
MNRAS 461, 698–709 (2016) doi:10.1093/mnras/stw1298
Advance Access publication 2016 June 7

A new polarization amplitude bias reduction method

Matias Vidal,1,2‹ J. P. Leahy1‹ and C. Dickinson1‹
1Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester
M13 9PL, UK
2Departamento de Astronomı́a, Universidad de Chile, Casilla 36-D, Santiago, Chile

Accepted 2016 May 27. Received 2016 May 24; in original form 2014 October 16

ABSTRACT

Polarization amplitude estimation is affected by a positive noise bias, particularly important
in regions with low signal-to-noise ratio (SNR). We present a new approach to correct for
this bias in the case there is additional information about the polarization angle. We develop
the ‘known-angle estimator’ that works in the special case when there is an independent and
high SNR (� 2σ ) measurement of the polarization angle. It is derived for the general case
where the uncertainties in the Q, U Stokes parameters are not symmetric. This estimator
completely corrects for the polarization bias if the polarization angle is perfectly known. In
the realistic case, where the angle template has uncertainties, a small residual bias remains,
but that is shown to be much smaller that the one left by other classical estimators. We also test
our method with more realistic data, using the noise properties of the three lower frequency
maps of Wilkinson Microwave Anisotropy Probe. In this case, the known-angle estimator also
produces better results than methods that do not include the angle information. This estimator
is therefore useful in the case where the polarization angle is expected to be constant over
different data sets with different SNR.

Key words: polarization – radiation mechanisms: non-thermal – methods: data analysis –
methods: statistical – techniques: polarimetric.

1 IN T RO D U C T I O N

It has long been noticed that observations of linear polarization are subject to a positive bias (Serkowski 1958). Given the positive nature of the
polarization amplitude, P =

√
Q2 + U 2, even if the true Stokes parameters Q0, U0 are zero, P will yield a non-zero estimate in the presence

of noise. The effect is particularly important in the low signal-to-noise ratio (SNR) regime. Ways to correct for the bias have been studied in
detail for the special case where the uncertainties for (Q, U) are equal and normally distributed around their true value (Q0, U0) (Wardle &
Kronberg 1974; Simmons & Stewart 1985; Vaillancourt 2006; Quinn 2012). Montier et al. (2015a,b) give a useful review comparing different
bias reduction methods.

In this paper, we propose a new approach, useful when there is an independent measurement of the polarization angle χ =
0.5 arctan(U/Q). This situation occurs, for instance, in the polarization data sets from Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al. 2013) and Planck (Planck Collaboration I 2014), where over a range of frequency the polarization angle is expected to be nearly
constant (e.g. synchrotron radiation will have the same polarization angle at different frequencies as this angle depends on the direction of
the magnetic field of the emitting medium), and the variation of the polarized intensity with frequency is of interest. Using simulations, we
test the performance of this estimator compared to previous methods from the literature that do not include angle information. In Section 2,
we show the origin of the bias and we describe some methods used to correct for it. In Section 3, we derive our new estimator, its uncertainty
and residual bias. In Section 4, we use simulations to test its performance. Section 5 concludes.

2 BI A S C O R R E C T I O N M E T H O D S

We will first review the simple case when the uncertainties in Q and U are equal, and then study the more general case with asymmetric
uncertainties.
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A new polarization amplitude bias reduction method 699

Figure 1. Rice distribution (equation 3) plotted for different values of the true SNR, P0/σ . The asymmetry and bias are clear in the low SNR level. At high
SNR, the distribution converges to a Gaussian with standard deviation σ centred at

√
P0 + σ 2.

