

$$M_u \coloneqq \max(M_{ux}, M_{uy})$$

 $\label{eq:ver4} \mbox{ver4} := \left[ \begin{array}{ccc} "Ok" & \mbox{if} \ M_u \leq M_{n,\Omega} \\ \\ "Rediseñar" & \mbox{otherwise} \end{array} \right] \mbox{ver4} = "Ok" \\ \end{array}$ 

Factor de utilización

FU2 := 
$$\frac{M_u}{M_{n,\Omega}}$$
 FU2 = 0.38  $M_u = 178.02 \cdot \text{tonnef} \cdot \text{m}$ 

# **VERIFICACIÓN A CORTE**

$$L_{V} \coloneqq \frac{L}{2}$$

$$\begin{split} F_{crc1} &\coloneqq \frac{1.6 \cdot E}{\sqrt{\frac{5}{4}}} & F_{crc2} \coloneqq \frac{0.78 \cdot E}{\left(\frac{D}{t}\right)^2} & F_{crc3} \coloneqq \max(F_{crc1}, F_{crc2}) \\ F_{crc} &\coloneqq \begin{bmatrix} F_{crc3} & \text{if } F_{crc3} \le 0.6 \cdot f_y \\ (0.6 \cdot f_y) & \text{otherwise} \end{bmatrix} & F_{crc} = 173.75 \cdot \text{MPa} \end{split}$$

#### Esfuerzo nominal

# $V_{n} \coloneqq F_{crc} \cdot \frac{A_{g}}{2}$ $\Omega_{\rm c} \coloneqq 1.67$

$$\begin{split} & V_{n.\Omega} \coloneqq \Omega_c \cdot V_n & V_{n.\Omega} = 826.57 \cdot \text{tonnef} \\ & V_u \coloneqq \max \Bigl( V_{ux}, V_{uy} \Bigr) \end{split}$$

ver5 := 
$$\begin{vmatrix} "Ok" & \text{if } V_u \leq V_{n,\Omega} \\ \\ "Rediseñar" & \text{otherwise} \\ \\ V_u \end{vmatrix}$$

ver5 = "Ok"

$$FU3 := \frac{V_u}{V_{n.\Omega}} \qquad FU3 = 0.04$$

#### ESFUERZO COMBINADO

Efecto P-Δ

ver6 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 h  
"No considerar efecto P-  $\Delta$ " otherwise

ver6 = "No considerar efecto P-  $\Delta$ "

$$FU4 := \begin{bmatrix} \frac{P_r}{P_c} + \frac{8}{9} \cdot \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\begin{bmatrix} \frac{P_r}{2 \cdot P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} < 0.2$$

FU4 = 0.93

ver7 := 
$$|'Ok'' \text{ if } FU4 \leq 1$$
  
''Rediseñar'' otherwise

ver7 = "Ok"

#### Factor de utilización

 $FU := \max(FU1, FU2, FU3, FU4)$ FU = 0.93

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

Anexo C: Verificación Estructural de Viga Cepa de Estructura de Soporte de Sifón Diseñada con Norma NCh2369Of2003

# VERIFICACIÓN DE VIGA CEPA

## <u>INPUT</u>

# Solicitaciones máximas

| V <sub>ux</sub> := 306.9tonnef            | Corte eje X (Eje fuerte)       |
|-------------------------------------------|--------------------------------|
| $V_{uy} \coloneqq 2.3$ tonnef             | Corte eje Y (Eje débil)        |
| $M_{ux} \coloneqq 30.45$ tonnef $\cdot n$ | Momento eje X (eje fuerte M33) |
| $M_{uy} \coloneqq 16.02$ tonnef $\cdot r$ | Momento eje débil              |
| P <sub>u</sub> := 92.36tonnef             | Compresión                     |

# MATERIALES



# PROPIEDADES GEOMÉTRICAS DEL PERFIL

| $c_{x} = 2mm$                                               | Corrosión                                                            |
|-------------------------------------------------------------|----------------------------------------------------------------------|
| $\mathbf{h} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Altura del perfil                                                    |
| $\mathbf{b} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Ancho del perfil                                                     |
| t <sub>f</sub> ≔ 50mm – c                                   | Espesor ala                                                          |
| t <sub>w</sub> ≔ 46mm – c                                   | Espesor alma                                                         |
| $h_{W} \coloneqq h - 2 \cdot t_{f} = 800 \cdot mr$          | r                                                                    |
| $L_x \coloneqq 17.21 \text{m}$                              | Largo eje fuerte                                                     |
| $L_y \approx 17.21 m$                                       | Largo eje débil                                                      |
| ESFUERZO COMBINA                                            | ADO                                                                  |
| d := 9.89mm                                                 | Deformación máxima de la estructura                                  |
| <mark>H</mark> := 4.801m                                    | Altura del piso o entre dos puntos ubicados sobre una misma vertical |
| $\Omega := 1.67$                                            | LRFC                                                                 |
| $K_{X} \coloneqq 0.65$                                      | Empotrado - Empotrado                                                |
| $K_y := 0.65$                                               | Empotrado - Empotrado                                                |

# PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN

$$A_{g} \coloneqq 2 \cdot b \cdot t_{f} + h_{w} \cdot t_{w} = 1.21 \times 10^{3} \cdot cm^{2}$$
$$Y_{cg} \coloneqq \frac{b \cdot t_{f} \cdot t_{f}}{2} + \frac{h_{w} \cdot t_{w} \cdot h}{2} + b \cdot t_{f} \cdot \left(h - \frac{t_{f}}{2}\right)$$
$$Y_{cg} = 0.45 \text{ m}$$

$$I_{x} \coloneqq \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} + \frac{t_{w} \cdot h_{w}^{3}}{12} + \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} \qquad I_{x} = 0.02 \cdot m^{4}$$

$$\begin{split} I_{y} &\coloneqq \frac{2 \cdot t_{f} \cdot b^{3}}{12} + \frac{h_{w} \cdot t_{w}^{3}}{12} & I_{y} = 5.76 \times 10^{5} \cdot cm^{4} \\ r_{x} &\coloneqq \sqrt{\frac{I_{x}}{A_{g}}} = 37.84 \cdot cm & r_{y} \coloneqq \sqrt{\frac{I_{y}}{A_{g}}} = 21.8 \cdot cm \\ S_{x} &\coloneqq \frac{I_{x}}{\left(\frac{h}{2}\right)} = 3.87 \times 10^{4} \cdot cm^{3} & S_{y} \coloneqq \frac{I_{y}}{\left(\frac{h}{2}\right)} = 1.29 \times 10^{4} \cdot cm^{3} \\ Z_{x} &\coloneqq \frac{A_{g} \cdot h_{w}}{2} = 4.85 \times 10^{4} \cdot cm^{3} \\ Z_{y} &\coloneqq 2 \cdot \left[\left(t_{f} \cdot \frac{b}{2}\right) \cdot \left(\frac{1}{2} \cdot \frac{b}{2}\right) \cdot 2 + \left(h - 2 \cdot t_{f}\right) \cdot \left(\frac{t_{w}}{2}\right) \cdot \left(\frac{1}{4} \cdot \frac{t_{w}}{2}\right)\right] = 1.95 \times 10^{4} \cdot cm^{3} \\ J_{w} &\coloneqq \frac{h_{w} \cdot t_{w}^{3}}{3} + \frac{2 \cdot b \cdot t_{f}^{3}}{3} = 8.88 \times 10^{3} \cdot cm^{4} \end{split}$$

# **VERIFICACIÓN A COMPRESIÓN**

# Verificar pandeo global

$$\begin{split} \mathbf{L}_{AB} &\coloneqq 4.51 \pi \qquad \mathbf{L}_{BC} &\coloneqq 3.1 \pi \qquad \mathbf{L}_{CD} &\coloneqq 3.2 \pi \qquad \mathbf{L}_{DE} &\coloneqq 2.9 \pi \qquad \mathbf{L}_{EF} &\coloneqq 3.5 \pi \\ \mathbf{K}_{AB} &\coloneqq 2 \qquad \mathbf{K}_{BC} &\coloneqq 0.65 \end{split}$$

$$\lambda_{AB} &\coloneqq \frac{\mathbf{K}_{AB} \cdot \mathbf{L}_{AB}}{\mathbf{r}_{y}} \qquad \lambda_{EF} &\coloneqq \frac{\mathbf{K}_{BC} \mathbf{L}_{EF}}{\mathbf{r}_{y}} \qquad \lambda_{BC} &\coloneqq \frac{\mathbf{K}_{BC} \mathbf{L}_{BC}}{\mathbf{r}_{y}} \qquad \lambda_{CD} &\coloneqq \frac{\mathbf{K}_{BC} \mathbf{L}_{CD}}{\mathbf{r}_{y}} \\ \lambda_{DE} &\coloneqq \frac{\mathbf{K}_{BC} \mathbf{L}_{DE}}{\mathbf{r}_{y}} \end{split}$$

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Inegeniería Civil

Eje fuerte:

$$\lambda_{\rm X} \coloneqq \frac{{\rm K}_{\rm X} \cdot {\rm L}_{\rm X}}{{\rm r}_{\rm X}} = 29.56$$

Eje débil

$$\begin{split} \lambda_{\mathbf{y}} &\coloneqq \max \Bigl( \lambda_{\mathbf{AB}}, \lambda_{\mathbf{BC}}, \lambda_{\mathbf{CD}}, \lambda_{\mathbf{DE}}, \lambda_{\mathbf{EF}} \Bigr) = 41.38 \\ \lambda &\coloneqq \max \Bigl( \lambda_{\mathbf{x}}, \lambda_{\mathbf{y}} \Bigr) = 41.38 \end{split}$$

Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 1.19 \times 10^3 \cdot MPa$ 

#### Verificar pandeo local

Ala:

$$\lambda_{f} \coloneqq \frac{b}{2 \cdot t_{f}} = 9.33$$
 $k_{c} \coloneqq \frac{4}{\sqrt{\frac{h_{w}}{t_{w}}}} = 0.94$ 

$$\begin{split} \lambda_{rf} &\coloneqq 0.64 \cdot \sqrt{\frac{k_c \cdot E}{f_y}} = 17.86 \\ \text{ver1} &\coloneqq \text{ "Ala no esbelta, No hay pandeo local"} & \text{if } \lambda_f \leq \lambda_{rf} \\ \text{"Ala esbelta, Puede haber pandeo local"} & \text{otherwise} \end{split}$$

ver1 = "Ala no esbelta, No hay pandeo local"

$$\begin{split} \mathbf{Q}_{\mathbf{S}} \coloneqq & \left| 1.415 - 0.65 \cdot \left(\frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}}\right) \cdot \sqrt{\frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}} \quad \text{if} \quad 0.64 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} < \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{W}}} \leq 1.17 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} \\ & \frac{0.9 \cdot \mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}} \cdot \left(\frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}}\right)^2} \quad \text{if} \quad \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}} > 1.17 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} \\ & 1 \quad \text{otherwise} \end{split}$$

 $Q_{s} = 0.98$ 

Alma:

$$\begin{split} \lambda_{W} &\coloneqq \frac{h_{W}}{t_{W}} = 18.18 \qquad \lambda_{TW} \coloneqq 1.49 \cdot \sqrt{\frac{E}{f_{y}}} = 42.93 \\ \text{ver2} &\coloneqq \text{ "Alma no esbelta, No hay pandeo local"} & \text{if } \lambda_{W} \leq \lambda_{TW} \\ \text{"Alma esbelta, Puede haber pandeo local"} & \text{otherwise} \\ \text{ver2} &= \text{"Alma no esbelta, No hay pandeo local"} \end{split}$$

$$Q \coloneqq Q_s$$

# Tensión crítica de compresión

$$F_{cr} \coloneqq \begin{cases} Q \cdot f_{y} \\ 0.658 \\ F_{e} \\ \end{bmatrix} \cdot f_{y} & \text{if } \frac{f_{y}}{F_{e}} \le 2.25 \end{cases} \qquad F_{cr} = 223.21 \cdot \text{MPa}$$
$$(0.877 \cdot F_{e}) & \text{if } \frac{Q \cdot f_{y}}{F_{e}} > 2.25 \end{cases}$$

Esfuerzo de compresión nominal

$$P_{n} \coloneqq F_{cr} \cdot A_{g} = 2.76 \times 10^{3} \cdot \text{tonnef} \qquad P_{n.\Omega} \coloneqq \frac{P_{n}}{\Omega} \qquad \qquad P_{n.\Omega} = 1.65 \times 10^{3} \cdot \text{tonnef}$$

ver3 := 
$$|"Ok" \text{ if } P_{n,\Omega} \ge P_u$$
  
"Iterar" otherwise

ver3 = "Ok" FU1 := 
$$\frac{P_u}{P_{n,\Omega}} = 0.06$$

# VERIFICACIÓN A FLEXIÓN

Eje fuerte

Pandeo local Ala:

$$\begin{split} \lambda_{\text{pf}} &\coloneqq 0.38 \cdot \sqrt{\frac{\text{E}}{\text{f}_{y}}} = 10.95 \\ \text{F}_{1} &\coloneqq 0.7 \cdot \text{f}_{y} = 173.68 \cdot \text{MPa} \\ & \lambda_{\text{total}} &\coloneqq 0.95 \cdot \sqrt{\frac{\text{k}_{c} \cdot \text{E}}{\text{F}_{1}}} = 31.68 \end{split}$$

$$\begin{array}{ll} \mbox{ver4} \coloneqq & \mbox{"Ala Compacta"} & \mbox{if } \lambda_f \leq \lambda_{pf} \\ & \mbox{"Ala no Compacta"} & \mbox{if } \lambda_{pf} < \lambda_f < \lambda_{rf} \\ & \mbox{"Ala Esbelta"} & \mbox{if } \lambda_f > \lambda_{rf} \end{array}$$

ver4 = "Ala Compacta"

Alma

$$\begin{split} \lambda_{pw} &\coloneqq 3.76 \cdot \sqrt{\frac{E}{f_y}} = 108.33 \\ \lambda_{xww} &\coloneqq 5.70 \cdot \sqrt{\frac{E}{f_y}} = 164.22 \\ \text{ver5} &\coloneqq \text{ "Alma Compacta" if } \lambda_w \leq \lambda_{pw} \\ \text{"Alma no Compacta" if } \lambda_{pw} < \lambda_w < \lambda_{rw} \\ \text{"Alma Esbelta" if } \lambda_w > \lambda_{rw} \end{split}$$

ver5 = "Alma Compacta"

 $C_b \coloneqq 1$ 

<u>c</u>.≔ 1

**Caso F2**  

$$L_b \coloneqq L_y$$
 $L_p \coloneqq 1.76 \cdot r_y \cdot \sqrt{\frac{E}{f_y}}$ 
 $h_o \coloneqq h - t_f$ 
 $C_w \coloneqq \frac{I_y \cdot h_o^2}{4}$ 
 $r_{ts} \coloneqq \sqrt{\frac{\sqrt{I_y \cdot C_w}}{S_x}}$ 

$$L_{\rm T} \coloneqq 1.95 \cdot r_{\rm ts} \cdot \frac{E}{0.7 \cdot f_{\rm y}} \cdot \sqrt{\frac{J \cdot c}{S_{\rm x} \cdot h_{\rm o}}} + \sqrt{\left(\frac{J \cdot c}{S_{\rm x} \cdot h_{\rm o}}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot f_{\rm y}}{E}\right)^2} \qquad \qquad L_{\rm T} = 45.64 \,\mathrm{m}$$

