Leaf extract from the endemic plant *Peumus boldus* as an effective bioproduct for the green synthesis of silver nanoparticles

Gonzalo Recio Sánchez a,b, Claudia Lagos Castilla b, Noelia Benito Gómez c, Alba García d, Ricard Marcos d, Erico R. Carmona b,e,*

a Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
b Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
c Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
d Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
e Escuela de Medicina Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile

A R T I C L E I N F O

Article history:
Received 5 May 2016
Received in revised form 13 July 2016
Accepted 23 July 2016
Available online 25 July 2016

Keywords:
Biosynthesis
Boldo
Chile
Leaf extracts
Metallic nanoparticles

A B S T R A C T

Green synthesis of nanoparticles (NPs) from plant extracts have emerged as a promising methodology for the fabrication of metallic NPs, as it involves an easy, fast, low-cost, and environmentally friendly bioprocess. In the present study, we propose aqueous extracts from the endemic-medicinal plant *Peumus boldus* ("Boldo") as an easy, fast, low-cost, and efficient bioproduct for the green synthesis of silver NPs (AgNPs). Our results indicate that room temperature conditions, short reaction time (only 3 h), low concentrations (1%) of leaf extracts of *P. boldus*, and silver nitrate salts (2 mM) were sufficient to biosynthesize AgNPs in a uniform size (18 nm) and shape distribution (spherical). In addition, stable and pure AgNPs were obtained in this process at the same time.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Green synthesis of silver nanoparticles (AgNPs) involves a chemical reduction of the silver salt solution, which makes use of plant extract. In this process, two phases are recognized: (1) the nucleation phase, where the silver atoms form small nuclei using high activation energy, (2) and the second phase, known as growth phase, in which these small nuclei are grouped, giving rise to the creation of nanoparticles (NPs) [1,2].

The features of these NPs obtained by using plant extracts are influenced by parameters such as temperature, reaction time, and pH; however, the nature of biomolecules present in the plant extracts could be the most relevant factor in the bioprocess [3,4]. Thus, the quality of the selected extract is of great importance [5,6].

In the present work, the South American endemic *Peumus boldus* Mol. (also known as "Boldo") was proposed to be a suitable and convenient plant to improve the efficiency of green synthesis of AgNPs, since it shows high contents of polyphenols, and has a potent antioxidant capacity [7,8]. In addition, the major biomolecule constituents in infusions of *P. boldus* have been well described, being mainly proanthocyanidins, quercetin, kaempferol and isorhamnetin [9].

The aim of the present work was to describe the biosynthesis of AgNPs by using aqueous *P. boldus* extract, and to analyze the effectiveness of this bioprocess according to the chemical and physical properties of AgNPs synthetized from different AgNO3 concentrations, and reaction time.

2. Materials and methods

2.1. Extracts

Samples of *P. boldus* were taken from the botanical garden of Universidad Católica de Temuco (38° 42’ S, 72° 42’ W) in October 2012 (austral spring season). Aqueous extracts were prepared by putting 10 g of the homogenized dried leaves and 200 mL of distilled water in a Soxhlet extractor for 4–5 h.

Please cite this article as: G.R. Sánchez, et al., Leaf extract from the endemic plant *Peumus boldus* as an effective bioproduct for the green synthesis of silver nanoparticles, Mater Lett (2016), http://dx.doi.org/10.1016/j.matlet.2016.07.115

http://dx.doi.org/10.1016/j.matlet.2016.07.115
0167-577X/© 2016 Elsevier B.V. All rights reserved.
2.2. Biosynthesis

Biosynthesis was carried out by mixing *P. boldus* extracts with aqueous solution of AgNO₃ (Merck Company, Darmstadt, Germany), and the solution was homogenized by stirring at room temperature. The final concentration of AgNO₃ used in the synthesis ranged from 0.1 to 10 mM with 1% volume of *P. boldus* extract.

2.3. UV–Vis-spectroscopy

UV–Vis absorption spectra were measured using a Shimadzu UV-mini 1240 model spectrophotometer. All measurements were performed within the range of 200 nm to 800 nm with a 1 nm interval and with 1 s of integration time.