2.1 Symmetric uncertainties

Let us take (Q0, U0) as the true Stokes parameters from a source and (Q′, U′) the measured ones. We can write the joint probability distribution
function (pdf) for (Q′, U′) as the product of the individual normal distributions

f (Q′, U ′) = 1

2πσ 2
exp

[
− (Q′ − Q0)2 + (U ′ − U0)2

2σ 2

]
, (1)

where σ Q = σ U = σ is the uncertainty in Q′ and U′.
Transforming into polar coordinates using the definitions for the polarization amplitude P =

√
Q2 + U 2 and the polarization angle

χ = 1
2 arctan (U/Q), we have

f (P ′, χ ′) = P ′

πσ 2
e−[P ′2+P 2

0 −2(P ′ cos 2χ ′P0 cos 2χ0+P sin 2χ ′P0 sin 2χ0)]/2σ 2 = P ′

πσ 2
e−(P ′2+P 2

0 )/2σ 2
e−P ′P0 cos[2(χ ′−χ0)]/σ 2

. (2)

The marginal probability distribution for P′ is obtained by integrating f(P′, χ ′) over χ ′. This angular integral can be written as a function of
the modified Bessel function of first type I0(z), yielding the Rice distribution for polarization (Rice 1945):

R(P ′|P0) = P ′

σ 2
I0

(
P ′P0

σ 2

)
e−(P ′2+P 2

0 )/2σ 2
. (3)

It is important to note that the integral of R(P′|P0) represents the probability of measuring P′ inside an interval for a given true polarization
P0. Fig. 1 shows R(P′|P0) for different SNR. The bias, defined as 〈P′〉 − P0, arises because this probability distribution is not symmetric, and
becomes clear in Fig. 1 at low SNR. Even when the true SNR is zero (black curve in the figure), the measured value is close to 1. At large
SNR, the distribution approaches a Gaussian with mean close to P0 and standard deviation close to σ .

Simmons & Stewart (1985) compared five estimators for P0 (including the uncorrected P′), and concluded that the one with smallest
residual bias when P0/σ � 0.7 is that suggested by Wardle & Kronberg (1974):

∂R

∂P ′ (P ′, P0)

∣∣∣∣∣
P0=p̂

= 0. (4)

(note that this is not the maximum likelihood estimator). Even at moderate SNR, the rice distribution is not centred at the measured SNR,
this can be seen in Fig. 1, where the distributions have mean

√
P0 + σ 2. This motivated Wardle & Kronberg (1974) to propose a very simple

estimator

p̂AS =
{ √

P ′2 − σ 2 P ′ ≥ σ ;
0 otherwise.

(5)

This approximates equation (4), and also has the virtue of giving lower bias at very low SNR, albeit at the cost of a 1 per cent overcorrection
near SNR = 2; this has been widely used in practice. Montier et al. (2015b) compared various estimators of the polarization angle in terms of
the residual bias, risk, variance and Gaussianity. An unwanted property of the asymptotic (AS, equation 5) estimator is that the distribution of
the estimator is discontinuous as it yields zeroes below a particular SNR (see equation 5). It is illuminating to re-write equation (5) in terms
of the error in the polarization angle, σχ = σ/2P′, so

p̂AS = P ′
√

1 − 4σ 2
χ . (6)
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700 M. Vidal, J. P. Leahy and C. Dickinson

Figure 2. Error ellipse in the (Q, U) plane showing how the polarization angle χ and the rotation angle θ are related.

This emphasises that the source of the bias is the error in the angle of the (Q, U) vector, which contributes a component of the error vector
orthogonal to the true polarization with length P′sin 2�χ , and is added in quadrature to the parallel component, hence always contributing a
positive bias.

For the polarization angle, here we use the naive estimator, χ = 1
2 arctan(U/Q), which is completely unbiased. The uncertainty of this

estimator, on the AS case where P0 � σ is (Vinokur 1965; Montier et al. 2015a)

σχ =
√

Q′2σ 2
Q + U ′2σ 2

U/2P 2. (7)

2.2 Asymmetric uncertainties

The previous case in which the uncertainties in (Q′, U′) are equal and uncorrelated is well understood. The asymmetric case is interesting
as many polarization data sets have this characteristic. For example, the cosmic microwave background experiments WMAP (Bennett et al.
2013) and Planck (Planck Collaboration I 2014) have correlations between the (Q′, U′) uncertainties due to non-uniform azimuthal coverage
for each pixel in the sky. This case has been recently studied by Montier et al. (2015a,b) and Plaszczynski et al. (2014). The error distribution
in these cases is an elliptical 2D Gaussian in (Q′, U′), characterized by a covariance matrix (e.g. Kendal, Stuart & Ord 1994)