1. Plastificación

 $\mathbf{M}_{np}\coloneqq\mathbf{f}_{y}{\cdot}\mathbf{Z}_{y}\qquad\mathbf{M}_{p}\coloneqq\mathbf{M}_{np}$ 

2. Volcamiento

$$\mathbf{M}_{nvb} := \mathbf{C}_{b} \cdot \left[ \mathbf{M}_{p} - \left( \mathbf{M}_{p} - 0.7 \mathbf{f}_{y} \cdot \mathbf{S}_{x} \right) \cdot \left( \frac{\mathbf{L}_{b} - \mathbf{L}_{p}}{\mathbf{L}_{r} - \mathbf{L}_{p}} \right) \right]$$

$$\underset{\text{MANNA}}{F} \coloneqq \frac{C_{b} \cdot \pi^{2} \cdot E}{\left(\frac{L_{b}}{r_{ts}}\right)^{2}} \cdot \sqrt{1 + 0.078 \cdot \frac{J \cdot c}{S_{x} \cdot h_{o}} \cdot \left(\frac{L_{b}}{r_{ts}}\right)^{2}}$$

$$\begin{split} \mathbf{M}_{nvc} &\coloneqq \mathbf{F}_{cr} \cdot \mathbf{S}_{s} \\ \mathbf{M}_{nf2} &\coloneqq & \left| \begin{array}{ll} \mathbf{M}_{p} \quad \text{if} \quad \mathbf{L}_{b} \leq \mathbf{L}_{p} \\ & \min \! \left( \mathbf{M}_{p}, \mathbf{M}_{nvb} \right) \quad \text{if} \quad \mathbf{L}_{p} < \mathbf{L}_{b} \leq \mathbf{L}_{r} \\ & \min \! \left( \mathbf{M}_{p}, \mathbf{M}_{nvc} \right) \quad \text{if} \quad \mathbf{L}_{b} > \mathbf{L}_{r} \end{split} \right. \end{split} \end{split}$$

# 1. Volcamiento

 $M_v\coloneqq M_{nf2}$ 

2. Pandeo local del ala en compresión

$$\begin{split} \textbf{Saso:F3} & \boxed{ \left[ M_p - \left( M_p - 0.7 \cdot f_y \cdot S_x \right) \cdot \left( \frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] } & \text{if } \lambda_{pf} < \lambda_f \leq \lambda_{rf} \\ & \frac{0.9 \cdot E \cdot k_c \cdot S_x}{\lambda^2} & \text{otherwise} \end{split}$$

$$\begin{split} M_{nf3} &\coloneqq \min \Bigl( M_v, M_{nf} \Bigr) \\ M_{nx} &\coloneqq \left[ \begin{array}{cc} M_{nf2} & \text{if } \lambda_f \leq \lambda_{pf} \wedge \lambda_w \leq \lambda_{pw} \\ M_{nf3} & \text{if } \lambda_w \leq \lambda_{pw} \wedge \Bigl( \lambda_{pf} < \lambda_f \leq \lambda_{rf} \vee \lambda_f > \lambda_{rf} \Bigr) \\ \end{array} \right] \\ M_{nx,\Omega} &\coloneqq \frac{M_{nx}}{\Omega} = 676.95 \cdot \text{tonnef} \cdot \text{rr} \qquad \text{Resistencia de diseño} \\ \text{ver6} &\coloneqq \left[ \begin{array}{c} \text{'Ok''} & \text{if } M_{nx,\Omega} \geq M_{ux} \\ \text{''Iterar''} & \text{otherwise} \end{array} \right] \\ \end{split}$$

Eje débil

Sección F6 de la norma AISC360-10

1. Plastificación

$$\begin{split} \underbrace{M_{np}}_{i} &\coloneqq f_y \cdot Z_y \qquad \underbrace{M_{pp}}_{i} &\coloneqq M_{np} \\ M_{n1} &\coloneqq \begin{bmatrix} M_{np} & \text{if } M_{np} \leq 1.6 \cdot f_y \cdot S_y \\ (1.6 \cdot f_y \cdot S_y) & \text{otherwise} \end{bmatrix} \end{split}$$

2. Pandeo local del ala

$$\begin{split} \mathbf{M}_{nb} &\coloneqq \left[ \mathbf{M}_{p} - \left(\mathbf{M}_{p} - 0.7 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{y}\right) \cdot \left(\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) \right] \\ & \mathcal{K}_{\text{NOWA}} &\coloneqq \frac{0.69 \cdot \mathbf{E}}{\left(\frac{\mathbf{b}}{\mathbf{t}_{f}}\right)^{2}} \\ & \mathbf{M}_{nc} &\coloneqq \mathbf{F}_{cr} \cdot \mathbf{S}_{y} \\ & \mathbf{M}_{ny} &\coloneqq \left[ \begin{array}{c} \mathbf{M}_{n1} & \text{if } \lambda_{f} \leq \lambda_{pf} \\ \min(\mathbf{M}_{n1}, \mathbf{M}_{nb}) & \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ \min(\mathbf{M}_{n1}, \mathbf{M}_{nc}) & \text{if } \lambda_{f} > \lambda_{rf} \end{array} \right] \\ & \mathbf{M}_{ny.\Omega} &\coloneqq \frac{\mathbf{M}_{ny}}{\Omega} \qquad \qquad \mathbf{FU3} \coloneqq \frac{\mathbf{M}_{uy}}{\mathbf{M}_{ny.\Omega}} = 0.05 \\ & \text{ver7} &\coloneqq \left[ \begin{array}{c} \mathbf{Ok}^{"} & \text{if } \mathbf{M}_{ny.\Omega} \geq \mathbf{M}_{uy} \end{array} \right] \end{split}$$

ver8 := "No requiere aties adores" if 
$$\lambda_{w} \le 2.46 \cdot \sqrt{\frac{E}{f_{y}}}$$
  
"Requiere aties adores" otherwise  
 $k_{v} := 5$ 

ver8 = "No requiere aties adores"

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Inegeniería Civil

$$\begin{split} C_{V} &\coloneqq \left| \begin{array}{c} 1.0 \quad \text{if} \quad 1.10 \cdot \sqrt{k_{V} \cdot \frac{E}{f_{y}}} \\ \frac{1.10 \cdot \sqrt{k_{V} \cdot \frac{E}{f_{y}}}}{\lambda_{W}} \quad \text{if} \quad 1.10 \cdot \sqrt{k_{V} \cdot \frac{E}{f_{y}}} < \lambda_{W} \leq 1.37 \cdot \sqrt{k_{V} \cdot \frac{E}{f_{y}}} \\ \frac{1.51 \cdot k_{V} \cdot E}{\lambda_{W}^{-2} \cdot f_{y}} \quad \text{if} \quad \lambda_{W} > 1.37 \cdot \sqrt{k_{V} \cdot \frac{E}{f_{y}}} \\ A_{wx} &\coloneqq h \cdot t_{W} = 394.24 \cdot cm^{2} \\ V_{nx} &\coloneqq 0.6 \cdot f_{y} \cdot A_{wx} \cdot C_{V} \\ V_{nx,\Omega} &\coloneqq \frac{V_{nx}}{\Omega} = 358.36 \cdot \text{connef} \\ \text{Ver} 9 &\coloneqq \left| \begin{array}{c} \text{'Ok''} \quad \text{if} \quad V_{nx,\Omega} \geq V_{ux} \\ \text{'Iterar''} \quad \text{otherwise} \end{array} \right| \\ A_{wy} &\coloneqq 2 \cdot b \cdot t_{f} = 860.16 \cdot cm^{2} \\ V_{ny,\Omega} &\coloneqq \frac{V_{ny}}{\Omega} = 781.87 \cdot \text{connef} \\ \text{Ver} 10 &\coloneqq \left| \begin{array}{c} \text{'Ok''} \quad \text{if} \quad V_{ny,\Omega} \geq V_{uy} \\ \text{'Iterar''} \quad \text{otherwise} \end{array} \right| \\ \text{Ver} 10 &\coloneqq \left| \begin{array}{c} \text{'Ok''} \quad \text{if} \quad V_{ny,\Omega} \geq V_{uy} \\ \text{'Iterar''} \quad \text{otherwise} \end{array} \right| \\ \end{array}$$

#### ESFUERZO COMBINADO

Efecto P-∆

ver11 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 · H  
"No considerar efecto P-  $\Delta$ " otherwise

ver11 = "No considerar efecto P-  $\Delta$ "

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Inegeniería Civil

$$FU6 := \begin{bmatrix} \frac{P_r}{P_c} + \frac{8}{9} \cdot \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\begin{bmatrix} \frac{P_r}{2 \cdot P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} < 0.2$$

FU6 = 0.13

ver12 :=  $|"Ok" \text{ if } FU6 \leq 1$ "Rediseñar" otherwise ver12 = "Ok"

FU := max(FU1, FU2, FU3, FU4, FU5, FU6)

FU = 0.86

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil

Anexo D: Verificación Estructural de Viga Cepa de Estructura de Soporte de Sifón Diseñada con Norma ASCE 7-10
# VERIFICACIÓN DE VIGA CEPA ASCE 7-10

## <u>INPUT</u>

## Solicitaciones máximas

| $V_{ux} \coloneqq 273.2$ tonnef          | Corte eje X (Eje fuerte)       |
|------------------------------------------|--------------------------------|
| $V_{uy} \coloneqq 1.4$ tonnef            | Corte eje Y (Eje débil)        |
| M <sub>ux</sub> ≔ 49.8tonnef ·m          | Momento eje X (eje fuerte M33) |
| $M_{uy} \coloneqq 12.2$ tonnef $\cdot r$ | Momento eje Y                  |
| $P_u \approx 77.4$ tonnef                | Compresión                     |

## MATERIALES





# PROPIEDADES GEOMÉTRICAS DEL PERFIL

| $c_{m} = 2mm$                                               | Corrosión                                                            |  |
|-------------------------------------------------------------|----------------------------------------------------------------------|--|
| $\mathbf{h} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Altura del perfil                                                    |  |
| $\mathbf{b} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Ancho del perfil                                                     |  |
| $t_{f} \coloneqq 44mm - c$                                  | Espesor ala                                                          |  |
| $t_w \coloneqq 42mm - c$                                    | Espesor alma                                                         |  |
| $h_w := h - 2 \cdot t_f = 812 \cdot mr$                     |                                                                      |  |
| $L_x \coloneqq 17.21 \text{m}$                              | Largo eje fuerte                                                     |  |
| $L_y \coloneqq 17.21 m$                                     | Largo eje débil                                                      |  |
| ESFUERZO COMBINADO                                          |                                                                      |  |
| d := 13.52mm                                                | Deformación máxima de la estructura                                  |  |
| <mark>.</mark>                                              | Altura del piso o entre dos puntos ubicados sobre una misma vertical |  |
| Ω:= 1.67                                                    | LRFD                                                                 |  |
| $K_{X} := 0.65$                                             | Empotrado - Empotrado                                                |  |
| $K_y := 0.65$                                               | Empotrado - Empotrado                                                |  |

# PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN

$$\begin{split} I_{y} &\coloneqq \frac{2 \cdot t_{f} \cdot b^{3}}{12} + \frac{h_{w} \cdot t_{w}^{3}}{12} & I_{y} = 5.04 \times 10^{5} \cdot cm^{4} \\ r_{x} &\coloneqq \sqrt{\frac{I_{x}}{A_{g}}} = 37.95 \cdot cn & r_{y} \coloneqq \sqrt{\frac{I_{y}}{A_{g}}} = 21.63 \cdot cn \\ S_{x} &\coloneqq \frac{I_{x}}{\left(\frac{h}{2}\right)} = 3.46 \times 10^{4} \cdot cm^{3} & S_{y} \coloneqq \frac{I_{y}}{\left(\frac{h}{2}\right)} = 1.12 \times 10^{4} \cdot cm^{3} \\ Z_{x} &\coloneqq \frac{A_{g} \cdot h_{w}}{2} = 4.37 \times 10^{4} \cdot cm^{3} \\ Z_{y} &\coloneqq 2 \cdot \left[\left(t_{f} \cdot \frac{b}{2}\right) \cdot \left(\frac{1}{2} \cdot \frac{b}{2}\right) \cdot 2 + \left(h - 2 \cdot t_{f}\right) \cdot \left(\frac{1}{2} \cdot \frac{t_{w}}{2}\right)\right] = 1.7 \times 10^{4} \cdot cm^{3} \\ J_{w} &\coloneqq \frac{h_{w} \cdot t_{w}^{3}}{3} + \frac{2 \cdot b \cdot t_{f}^{3}}{3} = 6.16 \times 10^{3} \cdot cm^{4} \end{split}$$

# VERIFICACIÓN A COMPRESIÓN

# Verificar pandeo global

$$\begin{split} \lambda_{DE} &\coloneqq \frac{K_{BC}L_{DE}}{r_y} \\ \text{Eje fuerte:} \end{split}$$

$$\lambda_{X}\coloneqq \frac{K_{X}L_{X}}{r_{X}}=29.48$$

Eje débil

$$\begin{split} \lambda_{\mathbf{y}} &\coloneqq \max \Bigl( \lambda_{\mathbf{AB}}, \lambda_{\mathbf{BC}}, \lambda_{\mathbf{CD}}, \lambda_{\mathbf{DE}}, \lambda_{\mathbf{EF}} \Bigr) = 41.71 \\ \lambda &\coloneqq \max \Bigl( \lambda_{\mathbf{x}}, \lambda_{\mathbf{y}} \Bigr) = 41.71 \end{split}$$

## Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 1.17 \times 10^3 \cdot MPa$ 

# Verificar pandeo local

Ala:

$$\lambda_{\rm f} \coloneqq \frac{b}{2 \cdot t_{\rm f}} = 10.67$$
  $k_{\rm c} \coloneqq \frac{4}{\sqrt{\frac{h_{\rm w}}{t_{\rm w}}}} = 0.89$ 

$$\begin{array}{l} \lambda_{rf} \coloneqq 0.64 \cdot \sqrt{\frac{k_c \cdot E}{f_y}} = 17.37 \\ \text{ver1} \coloneqq & \text{"Ala no esbelta, No hay pandeo local"} & \text{if } \lambda_f \leq \lambda_{rf} \\ \text{"Ala esbelta, Puede haber pandeo local"} & \text{otherwise} \end{array}$$

ver1 = "Ala no esbelta, No hay pandeo local"

$$\begin{split} \mathbf{Q}_{\mathbf{S}} \coloneqq & \left| 1.415 - 0.65 \cdot \left( \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}} \right) \cdot \sqrt{\frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}} \quad \text{if} \quad 0.64 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} < \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{w}}} \leq 1.17 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} \\ & \left| \frac{0.9 \cdot \mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}} \cdot \left( \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}} \right)^2} \right| \quad \text{if} \quad \frac{\mathbf{b}}{\mathbf{t}_{\mathbf{f}}} > 1.17 \cdot \sqrt{\frac{\mathbf{E} \cdot \mathbf{k}_{\mathbf{c}}}{\mathbf{f}_{\mathbf{y}}}} \\ & 1 \quad \text{otherwise} \end{split}$$

$$Q_{s} = 0.9$$

Alma:

$$\begin{split} \lambda_{W} &\coloneqq \frac{h_{W}}{t_{W}} = 20.3 \qquad \lambda_{TW} \coloneqq 1.49 \cdot \sqrt{\frac{E}{f_{y}}} = 42.93 \\ \text{ver2} &\coloneqq \text{ "Alma no esbelta, No hay pandeo local"} & \text{if } \lambda_{W} \leq \lambda_{TW} \\ \text{ "Alma esbelta, Puede haber pandeo local"} & \text{otherwise} \\ \text{ver2} &= \text{"Alma no esbelta, No hay pandeo local"} \\ Q &\coloneqq Q_{S} \end{split}$$

