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Abstract. In this paper, we investigate a model for a 1 + 1 dimensional self-interacting
and partially directed self-avoiding walk, usually referred to by the acronym IPDSAW. The
interaction intensity and the free energy of the system are denoted by β and f , respectively.
The IPDSAW is known to undergo a collapse transition at βc. We provide the precise
asymptotic of the free energy close to criticality, that is we show that f(βc − ε) ∼ γε3/2

where γ is computed explicitly and interpreted in terms of an associated continuous
model. We also establish some path properties of the random walk inside the collapsed
phase (β > βc). We prove that the geometric conformation adopted by the polymer is
made of a succession of long vertical stretches that attract each other to form a unique
macroscopic bead and we establish the convergence of the region occupied by the path
properly rescaled towards a deterministic Wulff shape.
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1. Introduction

1.1. Model and physical insight. A solvent is said to be ”poor” for a given homopolymer
if the chemical affinity between the solvent and the monomers constituting the homopoly-
mer is low. When dipped in such a solvent, the homopolymer folds itself up to exclude the
solvent and therefore adopts a collapsed conformation, that looks like a compact ball. If
the quality of the solvent improves, the chemical affinity raises until it reaches a thresh-
old above which the polymer extends itself in such a way that a positive fraction of its
monomers are in contact with the solvent.
The interacting partially directed self-avoiding walk (IPDSAW) was introduced in [31] as
a partially directed model of an homopolymer in a poor solvent. The spatial configurations
of the polymer of length L (L monomers) are modeled by the trajectories of a self-avoiding
random walk on Z2 that only takes unitary steps upwards, downwards and to the right.
Thus, the set of allowed L-step paths is

WL = {w = (wi)
L
i=0 ∈ (N0 × Z)L+1 :w0 = 0, wL − wL−1 =→,

wi+1 − wi ∈ {↑, ↓,→} ∀0 ≤ i < L− 1,

wi 6= wj ∀i < j}.
Note that the choice of w ending with an horizontal step is made for convenience only. We
consider two different a priori laws on WL, uniform and non-uniform.

(1) The uniform model: all L-step paths have the same probability, i.e.,

PL(w) =
1

|WL|
, w ∈ WL. (1.1)

(2) The non-uniform model: the L-step paths have the following law

• At the origin or after an horizontal step: the walker must step north, south or east
with equal probability 1/3.

• After a vertical step north (respectively south): the walker must step north (respec-
tively south) or east with probability 1/2.

Henceforth, we will focus on the uniform model since all our results can be adapted straight-
forwardly to the non-uniform model modulo a shift in the critical point βc and in the value
of the constant aβ defined before the Shape Theorem.
The monomer-solvent interactions are not taken into account directly in the IPDSAW.
We rather consider that, when dipped in a poor solvent, the monomers try to exclude the
solvent and therefore attract one another. For this reason, any non-consecutive vertices
of the walk though adjacent on the lattice are called self-touchings (see Fig. 1) and the
interactions between monomers are taken into account by assigning an energetic reward β ≥
0 to the polymer for each self-touching (consequently, a lower chemical affinity corresponds
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Figure 1. Example of a trajectory with 12 self-touchings in light grey.

to a larger β). Thus, we associate with every random walk trajectory w = (wi)
L
i=0 ∈ WL

the Hamiltonian

HL(w) :=
L∑

i,j=0
i<j−1

1{‖wi−wj‖=1}, (1.2)

which allows to define the law PL,β of the polymer in size L as,

PL,β(w) =
eβHL,β(w)

ZL,β
PL(w), (1.3)

where ZL,β is the normalizing constant known as the partition function of the system.
Henceforth, we remove the term 1/|WL| from the definition of PL (recall (1.1)) and from
the computation of the partition function ZL,β. Although PL is not a probability law
anymore, the latter simplification is harmless, because it does not change the polymer law
PL,β and because it only induces a constant shift of the free energy f(β) introduced in
Section 1.2 below.

From random walk paths to vertical stretches. It is easy to see that any path in WL can be
decomposed into a collection of vertical stretches separated by one horizontal step. Thus,
we set ΩL :=

⋃L
N=1 LN,L, where LN,L is the set of all possible configurations consisting of

N vertical stretches that have a total length L, that is

LN,L =
{
l ∈ ZN :

∑N
n=1 |ln|+N = L

}
. (1.4)

We build the natural one to one correspondence between ΩL and WL by associating with
a given l ∈ ΩL the path of WL that starts at 0, takes |l1| vertical steps north if l1 > 0
and south if l1 < 0, then takes one horizontal step, then takes |l2| vertical steps north if
l2 > 0 and south if l2 < 0 then takes one horizontal step and so on... (see Fig. 2). The
Hamiltonian associated with a given path ofWL can be rewritten in terms of its associated
collection of vertical stretches l ∈ ΩL as

HL(l1, . . . , lN ) =
∑N−1

n=1 (ln ∧̃ ln+1) (1.5)

where

x ∧̃ y =

{|x| ∧ |y| if xy < 0,

0 otherwise.
(1.6)

Therefore, the partition function can be rewritten under the form

ZL,β =

L∑
N=1

∑
l∈LN,L

eβ
∑N−1
i=1 (li ∧̃ li+1). (1.7)
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l 1 
=

 2

l 2 
= 

-3 l 3 
= 

4 l 5 
= 

-2

l4 = 0

Figure 2. Example of a trajectory with N = 5 vertical stretches and length
L = 16.

1.2. Free energy and collapse transition. The sequence {logZL,β}L is super-additive
and the Hamiltonian in (1.2) is obviously bounded from above by βL. As a consequence,
we can define the free energy per step f : (0,∞)→ R as

f(β) = lim
L→∞

1

L
logZL,β = sup

L∈N

1

L
logZL,β ≤ β. (1.8)

The collapse transition corresponds to a loss of analyticity of β 7→ f(β) at some critical
parameter βc ∈ (0,∞) above which the density of self-touchings performed by the polymer
equals 1. In this collapsed phase, the expression of the free energy per step is rather simple,
i.e., β + κ, where κ is the entropic constant associated to those trajectories in WL whose
self-touching density is equal to 1 + o(1). To achieve such a saturation of its self-touching,
the polymer must choose its configuration among those satisfying two major geometric
restrictions, i.e.,

• the number of horizontal steps is o(L)

• most pairs of consecutive vertical stretches are of opposite directions.

It turns out that an appropriate choice of a trajectory satisfying both restrictions above is
sufficient to exhibit the collapsed free energy. To that aim, we pick L ∈ N :

√
L ∈ N and

consider the trajectory l∗ ∈ L√L,L defined as l∗i = (−1)i−1(
√
L − 1) for i ∈ {1, . . . ,

√
L}.

By computing the contribution of l∗ to ZL,β one immediately obtain that1, for β > 0,

f(β) ≥ β. (1.9)

At this stage, we can define the excess free energy f̃(β) := f(β) − β, which is always non
negative by (1.9). We define the critical parameter

βc := inf{β ≥ 0 : f̃(β) = 0}, (1.10)

and the convexity of β 7→ f̃(β) allows us to partition [0,∞) into a collapsed phase denoted
by C and an extended phase denoted by E , i.e,

C := {β : f̃(β) = 0} = {β : β ≥ βc} (1.11)

and

E := {β : f̃(β) > 0} = {β : β < βc}. (1.12)

1In a previous paper [22] the authors obtained the lower bound of f(β) ≥ β− log(1+
√

2). The difference
comes from the omission of the normalizing factor 1/ |WL|.
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1.3. Main results. The main results of this paper are Theorems A,B,C,D,E and F. The-
orems A and B are dedicated to the investigation of the phase transition while the path
properties of the polymer inside its collapsed phase are studied with Theorems C,D,E and
F.
Before stating the Theorems we need to introduce Pβ the law of an auxiliary symmetric
random walk V := (Vn)n∈N with geometric increments, i.e., V0 = 0, Vn =

∑n
i=1 Ui for

n ∈ N and (Ui)i∈N is an i.i.d sequence under the law Pβ, with distribution

Pβ(U1 = k) = e−
β
2 |k|

cβ
∀k ∈ Z with cβ := 1+e−β/2

1−e−β/2 . (1.13)

Then, for δ ≥ 0 we set

hβ(δ) := lim
N→∞

1

N
log Eβ

(
e−δAN (V )

)
, (1.14)

where AN (V ) :=
∑N

i=1 |Vi| gives the geometric area below the V trajectory after N steps.
We will prove in Section 2.2 below that the limit in (1.14) exists and that δ 7→ hβ(δ) is
non-positive, non-increasing and continuous on [0,∞). We finally define Γ(β) an energetic
term of crucial importance as

Γ(β) =
cβ
eβ
, (1.15)

and we will see for instance in (1.36) below that Γ(β) penalizes the horizontal steps when
it is smaller than 1 and favors them when it is larger than 1.

A sharper asymptotic of the free energy close to criticality. With Theorem A, we
give a new expression of the excess free energy.

Theorem A (Free energy equation). The excess free energy f̃(β) is the unique solution

of the equation log(Γ(β))− δ + hβ(δ) = 0 if such a solution exists and f̃(β) = 0 otherwise.

Note that Theorem A and the obvious equality hβ(0) = 0 are sufficient to check that
the critical parameter βc is the unique solution of Γ(β) = 1. One of the main interest
of Theorem A is that it allows us to use the analytic properties of δ 7→ hβ(δ) at 0+ to

investigate the regularity of β 7→ f̃(β) at βc.

Theorem B (Phase transition asymptotics). The phase transition is second order with
critical exponent 3/2 and the first order assymptotic of the excess free energy at (βc)

− is
given by

lim
ε→0+

f̃(βc − ε)
ε3/2

=
( ς1
ς2

)3/2
, (1.16)

where

ς1 = 1 + e−βc/2

1−e−βc , (1.17)

and where

ς2 = − lim
T→∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt) = 2−1/3|a′1|σ2/3

βc
, (1.18)

with σ2
β = Eβ(U2

1 ), with a′1 the smallest zero (in absolute value) of the first derivative of

the Airy function and with (Bs)s∈[0,∞) a standard Brownian motion.

Remark 1.1. The Laplace transform E(e−s
∫ 1
0 |Bs|ds) for s > 0 was first computed ana-

lytically by Kac in [21] and studied by Takacs [27] (see for instance the survey by Janson
[20]).
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Remark 1.2. The critical exponent 3/2 is given by the leading term of the Taylor ex-

pansion of hβ at 0+, i.e., hβ(γ) ∼ −c γ2/3 (with c > 0). The method of proof we used

consists in cutting the trajectories into blocs of size γ−2/3. This very method was used in
[29], in dimension d = 1, to prove that discrete Domb-Joyce type models converge towards
continuous Edwards type models in the weak coupling limit.

Remark 1.3. The asymptotic hβ(γ) ∼ −c γ2/3 is closely related to the investigation of the
so called pre-wetting phenomenon (see [16], where the scaling exponent is obtained from a
renormalization procedure similar to ours). The pre-wetting phenomenon is observed when
a thermodynamically stable gas is in contact with a substrate (hard-wall) that has a strong
preference for the liquid phase. In such a situation, a thin layer of liquid may appear that
separates the substrate from the gas. When the temperature T gets closer to the liquid/gas
boiling temperature Tb, the layer of liquid becomes thicker. The liquid-gas interface can
therefore be modeled by a random walk trajectory constrained to remain positive and whose
area is penalized via a Gibbs factor δAN (V ) where δ vanishes as T → Tb. Close to criticality

(δ = 0), the correlation length of the system varies as δ−2/3 which explains the 2/3 exponent
of hβ at 0+.

The determination of the precise asymptotics of the free energy close to βc brings the
IPDSAW into a thin class of statistical mechanical models for which the behavior of the
free energy close to criticality is well understood. This is the case, for instance for the
pinning/wetting model (see [15, Chapter 2]). Perturbing such models by adding a weak
random component to their interactions is physically relevant (see [9]) and gives rise to
complex mathematical issues (see [1]). For the model of a polymer pinned by a linear
interface, the issue of the disorder relevance on the phase transition was controversial until
it was settled recently (see [10] or [15, Chapters 4 and 5], for a survey). For the IPDSAW, a
natural way of introducing the disorder would be to assign an energetic price β+sξi,j to the
self-touching between monomers i and j. The mechanism governing the phase transition
being quite different from its counterpart in the pinning model, the investigation of the
disorder effect is relevant both mathematically and physically.

Path properties inside the collapsed phase. The main result of this paper is concerned
with the path behavior of the polymer inside its collapsed phase (β > βc). We divide each
trajectory into a succession of beads. Each bead is made of vertical stretches of strictly
positive length and arranged in such a way that two consecutive stretches have opposite
directions (north and south) and are separated by one horizontal step (see Fig. 3). A bead
ends when the polymer gives the same direction to two consecutive vertical stretches or
when a zero length stretch appears, which corresponds to two consecutive horizontal steps.
We will prove that the polymer folds itself up into a unique macroscopic bead and we will
identify its horizontal extension and its asymptotic deterministic shape. To quantify these
results we need the following notations.

Number of beads. Let l ∈ ΩL and denote by NL(l) its horizontal extension, i.e., NL(l)
is the integer N such that l ∈ LN,L. Pick l ∈ LN,L and let (uj)

N
j=1 be the sequence

of accumulated lengths of the polymer after each vertical stretch, adding the lengths of
the one step horizontal steps, that is uj = |l1| + · · · + |lj | + j for j ∈ {1, . . . , N}. For
convenience only, set lN+1 = 0. Set also x0 = 0 and for j ∈ N such that xj−1 < N , set
xj = inf{i ≥ xj−1 + 1: li ∧̃ li+1 = 0} (see Fig. 5). Finally, let nL(l) be the index of the last
xj that is well defined, i.e., xnL(l) = N . Thus we can decompose any trajectory l ∈ ΩL into
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Figure 3. Example of a trajectory with 3 beads.

a succession of nL(l) beads, each of them being associated with a subinterval of {1, . . . , L}
written as

Ij = {uxj−1 + 1, . . . , uxj}, for j ∈ {1, . . . , nL(l)}, (1.19)

and therefore, we can partition {1, . . . , L} into ∪nL(l)
j=1 Ij . At this stage, we can define the

largest bead of a trajectory l ∈ ΩL as Ijmax with

jmax = arg max
{
|Ij |, j ∈ {1, . . . , nL(l)}

}
. (1.20)

With Theorem C below, we claim that, in the collapsed phase, there is only one macroscopic
bead.

Theorem C (One bead Theorem). For β > βc, there exists a c > 0 such that

lim
L→∞

PL,β
(
|Ijmax | ≥ L− c (logL)4

)
= 1. (1.21)

Remark 1.4. Dividing trajectories into beads does not give rise to an underlying renewal
process as for instance, for the homogeneous pinning model when the trajectory is divided
into excursions away from the origin (see for instance [14, Chapter 2]). The fact that, after
a bead of length 1 the first stretch of the following bead can be either positive or negative
whereas its orientation is constrained when the former bead is strictly larger than 1 creates a
dependency between consecutive beads that prevents us from rewriting the partition function
with the help of an associated renewal process. However, if we omit the dependency between

consecutive beads then, thanks to Proposition 4.2, the ”bead process” (uxj )
nL(l)
j=0 under PL,β

can be related to a sub-exponential defective renewal process τ = (τi)i≥0 conditioned on

L ∈ τ . This latter process is characterized by an inter-arrival law K : N → [0, 1] that

satisfies K(∞) > 0 and K(n) = k(n)e−c
√
n with k : N → N a slowly varying function.

Once conditioned by {L ∈ τ}, it can be proven (see [14, Appendix A.5] for the heavy
tailed case or more recently [28] where the sub-exponential case is explicitly treated) that
the number of renewals is O(1) and that again there is only one macroscopic renewal (see
e.g. [2] for a general background on renewal theory).