C =
(

σ 2
Q covQU

covQU σ 2
U

)
(8)

Defining a (Q, U) error vector

δ =
(

Q′ − Q0

U ′ − U0

)
, (9)

we have

f (Q′, U ′) = 1

2π
√

det[C]
exp

[
−δT C−1δ

2

]

= 1

2πσQσU

√
1 − ρ2

exp

[
− 1

2(1 − ρ2)

(
(Q′ − Q0)2

σ 2
Q

+ (U ′ − U0)2

σ 2
U

− 2ρ(Q′ − Q0)(U ′ − U0)

σQσU

)]
, (10)

where ρ is the correlation coefficient between (Q0, U0),

ρ = E[(Q′ − Q0)(U ′ − U0)]

σQσU

= covQU

σQσU

. (11)

The error ellipse in the Q, U plane will be rotated an angle θ in the case of a non-zero covQU (see Fig. 2). In terms of the components of the
covariance matrix,

θ = 1

2
arctan

2covQU

σ 2
Q − σ 2

U

. (12)

The error ellipse has axial ratio

r = σmin

σmaj
, (13)
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A new polarization amplitude bias reduction method 701

where

σ 2
maj = 1

2

(
σ 2

Q + σ 2
U +

√(
σ 2

Q − σ 2
U

)2 + 4covQU
2

)
(14)

σ 2
min = 1

2

(
σ 2

Q + σ 2
U −

√(
σ 2

Q − σ 2
U

)2 + 4covQU
2

)
. (15)

Allowing for correlated variables, the error in any f(Q′, U′) is to first order

σ 2
f =

(
∂f

∂Q′

)2

σ 2
Q + 2

∂f

∂Q′
∂f

∂U ′ covQU +
(

∂f

∂U′

)2

σ 2
U. (16)

Hence (Montier et al. 2015a),

σ 2
P = Q′2σ 2

Q + 2Q′U ′covQU + U′2σ 2
U

P′2 = cos2 2χ ′ σ 2
Q + 2 cos 2χ ′ sin 2χ ′ covQU + sin2 2χ ′ σ 2

U (17)

σ 2
χ = sin2 2χ ′ σ 2

Q − 2 cos 2χ ′ sin 2χ ′ covQU + cos2 2χ ′ σ 2
U

4P′2 , (18)

When r 	= 1, the polarization bias depends on the polarization angle χ0, more specifically on θ − 2χ0, as well as on p0. The AS estimator

from equation (6), p̂AS = P ′
√

1 − 4σ 2
χ , still applies, provided we use the generalized form of σχ derived above. We note that equation (18) is

derived in the small-error approximation and uses the observed polarization angle, χ ′, as a surrogate for the true polarization angle χ0, which
is unobjectionable in the high SNR regime. When SNR is low, it is not so obvious that this is appropriate, but we will verify by simulations
that the estimator remains reasonably effective.

The preferred estimator of Montier et al. (2015b), is the ‘modified asymptotic estimator’, MAS (Plaszczynski et al. 2014), which using
the above notation is given by

p̂MAS = P ′
[
1 − 2σ 2

χ

(
1 − e−P ′2/b2

)]
, (19)

3 K N OW N - A N G L E E S T I M ATO R

As we will see, all estimators based exclusively on one observed (Q′, U′) measurement give a significant positive bias at very low SNR.
However, this can be overcome if we have an independent estimate of the polarization angle χ . We will refer to this as the ‘template’
observation, in contrast to the ‘target’ observation to be de-biased.

We will build a new estimator, based on the maximum likelihood estimator, assuming that the true angle χ0 is known. We will later
calculate the residual bias which emerges because of uncertainty in our template angle, hereafter denoted χ , as distinct from the true angle
χ0 and the observed angle χ ′ from the target observation.