Tensión crítica de compresión

$$F_{cr} \coloneqq \begin{bmatrix} Q \cdot \begin{pmatrix} \frac{Q \cdot f_y}{F_e} \\ 0.658 \end{bmatrix} \cdot f_y & \text{if } \frac{f_y}{F_e} \le 2.25 \end{bmatrix} \qquad F_{cr} = 207.01 \cdot \text{MPa}$$
$$(0.877 \cdot F_e) & \text{if } \frac{Q \cdot f_y}{F_e} > 2.25 \end{bmatrix}$$

Esfuerzo de compresión nominal

$$P_n := F_{cr} \cdot A_g = 2.27 \times 10^3 \cdot \text{tonnef} \qquad P_{n,\Omega} := \frac{P_n}{\Omega} \qquad P_{n,\Omega} = 1.36 \times 10^3 \cdot \text{tonnef}$$

ver3 := 
$$|'Ok'' \text{ if } P_{n,\Omega} \ge P_u$$
  
''Iterar'' otherwise

ver3 = "Ok" FU1 := 
$$\frac{P_u}{P_{n,\Omega}} = 0.06$$

# **VERIFICACIÓN A FLEXIÓN**

Eje fuerte

Pandeo local Ala:

$$\lambda_{\text{pf}} \coloneqq 0.38 \cdot \sqrt{\frac{\text{E}}{f_y}} = 10.95$$

$$F_1 \coloneqq 0.7 \cdot f_y = 173.68 \cdot \text{MPa} \qquad \qquad \lambda_{\text{trfn}} \coloneqq 0.95 \cdot \sqrt{\frac{\text{k}_c \cdot \text{E}}{F_1}} = 30.82$$

$$\begin{array}{ll} \mbox{ver4} \coloneqq & \mbox{"Ala Compacta"} & \mbox{if } \lambda_f \leq \lambda_{pf} \\ & \mbox{"Ala no Compacta"} & \mbox{if } \lambda_{pf} < \lambda_f < \lambda_{rf} \\ & \mbox{"Ala Esbelta"} & \mbox{if } \lambda_f > \lambda_{rf} \end{array}$$

ver4 = "Ala Compacta"

Alma

$$\lambda_{pw} \coloneqq 3.76 \cdot \sqrt{\frac{E}{f_y}} = 108.33$$

$$\lambda_{rww} \coloneqq 5.70 \cdot \sqrt{\frac{E}{f_y}} = 164.22$$

$$\begin{array}{ll} \text{ver5} \coloneqq & \text{"Alma Compacta"} & \text{if } \lambda_{W} \leq \lambda_{pW} \\ \\ \text{"Alma no Compacta"} & \text{if } \lambda_{pW} < \lambda_{W} < \lambda_{rW} \\ \\ \\ \text{"Alma Esbelta"} & \text{if } \lambda_{W} > \lambda_{rW} \end{array}$$

ver5 = "Alma Compacta"

 $C_b \coloneqq 1$ 

<u>c</u>.≔ 1

Caso F2  

$$L_b \coloneqq L_x$$
  $L_p \coloneqq 1.76 \cdot r_y \cdot \sqrt{\frac{E}{f_y}}$   $h_o \coloneqq h - t_f$   $C_w \coloneqq \frac{I_y \cdot h_o^2}{4}$   $r_{ts} \coloneqq \sqrt{\frac{\sqrt{I_y \cdot C_w}}{S_x}}$ 

$$\mathbf{L}_{\mathbf{T}} \coloneqq 1.95 \cdot \mathbf{r}_{\mathbf{ts}} \cdot \frac{\mathbf{E}}{0.7 \cdot \mathbf{f}_{\mathbf{y}}} \cdot \sqrt{\frac{\mathbf{J} \cdot \mathbf{c}}{\mathbf{S}_{\mathbf{x}} \cdot \mathbf{h}_{\mathbf{o}}}} + \sqrt{\left(\frac{\mathbf{J} \cdot \mathbf{c}}{\mathbf{S}_{\mathbf{x}} \cdot \mathbf{h}_{\mathbf{o}}}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot \mathbf{f}_{\mathbf{y}}}{\mathbf{E}}\right)^2} \qquad \mathbf{L}_{\mathbf{T}} = 41.18 \,\mathrm{m}$$

1. Plastificación

 $\mathbf{M}_{np}\coloneqq\mathbf{f}_{y}{\cdot}\mathbf{Z}_{y}\qquad\mathbf{M}_{p}\coloneqq\mathbf{M}_{np}$ 

2. Volcamiento

$$M_{nvb} \coloneqq C_{b} \cdot \left[ M_{p} - \left( M_{p} - 0.7f_{y} \cdot S_{x} \right) \cdot \left( \frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right]$$

$$F_{MOFW} \coloneqq \frac{C_{b} \cdot \pi^{2} \cdot E}{\left( \frac{L_{b}}{r_{ts}} \right)^{2}} \cdot \sqrt{1 + 0.078 \cdot \frac{J \cdot c}{S_{x} \cdot h_{o}} \cdot \left( \frac{L_{b}}{r_{ts}} \right)^{2}}$$

$$M_{nvc} := F_{cr} \cdot S_{y}$$

$$\begin{split} \mathbf{M}_{nf2} \coloneqq & \begin{bmatrix} \mathbf{M}_p & \text{if } \mathbf{L}_b \leq \mathbf{L}_p \\ & \min\left(\mathbf{M}_p, \mathbf{M}_{nvb}\right) & \text{if } \mathbf{L}_p < \mathbf{L}_b \leq \mathbf{L}_r \\ & \min\left(\mathbf{M}_p, \mathbf{M}_{nvc}\right) & \text{if } \mathbf{L}_b > \mathbf{L}_r \end{split}$$

## Caso F3

1. Volcamiento

$$M_v \coloneqq M_{nf2}$$

2. Pandeo local del ala en compresión

$$\begin{split} \mathbf{M}_{nf} &\coloneqq \boxed{ \left[ \left[ \mathbf{M}_{p} - \left( \mathbf{M}_{p} - 0.7 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{x} \right) \cdot \left( \frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \right]} & \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ \frac{0.9 \cdot \mathbf{E} \cdot \mathbf{k}_{c} \cdot \mathbf{S}_{x}}{\lambda^{2}} & \text{otherwise} \end{split}$$

$$\begin{split} \mathsf{M}_{nf3} &\coloneqq \mathsf{min} \Big( \mathsf{M}_{v}, \mathsf{M}_{nf} \Big) \\ \mathsf{M}_{nx} &\coloneqq \left| \begin{array}{l} \mathsf{M}_{nf2} & \mathrm{if} \ \lambda_{f} \leq \lambda_{pf} \ \land \ \lambda_{w} \leq \lambda_{pw} \\ \mathsf{M}_{nf3} & \mathrm{if} \ \lambda_{w} \leq \lambda_{pw} \ \land \left( \lambda_{pf} \ < \lambda_{f} \leq \lambda_{rf} \lor \ \lambda_{f} > \lambda_{rf} \right) \\ \mathsf{M}_{nx.\Omega} &\coloneqq \displaystyle \frac{\mathsf{M}_{nx}}{\Omega} = 601.67 \cdot \mathsf{tonnef} \ \cdot \mathsf{n} \end{split} \right. \end{split}$$
 Resistencia de diseño

ver6 := "Ok" if  $M_{nx,\Omega} \ge M_{ux}$  ver6 = "Ok" "Iterar" otherwise

$$FU2 \coloneqq \frac{M_{ux}}{M_{nx,\Omega}} = 0.08$$

Eje débil

Sección F6 de la norma AISC360-10

1. Plastificación

$$\begin{split} \underbrace{M_{np}}_{M_{np}} &\coloneqq f_y \cdot Z_y & \underbrace{M_{np}}_{M_{np}} &\coloneqq M_{np} \\ M_{n1} &\coloneqq & \left| \begin{array}{cc} M_{np} & \text{if } M_{np} & \leq 1.6 \cdot f_y \cdot S_y \\ \left( 1.6 \cdot f_y \cdot S_y \right) & \text{otherwise} \end{array} \right. \end{split}$$

2. Pandeo local del ala

$$\begin{split} \mathbf{M}_{nb} &\coloneqq \left[ \mathbf{M}_{p} - \left(\mathbf{M}_{p} - 0.7 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{y}\right) \cdot \left(\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) \right] \\ \mathbf{F}_{\mathbf{MOWA}} &\coloneqq \left[ \frac{0.69 \cdot \mathbf{E}}{\left(\frac{\mathbf{b}}{\mathbf{t}_{f}}\right)^{2}} \right] \\ \mathbf{M}_{nc} &\coloneqq \mathbf{F}_{cr} \cdot \mathbf{S}_{y} \\ \mathbf{M}_{ng} &\coloneqq \left[ \mathbf{M}_{n1} \quad \text{if } \lambda_{f} \leq \lambda_{pf} \\ \min(\mathbf{M}_{n1}, \mathbf{M}_{nb}) \quad \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ \min(\mathbf{M}_{n1}, \mathbf{M}_{nc}) \quad \text{if } \lambda_{f} > \lambda_{rf} \\ \mathbf{M}_{ny, \Omega} &\coloneqq \frac{\mathbf{M}_{ny}}{\Omega} \qquad \qquad \mathbf{FU3} \coloneqq \frac{\mathbf{M}_{uy}}{\mathbf{M}_{ny, \Omega}} = 0.05 \\ \text{ver7} &\coloneqq \left[ \begin{array}{c} \mathbf{Ok}^{"} & \text{if } \mathbf{M}_{ny, \Omega} \geq \mathbf{M}_{uy} \\ \mathbf{Tterar}^{"} & \text{otherwise} \end{array} \right] \end{split}$$

# **VERIFICACIÓN A CORTE**

ver8 := "No requiere aties adores" if 
$$\lambda_{w} \le 2.46 \cdot \sqrt{\frac{E}{f_{y}}}$$
  
"Requiere aties adores" otherwise  $k_{v} := 5$ 

ver8 = "No requiere aties adores"

$$\begin{split} \mathbf{C}_{\mathbf{V}} \coloneqq & \left| \begin{array}{c} 1.0 \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ & \frac{1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}}}{\lambda_{\mathbf{W}}} \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ & \frac{1.51 \cdot \mathbf{k}_{\mathbf{V}} \cdot \mathbf{E}}{\lambda_{\mathbf{W}}^{2} \cdot \mathbf{f}_{\mathbf{y}}} \quad \text{if} \quad \lambda_{\mathbf{W}} > 1.37 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \end{split}$$

$$A_{WX} := h \cdot t_W = 358.4 \cdot cm^2$$

$$\mathbf{V}_{\mathbf{n}\mathbf{x}} \coloneqq 0.6 \cdot \mathbf{f}_{\mathbf{y}} \cdot \mathbf{A}_{\mathbf{w}\mathbf{x}} \cdot \mathbf{C}_{\mathbf{v}}$$

$$V_{nx,\Omega} := \frac{V_{nx}}{\Omega} = 325.78 \cdot \text{tonnef} \qquad FU4 := \frac{V_{ux}}{V_{nx,\Omega}} = 0.84$$
  
ver9 := |'Ok'' if  $V_{nx,\Omega} \ge V_{ux}$  ver9 = 'Ok''  
''Iterar'' otherwise

$$\begin{split} A_{wy} &\coloneqq 2 \cdot b \cdot t_{f} = 752.64 \cdot cm^{2} \\ V_{ny} &\coloneqq 0.6 \cdot f_{y} \cdot A_{wy} \cdot C_{v} \\ V_{ny, \Omega} &\coloneqq \frac{V_{ny}}{\Omega} = 684.14 \cdot tonnef \\ ver10 &\coloneqq \begin{bmatrix} 'Ok'' & \text{if } V_{ny, \Omega} \ge V_{uy} \\ ''Iterar'' & otherwise \end{bmatrix} FU5 \coloneqq \frac{V_{uy}}{V_{ny, \Omega}} = 2.05 \times 10^{-3} \\ \end{split}$$

#### ESFUERZO COMBINADO

Efecto P-Δ

ver11 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 · H  
"No considerar efecto P-  $\Delta$ " otherwise

ver11 = "No considerar efecto P-  $\Delta$ "

8 Anexo D

$$FU6 \coloneqq \begin{bmatrix} \frac{P_r}{P_c} + \frac{8}{9} \cdot \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\begin{bmatrix} \frac{P_r}{2 \cdot P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} < 0.2$$

FU6 = 0.16

ver12 :=  $|'Ok'' \text{ if } FU6 \le 1$ ''Rediseñar'' otherwise

ver12 = "Ok"

FU := max(FU1, FU2, FU3, FU4, FU5, FU6)

FU = 0.84

Anexo E: Verificación Estructural de Viga de Torre de Captación de Agua de Mar Diseñada con Norma NCh2369Of2003

# VERIFICACIÓN DE VIGA TORRE DE SUCCIÓN NCH2369OF2003

## <u>INPUT</u>

### Solicitaciones máximas

| V <sub>ux</sub> := 145.8tonnef           | Corte eje X (Eje fuerte)       |
|------------------------------------------|--------------------------------|
| V <sub>uy</sub> := 74.8tonnef            | Corte eje Y (Eje débil)        |
| $M_{ux} := 174.3 \text{tonnef} \cdot n$  | Momento eje X (eje fuerte M33) |
| $M_{uy} \coloneqq 59.7$ tonnef $\cdot m$ | Momento eje Y                  |
| $P_{\rm u} := 12.2$ tonnef               | Compresión                     |

## MATERIALES



# PROPIEDADES GEOMÉTRICAS DEL PERFIL

| c∴≔ 2mm                                                     | Corrosión                                                            |  |
|-------------------------------------------------------------|----------------------------------------------------------------------|--|
| $\mathbf{h} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Altura del perfil                                                    |  |
| $\mathbf{b} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$ | Ancho del perfil                                                     |  |
| t <sub>f</sub> ≔ 40mm – c                                   | Espesor ala                                                          |  |
| t <sub>w</sub> ≔ 38mm – c                                   | Espesor alma                                                         |  |
| $h_{W} \coloneqq h - 2 \cdot t_{f} = 820 \cdot m$           | π ( )                                                                |  |
| $L_{\rm X} \coloneqq 7.2  {\rm lm}$                         | Largo eje fuerte                                                     |  |
| $L_y := 7.21 m$                                             | Largo eje débil                                                      |  |
| ESFUERZO COMBINADO                                          |                                                                      |  |
| d := 13.52mm                                                | Deformación máxima de la estructura                                  |  |
| H.:= 4.801m                                                 | Altura del piso o entre dos puntos ubicados sobre una misma vertical |  |
| <u>Ω</u> := 1.67                                            | LRFC                                                                 |  |
| K <sub>X</sub> := 0.65                                      | Empotrado - Empotrado                                                |  |
| $K_y := 0.65$                                               | Empotrado - Empotrado                                                |  |
| PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN                       |                                                                      |  |

