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We study the realization of slow-roll inflation inN ¼ 1 supergravities where inflation is the result of the
evolution of a single chiral field. When there is only one flat direction in field space, it is possible to derive a
single-field effective field theory parametrized by the sound speed cs at which curvature perturbations
propagate during inflation. The value of cs is determined by the rate of bend of the inflationary path
resulting from the shape of the F-term potential. We show that cs must respect an inequality that involves
the curvature tensor of the Kähler manifold underlying supergravity, and the ratio M=H between the mass
M of fluctuations ortogonal to the inflationary path, and the Hubble expansion rate H. This inequality
provides a powerful link between observational constraints on primordial non-Gaussianity and information
about the N ¼ 1 supergravity responsible for inflation. In particular, the inequality does not allow for
suppressed values of cs (values smaller than cs ∼ 0.4) unless (a) the ratioM=H is of order 1 or smaller, and
(b) the fluctuations of mass M affect the propagation of curvature perturbations by inducing on them a
nonlinear dispersion relation during horizon crossing. Therefore, if large non-Gaussianity is observed,
supergravity models of inflation would be severely constrained.
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It is unlikely that observations will ever allow us to pin
down the fundamental theory underlying inflation [1–5].
Instead, we might have to conform ourselves with gaining
general insights into the origin of cosmological perturba-
tions with the help of the effective field theory (EFT)
approach to inflation [6] (see also Ref. [7]). This consists of
a powerful model-independent framework to study the
evolution of curvature perturbations R during inflation,
valid at energies around the Hubble expansion rateH. With
the help of symmetry arguments, it is possible to derive
the most general class of Lagrangians governing the
dynamics of fluctuations in a Friedman-Robertson-
Walker (FRW) background, in terms of a Goldstone boson
field π ¼ −R=H, given by an operator expansion with
nonlinearly related coefficients parametrizing physics
beyond the canonical single-field paradigm. These coef-
ficients, among which the sound speed cs plays a prominent
role, are determined by the ultraviolet (UV) complete
theory underlying inflation. To quadratic order, the
Lagrangian is given by [6]

Lð2Þ
π ¼ M2

Plj _Hj½c−2s _π2 − a−2ð∇πÞ2�; ð1Þ

where MPl is the reduced Planck mass and a is the scale
factor. cs also defines the strength of cubic operators that
may lead to primordial non-Gaussianity [8]. For instance, if
cs < 1 (with j_csj ≪ Hcs), then equilateral and orthogonal
non-Gaussianity are produced, with fNL parameters given
by [9]

fequilNL ¼ −ðc−2s − 1Þð0.275þ 0.078c2s þ 0.52~c3Þ; ð2Þ

forthoNL ¼ ðc−2s − 1Þð0.0159 − 0.0167c2s þ 0.11~c3Þ; ð3Þ

where ~c3 is a parameter that arises at third order [9] and it is
determined by the UV-complete theory [10]. It has been
conjectured [13] that every parameter of the EFT expan-
sion, such as ~c3, is proportional to ð1 − c2sÞ. If so, single
field slow-roll inflation would be the only single field
theory such that cs ¼ 1.
Current constraints on primordial non-Gaussianity give

cs ≥ 0.024 (95% C.L.) after marginalizing over ~c3 [14].
Future measurements will further constrain the coefficients
of the EFT Lagrangian, narrowing down the class of
fundamental theories that can host inflation together with
the standard model of particle physics. Thus, it is important
to understand how fundamental theories map into the EFT
expansion, especially in the case of theories such as
supergravity and string theory, characterized for having a
large number of scalar fields representing moduli that must
remain massive during inflation.
Given that supergravities have several scalar fields, it is

conceivable that the inflationary path experienced bends in
field space. In fact, it is well understood that, regardless of
how massive fields normal to the path are, these bends
affect the dynamics of π by inducing cs < 1 [15,16]. For
instance, in two-field models one has [12,16,17]

cs ¼ ð1þ 4Ω2=M2Þ−1=2; ð4Þ

where Ω is the local angular velocity describing the bend,
and M is the mass of fields orthogonal to the inflationary
path. In this Letter we will deduce an inequality that any
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single field EFT derived from N ¼ 1 supergravity must
satisfy. It involves cs, H, and M, and it is given by