Shape Theorem. First, recall the one-to-one correspondence between ΩL andWL described
in Section 1.1 and denote by wl the path in WL associated with a given family of vertical
stretches l ∈ ΩL. Then, identify each l ∈ ΩL with a connected compact subset of R2 denoted
by SL(l) that extends the sites of Z2 occupied by wl to squares of length 1, i.e.,

SL(l) =
{
∪Li=0 wl(i) + [−1

2 ,
1
2 ]2
}
, l ∈ ΩL. (1.22)

With Theorem D below we prove that, once rescaled horizontally and vertically by
√
L

the subset SL(l) converges in probability and for the Hausdorff distance towards Sβ a
deterministic subset of R2. Before defining Sβ we need to settle some notation.
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First, we denote by L(h), h ∈ (−β
2 ,

β
2 ) the logarithmic moment generating function of the

random variable U1, i.e,

L(h) := log Eβ[ehU1 ], (1.23)

and we introduce LΛ

LΛ(h) :=
∫ 1

0 L(xh0 + h1)dx, (1.24)

which is defined on

D :=
{

h = (h0, h1) ∈ R2 : h1 ∈
(
−β

2 ,
β
2

)
, h0 + h1 ∈

(
−β

2 ,
β
2

)}
. (1.25)

Then, we let h̃(q, 0) := (h̃0(q, 0), h̃1(q, 0)) be the unique solution of the equation

∇LΛ(h) = (q, 0) . (1.26)

Since for β > βc the function

G̃(a) := a log Γ(β)− 1
a h̃0

(
1
a2 , 0

)
+ aLΛ

(
h̃
(

1
a2 , 0

))
, (1.27)

defined on (0,∞) is C∞, strictly concave and negative (see Section 4.4), we let aβ > 0 be
its unique maximizer.
We let γ∗β be the Wulff shape minimizing the rate function of Mogulskii large deviation

principle (see [8, Theorem 5.1.2] ) applied to the random walk of law Pβ, on the set

containing the cadlag functions γ : [0, 1]→ R satisfying γ(1) = 0 and
∫ 1

0 γ(t)dt = 1/a2
β and

endowed with the supremum norm || · ||∞. The following explicit formula holds (see Section
4.5):

γ∗β(s) =

∫ s

0
L′
[
(1

2 − x) h̃0

(
1
a2
β
, 0
)]
dx, s ∈ [0, 1] . (1.28)

Eventually we define the limiting shape

Sβ =
{

(x, y) ∈ R2 : x ∈ [0, aβ], y ∈
[
− 1

2 aβ γ
∗
β(x/aβ), 1

2 aβ γ
∗
β(x/aβ)

]}
(1.29)

and we denote by dH the Hausdorff distance between subsets of R2.

Theorem D (Shape Theorem). For β > βc, we have convergence in PL,β probability for
the Hausdorff distance towards a deterministic shape

lim
L→∞

PL,β

(
dH

(
SL(l)√
L
,Sβ
)
> ε
)

= 0 (∀ε > 0). (1.30)

This shape Theorem is equivalent to the combination of Theorem E and Theorem F below.
We display in Appendix A a proof of this equivalence.

Theorem E (Horizontal extension). For β > βc, for all ε > 0

lim
L→∞

PL,β

(∣∣∣NL(l)√
L
− aβ

∣∣∣ > ε

)
= 0. (1.31)

Remark 1.5. Determining the horizontal extension is challenging in the extended regime
(β < βc) and in the critical regime (β = βc) as well. In the extended regime, we can already
derive from the variational formula of the free energy in [22, Theorem 1.2] that there exists
c2 > c1 > 0 so that limL→∞ PL,β(NL(l)/L ∈ [c1, c2]) = 1. The extension is therefore of
order L and we expect that a law of large numbers also holds so that NL(l)/L converges in
PL,β probability towards some constant eβ ∈ (0, 1). The critical regime is more delicate. In
view of the random walk representation and since Γ(βc) = 1, the law of NL(l) when l is
sampled from PL,β is exactly that of the stopping time τL := inf{n ≥ 1: n + An(V ) ≥ L}
of a random walk V of law Pβ conditioned on {VτL = 0, AτL = L− τL}. We expect that a
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Donsker type invariance principle will hold there so that typically AτL ∼ τ
3/2
L and thus we

expect NL(l)/L2/3 to be tight under PL,β.

The next Theorem gives the scaling limit of the upper and lower envelopes of the path in
the collapsed phase. Pick l ∈ LN,L and let E+

l = (E+
l,i)

N+1
i=0 be the path that links the top

of each stretch consecutively (see Figure 4), while E−l = (E−l,i)N+1
i=0 is the counterpart of E+

l

that links the bottom of each stretch consecutively. Thus, E+
l,0 = E−l,0 = 0,

E+
l,i = max{l1 + · · ·+ li−1, l1 + · · ·+ li}, i ∈ {1, . . . , N}, (1.32)

E−l,i = min{l1 + · · ·+ li−1, l1 + · · ·+ li}, i ∈ {1, . . . , N}, (1.33)

and E+
l,N+1 = E−l,N+1 = l1 + · · ·+ lN . Then, let Ẽ+

l and Ẽ−l be the time-space rescaled cadlag

processes associated with E+
l and E−l and defined as

Ẽ+
l (t) =

1

N + 1
E+
l,bt (N+1)c and Ẽ−l (t) =

1

N + 1
E−l,bt (N+1)c, t ∈ [0, 1]. (1.34)

E+
l

Figure 4. Example of the upper envelope of a trajectory

Theorem F (Wulff shape). For β > βc and ε > 0,

lim
L→∞

PL,β

(∥∥Ẽ+
l −

γ∗β
2

∥∥
∞ > ε

)
= 0,

lim
L→∞

PL,β

(∥∥Ẽ−l +
γ∗β
2

∥∥
∞ > ε

)
= 0. (1.35)

Note that Ẽ+
l − Ẽ−l (respectively, (Ẽ+

l + Ẽ−l )/2) is the rescaled version of the process that
associates with each index i ∈ {1, . . . , NL(l)} the length |li| of the i-th stretch (respectively,

the height of the middle of the i-th stretch l1 + · · ·+ li−1 + li
2 ). In view of Theorem F, the

Wulff shape γ∗β happens to be the limit, as L → ∞, of Ẽ+
l − Ẽ−l . Such Wulff shape was

identified, for instance in [11], as the limit of a random walk trajectory conditioned by fixing
a large algebraic area between the path and the x-axis. However, the latter convergence is

not sufficient to prove (1.35). We must indeed show that (Ẽ+
l + Ẽ−l )/2 converges to 0 in

probability.

Remark 1.6. The Wulff shape construction, initially displayed in [30] appears in many
models of statistical mechanics to describe the limiting shape of properly rescaled inter-
faces separating pure phases. Their construction is achieved by minimizing the integral of
the surface tension along the continuous contours that satisfy some particular geometric
constraint. A famous example arises from 2D Ising model in the phase transition regime.
When considering a large square box of size N with − boundary condition and T < Tc, and
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by conditioning the total magnetization to be shifted from its mean (−m∗N2) by a factor

aN � N4/3, it was proven in [12] at low temperature and then in [17], [18] and [19] up to
Tc that this magnetization shift is due to a unique + island whose boundary, once rescaled
by 1/

√
aN , converges towards a Wulff shape.

1.4. Relationship to earlier work. The IPDSAW and its continuous versions have at-
tracted a lot of attention from physicists until very recently (see for instance [3] or [25]).
The main method that has been employed to investigate the IPDSAW involves combinato-
rial techniques (see [4], [5] or more recently [23]). To be more specific, this method consists
in providing an analytic expression of the generating function G(z) =

∑∞
L=1 ZL,βz

L whose
radius of convergence R satisfies f = − logR. For a detailed version of the computations,
we refer to [7, p. 371–375].
The computation of the generating function G allows us to determine the exact value of
βc and to predict the behavior of the free energy close to criticality. However, the analytic
expression of G is very complicated and only gives an indirect access to the free energy.
Furthermore, this combinatorial method does not allow to study an observable which does
not grow like L, for instance, inside the collapsed phase, the horizontal extension is of order√
L and this can not be proven by such method.

A new approach has been developed in [22] to work with the partition function directly.
With the help of an algebraic manipulation of the Hamiltonian, that will be described in
Section 2.1, it is indeed possible to rewrite the partition function in (1.7) under the form

ZL,β = cβ e
βL

L∑
N=1

(Γ(β))N Pβ(VN+1,L−N ), (1.36)

where we recall (1.13) and (1.15) and where Vn,k is the set of those n-step trajectories of
the random walk V whose geometric area An =

∑n
i=1 |Vi| equals k, i.e.,

Vn,k :=
{

(Vi)
n
i=0 : An = k, Vn = 0

}
. (1.37)

Thus, the excess free energy f̃(β) is the exponential growth rate of the summation in (1.36).
In this new expression of the partition function, the term indexed by N ∈ {1, . . . , L} in the
summation corresponds to the contribution to the partition function of those trajectories
l ∈ LN,L (making N horizontal steps).
This new approach was used in [22, Theorem 1.2], to derive a variational expression of the
excess free energy, which allowed us to prove that the collapsed transition is second order
with critical exponent 3/2.

Theorem 1.7 ([22], Theorem 1.4). The phase transition is of order 3/2. That is, there
exist two constants c1, c2 > 0 such that for ε small enough

c1 ε
3/2 ≤ f̃(βc − ε) ≤ c2 ε

3/2. (1.38)

With the present paper, we take the analysis of the phase transition two steps further (see

Theorem B). In the first step, we establish the precise asymptotic: f̃(βc−ε) ∼ γε3/2 as ε↘ 0
with γ an explicit constant. In the second step, we give an expression of γ in terms of the free

energy of an auxiliary continuous model, that is Fc = limT→∞
1
T log E[exp(−

∫ T
0 |B(t)|dt)].

Moreover, the Laplace transform of
∫ T

0 |B(t)|dt was computed by Kac in [21] and this allows
us to express Fc with the smallest zero (in modulus) of the derivative of the Airy function.
The question of the geometric conformation adopted by the polymer inside the collapsed
phase has been raised and discussed by physicists in several papers, as for instance [6]. It
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was believed that the monomers arrange themselves in a succession of long vertical stretches
of opposite directions that constitute large beads. In this paper, we prove with Theorem
C, that the polymer makes only one macroscopic bead and that the number of monomers
(located at the beginning and at the end of the polymer) which do not belong to this bead
grows at most like (logL)4. We also make rigorous the conjecture concerning the horizontal

extension of the polymer, since we identify the limit in probability of NL/
√
L, which turns

out to be the constant extracted from an optimization procedure. We also establish the
convergence of properly rescaled lower and upper envelopes to a deterministic Wulff shape.
In particular, the typical vertical displacement of the middle point, the L/2-th monomer

in a chain of length L, is of order
√
L.

There are numerical evidences that the vertical displacement of the endpoint grows as L1/4

(see [6], table II page 2394). This turns out to be a consequence of the typical behavior of
the fluctuations of the envelopes around the Wulff shape, and this is not the topic of the
present paper.

Finally, let us stress the fact that the convergence, in the collapsed phase, to a deterministic
Wulff shape (see Theorem E) comes from a fairly complex procedure that needs to establish
three properties:

(i) The horizontal extension NL is of order
√
L.

(ii) There is only one macroscopic bead
(iii) When conditioned to be abnormally large, the geometric area of the associated V

random walk (
∑

i |Vi|) is close to the modulus of its algebraic counterpart (|∑Vi|).
There is no clear order in which to establish these properties and the proofs are intricate.
For example, we need weak versions of (i) and (iii) to prove (ii) and then get a stronger
version of (i).

2. Preparation : the main tools.

In this section, we introduce the three main tools that are used in this paper. In Section
2.1 we show how the partition function can be rewritten in terms of the random walk V of
law Pβ (recall 1.13) and how studying this random walk under an appropriate conditioning
can be used to derive some path properties under the polymer measure. In Section 2.2, we
define the function δ 7→ hβ(δ) that appears in the expression of the excess free energy in
Theorem A and we study its regularity. In Section 2.3, we consider the probability of some
large deviations events under Pβ, and following Dobrushin and Hryniv [11], we introduce
an appropriate tilting under which the probability of such events decays only polynomially
fast.

2.1. Probabilistic representation of the partition function. In the first part of this
section we prove formula (1.36) and we show how the polymer measure can be expressed
as the image measure by an appropriate transformation of the geometric random walk V
introduced in (1.13). In the second part of the section, we focus on those trajectories that
make only one bead and we show that, in terms of the auxiliary random walk V , these
beads become excursions away from the origin.

Auxiliary random walk. We display here the details of the proof of formula (1.36). Recall
(1.4–1.7) and note that the ∧̃ operator can be written as

x ∧̃ y = (|x|+ |y| − |x+ y|) /2, ∀x, y ∈ Z. (2.1)
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0 x1=4 x2=10 x3=11 x4=17 x5=18 x6=20

0

ux1=16

Figure 5. An example of a trajectory l = (li)
20
i=1 with 6 beads is drawn

on the upper picture. The auxiliary random walk V associated with l, i.e.,
(Vi)

21
i=0 = (T20)−1(l) is drawn on the lower picture.

Hence, for β > 0 and L ∈ N, the partition function in (1.7) becomes

ZL,β =
L∑

N=1

∑
l∈LN,L

l0=lN+1=0

exp
(
β

N∑
n=1

|ln| − β
2

N∑
n=0

|ln + ln+1|
)

= cβ e
βL

L∑
N=1

( cβ
eβ

)N ∑
l∈LN,L

l0=lN+1=0

N∏
n=0

exp
(
−β

2 |ln + ln+1|
)

cβ
, (2.2)

where cβ was defined in (1.13). At this stage, we pick N ∈ {1, . . . , L} and we introduce
the one-to-one correspondence TN : VN+1,L−N 7→ LN,L defined as TN (V )i = (−1)i−1Vi for
all i ∈ {1, . . . N}. We pick l ∈ LN,L, we consider V = (TN )−1(l) (see Fig. 5) and we note

that the increments (Ui)
N+1
i=1 of V necessarily satisfy Ui := (−1)i−1(li−1 + li). Thus, the

partition function in (2.2) becomes

ZL,β = cβe
βL

L∑
N=1

( cβ
eβ

)N ∑
V ∈VN+1,L−N

Pβ(V ), (2.3)

which immediately implies (1.36). A useful consequence of formula (2.3) is that, once
conditioned on taking a given number of horizontal steps N , the polymer measure is exactly
the image measure by the TN -transformation of the geometric random walk V conditioned
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to return to the origin after N+1 steps and to make a geometric area L−N , i.e.,

PL,β
(
l ∈ · | NL(l) = N

)
= Pβ

(
TN (V ) ∈ · | VN+1 = 0, AN = L−N

)
. (2.4)

From beads to excursions. We define Ωo
L as the subset of ΩL containing those trajectories

l ∈ ΩL that have only one bead, i.e. nL(l) = 1. Thus, we can rewrite Ωo
L :=

⋃L
N=1 LoN,L,

where LoN,L is the subset of LN,L defined as

LoN,L =
{
l ∈ LN,L : li ∧̃ li+1 6= 0 ∀i ∈ {1, . . . , N − 1}

}
, (2.5)

and we denote by Zo
L,β the contribution to the partition function of those trajectories in

Ωo
L, i.e.,

Zo
L,β =

∑
l∈Ωo

L

eβHL(l). (2.6)

We let also V+
n,k be the subset containing those trajectories that return to the origin after

n steps, satisfy An = k and are strictly positive on {1, . . . , n}, i.e.,

V+
n,k := {V : Vn = 0, An = k, Vi > 0 ∀i ∈ {1, . . . , n− 1}}. (2.7)

By mimicking (2.2) and by noticing that by the TN -transformation, the subset LoN,L be-

comes V+
N+1,L−N we obtain

Zo
L,β = 2 cβ e

βL
L∑

N=1

(Γ(β))N Pβ(V+
N+1,L−N ). (2.8)

2.2. Construction and regularity of hβ. We define the function hβ in a slightly different
way from (1.14), but we will see at the end of this section that the two definitions are
equivalent. For N ∈ N, δ ≥ 0, define

hN,β(δ) :=
1

N
log Eβ

(
e−δAN1{VN=0}

)
and let hβ(δ) = lim

N→∞
hN,β(δ). (2.9)

Lemma 2.1. (i) hβ(δ) exists and is finite, non-positive for all β > 0, δ ≥ 0.
(ii) δ 7→ hβ(δ) is continuous, convex and non-increasing on [0,∞).