 $\mathbf{A}_{\mathbf{g}} \coloneqq 2 \cdot \mathbf{b} \cdot \mathbf{t}_{\mathbf{f}} + \mathbf{h}_{\mathbf{W}} \cdot \mathbf{t}_{\mathbf{W}} = 976.16 \cdot \mathrm{cm}^2$ 

$$Y_{cg} \coloneqq \frac{b \cdot t_{f} \cdot t_{f}}{2} + \frac{h_{w} \cdot t_{w} \cdot h}{2} + b \cdot t_{f} \cdot \left(h - \frac{t_{f}}{2}\right)}{A_{g}} \qquad Y_{cg} = 0.448 \, m$$
$$I_{x} \coloneqq \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} + \frac{t_{w} \cdot h_{w}^{3}}{12} + \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} \qquad I_{x} = 0.014 \cdot m^{4}$$

$$I_{y} \coloneqq \frac{2 \cdot t_{f} \cdot b^{3}}{12} + \frac{h_{w} \cdot t_{w}^{3}}{12} \qquad I_{y} = 4.559 \times 10^{5} \cdot cm^{4}$$

$$r_{x} \coloneqq \sqrt{\frac{I_{x}}{A_{g}}} = 38.133 \cdot cm \qquad r_{y} \coloneqq \sqrt{\frac{I_{y}}{A_{g}}} = 21.611 \cdot cm$$

$$S_{x} \coloneqq \frac{I_{x}}{\left(\frac{h}{2}\right)} = 3.168 \times 10^{4} \cdot cm^{3} \qquad S_{y} \coloneqq \frac{I_{y}}{\left(\frac{h}{2}\right)} = 1.018 \times 10^{4} \cdot cm^{3}$$

$$Z_{x} \coloneqq \frac{A_{g} \cdot h_{w}}{2} = 4.002 \times 10^{4} \cdot cm^{3}$$

$$Z_{y} \coloneqq 2 \cdot \left[\left(t_{f} \cdot \frac{b}{2}\right) \cdot \left(\frac{1}{2} \cdot \frac{b}{2}\right) \cdot 2 + \left(h - 2 \cdot t_{f}\right) \cdot \left(\frac{t}{2} \cdot \frac{t_{w}}{2}\right)\right] = 1.539 \times 10^{4} \cdot cm^{3}$$

$$h_{w} \cdot t_{w}^{3} = 2 \cdot b \cdot t_{s}^{3}$$

$$J_{W} := \frac{h_{W} \cdot t_{W}}{3} + \frac{2 \cdot b \cdot t_{f}}{3} = 4.553 \times 10^{3} \cdot cm^{4}$$

# VERIFICACIÓN A COMPRESIÓN

# Verificar pandeo global

Eje fuerte:

$$\lambda_{\mathbf{X}} \coloneqq \frac{\mathbf{K}_{\mathbf{X}} \cdot \mathbf{L}_{\mathbf{X}}}{\mathbf{r}_{\mathbf{X}}} = 12.29$$

Eje débil

$$\begin{split} \lambda_{\mathbf{y}} &\coloneqq \frac{K_{\mathbf{y}} \cdot L_{\mathbf{y}}}{r_{\mathbf{y}}} = 21.686\\ \lambda &\coloneqq \max\Bigl(\lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}\Bigr) \end{split}$$

## Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 4.322 \times 10^3 \cdot MPa$ 

#### Verificar pandeo local

Ala:

$$\lambda_{f} \coloneqq \frac{b}{2 \cdot t_{f}} = 11.789$$
  $k_{c} \coloneqq \frac{4}{\sqrt{\frac{h_{w}}{t_{w}}}} = 0.838$ 

$$\lambda_{rf} := 0.64 \cdot \sqrt{\frac{k_c \cdot E}{f_y}} = 16.88$$

 $\label{eq:ver1} \mbox{ ver1} := \left[ \begin{array}{cc} "A \mbox{ a no esbelta, No hay pandeo local"} & \mbox{ if } \lambda_f \leq \lambda_{rf} \\ \\ \end{array} "A \mbox{ a esbelta, Puede haber pandeo local"} & \mbox{ otherwise} \\ \end{array} \right.$ 

ver1 = "Ala no esbelta, No hay pandeo local"

Alma:

$$\begin{split} \lambda_{W} &\coloneqq \frac{h_{W}}{t_{W}} = 22.778 \qquad \lambda_{TW} \coloneqq 1.49 \cdot \sqrt{\frac{E}{f_{y}}} = 42.928 \\ \text{ver2} &\coloneqq \text{ ["Alma no esbelta, No hay pandeo local"} & \text{if } \lambda_{W} \leq \lambda_{TW} \\ \text{"Alma esbelta, Puede haber pandeo local"} & \text{otherwise} \\ \text{ver2} &= \text{"Alma no esbelta, No hay pandeo local"} \\ Q &\coloneqq 1 \end{split}$$

#### Tensión crítica de compresión

$$F_{cr} \coloneqq \begin{cases} Q \cdot \frac{Q \cdot f_y}{F_e} \\ 0.658 \end{cases} \stackrel{f_y}{\cdot} f_y \quad \text{if } \frac{f_y}{F_e} \le 2.25 \end{cases} \qquad F_{cr} = 242.218 \cdot \text{MPa}$$
$$(0.877 \cdot F_e) \quad \text{if } \frac{Q \cdot f_y}{F_e} > 2.25 \end{cases}$$

Esfuerzo de compresión nominal

$$P_{n} \coloneqq F_{cr} \cdot A_{g} = 2.411 \times 10^{3} \cdot \text{tonnef} \qquad P_{n.\Omega} \coloneqq \frac{P_{n}}{\Omega} \qquad \qquad P_{n.\Omega} = 1.444 \times 10^{3} \cdot \text{tonnef}$$

ver3 := 
$$|"Ok" \text{ if } P_{n,\Omega} \ge P_u$$
  
"Iterar" otherwise

ver3 = "Ok" FU1 := 
$$\frac{P_u}{P_{n.\Omega}} = 8.45 \times 10^{-3}$$

## VERIFICACIÓN A FLEXIÓN

Eje fuerte

Pandeo local Ala:

$$\lambda_{pf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{f_y}} = 10.948$$

$$F_1 \coloneqq 0.7 \cdot f_y = 173.676 \cdot MPa \qquad \qquad \lambda_{ref} \coloneqq 0.95 \cdot \sqrt{\frac{k_c \cdot E}{F_1}} = 29.949$$

$$\text{ver4} \coloneqq 1\text{"A la Compacta"} \quad \text{if } \lambda \in \leq \lambda \text{ c}$$

 $\begin{array}{ll} \mbox{ver4} \coloneqq & \mbox{"Ala Compacta"} & \mbox{if } \lambda_f \leq \lambda_{pf} \\ & \mbox{"Ala no Compacta"} & \mbox{if } \lambda_{pf} < \lambda_f < \lambda_{rf} \\ & \mbox{"Ala Esbelta"} & \mbox{if } \lambda_f > \lambda_{rf} \\ \end{array}$ 

ver4 = "Ala no Compacta"

Alma

$$\begin{split} \lambda_{pw} &\coloneqq 3.76 \cdot \sqrt{\frac{E}{f_y}} = 108.327 \\ \lambda_{ww} &\coloneqq 5.70 \cdot \sqrt{\frac{E}{f_y}} = 164.219 \\ \text{ver5} &\coloneqq \text{ "Alma Compacta" if } \lambda_w \leq \lambda_{pw} \\ \text{"Alma no Compacta" if } \lambda_{pw} < \lambda_w < \lambda_{rw} \\ \text{"Alma Esbelta" if } \lambda_w > \lambda_{rw} \\ \text{ver5} &= \text{"Alma Compacta"} \end{split}$$

 $\begin{array}{l} \mathbf{C}_{\mathbf{b}} \coloneqq 1 \\ \mathbf{\underline{C}_{\mathbf{b}}} \coloneqq 1 \\ \textbf{Caso F2} \\ \mathbf{L}_{\mathbf{b}} \coloneqq \mathbf{L}_{\mathbf{y}} & \mathbf{L}_{\mathbf{p}} \coloneqq 1.76 \cdot \mathbf{r}_{\mathbf{y}} \cdot \sqrt{\frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \qquad \mathbf{h}_{\mathbf{o}} \coloneqq \mathbf{h} - \mathbf{t}_{\mathbf{f}} \qquad \mathbf{C}_{\mathbf{w}} \coloneqq \frac{\mathbf{I}_{\mathbf{y}} \cdot \mathbf{h}_{\mathbf{o}}^{2}}{4} \qquad \mathbf{r}_{\mathbf{t}\mathbf{s}} \coloneqq \sqrt{\frac{\sqrt{\mathbf{I}_{\mathbf{y}} \cdot \mathbf{C}_{\mathbf{w}}}}{S_{\mathbf{x}}}} \end{array}$ 

$$L_{r} \coloneqq 1.95 \cdot r_{ts} \cdot \frac{E}{0.7 \cdot f_{y}} \cdot \sqrt{\frac{J \cdot c}{S_{x} \cdot h_{o}}} + \sqrt{\left(\frac{J \cdot c}{S_{x} \cdot h_{o}}\right)^{2} + 6.76 \cdot \left(\frac{0.7 \cdot f_{y}}{E}\right)^{2}} \qquad \qquad L_{r} = 38.253 \,\mathrm{m}$$

1. Plastificación

$$M_{np} \coloneqq f_y \cdot Z_y \qquad M_p \coloneqq M_{np}$$

2. Volcamiento

$$M_{nvb} \coloneqq C_{b} \cdot \left[ M_{p} - \left( M_{p} - 0.7f_{y} \cdot S_{x} \right) \cdot \left( \frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right]$$

$$F_{MOF} \coloneqq \frac{C_{b} \cdot \pi^{2} \cdot E}{\left( \frac{L_{b}}{r_{ts}} \right)^{2}} \cdot \sqrt{1 + 0.078 \cdot \frac{J \cdot c}{S_{x} \cdot h_{o}} \cdot \left( \frac{L_{b}}{r_{ts}} \right)^{2}}$$

$$M_{nvc} \coloneqq F_{cr} \cdot S_{y}$$

$$\begin{split} \mathbf{M}_{nf2} \coloneqq & \left[ \begin{array}{ccc} \mathbf{M}_p & \text{if } \mathbf{L}_b \leq \mathbf{L}_p \\ & \min \Big( \mathbf{M}_p, \mathbf{M}_{nvb} \Big) & \text{if } \mathbf{L}_p < \mathbf{L}_b \leq \mathbf{L}_r \\ & \min \Big( \mathbf{M}_p, \mathbf{M}_{nvc} \Big) & \text{if } \mathbf{L}_b > \mathbf{L}_r \end{split} \right. \end{split}$$

## Caso F3

1. Volcamiento

$$M_v \coloneqq M_{nf2}$$

2. Pandeo local del ala en compresión

$$\begin{split} \mathbf{M}_{nf} &\coloneqq \boxed{\left[ \left[ \mathbf{M}_{p} - \left( \mathbf{M}_{p} - 0.7 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{x} \right) \cdot \left( \frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \right]} & \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ \frac{0.9 \cdot \mathbf{E} \cdot \mathbf{k}_{c} \cdot \mathbf{S}_{x}}{\lambda^{2}} & \text{otherwise} \end{split}$$

$$\begin{split} \mathbf{M}_{nf3} &\coloneqq \min \Big( \mathbf{M}_{v}, \mathbf{M}_{nf} \Big) \\ \mathbf{M}_{nx} &\coloneqq \begin{bmatrix} \mathbf{M}_{nf2} & \text{if } \lambda_{f} \leq \lambda_{pf} & \wedge \lambda_{w} \leq \lambda_{pw} \\ \mathbf{M}_{nf3} & \text{if } \lambda_{w} \leq \lambda_{pw} & \wedge \left( \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \lor \lambda_{f} > \lambda_{rf} \right) \\ \mathbf{M}_{nx.\Omega} &\coloneqq \frac{\mathbf{M}_{nx}}{\Omega} = 594.358 \cdot \text{tonnef} \cdot \mathbf{m} \quad \text{Resistencia de diseño} \end{split}$$

ver6 := 
$$"Ok"$$
 if  $M_{nx,\Omega} \ge M_{ux}$  ver6 = "Ok"  
"Iterar" otherwise

$$FU2 := \frac{M_{ux}}{M_{nx,\Omega}} = 0.293$$

Eje débil

Sección F6 de la norma AISC360-10

1. Plastificación

2. Pandeo local del ala

$$M_{nb} \coloneqq \left[ M_{p} - (M_{p} - 0.7 \cdot f_{y} \cdot S_{y}) \cdot \left( \frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$

$$F_{\text{MOFN}} \coloneqq \frac{0.69 \cdot E}{\left(\frac{b}{t_{f}}\right)^{2}}$$

 $M_{nc} := F_{cr} \cdot S_y$ 

$$\begin{split} \mathbf{M}_{ny} &\coloneqq & \left[ \begin{array}{ccc} \mathbf{M}_{n1} & \text{if } \lambda_{f} \leq \lambda_{pf} \\ & \min \Big( \mathbf{M}_{n1}, \mathbf{M}_{nb} \Big) & \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ & \min \Big( \mathbf{M}_{n1}, \mathbf{M}_{nc} \Big) & \text{if } \lambda_{f} > \lambda_{rf} \end{split} \right. \end{split}$$

$$M_{ny,\Omega} := \frac{M_{ny}}{\Omega}$$
  $FU3 := \frac{M_{uy}}{M_{ny,\Omega}} = 0.262$ 

# VERIFICACIÓN A CORTE

ver8 := "No requiere aties adores" if 
$$\lambda_{w} \le 2.46 \cdot \sqrt{\frac{E}{f_{y}}}$$
  
"Requiere aties adores" otherwise  $k_{w} := 5$ 

ver8 = "No requiere aties adores"

$$\begin{split} \mathbf{C}_{\mathbf{v}} \coloneqq & \left| \begin{array}{c} 1.0 \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{v}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ & \frac{1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{v}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}}}{\lambda_{\mathbf{w}}} \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{v}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ & \frac{1.51 \cdot \mathbf{k}_{\mathbf{v}} \cdot \mathbf{E}}{\lambda_{\mathbf{w}}^{2} \cdot \mathbf{f}_{\mathbf{y}}} \quad \text{if} \quad \lambda_{\mathbf{w}} > 1.37 \cdot \sqrt{\mathbf{k}_{\mathbf{v}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \end{split}$$

$$A_{wx} \coloneqq h \cdot t_w = 322.56 \cdot cm^2$$
$$V_{nx} \coloneqq 0.6 \cdot f_y \cdot A_{wx} \cdot C_v$$

$$V_{nx,\Omega} \coloneqq \frac{V_{nx}}{\Omega} = 293.201 \cdot \text{tonnef} \qquad FU4 \coloneqq \frac{V_{ux}}{V_{nx,\Omega}} = 0.497$$
$$\text{ver9} \coloneqq |\text{'Ok''} \quad \text{if } V_{nx,\Omega} \ge V_{ux} \qquad \text{ver9} = \text{'Ok''}$$

ver9 := 
$$|'Ok'' \text{ if } V_{nx,\Omega} \ge 1''$$
  
''Iterar'' otherwise

$$\begin{split} A_{wy} &\coloneqq 2 \cdot b \cdot t_{f} = 680.96 \cdot cm^{2} \\ V_{ny} &\coloneqq 0.6 \cdot f_{y} \cdot A_{wy} \cdot C_{v} \\ V_{ny, \Omega} &\coloneqq \frac{V_{ny}}{\Omega} = 618.98 \cdot tonnef \\ ver10 &\coloneqq \begin{bmatrix} "Ok" & \text{if } V_{ny, \Omega} \ge V_{uy} \\ "Iterar" & otherwise \end{bmatrix} FU5 \coloneqq \frac{V_{uy}}{V_{ny, \Omega}} = 0.121 \\ \end{split}$$