To find our known-angle estimator, p̂χ , we take the joint pdf for the observed values (Q′, U′) with asymmetric uncertainties from
equation (10). Since Q0 = P0 cos 2χ0 and U0 = P0 sin 2χ0,

f (Q′, U ′) = 1

2πσQσU

√
1 − ρ2

exp

[
− 1

2(1 − ρ2)

(
(Q′ − P0 cos 2χ0)2

σ 2
Q

+ (U ′ − P0 sin 2χ0)2

σ 2
U

− 2ρ(Q′ − P0 cos 2χ0)(U ′ − P0 sin 2χ0)

σQσU

)]
. (20)

The maximum likelihood estimator in this case, p̂χ , is defined by the condition:

∂f (Q′, U ′)
∂P0

∣∣∣∣∣
P0=p̂χ

= 0. (21)

With the assumption that χ0 = χ , this leads to the expression for the de-biased polarization amplitude,

p̂χ = σ 2
UQ′ cos 2χ − covQU(Q′ sin 2χ + U′ cos 2χ) + σ 2

QU′ sin 2χ

σ 2
U cos2 2χ − 2covQU sin 2χ cos 2χ + σ 2

Q sin2 2χ
. (22)

We note that if the observed polarization angle χ ′ is used as a surrogate for χ0, then p̂χ = p′ =
√

Q′2 + U ′2 and there is no correction
whatsoever – we do need an independent constraint on χ to benefit from this approach.

The error in p̂χ is given via equation (16):

σ 2
p̂χ

= σ 2
Qσ 2

U − σ 2
QU

σ 2
U cos2 2χ − 2covQU sin 2χ cos 2χ + σ 2

Q sin2 2χ
= det[C]

4P ′2 σ 2
χ

. (23)
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702 M. Vidal, J. P. Leahy and C. Dickinson

Figure 3. Fractional bias of the known-angle estimator, p̂χ , for different values of the error ellipse (r = σ ′
U/σ ′

Q) and an uncertainty in the template angle of
5◦ (top). The bottom plot shows the residual fractional bias of p̂χ for different values of the uncertainty in the template angle, σχ , for a fixed value of r = 0.8.
Both plots are calculated with P0 = 1.

The known-angle estimator still contains a residual bias, due to the uncertainty in the template angle χ . Specifically, the expected value
of the fractional bias is

bχ ≡ 〈p̂χ 〉 − P0

P0
=

∫
χ

f (χ |χ0)
∫

Q′,U ′
f (Q′, U ′|P0, χ0)

p̂χ

P0
dχ dQ dU − 1. (24)

Since p̂χ is linear in Q′ = P0 cos 2χ0 + δQ and in U′ = P0 sin 2χ0 + δU, integrating over the Gaussian probability distribution of (Q′, U′)
eliminates the dependence on the deviations δQ, δU, and we have

bχ =
∫

χ

f (χ |χ0)
σ 2

UP0 cos 2χ0 cos 2χ − covQUP0(cos 2χ0 sin 2χ + sin 2χ0 cos 2χ ) + σ 2
QP0 sin 2χ0 sin 2χ

P0(σ 2
U cos2 2χ − 2covQU cos 2χ sin 2χ + σ 2

Q sin2 2χ )
dχ − 1, (25)

where f(χ |χ0) is the pdf of the template angle.
The amplitude of the polarized signal, P0, cancels, so the residual bias just depends on the axial ratio of the (Q, U) error ellipse, r, and

the difference between the orientation of the ellipse, θ , and that of the true (Q0, U0) vector, 2χ0 (see Fig. 2). If the angle is known exactly so
f(χ |χ0) = δ(χ − χ0), the residual bias vanishes.