Proof. (i) For N,M ∈ N, we restrict the partition of size N +M to those trajectories that
return to the origin at time N and use the Markov property to obtain

Eβ

(
e−δAN+M1{VN+M=0}

)
≥ Eβ

(
e−δAN1{VN=0}

)
Eβ

(
e−δAM1{VM=0}

)
. (2.10)

Thus, {log Eβ

(
e−δAN1{VN=0}

)
}N∈N is a super-additive sequence that is bounded above by

0 and therefore the limit in (2.9) exists, is finite and satisfies

hβ(δ) = sup
N∈N

1

N
log Eβ

(
e−δAN1{VN=0}

)
≤ 0. (2.11)

(ii) The fact that AN ≥ 0 for all N ∈ N immediately entails that δ 7→ hβ(δ) is non-
increasing on [0,∞). By Hölder’s inequality, the function δ 7→ hN,β(δ) is convex for all
N ∈ N and hence so is δ 7→ hβ(δ). Convexity and finiteness imply continuity on (0,∞). In
order to prove the continuity at 0, we first note that limδ→0 hβ(δ) = supδ≥0 hβ(δ). Then,
with the help of formula 2.11 and via an exchange of suprema we obtain

lim
δ→0

hβ(δ) = sup
δ≥0

sup
N∈N

1

N
log Eβ

(
e−δAN1{VN=0}

)
(2.12)

= sup
N∈N

1

N
log Pβ(VN = 0) = 0.
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�

It remains to show that the two definitions of hβ in (1.14) and (2.9) coincide. To that aim
it suffices to show that

lim sup
N→∞

1

N
log Eβ

(
e−δAN

)
≤ lim

N→∞

1

N
log Eβ

(
e−δAN1{VN=0}

)
. (2.13)

We set IN2 := [−N2, N2]∩Z and we decompose Eβ

(
e−δAN

)
into the two partition functions

CN,β and BN,β defined as

CN,β = Eβ

(
e−δAN1{VN∈IN2}

)
and BN,β = Eβ

(
e−δAN1{VN /∈IN2}

)
. (2.14)

Since AN ≥ 0 and since Eβ

[
e
β|U1|

4

]
<∞, Markov’s inequality gives

BN,β ≤ Eβ

[
1{VN /∈IN2}

]
≤ Pβ

( N∑
i=1

|Ui| ≥ N2
)
≤

Eβ

[
e
β|U1|

4

]N
e(β/4)N2 , (2.15)

which immediately implies that lim supN→∞
1
N logBN,β = −∞. Consequently

lim sup
N→∞

1

N
log Eβ

(
e−δAN

)
= lim sup

N→∞

1

N
logCN,β, (2.16)

and since the cardinality of IN2 grows polynomially, the proof of (2.13) will be complete
once we show that

lim sup
N→∞

1

N
log sup

x∈IN2

Eβ

(
e−δAN1{VN=x}

)
≤ lim

N→∞

1

N
log Eβ

(
e−δAN1{VN=0}

)
. (2.17)

For x ∈ Z, we denote by Pβ,x the law of x+V where V is the random walk of law Pβ. We
consider the partition function of size 2N and use Markov property at time N to obtain

Eβ

(
e−δA2N1{V2N=0}

)
≥ Eβ

(
e−δAN1{VN=x}

)
Eβ,x

(
e−δAN1{VN=0}

)
, x ∈ Z. (2.18)

By using the time reversal property of the random walk V , we can assert that (VN −
VN−n, 0 ≤ n ≤ N)

d
= (Vn − V0, 0 ≤ n ≤ N) and consequently, for all x ∈ Z, it comes that

Eβ,x

(
e−δ

∑N
n=1 |Vn|1{VN=0}

)
= Eβ

(
e−δ

∑N
n=1 |Vn+x|1{VN=−x}

)
= Eβ

(
e−δ

∑N
n=1 |VN−VN−n+x|1{VN=−x}

)
= Eβ

(
e−δ

∑N−1
n=1 |Vn|1{VN=−x}

)
. (2.19)

Thanks to the symmetry of V and since
∑N−1

n=1 |Vn| ≤ AN , the inequalities (2.18) and (2.19)
allow us to write

Eβ

(
e−δA2N1{V2N=0}

)
≥
[

sup
x∈IN2

Eβ

(
e−δAN1{VN=x}

)]2
. (2.20)

It remains to apply 1
2N log in both sides of (2.20) and to let N → ∞ to obtain (2.17),

which completes the proof.
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2.3. Large deviation estimates. In this section, we introduce the techniques that will
be required to estimate the probability of some large deviation events associated with
trajectories making a large arithmetic area. Such estimates will be needed in Section 4 to
approximate the probability that, under the polymer measure, the trajectories make only
one bead.
Following Dobrushin and Hryniv in [11], for n ∈ N, we define

Yn := 1
n(V0 + V1 + · · ·+ Vn−1), (2.21)

and for a given q ∈ (0,∞) ∩ N
n , we focus on both probabilities Pβ(Yn = nq, Vn = 0) and

Pβ(Yn = nq, Vn = 0, Vi > 0 ∀i ∈ {1, . . . , n − 1}). Our aim is to identify the exponential
rate at which such probabilities are decreasing and their asymptotic polynomial correction.
To that aim, we will use an exponential tilting of the probability measure Pβ (through the
Cramer transform) in combination with a local limit theorem. Under the tilted probability
measure the event {Yn = nq, Vn = 0} is not of large deviation type anymore since its
probability decays at polynomial speed instead of exponential speed, as will be seen in
Section 6.
For the ease of notations, we set Λn := (Yn, Vn) and we denote its logarithmic moment
generating function by LΛn(h) for h := (h0, h1) ∈ R2, i.e.,

LΛn(h) := log Eβ

[
eh0Yn+h1Vn

]
=
∑n

i=1 L
((

1− i
n

)
h0 + h1

)
. (2.22)

Clearly, LΛn(h) is finite for all h ∈ Dn with

Dn :=
{

(h0, h1) ∈ R2 : h1 ∈
(
−β

2 ,
β
2

)
, (1− 1

n)h0 + h1 ∈
(
−β

2 ,
β
2

)}
. (2.23)

With the help of (6.24) and for h = (h0, h1) ∈ Dn, we define the h-tilted distribution by

dPn,h

dPβ
(V ) = eh0Yn+h1Vn−LΛn (H). (2.24)

For a given n ∈ N and q ∈ N
n , the exponential tilt is given by hqn := (hqn,0, h

q
n,1) which, by

Lemma 5.4 in Section 5.1, is the unique solution of

En,h(Λn
n ) = ∇

[
1
nLΛn

]
(h) = (q, 0), (2.25)

and therefore, we have the equality

Pβ

(
Λn = (nq, 0)

)
= Pn,hqn

(
Λn = (nq, 0)

)
en
(
−hqn,0 q+

1
nLΛn (hqn)

)
. (2.26)

From (2.26) it is easy to deduce that the exponential decay rate of Pβ

(
Λn = (nq, 0)

)
is

given by the quantity −hqn,0 q+ 1
nLΛn(hqn) and that the polynomial correction is associated

with Pn,hqn

(
Λn = (nq, 0)

)
. To be more specific, we first state a Proposition which gives a

local central limit theorem for the tilted law Pn,hqn
.

Proposition 2.2. For [q1, q2] ⊂ (0,∞), there exist C > 0, n0 > 0 such that for all1

q ∈ [q1, q2] and n ≥ n0 we have

1
Cn2 ≤ Pn,hqn

(Yn = nq, Vn = 0) ≤ C
n2 . (2.27)

The following Proposition shows that the exponential decay rate induced by the change of
probability in (2.24) can be controlled uniformly in n.

1to be thorough, we should restrict ourselves to q such that n2q ∈ N. To ease notations, we shall omit
this restriction in the sequel
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Proposition 2.3 (Decay rate of large area probability). For [q1, q2] ⊂ (0,+∞), there exist
c1, c2 > 0 and n0 ∈ N such that∣∣[ 1

n
LΛn(hqn)− hqn,0 q

]
−
[
LΛ(h̃(q, 0))− h̃0(q, 0) q

]∣∣ ≤ c1
n , for n ≥ n0, q ∈ [q1, q2]. (2.28)

and ∣∣∣∣hqn − h̃(q, 0)
∣∣∣∣ ≤ c2

n , for n ≥ n0, q ∈ [q1, q2]. (2.29)

Propositions 2.2 and 2.3 will be proven in Sections 6 and 5.1, respectively. With the help of
(2.26) and by applying Proposition 2.2 and Proposition 2.3 we can finally give some sharp
upper and lower bounds of Pβ(Yn = nq, Vn = 0).

Proposition 2.4. For [q1, q2] ⊂ (0,∞), there exist C1 > C2 > 0 and n0 ∈ N such that for
all q ∈ [q1, q2] and n ≥ n0 we have

C2
n2 e

n
[
−h̃0(q,0) q+LΛ(h̃(q,0))

]
≤ Pβ(Yn = nq, Vn = 0) ≤ C1

n2 e
n
[
−h̃0(q,0) q+LΛ(h̃(q,0))

]
. (2.30)

In addition, we shall need in this paper a precise lower bound on the probability that, under
Pβ, the random walk V makes only one excursion away from the origin, conditionally on
having a large prescribed area. To our knowledge, such an estimate is not available in the
existing literature. Recall the definition of Yn in (2.21).

Proposition 2.5 (Unique excursion for large area). For [q1, q2] ⊂ (0,∞), there exist C >
0, µ > 0 and n0 ∈ N such that for all q ∈ [q1, q2] and every n ≥ n0

Pβ

(
Vi > 0, 0 < i < n | Yn = nq, Vn = 0

)
≥ C

nµ . (2.31)

Although we can show that for the tilted law Pn,hqn
(thanks to the positive, respectively

negative drifts of the increments close to 0, resp. close to n) there exists a C(q1, q2) > 0 so
that for q ∈ [q1, q2] and n large enough

Pn,hqn

(
Vi > 0, 0 < i < n | Vn = 0

)
> C(q1, q2),

and although we think that a similar result holds true for the l.h.s. in (2.31), we are unable
to handle the conditioning by Yn = nq satisfactorily.

3. The order of the phase transition

In Section 3.1 below, we prove Theorem A that expresses the excess free energy as the
solution of an equation involving the function hβ introduced in Section 2.2. In Section 3.2,

we first state Lemma 3.1 which provides the behavior of hβ(f̃(β)) close to βc and then
we combine this Lemma with Theorem A to complete the proof of Theorem B. Finally, in
Section 3.3 we give a proof of Lemma 3.1.

3.1. Proof of Theorem A (Free energy equation). By the representation formula (1.36)

and the definition of f̃ , we have f̃(β) = limL→∞
1
L log Z̃L,β, where

Z̃L,β :=
∑L

N=1 (Γ(β))N Pβ(VN+1,L−N ). (3.1)

As a consequence, the excess free energy satisfies f̃(β) = − logR where R is the radius of

convergence of the generating function G(z) =
∑∞

L=1 Z̃L,β z
L, that is

f̃(β) = sup
{
δ ≥ 0:

∑∞
L=1 Z̃L,β e

−δL = +∞
}
, (3.2)
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if the set is non-empty and f̃(β) = 0 otherwise. We recall (1.37) and we use (3.1) to rewrite
the sum in (3.2) as

∞∑
L=1

Z̃L,β e
−δL =

∞∑
L=1

L∑
N=1

(
Γ(β)e−δ

)N ∑
V0=VN+1=0
AN=L−N

Pβ(V ) e−δ(L−N)

=
∞∑
L=1

L∑
N=1

(
Γ(β)e−δ

)N
Eβ

(
e−δAN1{AN=L−N,VN+1=0}

)
=
∞∑
N=1

(
Γ(β)e−δ

)N
Eβ

(
e−δAN1{VN+1=0}

)
. (3.3)

Since AN = AN+1 on the set {VN+1 = 0} and by using the definition of hN,β(δ) in (2.9),
the equality (3.3) becomes

∞∑
L=1

Z̃L,β e
−δL =

∞∑
N=1

exp
(
N
[

log Γ(β)− δ + N+1
N hN+1,β(δ)

])
, (3.4)

which together with (3.2) gives f̃(β) = sup
{
δ ≥ 0: log Γ(β)− δ + hβ(δ) > 0

}
. Since hβ(δ) ≤

0, it follows that f̃(β) = 0 if Γ(β) ≤ 1. When Γ(β) > 1, Lemma 2.1 gives that δ 7→ −δ+hβ(δ)
is continuous, decreasing, non-positive on [0,∞), equals 0 at δ = 0 and tends to −∞ when

δ →∞. Therefore, f̃(β) > 0 and is the unique solution of the equation log Γ(β)−δ+hβ(δ) =
0. In addition, by recalling the definition of the collapsed phase (1.11) and the extended
phase (1.12), we can observe that

C = {β : Γ(β) ≤ 1} and E = {β : Γ(β) > 1}. (3.5)

We note that β 7→ Γ(β) is decreasing on [0,∞) (recall (1.13) and (1.15)) and therefore, the
collapse transition occurs at βc, the unique positive solution of the equation Γ(β) = 1.

3.2. Proof of Theorem B (Phase transition asymptotics). We display here the proof
of Theorem B subject to Lemma 3.1 below, that will be proven in Section 3.3 afterward.

Lemma 3.1.

lim
β→βc

hβ
(
f̃(β)

)
f̃(β)2/3

= −ς2. (3.6)

where we recall that ς2 was defined in (1.18).

Our aim is to study the asymptotic behavior of the equation in Theorem A near the critical
point. We recall (1.15) and we perform a first order Taylor expansion of Γ(β) near βc which
gives log Γ(βc− ε) = ς1ε(1 + o(1)) as ε↘ 0. Next, we consider the function hβ near βc and
it follows from Lemma 3.1 that when ε↘ 0

hβc−ε(f̃(βc − ε)) = −ς2f̃(βc − ε)2/3(1 + o(1)). (3.7)

Therefore, by plugging (3.7) and the expansion of log Γ(βc− ε) in the equation in Theorem
A that is verified by the excess free energy, we obtain that

ς1ε(1 + o(1))− f̃(βc − ε)− ς2f̃(βc − ε)2/3(1 + o(1)) = 0, (3.8)

which allows to conclude that

f̃(βc − ε) ∼
( ς1
ς2

)3/2
ε3/2 as ε↘ 0, (3.9)
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and the proof is complete.

3.3. Asymptotics of hβ.

Heuristics. Let us give the heuristic explanation of why hβ(δ) ∼ −c δ2/3 for some constant
c > 0. The main idea is to decompose the trajectory of the random walk V into independent
blocks of length Tδ−2/3 for T ∈ N and δ small enough: we have approximately N/(Tδ−2/3)
such blocks. Hence, as δ ↘ 0, we can estimate

lim
N→∞

1

N
log Eβ(e−δAN ) ∼ lim

T→∞

δ2/3

T
log Eβ(e−δATδ−2/3 ). (3.10)

It is well known that for such random walks (assume that Eβ(U2
1 ) = 1) (see [13, p. 405])

k−3/2
Tk∑
i=1

|Vi| L−→
∫ T

0
|B(t)|dt as k →∞, (3.11)

where B is a standard Brownian motion. Now, let k = δ−2/3 and since |e−δATδ−2/3 | ≤ 1,
we conclude that

Eβ(e−δATδ−2/3 )→ E(e−
∫ T
0 |B(t)|dt) as δ → 0. (3.12)

This convergence and (3.10) would immediately imply hβ(δ) ∼ −c δ2/3 where c can be
estimated via the distribution of the Brownian area, that is

c = − lim
T→∞

1

T
log E(e−

∫ T
0 |B(t)|dt) > 0. (3.13)

Proof of Lemma 3.1.

Upper bound. Pick T ∈ N, δ > 0 such that δ−2/3 ∈ N and let ∆ := δ−2/3. We take N
that satisfies N/(T∆) ∈ N and partition {1, . . . , N} into k = N/(T∆) intervals of length
T∆. By the Markov property of V , we decompose Eβ

(
e−δAN

)
with respect to the position

occupied by the random walk V at times T∆, 2T∆, . . . , (k − 1)T∆,

Eβ

(
e−δAN

)
=

∑
x0=0,xi∈Z
i=1,...,k

k−1∏
i=0

Eβ,xi

(
e−δAT∆1{VT∆=xi+1}

)
≤
[

sup
x∈Z

Eβ,x

(
e−δAT∆

)]k
. (3.14)

With the help of Lemma 3.2 below, we can replace the supremum in the right hand side
of (3.14) by the term indexed by x = 0 only. The proof of Lemma 3.2 is postponed to
Appendix B.

Lemma 3.2. For all δ > 0, n ∈ N and x, x′ ∈ Z such that |x′| ≥ |x|, the following inequality
holds true

Eβ,x′
(
e−δAn

)
≤ Eβ,x

(
e−δAn

)
. (3.15)

Therefore (3.14) becomes

Eβ

(
e−δAN

)
≤
[
Eβ

(
e−δAT∆

)]N/(T∆)
. (3.16)

Recall that ∆ := δ−2/3, apply 1
N log to both sides of (3.16) and let N →∞ to obtain, for

β > 0 and δ > 0, that
hβ(δ)

δ2/3
≤ 1

T
log Eβ

(
e−δAT∆

)
. (3.17)



IPDSAW : PHASE TRANSITION AND COLLAPSED PHASE GEOMETRY 19

In what follows we need a uniform version (in β) of the convergence of Eβ

(
e−δAT∆

)
towards

E(e−
∫ T
0 |B(t)|dt) as δ → 0. For this reason, we introduce the strong approximation theorem

(Sakhanenko [24]) to approximate the partial sums of independent random variables U in
the right hand side in (3.17) by independent normal random variables.