# ESFUERZO COMBINADO

Efecto P- $\Delta$ 

ver11 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 · H  
"No considerar efecto P-  $\Delta$ " otherwise

ver11 = "No considerar efecto P-  $\Delta$ "

$$FU6 := \left[ \frac{P_r}{P_c} + \frac{8}{9} \cdot \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\left[ \frac{P_r}{2 \cdot P_c} + \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] \text{ if } \frac{P_r}{P_c} < 0.2$$

FU6 = 0.56

ver12 :=  $|"Ok" \text{ if } FU6 \leq 1$ "Rediseñar" otherwise

ver12 = "Ok"

FU := max(FU1, FU2, FU3, FU4, FU5, FU6)

FU = 0.56

Anexo F: Verificación Estructural de Viga de Torre de Captación de Agua de Mar Diseñada con Norma ASCE 7-10

## VERIFICACIÓN DE VIGA TORRE DE CAPTACIÓN ASCE 7-10

# <u>INPUT</u>

## Solicitaciones máximas

| V <sub>ux</sub> := 55.06tonnef            | Corte eje X (Eje fuerte)       |
|-------------------------------------------|--------------------------------|
| V <sub>uy</sub> := 58.6tonnef             | Corte eje Y (Eje débil)        |
| $M_{ux} \coloneqq 153.6$ tonnef $\cdot r$ | Momento eje X (eje fuerte M33) |
| M <sub>uy</sub> := 65.8tonnef ⋅m          | Momento eje Y                  |
| $P_u := 12.1$ tonnef                      | Compresión                     |

## MATERIALES



$$f_y \approx 2.53 \frac{\text{tonnef}}{\text{cm}^2}$$

## PROPIEDADES GEOMÉTRICAS DEL PERFIL

| c.≔ 2mm                                                                                                  | Corrosión         |  |
|----------------------------------------------------------------------------------------------------------|-------------------|--|
| $\mathbf{h} \coloneqq 900\mathbf{mm} - 2 \cdot \mathbf{c}$                                               | Altura del perfil |  |
| $\mathbf{b} \coloneqq 900 \mathrm{mm} - 2 \cdot \mathbf{c}$                                              | Ancho del perfil  |  |
| $t_{f} \coloneqq 44mm - c$                                                                               | Espesor ala       |  |
| $t_w \coloneqq 42mm - c$                                                                                 | Espesor alma      |  |
| $\mathbf{h}_{\mathbf{W}} \coloneqq \mathbf{h} - 2 \cdot \mathbf{t}_{\mathbf{f}} = 812 \cdot \mathbf{mn}$ |                   |  |

- $L_x := 6.01 \text{m}$  Largo eje fuerte
- $L_v := 6.01 m$  Largo eje débil

# ESFUERZO COMBINADO

d := 12.45mrDeformación máxima de la estructura $M_{\star}$  := 4.801mAltura del piso o entre dos puntos ubicados sobre una misma vertical $\Omega_{\star}$  := 1.67LRFC $K_x$  := 0.65Empotrado - Empotrado $K_y$  := 0.65Empotrado - Empotrado

# PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN

$$\begin{split} A_{g} &\coloneqq 2 \cdot b \cdot t_{f} + h_{W} \cdot t_{W} = 1.08 \times 10^{3} \cdot cm^{2} \\ Y_{cg} &\coloneqq \frac{b \cdot t_{f} \cdot t_{f}}{2} + \frac{h_{W} \cdot t_{W} \cdot h}{2} + b \cdot t_{f} \cdot \left(h - \frac{t_{f}}{2}\right) \\ A_{g} \\ I_{x} &\coloneqq \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} + \frac{t_{W} \cdot h_{W}^{3}}{12} + \frac{b \cdot t_{f}^{3}}{12} + b \cdot t_{f} \cdot \left(Y_{cg} - \frac{t_{f}}{2}\right)^{2} \\ I_{x} &= 0.02 \cdot m^{4} \end{split}$$

$$\begin{split} I_{y} &\coloneqq \frac{2 \cdot t_{f} \cdot b^{3}}{12} + \frac{h_{w} \cdot t_{w}^{3}}{12} & I_{y} = 5.04 \times 10^{5} \cdot cm^{4} \\ r_{x} &\coloneqq \sqrt{\frac{I_{x}}{A_{g}}} = 37.95 \cdot cm & r_{y} \coloneqq \sqrt{\frac{I_{y}}{A_{g}}} = 21.63 \cdot cm \\ S_{x} &\coloneqq \frac{I_{x}}{\left(\frac{h}{2}\right)} = 3.46 \times 10^{4} \cdot cm^{3} & S_{y} \coloneqq \frac{I_{y}}{\left(\frac{h}{2}\right)} = 1.12 \times 10^{4} \cdot cm^{3} \\ Z_{x} &\coloneqq \frac{A_{g} \cdot h_{w}}{2} = 4.37 \times 10^{4} \cdot cm^{3} \\ Z_{y} &\coloneqq 2 \cdot \left[ \left(t_{f} \cdot \frac{b}{2}\right) \cdot \left(\frac{1}{2} \cdot \frac{b}{2}\right) \cdot 2 + \left(h - 2 \cdot t_{f}\right) \cdot \left(\frac{1}{4} \cdot \frac{t_{w}}{2}\right) \right] = 1.7 \times 10^{4} \cdot cm^{3} \\ J_{w} &\coloneqq \frac{h_{w} \cdot t_{w}^{3}}{3} + \frac{2 \cdot b \cdot t_{f}^{3}}{3} = 6.16 \times 10^{3} \cdot cm^{4} \end{split}$$

# VERIFICACIÓN A COMPRESIÓN

# Verificar pandeo global

Eje fuerte:

$$\lambda_{\mathbf{X}} \coloneqq \frac{\mathbf{K}_{\mathbf{X}} \cdot \mathbf{L}_{\mathbf{X}}}{\mathbf{r}_{\mathbf{X}}} = 10.29$$

Eje débil

$$\lambda_{y} \coloneqq \frac{K_{y} \cdot L_{y}}{r_{y}} = 18.06$$

$$\lambda := \max(\lambda_{\mathbf{X}}, \lambda_{\mathbf{Y}})$$

Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 6.23 \times 10^3 \cdot MPa$ 

Verificar pandeo local

Ala:

$$\lambda_{f} \coloneqq \frac{b}{2 \cdot t_{f}} = 10.67$$
  $k_{c} \coloneqq \frac{4}{\sqrt{\frac{h_{W}}{t_{W}}}} = 0.89$ 

$$\lambda_{\text{rf}} \coloneqq 0.64 \cdot \sqrt{\frac{k_{\text{c}} \cdot E}{f_{\text{y}}}} = 17.37$$

ver1 := "Ala no esbelta, No hay pandeo local" if 
$$\lambda_f \le \lambda_{rf}$$
  
"Ala esbelta, Puede haber pandeo local" otherwise

ver1 = "Ala no esbelta, No hay pandeo local"

Alma:

$$\lambda_{\rm W} \coloneqq \frac{{\rm h}_{\rm W}}{{\rm t}_{\rm W}} = 20.3 \qquad \qquad \lambda_{\rm rW} \coloneqq 1.49 \cdot \sqrt{\frac{{\rm E}}{{\rm f}_{\rm y}}} = 42.93$$

 $\begin{array}{ll} \text{ver2} \coloneqq & \text{"Alma no esbelta, No hay pandeo local"} & \text{if } \lambda_W \leq \lambda_{\text{rW}} \\ & \text{"Alma esbelta, Puede haber pandeo local"} & \text{otherwise} \\ & \text{ver2} = \text{"Alma no esbelta, No hay pandeo local"} \\ & Q \coloneqq 1 \end{array}$ 

Tensión crítica de compresión

$$F_{cr} \coloneqq \begin{cases} Q \cdot \frac{Q \cdot f_y}{F_e} \\ 0.658 \end{cases} \cdot f_y & \text{if } \frac{f_y}{F_e} \le 2.25 \end{cases} \qquad F_{cr} = 244.01 \cdot \text{MPa} \\ (0.877 \cdot F_e) & \text{if } \frac{Q \cdot f_y}{F_e} > 2.25 \end{cases}$$

Esfuerzo de compresión nominal

$$P_{n} \coloneqq F_{cr} \cdot A_{g} = 2.68 \times 10^{3} \cdot \text{tonnef} \qquad P_{n.\Omega} \coloneqq \frac{P_{n}}{\Omega} \qquad \qquad P_{n.\Omega} = 1.61 \times 10^{3} \cdot \text{tonnef}$$

ver3 := 
$$| "Ok" \text{ if } P_{n,\Omega} \ge P_u$$
  
"Iterar" otherwise

ver3 = "Ok" FU1 := 
$$\frac{P_u}{P_{n,\Omega}} = 7.54 \times 10^{-3}$$

# VERIFICACIÓN A FLEXIÓN

Eje fuerte

Pandeo local Ala:

$$\begin{split} \lambda_{pf} &\coloneqq 0.38 \cdot \sqrt{\frac{E}{f_y}} = 10.95 \\ F_1 &\coloneqq 0.7 \cdot f_y = 173.68 \cdot \text{MPa} \end{split} \qquad \qquad \lambda_{\text{intriv}} &\coloneqq 0.95 \cdot \sqrt{\frac{k_c \cdot E}{F_1}} = 30.82 \end{split}$$

$$\begin{array}{ll} \mbox{ver4} \coloneqq & \mbox{"Ala Compacta"} & \mbox{if } \lambda_f \leq \lambda_{pf} \\ & \mbox{"Ala no Compacta"} & \mbox{if } \lambda_{pf} < \lambda_f < \lambda_{rf} \\ & \mbox{"Ala Esbelta"} & \mbox{if } \lambda_f > \lambda_{rf} \end{array}$$

ver4 = "Ala Compacta"

Alma  

$$\lambda_{pw} := 3.76 \cdot \sqrt{\frac{E}{f_y}} = 108.33$$
  
 $\lambda_{rww} := 5.70 \cdot \sqrt{\frac{E}{f_y}} = 164.22$   
ver5 := "Alma Compacta" if  $\lambda_w \le \lambda_{pw}$   
"Alma no Compacta" if  $\lambda_{pw} < \lambda_w < \lambda_{rw}$ 

ver5 = "Alma Compacta"

$$C_b \approx 1$$

**Caso F2**  

$$L_b \coloneqq L_x$$
 $L_p \coloneqq 1.76 \cdot r_y \cdot \sqrt{\frac{E}{f_y}}$ 
 $h_o \coloneqq h - t_f$ 
 $C_w \coloneqq \frac{I_y \cdot h_o^2}{4}$ 
 $r_{ts} \coloneqq \sqrt{\frac{\sqrt{I_y \cdot C_w}}{S_x}}$ 

$$\mathbf{L}_{\mathbf{T}} \coloneqq 1.95 \cdot \mathbf{r}_{\mathbf{ts}} \cdot \frac{\mathbf{E}}{0.7 \cdot \mathbf{f}_{\mathbf{y}}} \cdot \sqrt{\frac{\mathbf{J} \cdot \mathbf{c}}{\mathbf{S}_{\mathbf{X}} \cdot \mathbf{h}_{\mathbf{o}}} + \sqrt{\left(\frac{\mathbf{J} \cdot \mathbf{c}}{\mathbf{S}_{\mathbf{X}} \cdot \mathbf{h}_{\mathbf{o}}}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot \mathbf{f}_{\mathbf{y}}}{\mathbf{E}}\right)^2} \qquad \qquad \mathbf{L}_{\mathbf{T}} = 41.18 \,\mathrm{m}$$

1. Plastificación

$$\mathbf{M}_{\mathbf{n}\mathbf{p}} \coloneqq \mathbf{f}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{y}} \qquad \mathbf{M}_{\mathbf{p}} \coloneqq \mathbf{M}_{\mathbf{n}\mathbf{p}}$$

2. Volcamiento

$$\begin{split} \mathbf{M}_{nvb} &\coloneqq \mathbf{C}_{b} \cdot \left[ \mathbf{M}_{p} - \left( \mathbf{M}_{p} - 0.7 \mathbf{f}_{y} \cdot \mathbf{S}_{x} \right) \cdot \left( \frac{\mathbf{L}_{b} - \mathbf{L}_{p}}{\mathbf{L}_{r} - \mathbf{L}_{p}} \right) \right] \\ \mathbf{F}_{\text{MORM}} &\coloneqq \frac{\mathbf{C}_{b} \cdot \pi^{2} \cdot \mathbf{E}}{\left( \frac{\mathbf{L}_{b}}{\mathbf{r}_{ts}} \right)^{2}} \cdot \sqrt{1 + 0.078 \cdot \frac{\mathbf{J} \cdot \mathbf{c}}{\mathbf{S}_{x} \cdot \mathbf{h}_{o}} \cdot \left( \frac{\mathbf{L}_{b}}{\mathbf{r}_{ts}} \right)^{2}} \end{split}$$

 $\mathbf{M}_{\mathbf{nvc}} \coloneqq \mathbf{F}_{\mathbf{cr}} \cdot \mathbf{S}_{\mathbf{y}}$ 

$$\begin{split} \mathbf{M}_{nf2} &\coloneqq & \left| \begin{array}{ccc} \mathbf{M}_p & \text{if } \mathbf{L}_b \leq \mathbf{L}_p \\ & \min \! \left( \mathbf{M}_p, \mathbf{M}_{nvb} \right) & \text{if } \mathbf{L}_p < \mathbf{L}_b \leq \mathbf{L}_r \\ & \min \! \left( \mathbf{M}_p, \mathbf{M}_{nvc} \right) & \text{if } \mathbf{L}_b > \mathbf{L}_r \end{split} \right. \end{split}$$