In the special case where covQU = 0, so r = σ U/σ Q, we have

bχ =
∫

χ

f (χ |χ0)
r2 cos 2χ0 cos 2χ + sin 2χ0 sin 2χ

r2 cos2 2χ + sin2 2χ
dχ − 1. (26)

The top panel of Fig. 3 shows the bias for different axial ratios of the error ellipse as function of the polarization angle (see the angle definitions
in Fig. 2). Here the uncertainty in the template angle is Gaussian (cf. equation 7) and it is fixed at σχ = 5◦. If the error distribution is symmetric
(r = 1), the bias is constant (cf. equation 26). The bottom panel of Fig. 3 shows the bias for different values of the uncertainty in the template
angle, for an error ellipse with axial ratio r = 0.5. The bias is usually negative, i.e. the polarized intensity is slightly underestimated.

When the template for the angle has an SNR at least 2 times larger than the target, the known-angle estimator thus gives excellent
performance at very low signal-to-noise levels, where other estimators have large residual biases. However, for a given uncertainty in χ , the
bias does not decrease as the signal in (Q′, U′) rises, unlike all the standard estimators. In practical use, the estimator is only worthwhile when
a template observation with substantially higher SNR than the target observations is available; fortunately, this situation is fairly common, as
discussed in Section 4.3.
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A new polarization amplitude bias reduction method 703

Figure 4. Residual bias (top) and risk function (bottom) for the naive, p̂′ (continuum line), p̂MAS (dashed), p̂AS (dot–dashed line) and p̂χ (colours) estimators
as a function of the SNR of the true polarization amplitude P0. As the residual bias and risk function of the known-angle estimator depends on the uncertainty
of the high SNR template, we show these two functions for four different values of the uncertainty of the high SNR template: same SNR of the target in
magenta, 2 times the SNR of the target in green, 3 times in red and 5 times better in blue. Both plots are for the isotropic case, σQ = σU.

4 T E S T S O F T H E E S T I M ATO R S

Here we compare the effectiveness of three bias reduction methods using Monte Carlo simulations for a range of SNR. This is to show what
can be gained when including additional angle information from a higher signal-to-noise template. In Section 4.2, we study the residual bias
in a single pixel for a range of SNR in (Q, U). Section 4.3 tests the methods using real noise values from the WMAP polarization data.

Using Monte Carlo simulations, we measure the residual bias in a single pixel for four polarization amplitude estimators.

(i) p̂′ = P ′ =
√

Q′2 + U ′2, the naive estimator with no correction for bias.
(ii) p̂MAS, the Plaszczynski et al. MAS estimator, from equation (19).
(iii) p̂χ , the known-angle estimator, from equation (22).

4.1 Isotropic case

We ran 106 Gaussian noise realizations for the Q, U Stokes parameters. For the known-angle estimator, we also produced an additional set of
106 noise realizations for the high signal-to-noise template Q, U, which accounts for the uncertainty in the known angle. We start with the
simpler case where σ Q and σ U are not correlated. We studied the bias, defined as bias = p̂ − P0 and the risk function = 〈(p̂ − P0)2〉, for the
different estimators. In Fig. 4, we show on the top panel the residual bias of the estimators as a function of the observed SNRP ≡ P0/σ P, with
σ P defined in equation (17). We show four lines for p̂χ , which correspond to different values of the SNR of the angle template. The bottom
panel of Fig. 4 shows the risk function for the different estimators.

We can see that the known-angle estimator performs very well in the case when the polarization angle is known with relatively high
precision, i.e. when the SNR of the template is >2 to 3 times the SNR of the target.

The construction of the known-angle estimator allows for negative values of p̂χ . Fig. 5 shows the distributions of p̂χ simulations for
three different values of the SNR of the target and the template.
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704 M. Vidal, J. P. Leahy and C. Dickinson

Figure 5. Histograms showing the distribution of p̂χ (coloured lines) and the naive (black line) estimator for three values of SNR in the target (top to bottom)
and three values of the SNR of the template (as a multiple of the SNR of the target). All histograms are for the isotropic case, σQ = σU.