Theorem 3.3 (Q. M. Shao [26], Theorem B). Denote by σ2
β the variance of the random

variable U1 under Pβ. We can redefine {Ui, i ≥ 1} (denoted by Uβ) on a richer probability
space together with a sequence of independent standard normal random variables {Xi, i ≥ 1}
such that for every p > 2, x > 0,

P

(
max
i≤n

∣∣∣∣ i∑
j=1

Uβj − σβ
i∑

j=1

Xj

∣∣∣∣ ≥ x) ≤ (Ap)px−p
n∑
i=1

E|Uβi |p, (3.18)

where A is an absolute positive constant.

We let also, for n ∈ N, Yn =
∑n

i=1Xi, An(Y ) =
∑n

i=1 |Yi| and redefine V β
n =

∑n
i=1 U

β
i ,

An(V β) =
∑n

i=1 |V
β
i |. We pick T > 0, p > 2, ϑ > 0 and K a compact subset of (0,∞).

We use Theorem 3.3 and the fact that (recall (1.13)) E
[
|Uβ1 |p

]
is bounded from above

uniformly in β ∈ K, to assert that there exists a constant cp,K > 0 such that for all ∆ > 0
and β ∈ K

P
(

max
i≤T∆

∣∣V β
i − σβYi

∣∣ ≥ ∆ϑ
)
≤ cp,K T ∆1−ϑp. (3.19)

Note that on the event {maxi≤T∆

∣∣V β
i − σβYi

∣∣ < ∆ϑ}, we obviously have |AT∆(V β) −
σβAT∆(Y )| ≤ T∆ϑ+1. Therefore, since x 7→ exp(−x) is 1-Lipschitz on [0,∞) and since

∆ = δ−2/3, we can write that for β ∈ K and δ > 0∣∣E(e−δAT∆(V β) − e−δσβAT∆(Y )
)∣∣ ≤ P

(
max
i≤T∆

∣∣V β
i − σβYi

∣∣ ≥ ∆ϑ
)

+ δT∆ϑ+1

≤ cp,KTδ
2
3

(ϑp−1) + Tδ
1
3

(1−2ϑ). (3.20)

We chose p = 3 and ϑ ∈ (1/3, 1/2) and plug it in the right hand side of (3.17) to obtain
that for β ∈ K and δ > 0,

hβ(δ)

δ2/3
≤ 1

T
log
[
E
(
e−δσβAT∆(Y )

)
+ c3,KTδ

2(3ϑ−1)
3 + Tδ

1−2ϑ
3

]
. (3.21)

Lemma 3.4. Let K be a compact subset of (0,+∞). For T > 0 and ε > 0 there exists a

δ0 > 0 such that for δ ≤ δ0 (with ∆ = δ−2/3),

sup
β∈K

∣∣E(e−δσβAT∆(Y )
)
−E

(
e−σβ

∫ T
0 |B(t)|dt)∣∣ < ε, (3.22)

where B is a standard Brownian motion.

Proof of Lemma 3.4. We can consider {B(t), t ≥ 0} and {yi, i ≥ 1} on the same probability
space by letting yi = B(i) − B(i − 1) and thus Yi := y1 + · · · + yi = B(i) for i ∈ N. We

recall that AT∆(Y ) =
∑T∆

i=1 |B(i)| and therefore, by Brownian scaling we note that

∆−3/2AT∆(Y )
d
= ∆−1

T∆∑
i=1

|B(i/∆)|.
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Consequently, by recalling that δ = ∆−3/2 we can replace E
(
e−δσβAT∆(Y )

)
in the left hand

side of (3.22) by E
(
e−σβ∆−1

∑T∆
i=1 |B(i/∆)|). Since the exponential function is 1-Lipschitz on

(−∞, 0], we have

sup
β∈K

∣∣E(e−σβ∆−1
∑T∆
i=1 |B(i/∆)|)−E

(
e−σβ

∫ T
0 |B(t)|dt)∣∣ (3.23)

≤ max{σβ, β ∈ K} E
[∣∣∆−1

∑T∆
i=1 |B(i/∆)| −

∫ T
0 |B(t)|dt

∣∣].
Since max{σβ, β ∈ K} <∞, since by Riemann sum approximation we know that

∆−1
T∆∑
i=1

|B(i/∆)| a.s.−−−−→
∆→∞

∫ T

0
|B(t)|dt, (3.24)

and since we have uniform integrability (because sup∆>0 E(|∆−1
∑T∆

i=1 |B(i/∆)|2) < ∞)
we can conclude that

lim
∆→∞

E
[∣∣∆−1

T∆∑
i=1

|B(i/∆)| −
∫ T

0 |B(t)|dt
∣∣] = 0. (3.25)

This completes the proof. �

We resume the proof of the upper bound. Since ϑ ∈ (1/3, 1/2), the right hand side of (3.20)

vanishes as δ → 0 uniformly in β ∈ K. Thus, we can replace δ by f̃(βc) in (3.21) and use

Lemma 3.4 and the fact that limε→0+ f̃(βc − ε) = 0 to conclude that, for all T > 0,

lim sup
ε→0+

hβ(f̃(βc − ε))
f̃(βc − ε)2/3

≤ 1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt). (3.26)

It remains to let T tend to infinity and to recall (1.18) to obtain

lim sup
ε→0+

hβ(f̃(βc − ε))
f̃(βc − ε)2/3

≤ −ς2. (3.27)

Lower bound. Recall that T ∈ N, δ > 0 and ∆ = δ−2/3 ∈ N. We also take N ∈ N such that
N/(T∆) ∈ N. Pick η > 0 and use the decomposition in (3.14) to obtain

Eβ

(
e−δAN

)
≥

∑
x0=0,xi∈[−η

√
∆,η
√

∆]
i=1,...,k

k−1∏
i=0

Eβ,xi

(
e−δAT∆1{VT∆=xi+1}

)
(3.28)

≥
[

inf
x∈[−η

√
∆,η
√

∆]
Eβ,x

(
e−δAT∆1{VT∆∈[−η

√
∆,η
√

∆]}

)]N/(T∆)
. (3.29)

For any integer x ∈ [−η
√

∆, η
√

∆], we consider the two sets of paths

Πx
1 =

{
(Vi)

T∆
i=0 : V0 = x, VT∆ ∈ [−η

√
∆, η
√

∆]
}
, (3.30)

and

Π2 =
{

(Vi)
T∆
i=0 : V0 = 0, VT∆ ∈ [−η

√
∆, 0]

}
. (3.31)

Clearly, if V = (Vi)
T∆
i=0 ∈ Π2, then the trajectory V + x starts at x ∈ [0, η

√
∆] and is an

element of Πx
1 . Similarly, for x ∈ [−η

√
∆, 0], Π′2 + x ⊆ Πx

1 where

Π′2 =
{

(Vi)
T∆
i=0 : V0 = 0, VT∆ ∈ [0, η

√
∆]
}
. (3.32)
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Since Pβ(V ∈ Π2) = Pβ(V ∈ Π′2), we conclude that

Pβ,x(V ∈ Πx
1) ≥ Pβ(V ∈ Π′2) for all x ∈ [−η

√
∆, η
√

∆]. (3.33)

Moreover, for any V ? ∈ Πx
1 ,

δ
T∆∑
i=1

|V ?
i | = δ

T∆∑
i=1

|x+ Vi| ≤ δ
T∆∑
i=1

|Vi|+ δT∆|x| ≤ δ
T∆∑
i=1

|Vi|+ ηT, (3.34)

where the trajectory V satisfies V0 = 0. Combining (3.33) and (3.34), we then have, for

x ∈ [−η
√

∆, η
√

∆],

Eβ,x

(
e−δAT∆1{VT∆∈[−η

√
∆,η
√

∆]

)
≥ e−ηTEβ

(
e−δAT∆1{VT∆∈[0,η

√
∆]

)
. (3.35)

By plugging the lower bound above into (3.28) and by using the symmetry of V we imme-
diately get

Eβ

(
e−δAN

)
≥
[
e−ηTEβ

(
e−δAT∆1{VT∆∈ [0,η

√
∆]}

)]N/T∆
, (3.36)

which, by applying 1
N log to both sides in (3.36) and by letting N →∞, gives, for all β > 0,

hβ(δ)

δ2/3
≥ 1

T
log Eβ

(
e−δAT∆1{VT∆∈[0,η

√
∆]}

)
− η, δ, η > 0. (3.37)

At this stage, we proceed as in the upper bound (from (3.17)) to obtain, for all T ∈ N, η > 0,

lim inf
β→βc

hβ(f̃(β))

f̃(β)2/3
≥ 1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt1{B(T )∈[0,η]}

)
− η. (3.38)

It remains to show that for all η > 0 we have

lim
T→∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt1{B(T )∈[0,η]}

)
= lim

T→∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt), (3.39)

but the latter convergence can be obtained by adapting the proof of (2.13) to the continuous
setting and for conciseness we will not give the details of the proof here. Then, by recalling
(1.18), we achieve the bound

lim inf
β→βc

hβ(f̃(β))

f̃(β)2/3
≥ −ς2 − η, (3.40)

for all η > 0. It remains to let η → 0 to complete the proof.
�

4. Geometry of the collapsed phase

In Section 4.1 below, a proof of Theorem C is displayed subject to Lemma 4.1, which ensures
that the horizontal extension of the polymer inside the collapsed phase is of order

√
L, and

to Proposition 4.2, which provides a sharp estimate of the partition function restricted to
those trajectories making only one bead. Proposition 4.2 is proven in Section 4.2 subject
to Lemma 4.4, which is the counterpart of Lemma 4.1 for the one bead trajectory and to
Proposition 2.5, which gives a lower bound on the probability that the random walk V
makes an n-step excursion away from the origin conditioned on the large deviation event
{Yn = qn, Vn = 0}. Lemmas 4.1 and 4.4 are proven in Section 4.3 whereas the proof of
Proposition 2.5 is postponed to Section 6.2 because it requires more preparation. Section
4.4 is dedicated to the proof of Theorem E and Section 4.5 to the proof of Theorem F.
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4.1. Proof of Theorem C (One bead Theorem). The proof of Theorem C will be
displayed subject to Lemma 4.1 and Proposition 4.2 that are stated below.

Lemma 4.1. For β > βc, there exist a, a1, a2 > 0 such that

PL,β(NL(l) ≥ a1

√
L) ≤ a2 e

−a
√
L, L ∈ N. (4.1)

Recall (2.6–2.8)

Proposition 4.2. For β > βc, there exist c, c1, c2 > 0 and κ > 1/2 such that

c1

Lκ
eβL−c

√
L ≤ Zo

L,β ≤
c2√
L
eβL−c

√
L, L ∈ N. (4.2)

Proof of Theorem C. We will first show that, for β > βc and under the polymer measure,
the probability that there is exactly one macroscopic bead in the polymer tends to 1 as
L → ∞. Then, we will show that, with a probability converging to 1 as L → ∞, the first
step and the last step of this macroscopic bead are at distance less than (logL)4 from 0
and L, respectively. For r ∈ N, we denote by ZL,β[r] the partition function restricted to
those trajectories that do not have any bead larger than r, i.e.,

ZL,β[r] =
∑

l∈ΩL : |Ijmax |≤r

eβHL(l). (4.3)

At this stage, we pick s > 0 and we let AL,s be the subset consisting of those trajectories
having at most one bead larger than s(logL)2, i.e.,

AL,s =
{
l ∈ ΩL :

∣∣{j ∈ {1, . . . , nL(l)} : |Ij | ≥ s(logL)2
}∣∣ ≤ 1

}
. (4.4)

Partition AcL,s with respect to the locations of the two subintervals {i1 + 1, . . . , i2} and

{i3 + 1, . . . , i4} associated with the first two beads that are larger than s(logL)2. For
notational convenience we let L1 := i2− i1 and L2 := i4− i3 be the length of these two first
large beads. We do not have Markov property but, with the help of Lemma 4.3 below, we
can estimate the partition function restricted to those trajectory that make a bead between
two given steps.
Recall (cf. notations introduced in Section 1.3 prior to Theorem C) that x1 denotes the
horizontal extension of the first bead, and that ux1 corresponds to its total length.

Lemma 4.3. For L ∈ N,

1
2 Z

o
L′,β ZL−L′,β ≤ ZL,β(ux1 = L′) ≤ Zo

L′,β ZL−L′,β for L′ ∈ {1, . . . , L}. (4.5)

Proof of Lemma 4.3. In the case ux1 = 1, the first bead contains only one horizontal step,
hence the sign of the stretch after x1 is arbitrary, so that obviously ZL,β(ux1 = 1) =
Zo

1,βZL−1,β. In case ux1 = L′ > 1, note that the stretch lx1 is non-zero, therefore the next
stretch has the same sign as lx1 . By concatenating the trajectories

ZL,β(ux1 = L′) = Zo
L′,β(lNL′ > 0)ZL−L′,β(l1 ≥ 0) + Zo

L′,β(lNL′ < 0)ZL−L′,β(l1 ≤ 0) (4.6)

= Zo
L′,β ZL−L′,β(l1 ≥ 0). (4.7)

In both cases, thanks to the symmetry of the stretches, we have

1
2 Z

o
L′,β ZL−L′,β ≤ ZL,β(ux1 = L′) ≤ Zo

L′,β ZL−L′,β for L′ ∈ {1, . . . , L}. (4.8)

�
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We resume the proof of Theorem C and, we use Lemma 4.3 to obtain

PL,β(AcL,s) ≤
∑

1≤i1<i2<i3<i4≤L
L1,L2≥s(logL)2

Zi1,β
[
s(logL)2

]
Zo
L1,β

Zi3−i2,β
[
s(logL)2

]
Zo
L2,β

ZL−i4,β

ZL,β
, (4.9)

and we write the lower bound

ZL,β ≥ (1
2)3Zi1,β

[
s(logL)2

]
Zo
L1+L2,β Zi3−i2,β

[
s(logL)2

]
ZL−i4,β (4.10)

such that

PL,β(AcL,s) ≤ 8
∑

1≤i1<i2<i3<i4≤L
L1,L2≥s(logL)2

Zo
L1,β

Zo
L2,β

Zo
L1+L2,β

. (4.11)

By using Proposition 4.2 and the convex inequality√
L1 +

√
L2 −

√
L1 + L2 ≥ 1

2

√
min{L1, L2}, (4.12)

we can bound from above the quantity in the sum in (4.11) by

Zo
L1,β

Zo
L2,β

Zo
L1+L2,β

≤ c2
1(L1 + L2)κ

c2

√
L1L2

e−G̃(aβ)[
√
L1+
√
L2−
√
L1+L2] (4.13)

≤ c2
1(L1 + L2)κ

c2

√
L1L2

e−
G̃(aβ)

√
s logL

2 (4.14)

and since (L1+L2)κ√
L1L2

≤ Lκ we can state that, for L large enough, (4.11) becomes

PL,β(AcL,s) ≤
8c21
c2
Lκ+4e−

G̃(aβ)
√
s logL

2 . (4.15)

Therefore, it suffices to choose
√
s = 4(κ+4)

c to conclude that limL→∞ PL,β(AcL,s) = 0.

At this stage we set BL,s = AL,s∩{NL(l) ≤ a1

√
L} and we can use Lemma 4.1 and the fact

that PL,β(AcL,s) vanishes as L → ∞ to conclude that limL→∞ PL,β(BL,s) = 1. Moreover,

it comes easily that under the event BL,s there is exactly one bead larger than s(logL)2

because if there were no bead larger than s(logL)2, then the total number of beads nL(l)

would be larger than L
s(logL)2 which contradicts the fact that NL(l) ≤ a1

√
L because each

bead contains at least one horizontal step and consequently NL(l) ≥ nL(l). Under the event
BL,s we denote by i1 and i2 the end-steps of the maximal bead, i.e., Ijmax = {i1 +1, . . . , i2}.
Then, the proof of Theorem C will be complete once we show that there exists a v > 0
such that

lim
L→∞

PL,β(BL,s ∩ {i1 ≥ v(logL)4}) = 0 (4.16)

lim
L→∞

PL,β(BL,s ∩ {i2 ≤ L− v(logL)4}) = 0. (4.17)
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We can bound from above

PL,β(BL,s ∩ {i1 ≥ v(logL)4}) =
L∑

t=v(logL)4

PL,β(BL,s ∩ {i1 = t})

≤
L∑

t=v(logL)4

PL,β

(
∃j ∈ {1, . . . , nL(l)} : uxj = t,

|Id| ≤ s(logL)2 ∀d ∈ {1, . . . , j}
)

≤ 1
2

L∑
t=v(logL)4

Zt,β[s(logL)2]ZL−t,β
Zt,β ZL−t,β

, (4.18)

which finally gives

PL,β(BL,s ∩ {i1 ≥ v(logL)4}) ≤ 1
2

L∑
t=v(logL)4

Pt,β
(
|Ijmax | ≤ s(logL)2

)
. (4.19)

We note that, under Pt,β and on the event {|Ijmax | ≤ s(logL)2}, the number of beads is

larger than t
s(logL)2 , therefore Nt(l) ≥ t

s(logL)2 and since
√
t ≥ √v(logL)2 we obtain that

Nt(l) ≥
√
t(
√
v/s). By choosing v = (a1s)

2, we can apply Lemma 4.1 to get

PL,β(BL,s ∩ {i1 ≥ v(logL)4}) ≤ 1
2

L∑
t=v(logL)4

Pt,β
(
Nt(l) ≥ a1

√
t
)

≤ 1
2a2

L∑
t=v(logL)4

e−a
√
t. (4.20)

Since the sum in (4.20) vanishes as L→∞, the proof is complete.