Caso F3

1. Volcamiento

 $M_v := M_{nf2}$ 

2. Pandeo local del ala en compresión

$$\begin{split} \mathbf{M}_{nf} &\coloneqq \boxed{\left[ \begin{bmatrix} \mathbf{M}_{p} - \left(\mathbf{M}_{p} - 0.7 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{x}\right) \cdot \left(\frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}}\right) \end{bmatrix}}_{\mathbf{H}} & \text{if } \lambda_{pf} < \lambda_{f} \leq \lambda_{rf} \\ \frac{0.9 \cdot \mathbf{E} \cdot \mathbf{k}_{c} \cdot \mathbf{S}_{x}}{\lambda^{2}} & \text{otherwise} \end{split}$$

$$\begin{split} & \mathsf{M}_{nf3}\coloneqq\min\left(\mathsf{M}_{v},\mathsf{M}_{nf}\right) \\ & \mathsf{M}_{nx}\coloneqq\left[\begin{array}{ccc} \mathsf{M}_{nf2} & \mathrm{if} \ \lambda_{f}\leq\lambda_{pf} \ \wedge \ \lambda_{w}\leq\lambda_{pw} \\ & \mathsf{M}_{nf3} & \mathrm{if} \ \lambda_{w}\leq\lambda_{pw} \ \wedge \left(\lambda_{pf} \ < \ \lambda_{f}\leq\lambda_{rf} \ \vee \ \lambda_{f}>\lambda_{rf}\right) \\ & \mathsf{M}_{nx,\Omega}\coloneqq\left[\begin{array}{ccc} \frac{\mathsf{M}_{nx}}{\Omega} \ = \ 662.71 \cdot \mathrm{tonnef} \ \cdot \mathrm{rr} & \mbox{Resistencia de diseño} \\ & \mathrm{ver6}\coloneqq\left[\begin{array}{ccc} \mathsf{''Ok''} & \mathrm{if} \ \ \mathsf{M}_{nx,\Omega}\geq\mathsf{M}_{ux} & \ \mathrm{ver6}= \ \mathsf{''Ok''} & \ \mathrm{FU2}\coloneqq\left[\begin{array}{ccc} \frac{\mathsf{M}_{ux}}{\mathsf{M}_{nx,\Omega}} \ = \ 0.23 \\ & \ \mathsf{''Iterar''} & \ \mathrm{otherwise} \end{array}\right] \end{split}$$

Eje débil

Sección F6 de la norma AISC360-10

1. Plastificación

$$\begin{split} \underbrace{\mathbf{M}_{np}}_{\mathsf{M}_{np}} &\coloneqq \mathbf{f}_{y} \cdot \mathbf{Z}_{y} \qquad \underbrace{\mathbf{M}_{pn}}_{\mathsf{M}_{pn}} &\coloneqq \mathbf{M}_{np} \\ \mathbf{M}_{n1} &\coloneqq \begin{bmatrix} \mathbf{M}_{np} & \text{if } \mathbf{M}_{np} \leq 1.6 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{y} \\ \left(1.6 \cdot \mathbf{f}_{y} \cdot \mathbf{S}_{y}\right) & \text{otherwise} \end{split}$$

2. Pandeo local del ala

$$M_{nb} \coloneqq \left[ M_{p} - \left( M_{p} - 0.7 \cdot f_{y} \cdot S_{y} \right) \cdot \left( \frac{\lambda_{f} - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$

$$F_{\text{MOFF}} \coloneqq \frac{0.69 \cdot E}{\left( \frac{b}{t_{f}} \right)^{2}}$$

 $M_{nc} \coloneqq F_{cr} \cdot S_y$ 

$$\begin{split} \mathbf{M}_{ny} &\coloneqq & \begin{bmatrix} \mathbf{M}_{n1} & \text{if } \lambda_f \leq \lambda_{pf} \\ & \min \Big( \mathbf{M}_{n1}, \mathbf{M}_{nb} \Big) & \text{if } \lambda_{pf} < \lambda_f \leq \lambda_{rf} \\ & \min \Big( \mathbf{M}_{n1}, \mathbf{M}_{nc} \Big) & \text{if } \lambda_f > \lambda_{rf} \end{split}$$

$$M_{ny.\Omega} := \frac{M_{ny}}{\Omega}$$
  $FU3 := \frac{M_{uy}}{M_{ny.\Omega}} = 0.26$ 

ver7 := 
$$|"Ok" \text{ if } M_{ny, \Omega} \ge M_{uy}$$
  
"Iterar" otherwise

# VERIFICACIÓN A CORTE

ver8 := "No requiere aties adores" if 
$$\lambda_{W} \le 2.46 \cdot \sqrt{\frac{E}{f_{y}}}$$
  
"Requiere aties adores" otherwise  
k... := 5

ver8 = "No requiere aties adores"

$$\begin{split} \mathbf{K}_{\mathbf{V}} &:= \mathbf{J} \\ \mathbf{C}_{\mathbf{V}} &:= \left[ \begin{array}{c} 1.0 \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ \frac{1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}}}{\lambda_{\mathbf{W}}} \quad \text{if} \quad 1.10 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \\ \frac{1.51 \cdot \mathbf{k}_{\mathbf{V}} \cdot \mathbf{E}}{\lambda_{\mathbf{W}}^{2} \cdot \mathbf{f}_{\mathbf{y}}} \quad \text{if} \quad \lambda_{\mathbf{W}} > 1.37 \cdot \sqrt{\mathbf{k}_{\mathbf{V}} \cdot \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}}} \end{split}$$

$$A_{wx} \coloneqq h \cdot t_{w} = 358.4 \cdot cm^{2}$$

$$V_{nx} \coloneqq 0.6 \cdot f_{y} \cdot A_{wx} \cdot C_{v}$$

$$V_{nx,\Omega} \coloneqq \frac{V_{nx}}{\Omega} = 325.78 \cdot \text{tonnef}$$

$$FU4 \coloneqq \frac{V_{ux}}{V_{nx,\Omega}} = 0.17$$

$$\text{ver9} \coloneqq \left| \text{'Ok''} \quad \text{if } V_{nx,\Omega} \ge V_{ux} \right|$$

$$\text{'Iterar''} \quad \text{otherwise}$$

$$A_{wy} \coloneqq 2 \cdot b \cdot t_{f} = 752.64 \cdot cm^{2}$$

$$V_{ny} \coloneqq 0.6 \cdot f_{y} \cdot A_{wy} \cdot C_{v}$$

$$V_{ny,\Omega} \coloneqq \frac{V_{ny}}{\Omega} = 684.14 \cdot \text{tonnef}$$

$$FU5 \coloneqq \frac{V_{uy}}{V_{ny,\Omega}} = 0.09$$

$$\text{ver10} \coloneqq \left| \text{'Ok''} \quad \text{if } V_{ny,\Omega} \ge V_{uy} \right|$$

$$\text{ver10} = \text{'Ok''}$$

# ESFUERZO COMBINADO

Efecto P- $\Delta$ 

$$P_{x} \coloneqq 820.88 \text{tonnef}$$

$$I_{e} \coloneqq 1.5$$

$$V_{x} \coloneqq 537.8 \text{tonnef}$$

$$h_{sx} \coloneqq h$$

$$C_{d} \coloneqq 4$$

$$\theta \coloneqq \frac{P_{x} \cdot d \cdot I_{e}}{V_{x} \cdot h_{sx} \cdot C_{d}} = 7.95 \times 10^{-3}$$

ver11 = "No considerar efecto P-  $\Delta$ "

$$\begin{split} P_{r} &\coloneqq P_{u} & M_{rx} \coloneqq M_{ux} & M_{ry} \coloneqq M_{uy} \\ P_{c} &\coloneqq P_{n,\Omega} & M_{cx} \coloneqq M_{nx,\Omega} & M_{cy} \coloneqq M_{ny,\Omega} \\ FU6 &\coloneqq \left[ \left[ \frac{P_{r}}{P_{c}} + \frac{8}{9} \cdot \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] & \text{if } \frac{P_{r}}{P_{c}} \ge 0.2 \\ \left[ \frac{P_{r}}{2 \cdot P_{c}} + \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \right] & \text{if } \frac{P_{r}}{P_{c}} < 0.2 \end{split}$$

FU6 = 0.49

ver12 :=  $|'Ok'' \text{ if } FU6 \leq 1$ 'Rediseñar'' otherwise

ver12 = "Ok"

FU := max(FU1, FU2, FU3, FU4, FU5, FU6)

FU = 0.49

Anexo G: Verificación Estructural de Jacket de Torre de Captación de Agua de Mar Diseñada con Norma NCh2369Of2003

## VERIFICACIÓN JACKET NCH2369

#### DEFINICIONES

D: Diámetro

t: Espesor

E: Módulo de elasticidad

fy: Tensión nominal de fluencia

L: Largo del pilote

## <u>INPUT</u>

### Solicitaciones máximas

| $V_{ux} := 48.5$ tonnef                               | Corte en la dirección X |
|-------------------------------------------------------|-------------------------|
| V <sub>uy</sub> := 51.9tonnef                         | Corte en la dirección Y |
| $M_{ux} \coloneqq 196.3 \text{tonnef} \cdot \text{m}$ | Momento en dirección X  |
| $M_{uy} \coloneqq 183.4$ tonnef $\cdot m$             | Momento en dirección Y  |
| P <sub>II</sub> := 295tonnef                          | Esfuerzo axial          |

## MATERIALES

$$E \coloneqq 2038.902 \frac{\text{tonnef}}{\text{cm}^2}$$

$$f_y \coloneqq 2.953 \frac{\text{tonnef}}{\text{cm}^2}$$

# GEOMETRÍA<br/> $c_s := 3mm$ Efecto de corrosión $D_p := 1.016m$ Diámetro pilotet := 0.036m - cEspesor pilote $L_a := 13m$ Largo pilotePANDEO GLOBALK. := 0.65

| $K_{X} \coloneqq 0.65$ |                       |
|------------------------|-----------------------|
| $K_y \coloneqq 0.65$   | Empotrado - Empotrado |

#### **ESFUERZO COMBINADO**

- Deformación de la estructura d := 13.52mm
- Altura del piso o entre dos puntos ubicados sobre una misma vertical h := 4.801m

# **PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN**

 $D \coloneqq D_p - 2 \cdot c$  $D_i \coloneqq D - 2 \cdot t$ 

$$A_{g} \coloneqq \frac{\pi \cdot \left(D^{2} - D_{i}^{2}\right)}{4} \qquad A_{g} = 1.01 \times 10^{3} \cdot cm^{2}$$
$$I \coloneqq \frac{\pi \left(D^{4} - D_{i}^{4}\right)}{64} \qquad I = 1.21 \times 10^{6} \cdot cm^{4}$$
$$S_{m} \coloneqq \frac{I}{\frac{D}{2}} \qquad S = 2.4 \times 10^{4} \cdot cm^{3}$$
$$Z \coloneqq \frac{\left(D^{3} - D_{i}^{3}\right)}{6} \qquad Z = 3.15 \times 10^{4} \cdot cm^{3}$$
$$r \coloneqq \sqrt{\frac{I}{A_{g}}} = 34.56 \cdot cm$$

# **VERIFICACIÓN A COMPRESIÓN**

#### Verificar pandeo global

$$\lambda_{\mathbf{X}} \coloneqq \frac{\mathbf{K}_{\mathbf{X}} \cdot \mathbf{L}}{\mathbf{r}} = 24.45 \qquad \qquad \lambda_{\mathbf{y}} \coloneqq \frac{\mathbf{K}_{\mathbf{y}} \cdot \mathbf{L}}{\mathbf{r}} = 24.45 \qquad \qquad \lambda \coloneqq \max(\lambda_{\mathbf{X}}, \lambda_{\mathbf{y}}) = 24.45$$

ver1 := "Ok" if  $\lambda \le 200$ "Pandeo global" otherwise

ver1 = "Ok"

#### Tensión elástica de Euler

$$F_e \coloneqq \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 3.3 \times 10^3 \cdot MPa$ 

#### Verificar pandeo local

Elemento atiesado Q=Qa(Qs=1)

$$\begin{split} \lambda_{\mathbf{f}} &\coloneqq \frac{\mathbf{D}}{\mathbf{t}} = 30.61 \\ \lambda_{\mathbf{r}} &\coloneqq 0.11 \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}} = 75.95 \\ \mathbf{Q}_{\mathbf{a}} &\coloneqq \frac{0.038 \cdot \mathbf{E}}{\mathbf{f}_{\mathbf{y}} \cdot \left(\frac{\mathbf{D}}{\mathbf{t}}\right)} + \frac{2}{3} \\ \mathbf{Q} &\coloneqq \left| 1 \quad \text{if } \lambda_{\mathbf{f}} \leq \lambda_{\mathbf{r}} \qquad \mathbf{Q} = 1 \\ \mathbf{Q}_{\mathbf{a}} \quad \text{otherwise} \\ \mathbf{F}_{\mathbf{cr}} &\coloneqq \left| \begin{array}{c} \text{if } \mathbf{Q} \neq 1 \\ \mathbf{Q} \cdot \mathbf{0.658} & \overline{\mathbf{F}_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} & \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \leq 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ \text{if } \mathbf{Q} = 1 \\ \left| \begin{array}{c} \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \leq 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ \end{array} \end{split}$$

F<sub>cr</sub> = 279.15∙MPa **Resistencia nominal** 

$$\begin{split} & P_n \coloneqq F_{cr} \cdot A_g = 2.88 \times 10^3 \cdot \text{tonnef} \\ & \textit{Resistencia de diseño} \\ & \Omega_{\text{MA}} \coloneqq 1.67 \\ & P_{n,\Omega} \coloneqq \frac{P_n}{\Omega} = 1.73 \times 10^3 \cdot \text{tonnef} \end{split}$$
 Resistencia nominal de compresión

## Factor de utilización

$$FU1 := \frac{P_u}{P_{n,\Omega}} \qquad FU1 = 0.17 \qquad \text{Factor de utilización por compresión}$$
$$ver3 := \begin{vmatrix} "Ok" & \text{if } P_{n,\Omega} \ge P_u \\ "Rediseñar" & \text{otherwise} \end{vmatrix} \qquad ver3 = "Ok"$$

# VERIFICACIÓN A FLEXIÓN

$$ver4 := \left| "Ok" \quad if \ \frac{D}{t} < \frac{0.45 \cdot E}{f_y} \right|$$

"Diseñar con otra sección de la norma (modificar código)" otherwise

#### Pandeo local

$$\lambda_p \coloneqq 0.07 \cdot \frac{E}{f_y} \qquad \qquad \lambda r \ \coloneqq 0.31 \cdot \frac{E}{f_y}$$

#### Fluencia

 $\mathbf{M}_p\coloneqq \mathbf{f}_y{\cdot}\mathbf{Z}$ 

$$M_{n1} := M_p$$
  $M_{n1} = 930.53 \cdot \text{tonnef} \cdot \text{m}$ 

#### Pandeo local

$$\begin{split} F_{crf} &\coloneqq \frac{0.33 \cdot E}{\left(\frac{D}{t}\right)} \\ M_{n2} &\coloneqq \left[ \left[ \frac{0.021 \cdot E}{\left(\frac{D}{t}\right)} + f_y \right] \cdot S \right] & \text{if } \lambda_p \leq \lambda_f \leq \lambda_r \\ \left(F_{crf} \cdot S\right) & \text{if } \lambda_f > \lambda_r \\ M_{n1} & \text{otherwise} \end{split}$$

#### Momento nominal

$$M_n := \min(M_{n1}, M_{n2})$$
  $M_n = 930.53 \cdot \text{tonnef} \cdot \text{m}$ 

#### Momento de diseño

$$\begin{split} \mathbf{M}_{n,\Omega} &\coloneqq \frac{\mathbf{M}_n}{\Omega} = 557.21 \cdot \text{tonnef} \cdot \mathbf{m} \\ \mathbf{M}_u &\coloneqq \max\!\!\left(\mathbf{M}_{ux}, \mathbf{M}_{uy}\right) \end{split}$$

 $\label{eq:ver5} \mbox{ver5} := \left[ \begin{array}{ccc} "Ok" & \mbox{if} \ M_u \leq M_{n,\Omega} \\ \\ "Rediseñar" & \mbox{otherwise} \end{array} \right] \mbox{ver5} = "Ok" \\ \end{array}$ 