ðc−2s − 1ÞM2=H2 ≤ Oð1Þ; ð5Þ
where Oð1Þ represents an order 1 number determined by
the geometry of the Kähler manifold underlying the super-
gravity of interest. As we shall see, to ensure that the
horizon exit is properly accounted for by Eq. (1), one
requires that ð1 − c2sÞ2H2=M2c2s ≪ 1. If not, the dispersion
relation describing the propagation of π during horizon
crossing becomes nonlinear, due to new operators in Eq. (1)
with spatial gradients induced by the massive field normal
to the path. This, together with Eq. (5), implies that cs
cannot be much smaller than 1 (and supergravity models
cannot produce large primordial non-Gaussianity) unless
the horizon crossing is described by an EFT with a
nonlinear dispersion relation [18,19]. In this case, the
dynamics of fluctuations would depart considerably from
the standard single-field EFT description of Eq. (1) used to
connect models with observables.
Before deducing the inequality, let us review some basics

about multifield inflation. We consider a general action
Stot ¼

R ffiffiffiffiffiffi−gp
L describing an arbitrary number of real

scalar fields ϕaðt;xÞ, a ¼ 1;…; N, minimally coupled to
gravity, with a Lagrangian

L ¼ M2
Pl

2
Rþ 1

2
γabgμν∂μϕ

a∂νϕ
b − VðϕÞ; ð6Þ

where R is the Ricci scalar constructed from the metric gμν,
γab is a σ-model metric that depends on the fields, and VðϕÞ
is the scalar potential. From now on, we work in units
where MPl ¼ 1. In the case of N ¼ 1 supergravity,
γab and V are uniquely determined by the function
G ¼ K þ ln jWj2, where K is the Kähler potential, and
W the superpotential. We will come back to supergravity in
a moment. To describe the background, we consider an
FRW spacetime with a metric ds2 ¼ −dt2 þ a2ðtÞdx2,
where aðtÞ is the scale factor and x are comoving
coordinates. The expansion rate is H ¼ _a=a and it is given
by the Friedman equation 3H2 ¼ _ϕ2

0=2þ VðϕÞ, where
_ϕ2
0 ≡ γab _ϕ

a
0
_ϕb
0 . The equations of motion for the homo-

geneous background fields ϕa
0ðtÞ derived from Eq. (6) are

Dt
_ϕa
0 þ 3H _ϕa

0 þ γabVb ¼ 0; ð7Þ
where Vb ¼ ∂bV ¼ ∂V=∂ϕb. Furthermore, Dt is a covar-
iant time derivative whose action on a given vector Aa is
such that DtAa ≡ _Aa þ Γa

bcA
b _ϕc

0, where Γa
bc are the

Christoffel symbols derived from γab. The inflationary
perturbations are defined as δϕaðt;xÞ ¼ ϕaðt;xÞ − ϕa

0ðtÞ.
To study them, it is useful to define vectors tangent and
normal to the path ϕa

0ðtÞ, respectively, given by

Ta ≡ _ϕa
0= _ϕ0; Na ≡ −DtTa=jDtTj: ð8Þ

Figure 1 illustrates an example where inflation is driven by
a two-field potential. Fluctuations along the direction Ta

give us curvature perturbations as R ¼ −HTaδϕ
a= _ϕ0,

whereas those along Na correspond to isocurvature per-
turbations [20,21]. Ta andNa allow us to define the angular
velocity Ω via DtTa ≡ −ΩNa [then Eq. (8) tells us that
Ω ≥ 0]. From Eq. (7) it follows that Va ¼ VϕTa þ VNNa,
where Vϕ ¼ TaVa and VN ¼ NaVa. As a result, projecting

Eq. (7) along Ta one finds ϕ̈0 þ 3H _ϕ0 þ Vϕ ¼ 0, which
resembles the equation of motion of a single scalar field.
On the other hand, projecting Eq. (7) along Na one obtains,

Ω ¼ VN= _ϕ0: ð9Þ
This equation reveals that whenever the path is subjected to a
bend, it is pushed towards the outer wall of the potential. Ω
playsa crucial role in thedynamicsof fluctuations, as it couples
together curvature and isocurvature modes [21]. To be con-
sistent with the view that there must be a shift symmetry
ensuring a flat direction in the potential, in this work, we
assume that δΩ ≡ _Ω=HΩ is suppressed (steady bends),
implying that cs varies slowly: j_csj ≪ Hcs. Onemay consider
sharp bends, inwhich case features are produced in the spectra
[16], and Eqs. (2) and (3) are not sufficient to constrain cs.
In order to characterize the evolution of H during

inflation it is useful to define the slow-roll parameters:

ϵ≡ − _H=H2 ¼ _ϕ2
0=2H2; η≡ _ϵ=Hϵ: ð10Þ

Slow-roll inflation corresponds to the regime where the
expansion rate H evolves very slowly for a long enough
time, requiring that ϵ ≪ 1 and jηj ≪ 1. In this regime, one
finds 3H2 ≃ V, and ϵ≃ V2

ϕ=2V
2. On the other hand, it is

also customary to introduce a matrix proportional to the
Hessian of the potential V:

Nab ≡∇aVb=V: ð11Þ

FIG. 1. An example of a path forced to have bends as it
meanders down a two-field potential V.
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This matrix contains information about the shape of the
potential, and it is sometimes used to define slow-roll
parameters alternative to those of Eq. (10). These are [22]

ϵV ≡ 1

2

VaVa

V2
; ηV ≡min eigenvaluefNg: ð12Þ

However, there is a problem with these definitions: Both ϵV
and ηV may attain large values even with ϵ; jηj ≪ 1. First,
ϵV is not necessarily small because Ta and the direction
of steepest descent of the potential (∝Va) do not coincide
in a bend. To see this, we may combine ϵ≃ V2

ϕ=2V
2 with

Eqs. (9) and (10) to find that ϵV is given by

ϵV ¼ ϵð1þ Ω2=9H2Þ: ð13Þ
This shows that ϵV may attain values of order 1 without
necessarily violating slow roll. Second, ηV is not neces-
sarily small because Ta and the eigenvector associated to ηV
(the smallest eigenvalue of Nab) do not coincide in a bend
(that is, ηV ≠ NabTaTb when Ω ≠ 0). To show this, let us
compute ηV in the case of two-field models. In this case,
we may define a unit vector ha ≡ cos αTa þ sin αNa and
minimize the contraction hahb∇aVb=V by tuning α, to
obtain back ηV . To perform the contraction we need to be
aware of the following identities [16]:

TaTb∇aVb ¼ 3H2ð2ϵ − η=2Þ þ Ω2; ð14Þ

NaTb∇aVb ¼ ΩHð3þ δΩ þ η − 2ϵÞ; ð15Þ

NaNb∇aVb ¼ M2 þ Ω2 − ϵH2R; ð16Þ

where δΩ ¼ _Ω=HΩ, and R ¼ RabcdTaNbTcNd is the
Riemann tensor of the scalar field space projected along
Ta andNb.M is the effective mass of the perturbation along
the direction Na, and it is the same quantity appearing in
Eq. (4). Given that we are assuming slow roll, we disregard
δΩ þ η − 2ϵ in Eq. (15) before minimizing hahb∇aVb=V.
In addition, we may assume that ϵH2R is small compared
toM2 þ Ω2, which is generally true in supergravity models
of inflation [23–26]. Then, we find

ηV ¼ 1

12

�
ðc−2s − 1ÞM

2

H2
þ 2

M2

H2
þ 3½4ϵ − η�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2

H2
−
3

2
½4ϵ − η�

�
2

þ 9ðc−2s − 1ÞM
2

H2

s �
; ð17Þ

where we used Eq. (4) to introduce cs. Now, the crucial
point to appreciate here is that it is possible to have Ω ≫ M
(and therefore c2s ≪ 1) without violating the conditions
ϵ; jηj ≪ 1. If this is the case, the misalignment is large, and
ηV acquires sizable values. On the contrary, if Ω ¼ 0, one
recovers a suppressed value given by ηV ¼ ð4ϵ − ηÞ=2.

Hence, ϵV and ηV are not legitimate slow-roll parameters
unless the multifield path remains straight (Ω ¼ 0).
Let us now deduce the inequality (5), valid for the scalar

sector of N ¼ 1 supergravity. Before considering the case
of a single chiral field, let us consider the general situation.
Here, the target space corresponds to a Kähler manifold
spanned by complex scalar fieldsΦi. The F-tern potential is
given by V ¼ eGðKi|̄GiG|̄ − 3Þ, where Gi ¼ ∂iG and
Ki|̄ ¼ ∂i∂ |̄G is the Kähler metric (derivatives are taken
with respect to Φi and their complex conjugate Φı̄). One
may now define a Hessian matrix ∇iV|̄. Then, because ηV
is the minimum eigenvalue of Nab, one necessarily has [27]