2.4. X-ray photoelectron spectroscopy (XPS)

XPS spectra were measured using a hemispherical analyzer (Physical Electronics 1257 system). For the XPS, a twin anode (Mg and Al) with X-ray source was operated at 200 W of constant power and using Al Kα radiation (1486.6 eV). The samples were placed in a sample stage with emission angle of 45°.

2.5. Transmission Electron Microscopy (TEM)

TEM was carried out with a JEOL JEM–2011 instrument to determine the size of the AgNPs. Prior to carrying out the TEM measurements, AgNPs obtained from the biosynthesis were purified (by centrifugation) and sonicated.

2.6. Hydrodynamic size and Z-potential

Dynamic Light Scattering (DLS) and Laser Doppler Velocimetry (LDV) were performed with a Malvern Zetasizer Nano-ZS zen3600 instrument to measure the hydrodynamic diameter and Z-potential of AgNPs, respectively.

3. Results and discussion

Fig. 1a shows UV–Vis absorption spectra recorded as a function of time for an aqueous solution of 1 mM AgNO₃ and 1% volume of *P. boldus* extract in relation to the absorption of the extract. It can be observed that *P. boldus* extract showed absorption peak localized at 350 nm. After 2 min of reaction, the reduction of Ag⁺ ions to Ag° showed a minor absorption peak localized at 454 nm, which is related to the localized surface plasmon resonance of AgNPs [10]. The properties of the absorption peaks related to surface plasmon resonance of metallic NPs are largely governed and influenced by the particle size, shape, distribution and also depend on the dielectric constant of the surrounding media. The absorption peak observed suggests that AgNPs have a spherical shape with an average diameter of 20 nm [11,12].

As the reaction time increased, the absorption peak steadily rose. Above indicates that the amount of AgNPs increased with the reaction time. However, any shift in the center of the absorption peak could be observed, suggesting that the average mean diameter of AgNPs was not affected by the reaction time. After 3 h, the absorption peak related to the plasmon resonance of AgNPs reached its maximum intensity, which confirmed that the biosynthesis of AgNPs was completed. After this time, the intensity of absorption peak slightly reduced, as was observed after 20 h. It should be noted that the biosynthesis of AgNPs with *P. boldus* extracts required less time to complete the process than other kind of leaf extracts previously studied [11,13–15]. The shorter process time of *P. boldus* could be explained by the potent antioxidant capacity of the leaf extract polyphenols, which facilitated the bioreduction process [9,16,17]. Although the mechanism associated with green fabrication of AgNPs remains unclear, there is a general consensus that synthesis of AgNP by biological entities is due to the presence of large number of organic chemicals like carbohydrates, lipids, proteins, enzymes, phenols, flavonoids, terpenoids, alkaloids, among others, which are capable of donating electrons for the reduction of Ag⁺ ions to Ag° [18].

Fig. 1b shows UV–Vis absorption spectra after 1 h of reaction of AgNPs biosynthesized with the different concentrations of AgNO₃ and 1% of *P. boldus* extract fixed. A broad absorption band in the range of 430–475 nm could be observed for all concentrations of AgNO₃, which are characteristic of surface plasmon resonance of AgNPs. In addition, as the AgNO₃ concentration was increased, the intensity of the absorption peak of AgNPs also increased, suggesting that the amount of AgNPs rises. Furthermore, a blue shift from 455 nm to 438 nm could be observed in the absorption peaks when the AgNO₃ concentration increased from 0.1 mM to 2 mM. This blue shift caused by quantum size effects indicates a smaller size distribution meaning that AgNPs do not agglomerate, which was in agreement with the TEM images. However, at 10 mM AgNO₃, a wider absorption band was observed, suggesting a smaller diameter size of AgNPs, but a red shift occurred in the absorption peak at 472 nm, which actually indicates a large size distribution given by groups of agglomerated AgNPs, also in agreement with the TEM images.
Fig. 2a shows the XPS survey of the AgNPs obtained. XPS measurements of AgNPs colloids were carried out by suspending NPs on a gold film while the gold served as a metallic reference. Au 4f binding energy was 84 eV for samples without any charging effect. It can be seen that the only elements present on it were C, O, Ag, and the Au from the substrate. It should be noted that nitrogen was not detected from the AgNO₃, which is a clear indication of AgNPs formation.