Factor de utilización

$$FU2 := \frac{M_{ux}}{M_{n,\Omega}} \qquad FU2 = 0.35$$

## **VERIFICACIÓN A CORTE**

$$L_V \coloneqq \frac{L}{2}$$

$$\begin{split} F_{crc1} &\coloneqq \frac{1.6 \cdot E}{\sqrt{\frac{5}{D}} \cdot \left(\frac{D}{t}\right)^{\frac{5}{4}}} \qquad F_{crc2} \coloneqq \frac{0.78 \cdot E}{\left(\frac{D}{t}\right)^2} \qquad F_{crc3} \coloneqq \max(F_{crc1}, F_{crc2}) \\ F_{crc} &\coloneqq \begin{bmatrix} F_{crc3} \text{ if } F_{crc3} \leq 0.6 \cdot f_y \\ (0.6 \cdot f_y) \text{ otherwise} \end{bmatrix} \qquad F_{crc} = 173.75 \cdot MPa \end{split}$$

### Esfuerzo nominal

$$V_{n} \coloneqq F_{crc} \cdot \frac{A_{g}}{2}$$

$$V_{n.\Omega} \coloneqq \frac{V_{n}}{\Omega} \qquad V_{n.\Omega} = 537.31 \cdot \text{tonnef}$$

$$V_{u} \coloneqq \max(V_{ux}, V_{uy})$$

ver6 := 
$$|'Ok'' \text{ if } V_u \leq V_{n,\Omega}$$
  
''Rediseñar'' otherwise  
V..

ver6 = "Ok"

$$FU3 \coloneqq \frac{V_u}{V_{n,\Omega}} \qquad FU3 = 0.1$$

### ESFUERZO COMBINADO

Efecto P-Δ

ver8 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 h  
"No considerar efecto P-  $\Delta$ " otherwise

ver8 = "No considerar efecto P-  $\Delta$ "

$$FU4 := \begin{bmatrix} \frac{P_r}{P_c} + \frac{8}{9} \cdot \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\begin{bmatrix} \frac{P_r}{2 \cdot P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} < 0.2$$

FU4 = 0.77

ver9 :=  $|'Ok'' \text{ if } FU4 \leq 1$ ''Rediseñar'' otherwise

ver9 = "Ok"

### Factor de utilización

 $FU := \max(FU1, FU2, FU3, FU4)$ FU = 0.77

Anexo H: Verificación Estructural de Jacket de Torre de Captación de Agua de Mar Diseñada con Norma ASCE 7-10
## VERIFICACIÓN JACKET ASCE 7-10

#### **DEFINICIONES**

- D: Diámetro
- t: Espesor
- E: Módulo de elasticidad
- fy: Tensión nominal de fluencia
- L: Largo del pilote

## <u>INPUT</u>

#### Solicitaciones máximas

| $V_{ux} := 45.9$ tonnef                               | Corte en la dirección X |
|-------------------------------------------------------|-------------------------|
| $V_{uy} := 48.7$ tonnef                               | Corte en la dirección Y |
| $M_{ux} \coloneqq 170.2 \text{tonnef} \cdot \text{m}$ | Momento en dirección X  |
| $M_{uy} \coloneqq 180.2$ tonnef $\cdot m$             | Momento en dirección Y  |
| $P_u := 280.8 tonnef$                                 | Esfuerzo axial          |

## MATERIALES

$$E := 2038.902 \frac{\text{tonnef}}{\text{cm}^2}$$

$$f_y \coloneqq 2.953 \frac{\text{tonnef}}{\text{cm}^2}$$

## <u>GEOMETRÍA</u>

Efecto de corrosión ci≔ 3mm Diámetro pilote D<sub>p</sub> := 1.016m Espesor pilote  $\mathbf{t} \coloneqq 0.034\mathbf{m} - \mathbf{c}$ 

#### Largo pilote L := 13m

## PANDEO GLOBAL

| $K_{X} \coloneqq 0.65$ | Empotrado - Rotulado  |
|------------------------|-----------------------|
| $K_y := 0.65$          | Empotrado - Empotrado |

#### **ESFUERZO COMBINADO**

- Deformación de la estructura d := 13.52mm
- h := 4.801m Altura del piso o entre dos puntos ubicados sobre una misma vertical

## PROPIEDADES GEOMÉTRICAS DE LA SECCIÓN

 $D \coloneqq D_p - 2 \cdot c$  $D_i := D - 2 \cdot t$ 

$$A_{g} := \frac{\pi \cdot \left(D^{2} - D_{i}^{2}\right)}{4} \qquad A_{g} = 953.44 \cdot cm^{2}$$

$$I := \frac{\pi \left(D^{4} - D_{i}^{4}\right)}{64} \qquad I = 1.14 \times 10^{6} \cdot cm^{4}$$

$$S_{xx} := \frac{I}{\frac{D}{2}} \qquad S = 2.26 \times 10^{4} \cdot cm^{3}$$

$$Z := \frac{\left(D^{3} - D_{i}^{3}\right)}{6} \qquad Z = 2.97 \times 10^{4} \cdot cm^{3}$$

$$r := \sqrt{\frac{I}{A_{g}}} = 34.63 \cdot cm$$

## **VERIFICACIÓN A COMPRESIÓN**

Verificar pandeo global

$$\lambda_{\mathbf{x}} \coloneqq \frac{K_{\mathbf{x}} \cdot L}{r} = 24.4 \qquad \qquad \lambda_{\mathbf{y}} \coloneqq \frac{K_{\mathbf{y}} \cdot L}{r} = 24.4 \qquad \qquad \lambda \coloneqq \max(\lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}) = 24.4$$

ver1 := 
$$|'Ok'' \text{ if } \lambda \leq 200$$
 vert :=  $|'Pandeo global'' \text{ otherwise}$ 

"Pandeo global" otherwise

#### Tensión elástica de Euler

$$F_e := \frac{\pi^2 \cdot E}{\lambda^2}$$
  $F_e = 3.31 \times 10^3 \cdot MPa$ 

#### Verificar pandeo local

Elemento atiesado Q=Qa(Qs=1)

$$\begin{split} \lambda_{\mathbf{f}} &\coloneqq \frac{\mathbf{D}}{\mathbf{t}} = 32.58 \\ \lambda_{\mathbf{r}} &\coloneqq 0.11 \frac{\mathbf{E}}{\mathbf{f}_{\mathbf{y}}} = 75.95 \\ \mathbf{Q}_{\mathbf{a}} &\coloneqq \frac{0.038 \cdot \mathbf{E}}{\mathbf{f}_{\mathbf{y}} \cdot \left(\frac{\mathbf{D}}{\mathbf{t}}\right)} + \frac{2}{3} \\ \mathbf{Q} &\coloneqq \left| \begin{array}{c} 1 \quad \text{if } \lambda_{\mathbf{f}} \leq \lambda_{\mathbf{r}} & \mathbf{Q} = 1 \\ \mathbf{Q}_{\mathbf{a}} \quad \text{otherwise} \end{array} \right| \\ \mathbf{Q} &= \left| \begin{array}{c} 1 \quad \text{if } \lambda_{\mathbf{f}} \leq \lambda_{\mathbf{r}} & \mathbf{Q} = 1 \\ \mathbf{Q}_{\mathbf{a}} \quad \text{otherwise} \end{array} \right| \\ \mathbf{Q} &\circ 0.658 \overset{\mathbf{Q} \cdot \mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} \quad \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \leq 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} \quad \text{if } \mathbf{Q} \cdot \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ \text{if } \mathbf{Q} = 1 \\ \left| \begin{array}{c} \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \cdot \mathbf{f}_{\mathbf{y}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} \leq 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ 0.877 \cdot \mathbf{F}_{\mathbf{e}} & \text{if } \frac{\mathbf{f}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{e}}} > 2.25 \\ \end{array} \right|$$

 $F_{cr} = 279.19 \cdot MPa$  **Resistencia nominal**  $P_n := F_{cr} \cdot A_g = 2.71 \times 10^3 \cdot \text{tonnef}$  **Resistencia de diseño**  $\Omega_{A} := 1.67$   $P_n = 2$ 

 $P_{n.\Omega} \coloneqq \frac{P_n}{\Omega} = 1.63 \times 10^3 \cdot \text{tonnef} \qquad \text{Resistencia nominal de compresión}$ 

#### Factor de utilización

$$FU1 := \frac{P_u}{P_{n,\Omega}} \qquad FU1 = 0.17 \qquad \text{Factor de utilización por compresión}$$
$$ver3 := \begin{vmatrix} "Ok" & \text{if } P_{n,\Omega} \ge P_u \\ "Rediseñar" & \text{otherwise} \end{vmatrix} \qquad ver3 = "Ok"$$

## VERIFICACIÓN A FLEXIÓN

ver4 := 
$$|'Ok'' \text{ if } \frac{D}{t} < \frac{0.45 \cdot E}{f_y}$$

"Diseñar con otra sección de la norma (modificar código)" otherwise

#### Pandeo local

$$\lambda_p \coloneqq 0.07 \cdot \frac{E}{f_y} \qquad \qquad \lambda r \ \coloneqq 0.31 \cdot \frac{E}{f_y}$$

#### Fluencia

 $\mathbf{M}_p\coloneqq \mathbf{f}_y{\cdot}\mathbf{Z}$ 

$$M_{n1} := M_p$$
  $M_{n1} = 877.68 \cdot \text{tonnef} \cdot \text{m}$ 

#### Pandeo local

$$\begin{split} F_{crf} &\coloneqq \frac{0.33 \cdot E}{\left(\frac{D}{t}\right)} \\ M_{n2} &\coloneqq \left[ \left[ \frac{0.021 \cdot E}{\left(\frac{D}{t}\right)} + f_y \right] \cdot S \right] & \text{if } \lambda_p \leq \lambda_f \leq \lambda_r \\ \left(F_{crf} \cdot S) & \text{if } \lambda_f > \lambda_r \\ M_{n1} & \text{otherwise} \end{split}$$

#### Momento nominal

$$M_n := \min(M_{n1}, M_{n2})$$
  $M_n = 877.68 \cdot \text{tonnef} \cdot \text{m}$ 

#### Momento de diseño

$$\begin{split} \mathbf{M}_{n,\Omega} &\coloneqq \frac{\mathbf{M}_n}{\Omega} = 525.56 \cdot \text{tonnef} \cdot \mathbf{m} \\ \mathbf{M}_u &\coloneqq \max\!\!\left(\mathbf{M}_{ux}, \mathbf{M}_{uy}\right) \end{split}$$

 $\label{eq:ver5} \mbox{ver5} := \left[ \begin{array}{ccc} "Ok" & \mbox{if} \ M_u \leq M_{n,\Omega} \\ \\ "Rediseñar" & \mbox{otherwise} \end{array} \right] \mbox{ver5} = "Ok" \\ \end{array}$ 

Factor de utilización

$$FU2 \coloneqq \frac{M_{ux}}{M_{n.\Omega}} \qquad FU2 = 0.32$$

## **VERIFICACIÓN A CORTE**

$$L_V \coloneqq \frac{L}{2}$$

$$F_{crc1} \coloneqq \frac{1.6 \cdot E}{\sqrt{\frac{5}{D} \cdot \left(\frac{D}{t}\right)^4}} \qquad F_{crc2} \coloneqq \frac{0.78 \cdot E}{\left(\frac{D}{t}\right)^2} \qquad F_{crc3} \coloneqq \max(F_{crc1}, F_{crc2})$$

$$F_{crc} := \begin{cases} F_{crc3} & \text{if } F_{crc3} \le 0.6 \cdot f_y \\ (0.6 \cdot f_y) & \text{otherwise} \end{cases} \qquad F_{crc} = 173.75 \cdot MPa$$

#### Esfuerzo nominal

$$\begin{split} & V_{n} \coloneqq F_{crc} \cdot \frac{A_{g}}{2} \\ & V_{n.\Omega} \coloneqq \frac{V_{n}}{\Omega} \\ & V_{n.\Omega} = 505.78 \cdot \text{tonnef} \\ & V_{u} \coloneqq \max (V_{ux}, V_{uy}) \end{split}$$

ver6 := 
$$|"Ok" \text{ if } V_u \leq V_{n,\Omega}$$
  
''Rediseñar'' otherwise

ver6 = "Ok"

$$FU3 \coloneqq \frac{V_u}{V_{n.\Omega}} \qquad FU3 = 0.1$$

#### ESFUERZO COMBINADO

Efecto P-Δ

ver8 := "Considerar efecto P- 
$$\Delta$$
" if d > 0.015 h  
"No considerar efecto P-  $\Delta$ " otherwise

ver8 = "No considerar efecto P-  $\Delta$ "

$$FU4 := \begin{bmatrix} \frac{P_r}{P_c} + \frac{8}{9} \cdot \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} \ge 0.2$$
$$\begin{bmatrix} \frac{P_r}{2 \cdot P_c} + \left( \frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \end{bmatrix} \text{ if } \frac{P_r}{P_c} < 0.2$$

FU4 = 0.75

ver9 := 
$$|"Ok" \text{ if } FU4 \leq 1$$
  
"Rediseñar" otherwise

ver9 = "Ok"

#### Factor de utilización

FU := max(FU1, FU2, FU3, FU4)FU = 0.75

## Anexo I: Presupuesto de la Estructura Diseñada con Norma NCh2369Of2003

| N°    | Ítem                                         | Unidad   | Cantidad | PU [US\$]    | Total [US\$] |
|-------|----------------------------------------------|----------|----------|--------------|--------------|
| 1.    | INSTALACIÓN DE FAENA                         |          |          |              |              |
| 1.1   | Instalación de faena                         | gl       | 1        | 857.382      | 857.382      |
|       |                                              |          | 1        | Total [\$]   | 857.382      |
| Nº    | Ítem                                         | Unidad   | Cantidad | PU [\$]      | Total [US\$] |
|       |                                              | cintutut | cuntruuu | 10[4]        | 10001[0000]  |
| 2.    | ESTRUCTURA SOPORTE PARA SIFÓN                | - 1      |          |              | T            |
| 2.1   | Pilotes                                      |          |          |              |              |
| 2.1.1 | Suministro de pilotes                        | kg       | 544.378  | 2            | 956.550      |
| 2.1.2 | Instalación e hinca de pilotes               | un       | 78       | 34.414       | 2.684.275    |
| 2.1.4 | Protección anticorrosiva zona sumergida      | m 2      | 721      | 56           | 40.506       |
| 2.1.5 | Protección anticorrosiva zona intermareas    | m 2      | 822      | 66           | 54.468       |
| 2.2   | Vigas transversales                          |          |          |              |              |
| 2.2.1 | Suministro de vigas transversales            | kg       | 466.009  | 4            | 2.051.772    |
| 2.2.2 | Instalación de vigas transversales           | kg       | 466.009  | 6            | 2.851.976    |
| 2.2.3 | Protección anticorrosiva                     | m 2      | 1.813    | 66           | 120.158      |
| 2.3   | Vigaslongitudinales                          |          |          |              |              |
| 2.3.1 | Suministro de vigas longitudinales           | kg       | 136.835  | 4            | 602.465      |
| 2.3.2 | Instalación de vigas longitudinales          | kg       | 136.835  | 6            | 837.430      |
| 2.3.3 | Protección anticorrosiva                     | m 2      | 1.123    | 66           | 74.425       |
| 2.4   | Arriostramientos                             |          |          |              |              |
| 2.4.1 | Suministro e instalación de arriostramientos | kg       | 55.783   | 3            | 143.442      |
| 2.4.2 | Protección anticorrosiva                     | m 2      | 265      | 66           | 17.586       |
| 2.5   | Perfil L                                     |          |          |              |              |
| 2.5.1 | Suministro e instalación de perfil L         | kg       | 769      | 3            | 1.978        |
| 2.5.2 | Protección anticorrosiva                     | m 2      | 41       | 66           | 2.706        |
| 2.6   | Hormigón                                     |          |          |              |              |
| 2.6.1 | Loseta prefabricada de 20 cm                 | m3       | 129      | 266          | 34.330       |
| 2.6.2 | Sobrelosa de 10 cm                           | m3       | 64       | 309          | 19.886       |
|       |                                              | 1        | 1        | Total [US\$] | 10.493.952   |