4.2 General case

Here we allow for asymmetric errors in Q, U, i.e. for r < 1. We created a grid of 100 × 100 different values of Q0/σ Q and U0/σ Q, in the
range Q0/σ Q ≤ 4, U0/σ Q ≤ 4, using a uniform spacing. This was repeated for four values of r. We set θ = 0, so that r = σ U/σ Q (the pattern
in the (Q, U) plane simply rotates for other values of θ ). Then, × 105 Gaussian noise realizations are added to the each point in the grid. We
calculated the ‘observed’ polarization amplitude P′ from the noisy simulations, applied the four estimators to each simulation, and in each
case measured the mean bias b = (〈p̂〉 − P0) for each pixel. The first column of Fig. 6 shows the bias of the naive estimator P′. The second
column shows the residual bias after using the MAS estimator. The biased regions in the SNR plane reduces considerably in comparison
with the first column that has no correction. The third and fourth columns shows the residual bias using the known-angle estimator. As this
estimator requires an independent value for the polarization angle along with the observed values (Q′, U′), we generated an additional × 105

Gaussian realizations for the Q, U Stokes parameters of the template and with them, we reconstructed the known polarization angle, centred
at the true value, χ0, for each SNR value. Here, the SNR of the template is 2 (third column) and 3 (fourth column) times the SNR of the target.

As expected, apart from numerical noise, these results agree with the exact calculation shown in Fig. 3.

4.3 WMAP simulations

WMAP provided maps at five frequency bands between 23 and 94 GHz (Bennett et al. 2013). In the lower three frequencies, the sky
polarization is dominated by Galactic synchrotron emission, with a brightness temperature that drops steeply with frequency (Tν ∝ νβ , with
β ≈ −3). Since the brightness temperature sensitivity is similar in all bands, the highest SNR is at 23 GHz (K band), where large areas
of diffuse polarized emission have SNR > 3 after smoothing to 1◦ full width at half-maximum (FWHM) resolution. In these bands, the
synchrotron polarization angle reflects the Galactic magnetic field direction in the source regions, and is expected to be almost independent of
frequency. The most likely cause of any frequency variation is superposition on the line of sight of regions with different field directions and
also difference spectral indices β; however, the variation of β for the synchrotron component is small as has been shown by Fuskeland et al.
(2014) and (Vidal et al. 2015). On the other hand, the higher WMAP bands begin to be sensitive to dust polarization, which has β ≈ +1.7, and
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A new polarization amplitude bias reduction method 705

Figure 6. Contours of the mean residual bias of three estimators for the polarized intensity as a function of (Q, U), calculated using Monte Carlo simulations
for four different values of the error ellipse axial ratio, r. We take covQU = 0 (there is no loss of generality, as the covariance can always be eliminated by
a rotation of the Q − U axes). The colour scale represents the percentage bias of the estimated polarization value in each pixel. The left column shows the
naive estimator, p̂′. The second column shows the MAS estimator, p̂MAS, from Plaszczynski et al. (2014). The third and fourth columns show the known-angle
estimator, p̂χ , presented in equation (22) for two different SNR levels of the angle template: 2 times and 3 times the SNR of the target.

Planck data confirm that this is generally significantly misaligned with synchrotron (Planck Collaboration XIX 2015a; Planck Collaboration
XXII 2015b). For this reason, we only consider the three lowest WMAP bands below.

Fig. 7 show histograms of the SNR for the Stokes parameters (Q, U) of the three frequency bands: K (23 GHz), Ka (33 GHz) and Q
(41 GHz) bands. The polarization SNR in K band is larger than the SNR in the other bands for almost the entire sky; in fact, the SNR in the
Ka, and Q bands rarely exceeds 3. In Fig. 8, we show histograms of the axial ratio of the error ellipses for all the pixels in these WMAP bands.
The mean ratio for all the bands is r = 0.86.
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706 M. Vidal, J. P. Leahy and C. Dickinson

Figure 7. Histograms of the estimated signal-to-noise ratio of the polarization amplitude, SNRP = P/σP of WMAP data in three frequency bands. The
histograms are made using the full-sky maps at an angular resolution of 1◦, with Nside = 256. The percentage of pixels where the SNR at K band is larger than
the SNR at Ka and Q bands is 75 per cent and 78 per cent, respectively.