4.2. Proof of Proposition 4.2. We recall the definition of the one bead partition function

introduced in Section 2.1, equations (2.5–2.8). Henceforth, we will use the notation Z̃o
L,β =

Zm,o
L,β e

−βL/cβ, so that Proposition 4.2 will be proven once we show that there exist c1, c2 > 0

and κ > 1/2 such that

c1

Lκ
e−G̃(aβ)

√
L ≤ Z̃o

L,β ≤
c2√
L
e−G̃(aβ)

√
L, for L ∈ N . (4.21)

We will prove (4.21) subject to Lemma 4.4 below and Proposition 2.5. The proof of Lemma
4.4 is given in Section 4.3 whereas the proof of Proposition 2.5 is postponed to Section 6.2.
For K ⊂ {1, . . . , L}, we set

Z̃o
L,β(N ∈ K) = 2

∑
N∈K

(Γ(β))N Pβ(V+
N+1,L−N ) , (4.22)

and similarly we have

Z̃o
L,β = 2

L∑
N=1

(Γ(β))N Pβ(V+
N+1,L−N ). (4.23)
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Lemma 4.4. For β > βc, there exists a2 > a1 > 0 such that for L ∈ N,

lim
L→∞

Z̃o
L,β(a1

√
L ≤ N ≤ a2

√
L)

Z̃o
L,β

= 1. (4.24)

By using Lemma 4.4, we note that it suffices to prove (4.21) with Z̃o
L,β

(
N ∈

√
L [a1, a2]

)
instead of Z̃o

L,β. For the ease of notation, we will rather take a2 a bit larger and consider

Z̃o
L,β

(
1 +N ∈

√
L [a1, a2]

)
. In view of (4.22), we write

Z̃o
L,β

(
1 +N ∈

√
L [a1, a2]

)
= 2

∑a2

√
L

N=a1

√
L

(Γ(β))N−1 Pβ(V+
N,L−N+1). (4.25)

For n ∈ N, we recall (1.37) and (2.21) and we note that nYn = An on the set {Vn = 0, Vi >

0 ∀i ∈ [1, N − 1]∩N}. Therefore, we set qN,L := L−N+1
N2 for N ∈

√
L[a1, a2]∩N and we can

write

V+
N,L−N+1 = {V : YN = NqN,L, VN = 0, Vi > 0 ∀i ∈ [1, N − 1] ∩ N}. (4.26)

At this stage, our aim is to bound from above and below the quantities Pβ(V+
N,L−N+1) for

N ∈
√
L[a1, a2] ∩ N. The upper bound is obvious, i.e.,

Pβ(V+
N,L−N+1) ≤ Pβ(YN = NqN,L, VN = 0), (4.27)

while the lower bound is obtained as follows. Since qN,L ∈
[

1
2a2

2
, 1
a2

1

]
when N ∈

√
L[a1, a2],

we can apply Proposition 2.5 to claim that, there exists C, µ > 0 such that for L large
enough,

Pβ(V+
N,L−N+1) ≥ C

NµPβ(YN = NqN,L, VN = 0), N ∈
√
L[a1, a2] ∩ N. (4.28)

By using again the fact that qN,L ∈
[

1
2a2

2
, 1
a2

1

]
when N ∈

√
L [a1, a2], we can apply Propo-

sition 2.4, which provides a lower and an upper bound on Pβ(YN = NqN,L, VN = 0). By
combining these last two bounds with (4.27–4.28) and by setting κ = 1+µ/2 we can assert

that there exists R1 > R2 > 0 such that for L large enough and all N ∈
√
L [a1, a2] we

have that

R2
Lκ e

N
[
−h̃0(qN,L,0) qN,L+LΛ(h̃(qN,L,0))

]
(4.29)

≤ Pβ(V+
N,L−N+1) ≤ R1

L eN
[
−h̃0(qN,L,0) qN,L+LΛ(h̃(qN,L,0))

]
.

At this stage, we recall the definition of G̃ in (1.27) and we set

QL,β :=

a2

√
L∑

N=a1

√
L

e
√
LGL,N (4.30)

with

GL,N = N√
L

(
qN,L

)1/2
G̃
(

1
(qN,L)1/2

)
(4.31)

and we use (4.22) and (4.29) to claim that there exists R3 > R4 > 0 (depending on β only)
such that for L large enough,

R4
Lκ QL,β ≤ Z̃o

L,β

(
N ∈

√
L [a1, a2]

)
≤ R3

L QL,β. (4.32)

We recall that a 7→ G̃(a) is a strictly negative and strictly concave function on (0,∞) and
reaches its unique maximum at aβ, which obviously belongs to [a1, a2]. Since, by Lemma
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5.3, a 7→ G̃(a) is C1 on (0,∞), we can assert that it is Lipschitz on each compact subset of

(0,∞). Moreover, there exists a C > 0 such that |qN+1,L−qN,L| ≤ C/
√
L forN ∈

√
L [a1, a2]

and we have that(
1− a2√

L

) 1
2 ≤ N√

L
(qN,L)

1
2 ≤

(
1− a1√

L

) 1
2
, N ∈

√
L[a1, a2], (4.33)

therefore, we can take the supremum of GL,N on N ∈
[
a1

√
L, a2

√
L
]
∩N and it comes that

sup
{
GL,N ; N ∈

√
L [a1, a2] ∩ N

}
= G̃(aβ) +O( 1√

L
). (4.34)

By putting together (4.30) and (4.34) we obtain that there exists R5 > R6 > 0 such that
for L large enough,

R6 e
G̃(aβ)

√
L ≤ QL,β ≤ R5

√
LeG̃(aβ)

√
L. (4.35)

At this stage it suffices to combine (4.32) with (4.35) to complete the proof of (4.21) with
κ = µ/2 + 1.

4.3. Proof of Lemmas 4.1 and 4.4. We will only display the proof of Lemma 4.4 because
the proof of Lemma 4.1 is obtained in a very similar manner. We recall (4.22) and (4.23)
and we will first show that there exists γ > 0 and c > 0 such that

Z̃o
L,β ≥ c e−γ

√
L, L ∈ N. (4.36)

Then, we will show that there exist a2 > a1 > 0 and c1, c2 > 0 such that

Z̃o
L,β(N ≥ a2

√
L) ≤ c2 e

−2γ
√
L, L ∈ N,

Z̃o
L,β(N ≤ a1

√
L) ≤ c1 e

−2γ
√
L, L ∈ N. (4.37)

Putting together (4.36) and (4.37), we will immediately obtain (4.24). To begin with, set

r :=
⌊

L
1+b
√
Lc

⌋
, u := L − r − (r − 1)b

√
Lc and note that u ∈ {b

√
Lc, . . . , 2b

√
Lc}. Then,

consider the trajectory V ∗ ∈ V+
r+1,L−r defined as V0 = Vr+1 = 0, V1 = · · · = Vr−1 = b

√
Lc

and Vr = u. One can therefore compute

Pβ(V ∗) =
(

1
cβ

)r+1
e−

β
2 (2u) ≥

(
1
cβ

)r+1
e−2βb

√
Lc, (4.38)

and consequently by restricting the sum in (4.22) to N = r, by using (4.38) and the

inequality b
√
Lc ≤

√
L, we obtain

Z̃o
L,β ≥ 2

cβ

(
Γ(β)
cβ

)r
e−2β

√
L. (4.39)

It remains to note that r ≤
√
L and to recall that cβ > 1 and that Γ(β) < 1 because

β > βc. This is sufficient to obtain (4.36).
Proving the first inequality in (4.37) is easy because Γ(β) < 1 and thus, we can use (4.22)
to claim that there exists a C > 0 such that

Z̃o
L,β(N ≥ a2

√
L) ≤ 2

∞∑
N=a2

√
L

(Γ(β))N ≤ Cea2 log(Γ(β))
√
L. (4.40)

Since log(Γ(β)) < 0, it suffices to choose a2 large enough to obtain the first inequality in
(4.37).
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To prove the last inequality in (4.37), we note that, for N ≤ a1

√
L and for all (Vi)

N+1
i=0 ∈

V+
N+1,L−N we have max{Vj , j ∈ {1, . . . , N}} ≥ L−N

N ≥
√
L
a1
− 1 and therefore, for L large

enough we have

Pβ(V+
N+1,L−N ) ≤ Pβ

(
max{Vj , j ≤ a1

√
L} ≥

√
L

2a1

)
(4.41)

≤ Pβ

(∑a1

√
L

i=1 |Ui| >
√
L

2a1

)
, (4.42)

and since U1 has some finite exponential moments, we can apply a standard Cramer’s Theo-
rem to obtain that for L large enough, there exists g(a1) > 0 such that lima1→0+ g(a1) =∞
and that Pβ(V+

N+1,L−N ) ≤ e−g(a1)
√
L for N ≤ a1

√
L. Therefore, by taking a1 small enough

we obtain the second inequality in (4.37), which completes the proof of Lemma 4.4.

4.4. Proof of Theorem E (Horizontal extension). To begin this section, we prove

that G̃ is strictly concave and reaches its maximum at a unique point aβ ∈ (0,∞). Recall

(1.27) and compute its first two derivatives (by using that ∇LΛ(h̃(q, 0)) = (q, 0)), i.e.,

d

da
G̃(a) = log Γ(β) + 1

a2 h̃0

(
1
a2 , 0

)
+ LΛ(h̃( 1

a2 , 0)), (4.43)

d2

da2
G̃(a) = − 2

a3 h̃0

(
1
a2 , 0

)
− 4

a5∂1h̃0

(
1
a2 , 0

)
. (4.44)

It suffices to show that d2

da2 G̃(a) < 0 on (0,∞) and that d
daG̃(a) has a zero on (0,∞). Since

h̃0(x, 0) = −2h̃1(x, 0) (recall Remark 5.5), we consider R : u 7→
∫ 1

0 xL
′((x− 1

2)u)dx so that

∂1(LΛ)(h̃(x, 0)) = R(h̃0(x, 0)). Clearly R(0) = 0 and R′(u) = 2
∫ 1

0 x
2L′′(xu)dx because L

is even (recall (1.23)). Therefore R′(u) > 0 when u 6= 0 and R < 0 on (−∞, 0) and R > 0

on (0,∞). Since R(h̃0(x, 0)) = x for x ∈ R, we can claim that h̃0(x, 0) > 0 for x ∈ (0,∞)

and by differentiating this latter equality we obtain that ∂1h̃0(x, 0) = 1/R′(h̃0(x, 0)) which
is strictly positive on (0,∞). This completes the proof.
Let us start the proof of Theorem E. Recall that i1 and i2 are the end-steps of the largest
bead Ijmax , i.e., Ijmax = {i1 + 1, . . . , i2}. For v > 0, we let

TL,v :=
{
l ∈ ΩL : i1 ≤ v(logL)4, i2 ≥ L− v(logL)4, Ijmax = {i1 + 1, . . . , i2}

}
. (4.45)

By Theorem C, there exists a v > 0 such that limL→∞ PL,β(TL,v) = 1. Therefore, the proof
will be complete once we show that

lim
L→∞

PL,β

({∣∣∣NL(l)√
L
− aβ

∣∣∣ > ε
}
∩ TL,v

)
= 0. (4.46)

Let NIjmax
denote the number of horizontal steps made by the random walk in its largest

bead. Pick ε′ < ε and since the first step and the last step of the largest bead are at distance
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less than v(logL)4 from 0 and L, respectively, we can write that for L large enough

PL,β

({∣∣∣NL(l)√
L
− aβ

∣∣∣ > ε
}
∩ TL,v

)
≤

∑
1≤i1≤v(logL)4

L−v(logL)4≤i2≤L

PL,β

(∣∣∣NIjmax√
i2−i1

− aβ
∣∣∣ > ε′, Ijmax = {i1 + 1, . . . , i2}

)

≤ 4
∑

1≤i1≤v(logL)4

L−v(logL)4≤i2≤L

Zo
i2−i1,β

(∣∣∣ N√
i2−i1

− aβ
∣∣∣ > ε′

)
Zo
i2−i1,β

,

(4.47)

where the coefficient 4 in front of the r.h.s. in (4.47) comes from a direct application

of Lemma 4.3. Now, we focus on the numerator of the r.h.s. in (4.47) and since G̃ is

strictly concave and reaches its maximum at aβ we can claim that the maximum of G̃ on

(0, aβ − ε′] ∪ [aβ + ε′,∞) is given by T (ε′) = max{G̃(aβ − ε′), G̃(aβ + ε′)}. We proceed as
in (4.25)-(4.34) and we get that there exits a C1 > 0 such that

Zo
i2−i1,β

(∣∣∣ N√
i2−i1

− aβ
∣∣∣ > ε′

)
≤ C1√

i2−i1
eβ(i2−i1) eT (ε′)

√
i2−i1 . (4.48)

We apply Proposition 4.2 and the denominator can be bounded from below as

Zo
i2−i1,β ≥ C2

(i2−i1)κ e
β(i2−i1) eG̃(aβ)

√
i2−i1 , (4.49)

for some constants κ > 1/2 and C2 > 0. Since L − 2v(logL)4 ≤ i2 − i1 ≤ L, we can state
that, for L large enough, (4.47) becomes

PL,β

({∣∣∣NL(l)√
L
− aβ

∣∣∣ > ε
}
∩ TL,v

)
≤ C3 L

κ− 1
2 log(L)8 e−(G̃(aβ)−T (ε′))

√
L−2v(logL)4

. (4.50)

Since G̃(aβ) > T (ε′), the right hand side vanishes as L→∞ and this completes the proof.

4.5. Proof of Theorem F (Wulff shape). Before displaying the proof of Theorem F,
we provide a rigorous definition of γ∗β and we associate with each trajectory l ∈ ΩL the
process Ml that links the middle of each stretch consecutively.
The Wulff shape γ∗β can be defined1 as

γ∗β = argmin
{
J(γ), γ ∈ B[0,1],

∫ 1
0 γ(t)dt = 1

a2
β
, γ(0) = γ(1) = 0

}
, (4.51)

where B[0,1] is the set containing the cadlag real functions defined on [0, 1], where J :
B[0,1] → [0,∞] is defined as

J(γ) =


∫ 1

0
L∗(γ′(t))dt if γ ∈ AC,

+∞ otherwise,

(4.52)

1the set on the right hand side of (4.51) is not empty since it contains the hat function γ(t) = γ(1−t) = 2t
aβ

for 0 ≤ t ≤ 1
2
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where AC is the set of absolutely continuous functions and where L∗ is the Legendre
transform of L, i.e.,

L∗(u) = sup
{
hu− L(h), h ∈ (−β

2 ,
β
2 )
}
, u ∈ R. (4.53)

Using the duality between L and L∗ we easily obtain the formula (1.28) given in the

introduction, which easily implies (recall 1.27) that G̃(aβ) = aβ(log Γ(β)− J(γ∗β)). Finally,
we note that one can prove without further difficulty that

{−γ∗β, γ∗β} = argmin
{
J(γ), γ ∈ B[0,1], A(γ) = 1

a2
β
, γ(0) = γ(1) = 0

}
, (4.54)

where A(γ) :=
∫ 1

0 |γ(s)|ds is the geometric area enclosed between the graph of γ and the
x-axis.
We recall the definition of E+

l and E−l in (1.32) and we also associate with each l ∈ LN,L
the path Ml =

(
Ml,i

)N+1

i=0
that links the middles of each stretch consecutively and is defined

as Ml,0 = 0

Ml,i = l1 + · · ·+ li−1 +
li
2
, i ∈ {1, . . . , N}, (4.55)

and Ml,N+1 = l1 + · · ·+ lN . We recall that the TN transformation, defined in Section 2.1,
associates with each l ∈ LN,L the path Vl = (TN )−1(l) such that Vl,0 = 0, Vl,i = (−1)i−1li

for all i ∈ {1, . . . , N} and Vl,N+1 = 0. As a consequence, E+
l = Ml+

|Vl|
2 and E−l = Ml− |Vl|2 ,

i.e.,

E+
l,i = Ml,i +

|Vl,i|
2

, i ∈ {0, . . . , N + 1},

E−l,i = Ml,i −
|Vl,i|

2
, i ∈ {0, . . . , N + 1}, (4.56)

and the path (Ml,i)
N+1
i=0 can be rewritten with the increments (Ui)

N+1
i=1 of the Vl random

walk as

Ml,i =

i∑
j=1

(−1)j+1Uj
2
, i ∈ {1, . . . , N}. (4.57)

Similarly to what we did to define Ẽ+
l and Ẽ−l in (1.34), we let M̃l and Ṽl be the time-space

rescaled cadlag process associated to Ml and Vl.
Proof of Theorem F. Equations (4.56) that allows to express E+

l and E−l with the help of the
two processes Vl and Ml can be translated in terms of the time-space rescaled processes as

Ẽ+
l = M̃l+

|Ṽl|
2 and Ẽ−l = M̃l− |Ṽl|2 . Therefore, Theorem F is a straightforward consequence

of the two following Lemmas.