| N°          | Ítem                                          | Unidad | Cantidad | PU [US\$]    | Total [US\$] |
|-------------|-----------------------------------------------|--------|----------|--------------|--------------|
|             | ,                                             |        |          |              |              |
| 3.          | TORRES DE SUCCION DE AGUA DE MAR              |        |          |              |              |
| 3.1         | Pilotes                                       |        |          |              |              |
| 3.1.1       | Suministro de pilotes                         | kg     | 78.558   | 2            | 138.037      |
| 3.1.2       | Instalación de pilotes                        | un     | 8        | 34.414       | 275.310      |
| 3.1.3       | Protección anticorrosiva                      | m 2    | 263      | 66           | 17.450       |
| 3.2         | Arriostramientos                              |        |          |              |              |
| 3.2.1       | Suministro e instalación de arriostramientos  | kg     | 102.756  | 3            | 264.231      |
| 3.2.2       | Protección anticorrosiv a                     | m 2    | 580      | 66           | 38.411       |
| 3.3         | Viga superior                                 |        |          |              |              |
| 3.3.1       | Suministro de vigas superior                  | kg     | 47.741   | 4            | 210.195      |
| 3.3.2       | Instalación de vigas superior                 | kg     | 47.741   | 6            | 292.172      |
| 3.3.3       | Protección anticorrosiva                      | m 2    | 226      | 66           | 14.949       |
| 3.4         | Viga inferior                                 |        |          |              |              |
| 3.4.1       | Suministro de vigas inferior                  | kg     | 31.164   | 4            | 137.212      |
| 3.4.2       | Instalación de vigas inferior                 | kg     | 31.164   | 6            | 190.726      |
| 3.4.3       | Protección anticorrosiva                      | m 2    | 230      | 56           | 12.942       |
| 3.5         | Viga base                                     |        |          |              |              |
| 3.5.1       | Suministro de viga base                       | kg     | 24.225   | 4            | 106.661      |
| 3.5.2       | Instalación de viga base                      | kg     | 24.225   | 6            | 148.260      |
| 3.5.3       | Protección anticorrosiva                      | m 2    | 139      | 56           | 7.815        |
| 3.6         | Arriostramiento base                          |        |          |              |              |
| 3.6.1       | Suministro e instalación de arriostramiento   | kg     | 13.684   | 3            | 35.188       |
| 3.6.2       | Protección anticorrosiva                      | m 2    | 200      | 56           | 11.218       |
| <b>3.</b> 7 | Diagonal superior                             |        |          |              |              |
| 3.7.1       | Suministro e instalación de diagonal superior | kg     | 8.308    | 3            | 21.364       |
| 3.7.2       | Protección anticorrosiva                      | m 2    | 24       | 66           | 1.597        |
| 3.8         | Jacket                                        |        |          |              |              |
| 3.8.1       | Suministro de jacket                          | kg     | 81.369   | 37           | 2.979.504    |
| 3.8.2       | Instalación de jacket                         | kg     | 81.369   | 37           | 2.979.504    |
| 3.8.4       | Protección anticorrosiva                      | m 2    | 334      | 66           | 22.162       |
|             |                                               |        |          | Total [US\$] | 7.904.907    |
| N°          | Ítem                                          | Unidad | Cantidad | PU [US\$]    | Total [US\$] |
|             |                                               |        |          |              | <u> </u>     |
| 4.          | Tubería                                       |        |          | [            |              |
| 4.1         | Suministro e instalación de tubería           | ton    | 571      | 1.819        | 1.038.057    |
| 4.2         | Protección anticorrosiva                      | m 2    | 1.832    | 66           | 121.366      |

| TOTAL COSTO | [US\$] | 20.415.664 |
|-------------|--------|------------|
| IUIALCOSIO  | LODAT  | 20.413.004 |

1.159.422

Total [US\$]

# Anexo J: Presupuesto de la Estructura Diseñada con Norma ASCE 7-10

| N°    | Ítem                                                 | Unidad | Cantidad | PU [US\$]    | Total [US\$] |  |  |
|-------|------------------------------------------------------|--------|----------|--------------|--------------|--|--|
| 1.    | INSTALACIÓN DE FAENA, MOVILIZACIÓN Y DESMOVILIZACIÓN |        |          |              |              |  |  |
| 1.1   | Instalación de faena                                 | gl     | 1        | 857.382      | 857.382      |  |  |
|       |                                                      |        |          |              |              |  |  |
|       | I                                                    |        |          | Total [\$]   | 857.382      |  |  |
| NIQ   | Ítam                                                 | Unidad | Contidod | ριι Γιις φ Ι | Total DIG#1  |  |  |
|       | Item                                                 | Unidad | Cantidad | PU[US\$]     | 10(11[055]   |  |  |
| 2.    | ESTRUCTURA SOPORTE PARA SIFÓN                        | -      |          |              |              |  |  |
| 2.1   | Pilotes                                              |        |          |              |              |  |  |
| 2.1.1 | Suministro de pilotes                                | kg     | 544.378  | 2            | 956.550      |  |  |
| 2.1.2 | Instalación e hinca de pilotes                       | un     | 78       | 34.414       | 2.684.275    |  |  |
| 2.1.4 | Protección pintura zona sum ergida                   | m 2    | 721      | 56           | 40.506       |  |  |
| 2.1.5 | Protección pintura zona intermareas                  | m 2    | 822      | 66           | 54.468       |  |  |
| 2.2   | Vigas transversales                                  |        |          |              |              |  |  |
| 2.2.1 | Suministro de vigas transversales                    | kg     | 335.700  | 4            | 1.478.037    |  |  |
| 2.2.2 | Instalación de vigas transversales                   | kg     | 335.700  | 6            | 2.054.482    |  |  |
| 2.2.3 | Protección pintura                                   | m 2    | 1.813    | 66           | 120.158      |  |  |
| 2.3   | Vigaslongitudinales                                  |        |          |              |              |  |  |
| 2.3.1 | Suministro de vigas longitudinales                   | kg     | 136.835  | 4            | 602.465      |  |  |
| 2.3.2 | Instalación de vigas longitudinales                  | kg     | 136.835  | 6            | 837.430      |  |  |
| 2.3.3 | Protección pintura                                   | m 2    | 1.123    | 66           | 74.425       |  |  |
| 2.4   | Arriostramientos                                     |        |          |              |              |  |  |
| 2.4.1 | Suministro e instalación de arriostramientos         | kg     | 50.783   | 3            | 130.585      |  |  |
| 2.4.2 | Protección pintura                                   | m 2    | 265      | 66           | 17.586       |  |  |
| 2.5   | Perfil L                                             |        |          |              |              |  |  |
| 2.5.1 | Suministro e instalación de perfil L                 | kg     | 769      | 3            | 1.978        |  |  |
| 2.5.2 | Protección pintura                                   | m 2    | 41       | 66           | 2.706        |  |  |
| 2.6   | Hormigón                                             |        |          |              |              |  |  |
| 2.6.1 | Loseta prefabricada de 20 cm                         | m 3    | 129      | 266          | 34.330       |  |  |
| 2.6.2 | Sobrelosa de 10 cm                                   | m3     | 64       | 309          | 19.886       |  |  |
|       | 1                                                    | 1      | 1        | Total [US\$] | 9.109.865    |  |  |

| N°          | Ítem                                          | Unidad | Cantidad | PU [US\$]         | Total [US\$]                |
|-------------|-----------------------------------------------|--------|----------|-------------------|-----------------------------|
|             |                                               |        |          |                   |                             |
| 3.          | TORRES DE SUCCIÓN DE AGUA DE MAR              |        |          | 1                 |                             |
|             | <b>B</b> <sup>1</sup> I to a                  |        |          |                   |                             |
| 3.1         | Pilotes<br>Suministro do pilotos              | kσ     | 78 558   | 0                 | 108 007                     |
| 3.1.1       | Summistro de photes                           | кg     | /0.550   | 2                 | 136.03/                     |
| 3.1.2       | Instalación enticorrecive zone intermeneses   | mo     | 0        | 34.414            | 2/5.310                     |
| 3.1.3       | Frotección anticorrosiva zona intermareas     | 111.2  | 203      | 00                | 17.450                      |
| 3.2         | Arriostramientos                              |        |          |                   |                             |
| 3.2.1       | Suministro e instalación de arriostramientos  | kg     | 107.598  | 3                 | 276.681                     |
| 3.2.2       | Protección anticorrosiva                      | m 2    | 500      | 66                | 33.113                      |
| 3.3         | Viga superior                                 |        |          |                   |                             |
| 3.3.1       | Suministro de vigas superior                  | kg     | 52.518   | 4                 | 231.231                     |
| 3.3.2       | Instalación de vigas superior                 | kg     | 52.518   | 6                 | 321.413                     |
| 3.3.3       | Protección anticorrosiva                      | m 2    | 227      | 66                | 15.012                      |
|             | Vigo inforior                                 |        |          |                   |                             |
| 3.4         | Viga interior<br>Suministro do vigos inforior | kσ     | 21 164   | 4                 | 197 919                     |
| 3.4.1       | Instalagión de vigas inferior                 | kg     | 21.164   | 4                 | 100 726                     |
| 3.4.2       | Protocción anticorrosiva                      | m 2    | 220      | 56                | 12 0 4 2                    |
| 3.4.3       |                                               | 1112   | 230      | 50                | 12.942                      |
| 3.5         | Viga base                                     |        |          |                   |                             |
| 3.5.1       | Suministro de viga base                       | kg     | 18.084   | 4                 | 79.621                      |
| 3.5.2       | Instalación de viga base                      | kg     | 18.084   | 6                 | 110.673                     |
| 3.5.3       | Protección anticorrosiva                      | m 2    | 138      | 56                | 7.732                       |
| 3.6         | Arriostramiento base                          |        |          |                   |                             |
| 3.6.1       | Suministro e instalación de arriostramiento   | kg     | 11.333   | 3                 | 29.142                      |
| 3.6.2       | Protección anticorrosiva                      | m 2    | 166      | 56                | 9.348                       |
| 0           |                                               |        |          | -                 |                             |
| <b>3.</b> 7 | Diagonal superior                             |        |          |                   |                             |
| 3.7.1       | Suministro e instalación de diagonal superior | kg     | 7.789    | 3                 | 20.029                      |
| 3.7.2       | Protección anticorrosiva                      | m 2    | 24       | 66                | 1.565                       |
| 3.8         | Jacket                                        |        |          |                   |                             |
| 3.8.1       | Suministro de jacket                          | kg     | 71.487   | 37                | 2.617.664                   |
| 3.8.2       | Instalación de jacket                         | kg     | 71.487   | 37                | 2.617.664                   |
| 3.8.4       | Protección anticorrosiva                      | m 2    | 334      | 66                | 22.162                      |
|             |                                               |        |          | Total [US\$]      | 7.164.727                   |
|             |                                               |        |          | 10001[0000]       | ) <b>(104(</b> ) <b>1</b> ) |
| N°          | Ítem                                          | Unidad | Cantidad | PU [US\$]         | Total [US\$]                |
| 4.          | Tubería                                       |        |          |                   |                             |
| <u> </u>    |                                               |        |          |                   |                             |
| 4.1         | Suministro e instalación de tubería           | ton    | 571      | 1.819             | 1.038.057                   |
| 4.2         | Protección anticorrosiva                      | m 2    | 1.832    | 66                | 121.366                     |
|             |                                               |        |          |                   |                             |
|             |                                               |        |          | Total [US\$]      | 1.159.422                   |
|             |                                               |        | r        | TOTAL COSTO [US\$ | 18.291.398                  |

Anexo K: Disposiciones de Norma NCh2369 en Desarrollo para Estructura de Soporte del Sifón de Captación de Agua de Mar

| Sistema sismo-resistente |                                                                                                                                                                   | Esquema   | Vigas de<br>Acero |      | Vigas de<br>Hormigón<br>Armado |      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|------|--------------------------------|------|
|                          |                                                                                                                                                                   |           | R                 | ξ    | R                              | ξ    |
| 1                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre cuplas concéntricas de pilotes de<br>acero.                                                            |           | 3.0               | 0.03 | 3.0                            | 0.04 |
| 2                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre pilotes de acero verticales que<br>forman marcos rígidos.                                              |           | 4.0               | 0.03 | 4.0                            | 0.04 |
| 3                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre cuplas excéntricas de pilotes de<br>acero.                                                             |           | 3.5               | 0.03 | 3.5                            | 0.04 |
| 4                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre cuplas de pilotes de acero o<br>pilotes verticales formando marcos rígidos,<br>construido sobre talud. |           | 3.0               | 0.03 | 3.0                            | 0.04 |
| 5                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre pilotes de acero inclinados que<br>forman marcos rígidos.                                              | $\square$ | 3.5               | 0.03 | 4.0                            | 0.04 |
| 6                        | Tablero de hormigón armado sobre vigas,<br>dispuesto sobre pilotes de acero inclinados<br>arriostrados en su sector superior.                                     |           | 3.5               | 0.03 | 3.5                            | 0.04 |
| 7                        | Estructura marítima convencional compuesta de tablero de hormigón armado sobre pilotes, no asimilable a las configuraciones anteriores.                           |           | 2.0               | 0.03 | 2.0                            | 0.03 |

## Tabla 11.14.1 – Factores R y ξ para estructuras marítimo-portuarias específicas

Notas:

- Las estructuras incluidas en esta tabla consideran de forma general la existencia de un tablero de hormigón armado dispuesto sobre un envigado (de hormigón armado o acero según sea el caso), el cual a su vez se encuentra apoyado sobre pilotes de acero.
- 2) Las estructuras incluidas en esta tabla corresponden a sistemas resistentes a cargas laterales convencionales, los cuales no presentan dispositivos específicos de protección sísmica (aisladores de base, disipadores de energía, etc.).
- 3) Las razones de amortiguamiento presentadas en la tabla no hacen diferencia entre pilotes anclados a la roca superficial o hincados en el fondo marino. En caso que se use un análisis con interacción suelo-estructura en que resulten valores de la razón de amortiguamiento del primer modo mayores que los indicados en esta tabla, el incremento de esta razón no puede ser superior al 50% de los valores indicados y la razón de amortiguamiento total no puede superar un máximo de 0.05.
- 4) En caso de duda sobre la clasificación de un sistema resistente, debe escogerse la condición que entregue las mayores solicitaciones para el diseño.
- 5) En todas aquellas estructuras en las cuales no pueda garantizarse el desarrollo de un mecanismo de colapso dúctil para condiciones sísmicas, debe adoptarse un factor de reducción de la respuesta sísmica R no superior a 2 y una razón de amortiguamiento no superior a 0.03.