ηV ≤ fif|̄∇iV|̄=V; ð18Þ

where fi is an arbitrary unit complex vector. It turns out that

if fi ¼ Gi=
ffiffiffiffiffiffiffiffiffiffiffi
GjGj

q
, then the right-hand side (rhs) of

Eq. (18) becomes independent of second derivatives of
the superpotential W [28,29], and reduces to [27]

∇iV|̄

V
fif|̄ ≤ −

2

3
þ 1þ γ

γ

�
2

3
− RðfÞ

�

þ ϵV
1þ γ

þ 4ffiffiffi
3

p
ffiffiffiffiffi
ϵV

pffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p ; ð19Þ

where γ ≡H2=m2
3=2 (m3=2 ¼ eG=2 is the gravitino mass),

and RðfÞ≡ Ri|̄kl̄f
if|̄fkfl̄ is the Riemann tensor computed

out of Ki|̄ projected along the complex vector fi.
We now have all the necessary elements to deduce the

desired inequality: If the supergravity has only one chiral
field Φ, then the scalar field target space is spanned by two
real scalar fields, implying that ηV in the left-hand side (lhs)
of Eq. (18) is precisely given by Eq. (17). Then, putting
together Eqs. (17) and (18) we deduce the desired inequal-
ity. However, in order to explicitly write down a simple
version of it, it is useful to anticipate three relevant regimes:
First, if there are no bends, ηV ¼ ð4ϵ − ηÞ=2, and one
recovers the bound deduced in Ref. [27] (see also
Ref. [30]), informing us whether a given supergravity
can produce inflation without bends. Second, if
ðc−2s − 1ÞM2=H2 is of order Oðϵ; ηÞ, then Ω2 ≪ H2, and
cs is close to 1. Then, ηV is of order Oðϵ; ηÞ and the
inequality emerging from Eq. (18) does not give us
interesting information beyond that of Ref. [27]. Third,
if ðc−2s − 1ÞM2=H2 ≫ jOðϵ; ηÞj, we may neglect the slow-
roll parameters appearing in Eqs. (17) and (19) to obtain
our main result:

1

6

M2

H2

�
c−2s − 1

2
þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9ðc−2s − 1ÞH

2

M2

r �

≤
1þ γ

γ

�
2

3
− RðfÞ

�
−
2

3
: ð20Þ

PRL 117, 101301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

101301-3



This inequality puts together the sound speed cs, the ratio
M=H, and additional information on the curvature of the
Kähler manifold.
Let us now analyze the content of Eq. (20), which

assumes that ϵ; jηj ≪ 1 [31]. To start with, notice that the
smallest attainable value of the lhs of Eq. (20) is −3=4. This
means that when the inflationary path is subjected to strong
bends, it is possible to have M2 > 0 simultaneously with a
large and negative value of ηV . Next, the rhs of Eq. (20) may
acquire any desired value, depending on the specific Kähler
potential under consideration. Nevertheless, we expect this
value to be of order 1. First, the natural value of the curvature
term is RðfÞ≃Oð1Þ. For instance, canonical models are
characterized by RðfÞ ¼ 0 whereas single-chiral-field no-
scale models satisfyRðfÞ ¼ 2=3 [32]. Second, there are two
classes of models of supergravity inflation depending on the
value of γ ¼ H2=m2

3=2. On the one hand, we expect the value

ofH during inflation to be of order 1014 GeV or smaller, but
not too much smaller (in order to have a tensor to scalar ratio
r≲ 0.1). On the other hand, we expect the value of m3=2 at
the end of inflation to be of order 1 TeVor larger, but not too
much larger (in order to have a soft SUSY breaking scale
close to the electroweak symmetry breaking scale). Hence,
in models where m3=2 did not evolve significantly during
inflation, one expects γ ≫ 1. To be conservative, in the
present Letter we assume γ ≳ 1, implying that the rhs of
Eq. (20) is of order 1. There are string inspired models, such
as large volume scenarios [33], where γ ≪ 1. However, in
these models one finds 2=3 −RðfÞ ∼ γ, implying that the
rhs Eq. (20) continues to be of order 1 [34].
It is important to consider in our analysis the range of