Lemma 4.5. For β > βc and ε > 0,

lim
L→∞

PL,β

(∥∥|Ṽl| − γ∗β∥∥∞ > ε
)

= 0. (4.58)

Lemma 4.6. For β > 0 and ε > 0,

lim
L→∞

PL,β

(∥∥M̃l

∥∥
∞ > ε

)
= 0. (4.59)

Proof of Lemma 4.5. For conciseness we set UL,ε =
{
l ∈ ΩL :

∥∥|Ṽl| − γ∗β∥∥∞ > ε
}

. Thanks
to Theorem E, Lemma 4.5 will be proven once we show that there exists an η > 0 such
that

lim
L→∞

PL,β

(
UL,ε ∩

{∣∣NL(l)√
L
− aβ

∣∣ ≤ η}) = 0. (4.60)
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We decompose the left hand side in (4.60) with respect to the value taken by NL(l), i.e.,

PL,β

(
UL,ε ∩

{∣∣NL(l)√
L
− aβ

∣∣ ≤ η}) =
∑

N∈Iη,L

PL,β

(
UL,ε ∩ {NL(l) = N}

)
, (4.61)

where Iη,L =
{

(aβ − η)
√
L, . . . , (aβ + η)

√
L
}

. By recalling Section 2.1, the probability in
the r.h.s. of (4.61) can be rewritten, with the help of the random walk representation, as

PL,β

(
UL,ε ∩ {NL(l) = N}

)
(4.62)

=
(Γ(β))N

Z̃L,β
Pβ

(∥∥|ṼN+1| − γ∗β
∥∥
∞ > ε, ṼN+1(1) = 0, A

(
ṼN+1

)
= L−N

(N+1)2

)
,

where (Vi)
N+1
i=0 is a random walk of law Pβ and ṼN+1 is the time-space rescaled process

associated with (Vi)
N+1
i=0 , i.e.,

ṼN+1(t) =
1

N + 1
Vbt (N+1)c, t ∈ [0, 1],

and where Z̃L,β = ZL,βe
−βL/cβ. Note that there exists a function g : R+ → R+ such that

limη→0 g(η) = 0 and such that for N ∈ Iη,L the probability in the r.h.s. of (4.62) is bounded

from above by Pβ(ṼN ∈ Ḩε,η), where

Hε,η =
{
γ ∈ B[0,1] : A(γ) ≥ 1

a2
β
− g(η), γ(0) = γ(1) = 0,

∥∥|γ| − γ∗β∥∥∞ ≥ ε}. (4.63)

Thus, we need to identify the exponential growth rate of Pβ(ṼN ∈ Hε,η). To that aim,

we apply the Mogulskii Theorem (see [8, Theorem 5.1.2]) which ensures that (ṼN )N∈N
follows a large deviation principle on the set B([0, 1]) endowed with the supremum norm
‖ · ‖∞ and with the good rate function J defined in (4.52). Since Hε,η is a closed subset of(
B[0,1], ‖ · ‖∞

)
we can assert that

lim sup
n→∞

1
N log Pβ(ṼN ∈ Hε,η) ≤ − inf{J(γ), γ ∈ Hε,η}. (4.64)

We pick M > inf{J(γ), γ ∈ Hε,1} and set HMε,η = {γ ∈ Hε,η : J(γ) ≤ M} such that the
inequality (4.64) becomes

lim sup
n→∞

1
N log Pβ(ṼN ∈ Hε,η) ≤ − inf{J(γ), γ ∈ HMε,η}. (4.65)

At this stage, it remains to show that there exists α > 0 and η0 > 0 such that for all
η ∈ (0, η0],

inf{J(γ), γ ∈ HMε,η} − α ≥ inf{J(γ), γ ∈ H0,0} = J(γ∗β). (4.66)

Assume that (4.66) fails to be true, then, there exists a strictly positive sequence (zn)n∈N
that tends to 0 as n → ∞ such that for all n ∈ N there exists a γn ∈ HMε,zn satisfying

J(γn) ≤ J(γ∗β)+1/n. Since J is a good rate function, we can assert thatHMε,1 is a compact set

of (B[0,1], ‖·‖∞) and consequently γn is converging by subsequence towards some γ∞ ∈ HMε,1.

Since A and J are continuous and lower semi-continuous on (B[0,1], ‖ · ‖∞), respectively, it

comes that γ∞ ∈ HMε,0 and J(γ∞) ≤ J(γ∗β), which leads to a contradiction because −γ∗β
and γ∗β are the unique maximizer of J on H0,0 and γ∞ /∈ {−γ∗β, γ∗β}. At this stage, we go

back to (4.62) and we can write, for η ∈ (0, 1]

PL,β

(
UL,ε ∩ {|NL(l)− aβ| ≤ η}

)
≤ 2η

Z̃L,β

√
L (Γ(β))(aβ−η)

√
L Pβ

(
ṼN+1 ∈ Hε,η

)
. (4.67)
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Thus, by (4.65) and (4.67) we can assert that for all η ∈ (0, η0] and for L large enough

PL,β

(
UL,ε ∩ {|NL(l)− aβ| ≤ η}

)
≤ 2η

√
L

Z̃L,β
(Γ(β))(aβ−η)

√
L e−(aβ−η)

√
L(J(γ∗β)+α),

≤ 2η
√
L

Z̃L,β
e
√
L(aβ−η)(log Γ(β)−J(γ∗β)−α). (4.68)

Recall the equality G̃(aβ) = aβ(log Γ(β)−J(γ∗β)) and recall that for β > βc, we have proved

in (4.21) that there exists c1 > 0 and κ > 0 such that for L large enough,

Z̃L,β ≥ c1
Lκ e

√
LG̃(aβ). (4.69)

Thus, we can use (4.68) to claim that by choosing η small enough and L large enough we
have for a constant c2 > 0,

PL,β

(
UL,ε ∩ {|NL(l)− aβ| ≤ η}

)
≤ 1

c2
L

1
2

+κe−
α
2 aβ
√
L. (4.70)

which completes the proof of Lemma 4.5.

Proof of lemma 4.6. Lemma 4.6 will be proven once we show that for all ε > 0,

lim
L→∞

PL,β

(
1

1+NL(l) max
i≤1+NL(l)

|Ml,i| ≥ ε
)

= 0. (4.71)

Proving (4.71) requires to control, under PL,β, the probability that, the gap between

the modulus of the algebraic area (NL(l) |Yl| := |∑NL(l)
i=1 Vl,i|) and the geometric area

(
∑NL(l)

i=1 |Vl,i|) of the random walk trajectory Vl = (TNL(l))
−1(l) associated with l ∈ ΩL

does not exceed log(L)4. This is the object of Lemma 4.7 below.

Lemma 4.7. For β > βc there exists a c > 0 such that

lim
L→∞

PL,β
(
NL(l) |Yl| /∈ [L−NL(l)− c(logL)4, L−NL(l)]

)
= 0. (4.72)

Proof. By Theorem C there exists a c > 0 such that

lim
L→∞

PL,β
[
|Ijmax | ≤ L− c(logL)4

]
= 0. (4.73)

Note that for l ∈ ΩL, we have
∑NL(l)

i=1 |Vl,i| =
∑NL(l)

i=1 |li| = L − NL(l) and that, with the
definition of jmax and xjmax in (1.19) and (1.20) we have also

NL(l)∑
i=1

|Vl,i| − 2
∑
i/∈Ol

|Vl,i| ≤
∣∣NL(l)∑
i=1

Vl,i
∣∣ ≤ NL(l)∑

i=1

|Vl,i|, (4.74)

whereOl = {xjmax−1+1, . . . , xjmax} gathers the indexes of those stretches in l = (l1, . . . , lNL(l))
that belong to the largest bead described by l. Moreover, we note that l ∈ {|Ijmax | ≥
L− c(logL)4} yields ∑

i/∈Ol

|Vl,i| =
∑
i/∈Ol

|li| ≤ c(logL)4. (4.75)

At this stage, we recall that NL(l)Yl =
∑NL(l)

i=1 Vl,i and we use (4.74) and (4.75) to assert
that l ∈ {|Ijmax | ≥ L − c(logL)4} implies NL(l) |Yl| ∈ [L −NL(l) − 2c(logL)4, L −NL(l)].
It remains to use (4.73) to complete the proof of Lemma 4.7.

�
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We resume the proof of Lemma 4.6. We set KL,ε = { 1
1+NL(l) maxi≤1+NL(l) |Ml,i| ≥ ε} for

ε > 0 and we set for η > 0

RL,η = {|NL(l)√
L
− aβ| ≤ η} ∩ {NL(l) |Yl| ∈ [L−NL(l)− c(logL)4, L−NL(l)]} (4.76)

Thanks to Theorem E and Lemma 4.7, it suffices to show that there exists η > 0 such that
for all ε > 0,

lim
L→∞

PL,β
(
KL,ε ∩RL,η

)
= 0. (4.77)

We decompose the left hand side in (4.77) with respect to the value taken by NL(l) and
Yl, i.e.,

PL,β
(
KL,ε ∩RL,η

)
=

∑
N∈Iη,L

∑
q∈FL,N

[
PL,β

(
KL,ε ∩ {NL(l) = N} ∩ {Yl = q (N + 1)}

)
(4.78)

+ PL,β
(
KL,ε ∩ {NL(l) = N} ∩ {Yl = −q (N + 1)}

)]
,

where

Iη,L =
{

(aβ − η)
√
L, . . . , (aβ + η)

√
L
}
,

FL,N =
1

N(N + 1)
{L−N − c(logL)4, . . . , L−N}.

We recall the definition of AN below (1.14) and of YN in (2.21). With the random walk
representation we obtain, for N ∈ Iη,L and q ∈ FL,N , that

PL,β
(
KL,ε ∩ {NL(l) = N} ∩ {Yl = q(1 +N)}

)
=

(Γ(β))N

Z̃L,β
Pβ

(
AN = L−N,YN+1 = q(N + 1), 1

1+N max
i≤1+N

|MN+1,i| ≥ ε, VN+1 = 0
)

≤ (Γ(β))N

Z̃L,β
Pβ

(
YN+1 = q(N + 1), VN+1 = 0

)
DN+1,q (4.79)

where Z̃L,β = ZL,β e
−βL/cβ, where (MN+1,i)

N+1
i=0 is defined with the increments (Ui)

N+1
i=1 of

the V random walk (recall (4.57)) as MN+1,i =
∑i

j=1(−1)i+1Ui
2 for i = 1, . . . , N + 1, and

where

DN,q = Pβ

(
1
N max

i≤N
|MN,i| ≥ ε | YN = qN, VN = 0

)
. (4.80)

By picking η = aβ/2 we can easily check that there exists [q1, q2] ⊂ (0,∞) such that for all
N ∈ Iη,L we have FN,L ⊂ [q1, q2]. We recall (2.26) and we tilt Pβ into PN,hqN

so that we

can use Proposition 2.2 and claim that there exists a c > 0 such that for L large enough,
we have

DN,q ≤
PN,hqN

(
1
N maxi≤N |MN,i| ≥ ε

)
PN,hqN

(
YN = qN, VN+1 = 0

) ≤ cN2PN,hqN

(
max
i≤N
|MN,i| ≥ εN

)
. (4.81)

At this stage, we use (4.78), (4.79), (4.81) and the inequalities Γ(β) < 1 and (4.69) to
assert that the proof of Lemma 4.6 will be complete once we show that for [q1, q2] ∈ (0,∞)
and ε > 0 there exists a ϑ > 0 such that for N large enough we have

sup
q∈[q1,q2]

PN,hqN

(
max
i≤N
|MN,i| ≥ εN

)
≤ e−ϑN . (4.82)
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We recall that, for 1 ≤ j ≤ N , we have EN,hqN
(Uj) = L′(hjN ) with hjN = (1− j

N )hqN,0 +hqN,1.

As a consequence, and because of Lemma 5.4, we can assert that, for N large enough and
uniformly in q ∈ [q1, q2], all hiN belong to some compact set K ⊂ (−β

2 ,
β
2 ). Therefore, we

can show that there exists c1 > 0 and M1 > 0 such that for N large enough

sup
q∈[q1,q2]

sup
1≤i≤N

EN,hqN
(ec1|Ui|) ≤M1, (4.83)

which is sufficient to deduce, still for N large enough, that there exists c2 > 0 and δ0 > 0
such that

sup
q∈[q1,q2]

sup
1≤i≤N

sup
δ∈[−δ0,δ0]

EN,hqN
(eδ(Ui−L

′(hN,j))) ≤ ec2δ2
. (4.84)

Then , we set

M̂N,i = MN,i −EN,hqN
(MN,i) =

1

2

i∑
j=1

(−1)j+1(Uj − L′(hN,j)), i = 1, . . . , N, (4.85)

and since, under the law PN,hqN
, the increments (Ui)

N
i=0 are independent, we deduce from

(4.84) that, for N large enough, there exists c3 > 0 and δ0 > 0 such that

sup
q∈[q1,q2]

sup
1≤i≤N

sup
δ∈[−δ0,δ0]

EN,hqN
(eδM̂N,i) ≤ ec3δ2 N . (4.86)

The inequality in (4.86) is sufficient to derive (4.82) with random variables (M̂N,i)
N
i=1

instead of (MN,i)
N
i=1. Then, we recover (4.82) by showing that EN,hqN

(MN,i) is bounded by

some constant uniformly in q ∈ [q1, q2], N ≥ 2 and i ∈ {1, . . . , N}. The latter boundedness
is obtained by writing, for all 1 ≤ i ≤ N that,

2
∣∣∣EN,hqN

[
MN,i

]∣∣∣ =

∣∣∣∣∣∣
i∑

j=1

(−1)jL′(hjN )

∣∣∣∣∣∣
≤ ||L′||∞,K +

∣∣∣∣∣∣
b i

2
c∑

j=1

L′(h2j−1
N )− L′(h2j

N )

∣∣∣∣∣∣
≤ ||L′||∞,K + C||L′′||∞,K ≤ C3 , (4.87)

with ‖f‖∞,K = supx∈K |f(x)| being the sup norm on the compact K.

5. Decay rate of large area probability

5.1. Proof of Proposition 2.3 (Decay rate of large area probability). We will
display here the proof of Proposition 2.3 subject to Lemma 5.1, Corollary 5.2 and Lemmas
5.3, 5.4 that are stated and proven below.
In what follows we use the notations ‖x‖ = max{|x1|, |x2|} and x · y = x1y1 + x2y2 and
d(x, F ) = infy∈F ‖x − y‖ for x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2 and F ⊂ R2. We also
denote by ∂F the boundary of F ⊂ R2.