Fig. 2b shows a high-resolution spectrum from Ag 3d band. This band was fitted with a doublet, with a spin-orbit separation of 6 eV, and an area ratio of 2/3. This doublet was placed at 368.3 eV, which corresponds with the binding energy of metallic Ag [19].

Fig. 2c shows the Ag 3d band of the samples after Shirley background subtraction of biosynthesized AgNPs with different molar concentrations of AgNO₃ and 1% of Boldo extract. In all cases, the Ag 3d₅/₂ band appeared at 368.3 ± 0.1 eV (SD), which corresponds with the binding energy of metallic Ag [19], indicating that AgNPs were synthesized at different concentrations of AgNO₃.

TEM was used to characterize morphology and size of AgNPs in

Please cite this article as: G.R. Sánchez, et al., Leaf extract from the endemic plant *Peumus boldus* as an effective bioproduct for the green synthesis of silver nanoparticles, Mater Lett (2016), http://dx.doi.org/10.1016/j.matlet.2016.07.115
Fig. 3. TEM images and histogram diameter distributions of AgNPs obtained from 0.1 mM (a), 1 mM (b), 2 mM (c), and 10 mM (d) of AgNO₃ salt solution and 1% of *P. boldus* extracts. Scale bars represent 200 nm.
kaempferol-3-O-diode array detection analysis has demonstrated that rutin, and important to note that high-pressure liquid chromatography with concentrations of AgNO₃ studied, the morphology of synthesized 1% volume of Boldo extract. The data indicates that for all concentrations of AgNO₃ biosynthesized at different concentrations of AgNO₃ measured by LDV method. (b) Z potential measurements showed low mean values of zeta potential for AgNPs synthesized from 0.1 mM, 1 mM, and 10 mM of AgNO₃ (−14 mV, −23.6 mV, and −18.8 mV, respectively), indicating an incipient instability of AgNPs (Fig. 4b) [28]. However, a moderate colloidal stability was recorded for NPs synthesized at 2 mM [28]. Thus, the high hydrodynamic size found for NPs synthesized with 10 mM of AgNO₃ could be explained by the unstable NPs formation which agglomerates and forms clusters greater than 100 nm.

In this sense, these results were in accordance with TEM images, where significant formations of agglomerates of AgNPs were observed at 10 mM of AgNO₃.

It should be noted that biosynthesized AgNPs showed negative charge, as was expected for the nucleation growth process. However, the OH− groups from polyphenol molecules capping around the surface of AgNPs may also be responsible of the negative charge of AgNPs, as was observed in previous studies [5,29].

According to the present study, P. boldus extract could be considered a promising candidate for the green synthesis of AgNPs since factors such as room temperature, short reaction time, low concentrations of leaf extracts of P. boldus, and silver nitrate salts are sufficient to biosynthesize stable and pure AgNPs in a uniform size and shape distribution.

4. Conclusion

We have developed a fast, convenient, and environmental friendly method for the synthesis of AgNPs from the endemic P. boldus aqueous leaf extract. These particles showed an average diameter of 18 nm, were spherical, and showed a good stability and dispersion. Surface plasmon resonance during the reaction with the biomolecules present in the plant leaf extract and AgNO₃ resulted in the formation of AgNPs, which were confirmed by UV–Vis, XPS, TEM, DLS, and LDV. Finally, these results could be related with the high antioxidant capacity given by polyphenol contents of P. boldus leaf extract, which were capable of inducing a chemical reduction of Ag⁺ ions to Ag₀, allowing the nucleation, growth and stabilization process of AgNPs.

Acknowledgments

The authors thank the financial support given by FONDECYT 11150322 project, FONDECYT 3150101 project, DGIPUCT 2015PF-GR-06 project, DGIP UCT-CD-2010-01 project, and MECESUP UCT-0804 project.

References