Figure 8. Histograms of the polarization error ellipse axial ratio (equation 13) of WMAP data in three frequency bands. The histograms are made using the
full-sky maps at an angular resolution of 1◦, with Nside = 256.

We used the Planck Sky Model (PSM; Delabrouille et al. 2013) to simulate the polarized sky at K, Ka and Q bands at an angular
resolution of 1◦, from which we can obtain maps for the unbiased polarization amplitude, P0. The model is closely based on the WMAP
K-band map, and uses realistic spectral indices. We added random noise, generated using the WMAP covariance matrices C for each pixel,
to the simulated Stokes Q and U map. The maps are generated at HEALPIX Nside = 512. Smoothing was done by transforming to spherical
harmonics, which were then divided by the WMAP instrumental window functions and multiplied by the window function of a Gaussian
beam with 1◦ FWHM, then re-transformed. Noise and sky model maps were downgraded to Nside = 64 to give approximately independent
pixels, and summed to give maps of the ‘observed’ polarization amplitude, P′. In the top panel of Fig. 9, we show the reconstructed simulated
polarization angle map at K band. The middle and lower panel of Fig. 9 show the observed polarization angle by WMAP at Ka and Q bands,
respectively. We can see that the simulated K-band angles, which we use as our template is very similar (but less noisy than) the observed
angle at Ka and Q band. This is the characteristic that the known-angle estimator requires.

We corrected for the bias in these P′ maps using the same three estimators discussed in Section 4.2. Ka and Q bands are corrected using
the known-angle estimator where the angle information required by the p̂χ estimator is measured from the K-band map. We then compared
these de-biased maps with the true polarization amplitude map from the PSM simulations. In Table 1, we list the normalized bias value,
averaged over the entire sky of 500 simulations for the three frequency bands that we studied.

The mean uncorrected bias,
〈
�p̂′〉 = 〈

P ′ − P0

〉
increases with frequency due to the decrease in SNR. p̂MAS substantially reduce the

bias at K and Ka bands, but Q band is so noisy that its impact is relatively modest. A clearer view of the effect of the estimators is revealed
in the histograms of normalized errors, P′ − P0/〈σ P〉, shown in Fig. 10. In Ka and Q band, the histograms of the uncorrected polarization
maps are not centred at zero (the three plots in the left-hand column). Where available, i.e. for Ka and Q bands, the p̂χ estimator performs
dramatically better than p̂MAS. Note also that the histograms of the p̂χ estimator have a clear Gaussian shape. This shows that the uncertainty
on the estimator (equation 23) can be used safely.

In order to see where the residual bias is more important, we show maps of the fractional bias after the correction using the different
estimators. Fig. 11 shows the fractional bias at K, Ka and Q band, for each of our estimators. Pixels where the residual bias is larger than
20 per cent are shown in grey. The p̂MAS estimator (second row) leaves a small residual bias over most of the sky (green areas in the figure).
The p̂χ estimator (bottom row) performs clearly better. In Table 2, we list the percentage of the area of the sky with a residual fractional bias
smaller than ±0.2.

The excellent performance of the known-angle estimator in this case is due to the use of some extra information. The improvement is
spectacular due to the very low SNR over much of the sky at the target frequencies. One could attempt to restore the signal to noise by simply
smoothing to lower resolution, but this will fail when there is substantial real variation in the polarization angle, which would cause the Q
and U signals averaged over large areas to tend towards zero. The great advantage of the known-angle estimator is that we correctly preserve
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A new polarization amplitude bias reduction method 707

Figure 9. Full-sky polarization angle map. On top is the reconstructed angle map from the Planck Sky model with the added noise from WMAP K-band data.
The middle and bottom panels show the observed polarization angle from WMAP Ka and Q bands, respectively.