Lemma 5.1. For all (j1, j2) ∈ (N ∪ {0})2 and all compact and convex subsets K in D,
there exists c > 0 such that

sup
h∈K

∣∣∂(j1,j2)
[ 1

n
LΛn

]
(h)− ∂(j1,j2)LΛ(h)

∣∣ ≤ c
n , n ∈ N. (5.1)
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Proof. For all (j1, j2) ∈ N2, we first differentiate inside the integral

∂(j1,j2)LΛ(h) =

∫ 1

0
∂

(j1,j2)
h0,h1

L(xh0 + h1)dx. (5.2)

Then, by using the error estimate for the Riemann sum of x 7→ ∂
(j1,j2)
h0,h1

L(xh0 + h1), we

obtain the result. �

By applying Lemma 5.1 for (j1, j2) = (0, 1) and (j1, j2) = (1, 0), we immediately obtain

Corollary 5.2. For all compact and convex subsets K in D, there exist a c > 0 such that

sup
h∈K

∥∥∇[ 1

n
LΛn

]
(h)−∇LΛ(h)

∥∥ ≤ c
n , n ∈ N. (5.3)

For η > 0, we let Kη be the compact and convex subset of D defined as

Kη :=
{

h = (h0, h1) ∈ R2 : h1 ∈
[
−β

2 + η, β2 − η
]
, h0 + h1 ∈

[
−β

2 + η, β2 − η
]}
. (5.4)

Lemma 5.3. The function ∇LΛ : D 7→ R2 defined as

∇LΛ(h) = (∂h0LΛ, ∂h1LΛ)(h)

=
(∫ 1

0
xL′(xh0 + h1)dx,

∫ 1

0
L′(xh0 + h1)dx

)
. (5.5)

is a C1 diffeomorphism. Moreover, for all M > 0 there exists a η > 0 such that ‖∇LΛ(h)‖ >
M for h ∈ D \Kη.

Proof. The fact that h 7→ L′(h) is C1 and that L′′(h) is strictly positive on (−β
2 ,

β
2 ) ensures

that ∇LΛ is C1 and that its Jacobian determinant that takes value

Jh∇LΛ =
∫ 1

0 x
2L′′(xh0 + h1)dx

∫ 1
0 L′′(xh0 + h1)dx− [

∫ 1
0 xL

′′(xh0 + h1)dx]2 (5.6)

is, by Cauchy Schwartz inequality, strictly positive. Thus, the proof that ∇LΛ is a C1

diffeomorphism from D to R2 will be complete once we show that ∇LΛ is a bijection from
D to R2.
At this stage we note that for each y ∈ R2 the function

Ty : h→ LΛ(h)− y · h (5.7)

is strictly convex and tends to∞ as d(h, ∂D)→ 0. Therefore, Ty admits a unique minimum

on D at h̃(y) that is also the unique solution of ∇LΛ(h) = y. Thus, ∇LΛ is a bijection
from D to R2.
We complete the proof of this Lemma by assuming that there exists an M0 > 0 and a
sequence (hn)∞n=0 in D so that d(hn, ∂D) → 0 as n → ∞ and

∥∥∇LΛ(hn)
∥∥ ≤ M0. Then,

set yn = ∇LΛ(hn) and recall that hn is the minimum of Tyn for all n ∈ N. However,
Tyn(0, 0) = 0 and consequently Tyn(hn) ≤ 0 for all n ∈ N and then LΛ(hn) ≤ yn ·hn which
brings a contradiction because limn→∞ LΛ(hn) =∞ (since d(hn, ∂D)→ 0) whereas yn ·hn
is smaller than M0 times the diameter of D.

�
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Lemma 5.4. For n ∈ N \ {0, 1}, the function ∇
[

1
nLΛn

]
: Dn 7→ R2 defined as

∇[ 1
nLΛn

]
(h) = (∂h0 [ 1

nLΛn , ∂h1LΛn)(h) (5.8)

=

(
1
n

n−1∑
i=0

i
nL
′( inh0 + h1), 1

n

n−1∑
i=0

L′( inh0 + h1)

)
(5.9)

is a C1 diffeomorphism. Moreover, for all M > 0 there exists a η > 0 and a n0 ∈ N so that∥∥∇[ 1
nLΛn

]
(h)
∥∥ > M for n ≥ n0 and h ∈ Dn \Kη.

Proof. The first part of the proof, i.e., showing that ∇[ 1
nLΛn

]
is a C1 diffeomorphism, is

similar to that of Lemma 5.3 above. For the second part of the Lemma, we first note that
limη→0+ min{LΛ(h) : h ∈ ∂Kη} =∞. Then, for a given M > 0 we can pick η0 > 0 so that

LΛ remains larger than 2M on ∂Kη0 . Moreover, Lemma 5.1 ensures that 1
nLΛn converges

to LΛ uniformly on Kη0 and therefore, there exists n0 ∈ N such that for all n ≥ n0,
1
nLΛn remains strictly larger than M on ∂Kη0 . Consider h ∈ Dn \Kη and let t ∈ (0, 1) be

the unique solution of th ∈ ∂Kη0 . By convexity and since 1
nLΛn(0, 0) = 0 we claim that

1
nLΛn(h) ≥ 1

nLΛn(th) > M which completes the proof.
�

Remark 5.5. As in the proof of Lemma 5.3 above we denote by h̃ := (h̃0, h̃1) the inverse
function of ∇LΛ. Since L is an even function, we easily obtain, for instance by observing

that T(q,0)(h0, h1) = T(q,0)(h0,−h0 − h1), that h̃0(q, 0) = −2h̃1(q, 0) > 0 for all q > 0. We

will also denote by hqn := (hqn,0, h
q
n,1) the unique solution of ∇[ 1

nLΛn

]
(h) = (q, 0) for all

n ≥ 2 and q > 0. Again the fact that L is even ensures that hqn,0(1− 1
n) = −2hqn,1 > 0.

At this stage, we have enough tools to prove Proposition 2.3.

Proof of Proposition 2.3. Pick q ∈ [q1, q2], n ∈ N and note that∣∣[ 1
nLΛn(hqn)− hqn,0 q

]
−
[
LΛ(h̃(q, 0))− h̃0(q, 0) q

]∣∣ ≤ A+B + C (5.10)

with

A =
∣∣ 1
nLΛn(hqn)− LΛ(hqn)

∣∣, B =
∣∣LΛ(hqn)− LΛ(h̃(q, 0))

∣∣, C = q
∣∣hqn,0 − h̃0(q, 0)

∣∣.
(5.11)

From Lemma 5.4, we know that there exists an η > 0 and a n0 ∈ N such that hqn ∈ Kη

for all q ∈ [q1, q2] and n ≥ n0. By using Lemma 5.1 with (j1, j2) = (0, 0) and K = Kη we
can claim that there exists a c1 > 0 satisfying A ≤ c1

n for n ≥ n0 and q ∈ [q1, q2]. The B
quantity is dealt with by applying Corollary 5.2 with K = Kη, that is there exists a c2 > 0
such that

sup
x∈Kη

∥∥∇[ 1
nLΛn

]
(x)−∇LΛ(x)

∥∥ ≤ c2

n
, n ≥ n0. (5.12)

Therefore, for q ∈ [q1, q2] and n ≥ n0 we can write

∇
[

1
nLΛn

]
(hqn) = ∇LΛ(hqn) + εn,q, (5.13)

(q, 0) = ∇LΛ(hqn) + εn,q

with ||εn,q|| ≤ c2
n . Therefore, by Lemma 5.3, we can claim that hqn = h̃

(
(q, 0) − εn,q

)
. We

set

Qn =
{

(x, y) ∈ R2 : d
(
(x, y), [q1, q2]× {0}

)
≤ c2

n

}
,
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so that there exists a n1 ≥ n0 such that Qn1 is a convex subset of D and since x 7→ h̃(x)

is C1 on D we can claim that h̃ is Lipschitz on Qn1 . Thus, there exists a c3 > 0 such that

||hqn − h̃((q, 0))|| ≤ c3 ||εn,q|| ≤ c2c3
n , q ∈ [q1, q2], n ≥ n1, (5.14)

and this proves (2.29). Moreover

C ≤ q2 ||hqn − h̃((q, 0))|| ≤ q2c2c3
n , q ∈ [q1, q2], n ≥ n1. (5.15)

Finally, since LΛ is C1 on D, there exists a c4 > 0 such that LΛ is Lipschitz with constant
c4 on Qn1 . Thus,

B ≤ c4||hqn − h̃((q, 0))|| ≤ c2c3c4
n , q ∈ [q1, q2], n ≥ n1. (5.16)

This completes the proof of Proposition 2.3. �

6. Limit theorems for the joint distribution

In Section 6.1 below, we give a proof of Proposition 2.2 which estimates, uniformly in
q ∈ [q1, q2] ⊂ (0,∞), the probability of the event {Λn = (Yn, Vn) = (nq, 0)} under the
tilted law Pn,hqn

(recall (2.26)). To that aim, we state and prove Proposition 6.1, which
gives a local central limit Theorem for (Yn, Vn) under Pn,hqn

. In Section 6.2, we prove
Proposition 2.5 which allows us to bound from below the probability that, under Pβ and
conditioned on both Vn = 0 and Yn = nq the random walk V remains strictly positive.

6.1. Proof of Proposition 2.2. We display the proof of Proposition 2.2 which turns out
to be a straightforward consequence of Proposition 6.1 below. The latter Proposition will
be proven at the end of the Section.

Proof. Recall (2.21–2.26) and for any h ∈ D, define the matrix

B(h) := HessLΛ(h) (6.1)

and let Θ be the Gaussian random vector with zero mean and covariance matrix B(h). We
denote the density of Θ by

fh(X) =
1

2π
√

det B(h)
exp
(
−1

2〈B(h)−1X,X〉
)
, X ∈ R2, (6.2)

and its characteristic function by

Φ̄h(T ) = exp
(
−1

2〈B(h)T, T 〉
)
, T ∈ R2. (6.3)

Consider now the case (YN , VN ) = (NqN,L, 0) as in Section 4.2 and recall that qN,L ∈[
1

2a2
2
, 1
a2

1

]
. We will show that the local central limit theorem below is valid uniformly in q

in some compact subsets.

Proposition 6.1. For [q1, q2] ⊂ R we have

τN := sup
q∈[q1,q2]

sup
x,y∈Z

∣∣∣N2PN,hqN

(
NYN = N2q + x, VN = y

)
− f

h̃(q,0)

(
x

N3/2 ,
y√
N

)∣∣∣→ 0, (6.4)

as N →∞.

By applying Proposition 6.1 with x = y = 0, we obtain that

sup
q∈[q1,q2]

∣∣∣N2PN,hqN
(NYN = N2q, VN = 0)− f

h̃(q,0)
(0, 0)

∣∣∣ ≤ τN → 0, (6.5)
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and since the Hessian matrix B
(
h̃(q, 0)

)
is uniformly bounded in q ∈ [q1, q2], we observe

that there exists C > 0 such that
1

CN2 ≤ PN,hqN
(NYN = N2q, VN = 0) ≤ C

N2 for N large enough (6.6)

which completes the proof of Proposition 2.2. �

Proof of Proposition 6.1. We follow closely the proof of Dobrushin and Hryniv in [11],
making sure that the result holds uniformly in q ∈ [q1, q2]. From Lemma 5.3 and Lemma

5.4, there exists η > 0 such that both h̃(q, 0) and hqN are in Kη for all q ∈ [q1, q2] and for
N large enough.
We let E be the holomorphic function defined on {z ∈ C : Re(z) ∈ (−β/2, β/2)} by E(z) =
Eβ(ezU1). For any h ∈ (−β/2, β/2) and t ∈ R we set

ϕh(t) := E(h+ it)/E(h). (6.7)

Let us state some properties of the function ϕh(t) that will be used in the sequel (they are
established in [11]). First of all, for any h ∈ K := [−β/2 + η, β/2− η] and t ∈ R

|ϕh(t)| ≤ ϕh(0) = 1. (6.8)

Secondly, for any δ ∈ (0, π), there exists a constant C = C(K, δ) > 0 such that for every
h ∈ K and any t ∈ [δ, 2π − δ], we have

|ϕh(t)| ≤ e−C . (6.9)

And finally, there exists a constant α = α(K) > 0 such that for all h ∈ K and any t, |t| ≤ π,
the following inequality holds

|ϕh(t)| ≤ exp(−α2t2L′′(h)). (6.10)

For any T = (t0, t1) ∈ R2, let ΦN,hqN
(T ) be the characteristic function of the random vector

ΛN = (YN , VN ). Let us rewrite it with the functions ϕh(t),

ΦN,hqN
(T ) = EN,hqN

[
ei〈T,ΛN 〉

]
=

N∏
j=1

ϕhj,N (tj,N ), (6.11)

where
hj,N = (1− j

N )hqN,0 + hqN,1 and tj,N = (1− j
N )t0 + t1. (6.12)

Note that

Φ̂N,hqN
(T ) = ΦN,hqn

(N−1/2T ) exp
(
− i√

N
〈T,EN,hqN

(ΛN )〉
)

(6.13)

is the characteristic function of the centered random vector Λ?N := ΛN −EN,hqN
(ΛN ).

Let vN = ( x
N3/2 ,

y√
N

). Using the well know inversion formula for the Fourier transform, we

rewrite the left hand side of (6.4), i.e.,

RN = N2PN,hqN

(
NYN = N2q + x, VN = y

)
− f

h̃(q,0)
(vN ) (6.14)

in the form

RN = 1
(2π)2

∫
A

Φ̂N,hqN
(T )e−i〈T,vN 〉dT − 1

(2π)2

∫
R2

Φ̄
h̃(q,0)

(T )e−i〈T,vN 〉dT, (6.15)

where
A = {T = (t0, t1) ∈ R2 : |t0| ≤ πN3/2, |t1| ≤ π

√
N}. (6.16)

Following the proof in [11] we bound the left hand side of (6.15) by the sum of four terms,

|RN | ≤ (2π)−2(J
(q)
1 + J

(q)
2 + J

(q)
3 + J

(q)
4 ) (6.17)
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where, for some positive constants A and ∆,

J
(q)
1 =

∫
A1

∣∣Φ̂N,hqN
(T )− Φ̄

h̃(q,0)
(T )
∣∣dT, A1 = [−A,A]2, (6.18)

J
(q)
2 =

∫
A2

Φ̄
h̃(q,0)

(T )dT, A2 = R2 \ A1, (6.19)

J
(q)
3 =

∫
A3

∣∣Φ̂N,hqN
(T )
∣∣dT, A3 = {T ∈ R2 : |tl| ≤ ∆

√
N, l = 0, 1} \ A1, (6.20)

J
(q)
4 =

∫
A4

∣∣Φ̂N,hqN
(T )
∣∣dT, A4 = A \ (A1 ∪ A3). (6.21)

For an arbitrary ε > 0, Dobrushin and Hryniv proved that for a convenient choice of the

constants A = A(ε) and ∆, we have the bounds J
(q)
i < ε/4 for i = 1, 2, 3, 4 for sufficiently

large N . Therefore, the proof will be complete once we show that this assertion is also valid

uniformly in q ∈ [q1, q2]. It remains to evaluate all J
(q)
i .

First, we bound J
(q)
1 . For h ∈ Dn, define the matrix

Bn(h) := 1
n HessLΛn(h), n ∈ N. (6.22)

By Lemma 5.1 and Proposition 2.3, we obtain the relation

BN (hqN ) = B(h̃(q, 0)) +R′N , (6.23)

with the bound |R′N | ≤ C1(q1, q2)N−1 uniform in q ∈ [q1, q2].
Recall that K = [−β/2 + η, β/2 − η]. Since E is holomorphic on {z ∈ C : Re(z) ∈
(−β/2, β/2)}, for any η > 0 there exists an A′ > 0 so that Re(E(z)) > 0 for z ∈
K + i[−A′, A′] and therefore we can use a branch of the complex logarithm to extend the
function L (that equals logE) toK+i[−A′, A′]. We observe that h ∈ Kη and T ∈ 1

2 [−A′, A′]2
yield (1 − j

n)h0 + h1 ∈ K and (1 − j
n)t0 + t1 ∈ [−A′, A′] for all j ∈ {1, . . . , N}. Thus, we

can extend LΛn to Kη × 1
2 [−A′, A′]2 with the formula

LΛn(h + iT ) :=
∑n

j=1 L
((

1− j
n

)
(h0 + it0) + h1 + it1

)
. (6.24)

Similarly, we extend LΛ to Kη× 1
2 [−A′, A′]2 and Lemma 5.1 can, without further difficulty,

be extended to Kη × 1
2 [−A′, A′]2. In particular, any partial derivative of order 3 of 1

nLΛn

converges uniformly to its counterpart of LΛ on Kη × 1
2 [−A′, A′]2. Consequently, for N

large enough, we make sure that for q ∈ [q1, q2] and for T ∈ A1, we have hqN ∈ Kη and

T/N ∈ 1
2 [−A′, A′]2 so that we can consider the remainder

R′′N = LΛN (hqN + iN−1/2T )− LΛN (hqN )− i√
N
〈T,EN,hqN

(ΛN )〉+ 1
2〈BN (hqN )T, T 〉, (6.25)

and apply a Taylor-Lagrange inequality to assert that there exists a constant C(A, q1, q2) >

0 such that for N large enough |R′N | ≤ C(A, q1, q2)/
√
N uniformly in q ∈ [q1, q2] and

T ∈ A1.
Therefore, we can use (6.3), (6.7), (6.11–6.13) and (6.23) to get

sup
q∈[q1,q2],T∈A1

∣∣Φ̂N,hqN
(T )− Φ̄

h̃(q,0)
(T )
∣∣ = sup

q∈[q1,q2],T∈A1

∣∣∣e 1
2
R′N‖T‖

2+R′′N − 1
∣∣∣→ 0 as N →∞.