parameters for which the two-field system admits an EFT of
the form (1). This will depend on the values of the ratios
M=H and Ω=M (or equivalently cs). We plot these ranges in
Fig. 2: First, the dynamics of fluctuations is described by a
single degree of freedom as long as the Goldstone boson’s
energy ω satisfies ω2 ≪ M2=c2s [17]. Then, requiring that
horizon crossing ω≃H happens within this regime, we
obtain the bound H2 ≪ M2=c2s . This bound defines the
region at the right of the “Multi Field” area in Fig. 2, which,
for reference, is limited by the curve H2 ¼ 0.5M2=c2s .
Within this region there are two additional subregimes: If
ω2 ≪ M2c2s=ð1 − c2sÞ2 the dispersion relation is of the form
ωðkÞ ¼ csk and the theory is described by Eq. (1). For
energies ω2 ≃M2c2s=ð1 − c2sÞ2 or larger, the spatial gra-
dients in the kinetic term of the massive field (normal to the
path) dominate over its mass (k2 ≫ M2), inducing new
operators in Eq. (1) that make the dispersion relation ωðkÞ
for the Goldstone boson π nonlinear [17–19]. In this
case, the evolution of π is determined by an EFT that
departs significantly from (1), implying different relations
between observables and the parameters of the theory. Thus,
we deduce that the EFT (1) is valid as long as [17]:

ð1 − c2sÞ2H2=M2c2s ≪ 1: ð21Þ

The region satisfying this bound corresponds to the area
above the dashed curve satisfying ð1−c2sÞ2H2=M2c2s¼0.5,
separating the domains “Single Field” and “Nonlinear
dispersion relation” in Fig. 2. In addition, the inequality
(20) is satisfied at the regions bounded by the solid lines,
opposite to the labels indicating benchmark values for the rhs
of Eq. (20). We may further simplify the form of our
inequality: Because of Eq. (21) and the fact that the rhs of
Eq. (20) is of order 1, we may take 9ðc−2s − 1Þ ≪ M2=H2

and Taylor expand the square root in Eq. (20) to recover
Eq. (5). As a result, for supergravity inflation to be described
by Eq. (1), cs cannot be much smaller than unity. Indeed, in
Fig. 2 we see that cs cannot be smaller than cs ≃ 0.4 when
the rhs of the inequality is 1.
In the case of supergravities with many chiral fields, the

qualitative content of this result will remain valid. In those
cases the rhs of Eq. (20) will not change, and we only need
to worry about the lhs. There, cs will have a similar
dependence on the masses of heavy fields to that of Eq. (4)
[35]. Moreover, the form of ηV will change due to the new
matrix entries determined by the masses of the extra fields.
However, it turns out that these contributions do not modify
ηV importantly if the masses of the extra fields are of the
same order than that along Na. In particular, in many
models of supergravity there is only one chiral field Φ that
evolves during inflation, while the rest remain stabilized,
having the role of breaking SUSY [36]. In those types of
models our inequality remains exactly valid. This is
because here the only evolving fields are the two real
scalar fields entering Φ, giving us back the same expression
for ηV of Eq. (17), deduced under the assumption that the
inflationary path was embedded in a two-field manifold.
In conclusion, we have derived a direct link between

observables and N ¼ 1 supergravity inflation. By con-
straining non-Gaussianity, we are able to infer nontrivial
information about the supergravity responsible for

FIG. 2. The parameter space M=H vs cs. The inequality is
satisfied at the regions bounded by the solid lines, opposite to the
labels indicating benchmark values for the rhs of Eq. (20).
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inflation. If inflation is described by the EFT (1), then cs
cannot be suppressed, and non-Gaussianity must be such
that feq;orthNL ≲Oð1Þ (cs ≳ 0.4). On the contrary, if obser-
vations ever confirm sizable non-Gaussianity [feq;orthNL ≳
Oð1Þ] then the supergravity responsible for inflation must
have had nontrivial properties pertaining to the evolution of
perturbations during horizon crossing: (a) the ratio M=H
was of order one or smaller, and (b) the propagation of
curvature perturbations during horizon crossing was char-
acterized by a nonlinear dispersion relation as a result of
their interaction with the field normal to the trajectory. In
such a case, we would need to understand the generation
of primordial perturbations within a regime that so far has
not been studied in the context of supergravity inflation. Of
course, our bound cs ≳ 0.4 must be taken with some
caution, as the rhs of Eq. (20) may acquire large or small
values depending on the specific model under consider-
ation. Notwithstanding, our analysis gives valuable infor-
mation about the connection between supergravity and
observables, that could be further complemented with
constraints on ~c3 (which also depends on the Kähler
geometry).
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