Table 1. Full-sky averaged values for the normalized polarization bias and standard deviation of each
estimator in simulated WMAP data, over 500 simulations. See Fig. 10 for the histograms of the errors
p̂ − P0.

Estimator K-band Ka-band Q-band
〈�p̂〉a std[�p̂]b 〈�p̂〉a std[�p̂]b 〈�p̂〉a std[�p̂]b

�p̂′ 0.20 0.98 0.50 0.91 0.66 0.87
�p̂MAS 0.06 1.00 0.27 0.93 0.42 0.88
�p̂χ – – − 0.05 1.01 − 0.03 1.01

Notes. amean normalized bias, 〈p̂ − P0〉/〈σP〉 where σ P is given by equation (17).
bStandard deviation of p̂ − P0, again in units of the mean error.

the true polarization direction while still allowing coherent averaging of the polarized amplitude. Vidal et al. (2015) uses p̂χ to measure the
spectral index of the diffuse synchrotron polarized emission over large regions of the sky, an ideal application of the known-angle estimator.
It can also be applied in the Planck data, both for the low-frequency synchrotron emission and also for the high-frequency dust polarization,
where a natural template would be the highest available frequency, since the dust emission rises with frequency (Planck Collaboration XXII
2015b).
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708 M. Vidal, J. P. Leahy and C. Dickinson

Figure 10. Histograms showing the bias of the three estimators studied for the simulated WMAP data at K, Ka and Q band described in the text. Histograms
combine all 500 simulations and all sky pixels. They show the distribution of the difference between the estimators and the true polarization amplitude P0, in
units of the average polarization noise, 〈σ P〉. The column on the left shows the histograms of the polarization bias of the naive estimator, i.e. the �P0 = P′
− P0 (no bias correction). The second column shows the residual bias for the MAS estimator, �PMAS = p̂MAS − P0. For the noisier bands (Ka and Q), the
histograms are not centred at zero, implying that there is additional residual bias on the corrected map. The third column shows the histograms produced using
the p̂χ estimator, �Pχ = p̂χ − P0. Here the bias correction works much better and the distributions for the three bands are centred at zero. Table 1 lists the
central values and spreads for all these histograms.

Figure 11. Maps showing the fractional bias in the WMAP K, Ka and Q bands (left-hand, middle and right-hand columns, respectively). The top row shows
the fractional bias for the naive estimator P ′ =

√
Q′2 + U ′2. The second row shows the residual bias when using the p̂MAS estimator and the bottom row has

the residual bias that remains after correcting with the p̂χ estimator. All the pixels with an absolute value larger than 0.2 are shown in grey.
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A new polarization amplitude bias reduction method 709

Table 2. Percentage of the area of the full-sky map that have an absolute
value of the residual fractional bias smaller than 0.2. These areas corresponds
to the coloured pixels in Fig. 11.

Estimator K-band Ka-band Q-band
per cent per cent per cent

P′ 84.9 35.0 18.4
p̂MAS 91.5 53.3 29.5
p̂χ – 84.8 84.3

5 C O N C L U S I O N S

We have proposed a new way of correcting for the positive bias that affects the polarization amplitude. The ‘known-angle estimator’, p̂χ ,
works when there is independent and high SNR information about the polarization angle of the observed source. This additional information
helps to reduce the polarization amplitude bias.

We have derived formulae for the estimator, its precision, and its residual bias, due to the uncertainty in the template angle that is used.
The estimator is continuous, analytic, possibly negative and highly Gaussian. Given an independent good template for the polarization angle,
i.e. the SNR of the template is at least 2 times the SNR of the target, this estimator performs excellently in the low SNR regime. We have
shown with simulations using WMAP data that the known-angle estimator, p̂χ , outperforms the MAS estimators, which is not surprising as
p̂χ uses additional information about the U/Q ratio to correct for the bias. We believe that this new estimator will be of great use in data sets
that encompass multiple frequencies with different SNR rations like Planck, or even in multiwavelength analysis mixing optical, infrared and
radio data.
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