(6.26)

Hence, for every finite A > 0, we obtain the convergence J
(q)
1 → 0 as N →∞ uniformly in

q ∈ [q1, q2].
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Let B be such that 0 < B ≤ B(h̃(q, 0)) for all q ∈ [q1, q2]. Hence, we can bound J
(q)
2 as

follows

sup
q∈[q1,q2]

J
(q)
2 ≤

∫
A2

e−
1
2 〈BT,T 〉dT → 0 as A→∞. (6.27)

To estimate J
(q)
3 we fix any T ∈ A3 and put ∆ = π/2. Then all the numbers tj,N in (6.12)

satisfy the condition |tj,N | ≤ π
√
N , evaluating each factor in (6.11) with the help of (6.10)

and (6.23) we obtain the bound∣∣Φ̂N,hqN
(T )
∣∣ ≤ exp(−α2〈BN (hqN )T, T 〉) ≤ C exp(−α2〈B(h̃(q, 0))T, T 〉), (6.28)

for some constant C > 0. As a result,

sup
q∈[q1,q2]

J
(q)
3 = sup

q∈[q1,q2]

∫
A3

∣∣Φ̂N,hqN
(T )
∣∣dT ≤ C ∫

A2

exp(−α〈BT, T 〉)dT → 0 as A→∞.

(6.29)

To evaluate J
(q)
4 put δ = 1

17 (2)2 and for any T ∈ A4 denote by NN (T ) the number of

indexes j = 1, 2, . . . , N such that τj,N /∈ Oδ := ∪m∈Z[m− δ,m+ δ], where

τj,N := 1
2π
√
N
tj,N . (6.30)

Use (6.8) and (6.9) to estimate those factors in (6.11) and we have

∣∣Φ̂N,hqN
(T )
∣∣ =

N∏
j=1

∣∣∣ϕhj,N( 1√
N
tj,N

)∣∣∣ ≤ exp(−CNN (T )). (6.31)

A lower bound of NN (T ) is given in [11, p. 443]: for all T ∈ A4 and N large enough, there
exists a constant κ > 0 such that NN (T ) ≥ κN . Then, uniformly in q ∈ [q1, q2],

J
(q)
4 =

∫
A4

∣∣Φ̂N,hqN
(T )
∣∣dT ≤ (2π)2N2 exp(−CκN)→ 0 as N →∞. (6.32)

6.2. Proof of Proposition 2.5 (Unique excursion for large area). From now on, the
letters C,C ′, C1, . . . shall denote constants that do not depend on N and on q ∈ [q1, q2] ⊂
(0,∞). In other words, all the bounds we are going to establish are uniform in N ≥ N0

and q ∈ [q1, q2].
To begin with, we prove Lemma 6.4 subject to Lemmas 6.2 and 6.3 below. Lemma 6.4 is
crucial in the proof of Proposition 2.5. It allows us indeed to bound from below, for any
j ∈ N, the probability that the random walk V , conditioned on making a large area, is
below 0 at time j. Such a lower bound was available in [11] but only for j of order N . Here,
we deal with any j ≤ N . The first step of the proof is an upper bound on the moment
generating function of the tilted random walk V .

Lemma 6.2. There exist three positive constants C ′, C1, λ such that for every integer
j ≤ N/2, the following bound holds

EN,hqN

[
e−λVj

]
≤ C ′e−C1j , N ∈ N. (6.33)

Proof. Under the tilted law (see 2.24) the increments Ui = Vi − Vi−1 are still independent
but no more identically distributed. For any positive λ we have

log EN,hqN

[
e−λVj

]
=
∑

1≤i≤j

(
L(−λ+ hiN )− L(hiN )

)
(6.34)
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with hiN := (1− i
N )hqN,0 + hqN,1. By Remark 5.5, we know that for all q > 0 and N ≥ 2,

hqN,0(1− 1
N ) = −2hqN,1 > 0. (6.35)

A straightforward consequence of (6.35) is that hiN ≥ 0 for all i ≤ N/2. Then, the convexity
of L(·) and the fact that L(0) = L′(0) = 0 yield that there exists a c > 0 so that for all
i ≤ N/2 and λ small enough

L(−λ+ hiN )− L(hiN ) ≤ L(−λ) ≤ cλ2. (6.36)

We established in Proposition 2.3 the existence of C > 0 and N0 ∈ N such that for all
N ≥ N0, and every q ∈ [q1, q2], we have∥∥hqN − h̃(q, 0)

∥∥ ≤ C
N . (6.37)

Thanks to Lemma 5.3 and Remark 5.5, there exists a constant R > 0 such that

h̃0(q, 0) ≥ R > 0 ∀q ∈ [q1, q2]. (6.38)

Thus, provided N0 is chosen large enough, we deduce from (6.37) and (6.38) that hqN,0 ≥
R/2 for N ≥ N0 and q ∈ [q1, q2]. Moreover, thanks to (6.35), we also write hiN ≥ 1

4h
q
N,0 for

i ≤ N/4 such that finally hiN ≥ R/8 for i ≤ N/4. Observe that by convexity of L(.),∑
1≤i≤j

(
L(−λ+ hiN )− L(hiN )

)
≤ −λ

∑
1≤i≤j

L′(−λ+ hiN ). (6.39)

Hence, for j ≤ N/4 and for λ ≤ R/16 we have∑
1≤i≤j

(
L(−λ+ hiN )− L(hiN )

)
≤ −λjL′( R16). (6.40)

For N/4 ≤ j ≤ N/2 in turn we split the sum in the l.h.s. of (6.40) into a sum over i ≤ N/4
(that is dealt with as in (6.40)) and a sum over i ≥ N/4 (that is dealt with by using (6.36)).
Thus,∑

1≤i≤j

(
L(−λ+ hiN )− L(hiN )

)
= −λN4 L′( R16) + c(j − N

4 )λ2 ≤ N
4

(
cλ2 − λL′( R16)

)
. (6.41)

It remains to choose λ > 0 small enough to make sure that cλ2−λL′(R/16) > 0 and then,
(6.40) and (6.41) complete the proof.

�

The next lemma ensures that we can restrict ourselves to j ≤ N/2.

Lemma 6.3. For a ∈ R and j ∈ {1, . . . , N}
Pβ(Vj ≤ a, YN = Nq, VN = 0) = Pβ(VN−j ≤ a, YN = Nq, VN = 0). (6.42)

Proof. We just need to use time reversal, i.e.,

(VN − VN−j , 0 ≤ j ≤ N)
d
= (Vj , 0 ≤ j ≤ N), (6.43)

to obtain that

Pβ(Vj ≤ a, YN = Nq, VN = 0) = Pβ(−VN−j ≤ −a, −YN = Nq, VN = 0). (6.44)

By using the symmetry of V , we complete the proof:

(−Vj , 0 ≤ j ≤ N)
d
= (Vj , 0 ≤ j ≤ N). (6.45)

�
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At this stage, we need to use precise results for the local central limit theorem. We recall
(2.26) and for convenience we use the notations

αqN := PN,hqN
(NYN = N2q, VN = 0) and ξqN := exp (LΛN (hqN )−NhqN,0 q) . (6.46)

Hence, we have

Pβ(YN = Nq, VN = 0) = ξqNα
q
N . (6.47)

We can handle αqN with the help of Proposition 2.2: there exists a C2 > 0 such that

1
C2

1
N2 ≤ αqN ≤ C2

N2 . (6.48)

Proposition 2.3 allows us to write that there exists a positive constant C3 so that

e−C3eN(LΛ(h̃(q,0))−h̃0(q,0) q) ≤ ξqN ≤ eC3eN(LΛ(h̃(q,0))−h̃0(q,0) q). (6.49)

We can state that

Lemma 6.4. There exists a constant λ > 0 such that for all a > 0, q ∈ [q1, q2], N ≥ N0

and 0 ≤ j ≤ N

Pβ(Vj ≤ −a, YN = Nq, VN = 0) ≤ ξqN C ′e−C1(j∧(N−j))−λa. (6.50)

Proof. By the symmetry in Lemma 6.3, we can without loss of generality assume j ≤ N/2.
By using Lemma 6.2, we can write

Pβ(Vj ≤ −a, YN = Nq, VN = 0) ≤ Eβ

[
e−λVj , YN = Nq, VN = 0

]
e−λa

= ξqNe
−λaEN,hqN

[
e−λVj , YN = Nq, VN = 0

]
≤ ξqNe−λaEN,hqN

[
e−λVj

]
≤ ξqN C ′e−C1j−λa.

�

Proof of Proposition 2.5. Let uN = bν logNc where ν > 0 will be chosen afterward. The
first step is to write

Pβ(Vi > 0, 0 < i < N ; NYN = N2q, VN = 0) ≥
Pβ(V1 = VN−1 = uN , Vi > 0, 2 < i < N − 2; NYN = N2q, VN = 0). (6.51)

By using Markov’s property at time 1 and N − 1, we obtain

Pβ(V1 = VN−1 = uN , Vi > 0, 2 < i < N − 2; NYN = N2q, VN = 0)

= Pβ(U1 = uN )2 Pβ(Vi > −uN , 1 < i < N−3; (N−2)YN−2 = N2q−(N−1)uN , VN−2 = 0).
(6.52)

We shall use a basic lower bound

Pβ(Vi > −uN , 1 < i < N − 3; (N − 2)YN−2 = N2q − (N − 1)uN , VN−2 = 0)

≥ Pβ((N − 2)YN−2 = N2q − (N − 1)uN , VN−2 = 0)

−
N−3∑
i=1

Pβ(Vi ≤ −uN , (N − 2)YN−2 = N2q − (N − 1)uN , VN−2 = 0). (6.53)



42 PHILIPPE CARMONA, GIA BAO NGUYEN, AND NICOLAS PÉTRÉLIS

We take care of the second term by letting q′ = N2q−(N−1)uN
(N−2)2 in Lemma 6.4

N−3∑
i=1

Pβ(Vi ≤ −uN , (N − 2)YN−2 = (N − 2)2q′, VN−2 = 0)

≤ ξq′N−2

N−3∑
i=1

C ′e−C1(i∧(N−2−i))−λuN ≤ C4ξ
q′

N−2 e
−λuN . (6.54)

Observe that thanks to the notations (6.46) we can write the first term in the r.h.s. of
(6.53) as

Pβ

(
(N − 2)YN−2 = (N − 2)2q′, VN−2 = 0

)
= ξq

′

N−2α
q′

N−2 . (6.55)

Hence,

Pβ(Vi > 0, 0 < i < N ; NYN = N2q, VN = 0)

≥ Pβ(U1 = uN )2ξq
′

N−2

[
αq
′

N−2 − C4 e
−λuN

]
. (6.56)

Observe that

Pβ(U1 = uN )2 = 1
c2β
e−βbν logNc ≥ 1

c2β
N−βν (6.57)

and recall that Pβ(NYN = N2q, VN = 0) = ξqNα
q
N . Therefore

Pβ

(
Vi > 0, 0 < i < N | NYN = N2q, VN = 0

)
≥ N−βν

c2
β

ξq
′

N−2

ξqN

αq
′

N−2 − C4 e
−λuN

αqN
(6.58)

We take care of the last factor with the help of the bound (6.48)

αq
′

N−2 − C4 e
−λuN

αqN
≥ 1

C2N2

(
1

C2(N − 2)2
− C5e

−λuN
)
≥ C5N

−4 (6.59)

for N large, by choosing ν > 2
λ . For the second factor, we use the bound (6.49), and the

Lipschitz nature of L and h̃ on a compact set, and the fact that |q − q′| ≤ C6
logN
N ,

ξq
′

N−2

ξqN
≥ e−2C3 exp

(
N
([

LΛ(h̃(q′, 0))− h̃0(q′, 0)q′
]
−
[
LΛ(h̃(q, 0))− h̃0(q, 0)q

]))
≥ e−2C3e−NC7|q−q′| ≥ e−2C3e−C7C6 logN ≥ C8N

−C9 (6.60)

Eventually, combining (6.58), (6.59) and (6.60), we obtain the lower bound, for µ = 4 +
C9 + βν and C > 0 a constant

Pβ

(
Vi > 0, 0 < i < N | NYN = N2q, VN = 0

)
≥ CN−µ .

�

Appendix A. Equivalence between Theorem D and Theorems E and F

Assume that Theorem E and F hold. We begin by observing that

dH

(
SL(l)√
L
,Sβ
)
≤ NL(l)√

L
dH

(
SL(l)
NL(l) ,

√
L

NL(l)Sβ
)

≤ NL(l)√
L
dH

(
SL(l)
NL(l) ,

Sβ
aβ

)
+ NL(l)√

L
dH

(
Sβ
aβ
,
√
L

NL(l)Sβ
)
. (A.1)
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Theorem E, and the inequality dH
(Sβ
aβ
,
√
L

NL(l)Sβ
)
≤ C |

√
L

NL(l) − 1
aβ
| (C is the radius of a ball

containing Sβ) ensure that the second term in the r.h.s. of (A.1) converges to 0 in PL,β
probability. The same convergence holds for the first term in the r.h.s. of (A.1) and this is
a consequence of Theorem F and of the inequality

dH

(
SL(l)
NL(l) ,

Sβ
aβ

)
≤ max{

∥∥Ẽ+
l −

γ∗β
2

∥∥
∞,
∥∥Ẽ−l +

γ∗β
2

∥∥
∞}+ 1

NL(l) .

Thus, Theorem D is a consequence of Theorems E and F. Using similar arguments, we can
prove that Theorems E and F are implied by Theorem D but we do not give the details
here.

Appendix B. Proof of Lemma 3.2

Proof. Since V and An are symmetric, we can assume that x, x′ ∈ N0 := N ∪ {0} and thus
it is sufficient to show that the result holds for x′ = x + 1. We will argue by induction.
Since A0 = 0, the m = 0 case is trivial. Now, we assume that the inequality holds true for
m ∈ N. We consider the partition function of size m + 1, and we can decompose it with
respect to the position of V1, i.e.,

Eβ,x

(
e−δAm+1

)
=
∑
y∈Z

Eβ,x

(
e−δ(|y|+|V2|+...+|Vm+1|)1{V1=y}

)
=
∑
y∈Z

Pβ(U1 = y − x)e−δ|y|Eβ,y

(
e−δAm

)
=
∑
y∈N

Rx(y)e−δyEβ,y

(
e−δAm

)
+ Pβ(U1 = x)Eβ

(
e−δAm

)
, (B.1)

where Rx(y) = Pβ(U1 = y − x) + Pβ(U1 = −y − x). Then, we set R̄x(y) =
∑

y′≥y Rx(y′)

for y ∈ N. Since R̄x(1) + Pβ(U1 = x) = 1, we can rewrite the right hand side in (B.1) as

Eβ,x

(
e−δAm+1

)
=
∑
y∈N

R̄x(y)
[
e−δyEβ,y

(
e−δAm

)
−e−δ(y−1)Eβ,(y−1)

(
e−δAm

)]
+Eβ

(
e−δAm

)
.

(B.2)

We will show that, for all y ∈ N, the function x 7→ R̄x(y) is non-decreasing on N0. First, if
y ≥ x+ 1, we obviously have

R̄x(y) =
∑
y′≥y

Rx(y′) ≤
∑
y′≥y

Rx+1(y′) = R̄x+1(y). (B.3)

Then, if 1 ≤ y ≤ x, since

R̄x(y) +

y−1∑
y′=1

Rx(y′) + Pβ(U1 = x) = R̄x+1(y) +

y−1∑
y′=1

Rx+1(y′) + Pβ(U1 = x+ 1) = 1, (B.4)

and

Pβ(U1 = x) +

y−1∑
y′=1

Rx(y′) ≥ Pβ(U1 = x+ 1) +

y−1∑
y′=1

Rx+1(y′), (B.5)

we immediately obtain R̄x(y) ≤ R̄x+1(y). Coming back to (B.2), we use the induction
hypothesis to claim that

e−δyEβ,y

(
e−δAm

)
− e−δ(y−1)Eβ,(y−1)

(
e−δAm

)
≤ 0, y ∈ N, (B.6)
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which, together with the monotonicity of x 7→ R̄x(y) yields that

Eβ,x

(
e−δAm+1

)
≥
∑
y∈N

R̄x+1(y)
[
e−δyEβ,y

(
e−δAm

)
− e−δ(y−1)Eβ,(y−1)

(
e−δAm

)]
+ Eβ

(
e−δAm

)
= Eβ,x+1

(
e−δAm+1

)
.

�
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