
ar
X

iv
:1

60
9.

03
16

8v
1 

 [m
at

h.
D

S
]  

11
 S

ep
 2

01
6

DEVANEY CHAOS PLUS SHADOWING IMPLIES DISTRIBUTIONAL
CHAOS

JIAN LI, JIE LI, AND SIMING TU

ABSTRACT. We explore connections among the regional proximal relation, the asymp-
totic relation and the distal relation for a topological dynamical system with the shadow-
ing property, and show that if a Devaney chaotic system has the shadowing property then
it is distributionally chaotic.

Chaos theory is a hot topic in area of topological dynamics, and different defi-
nitions of chaos have been introduced. In this paper, we consider the relationship
between two important notions of chaos. One is Devaney chaos, which means that
the system is topologically transitive, sensitive to initial conditions and the set of
periodic points in the space is dense. Another is called distributional chaos, which
is related to the complexity of the trajectory behavior of points in the space. The
notion of Devaney chaos is a global property of the dynamicalsystem, while distri-
butional chaos is a local one. Neither Li-Yorke chaos nor distributional chaos can
imply Devaney chaos in general. So a natural question is thatunder what kinds of
conditions can one relate these two types of chaos. This paper gives one such con-
dition that under the shadowing property one can imply distributional chaos from
Devaney chaos, building a connection between the global andlocal chaotic behaviors
of such systems.

1. INTRODUCTION

Throughout this article, by a topological dynamical systemwe mean a pair(X,T),
whereX is a compact metric space with a metricd andT : X → X is a continuous map.
LetZ+ andN be the sets of nonnegative integers and natural numbers, respectively.

The study of chaos theory in the topological dynamics has attracted a lot of atten-
tions. Unfortunately, there is still no definitive, widely accepted mathematical definition
of chaos. Due to different understanding of the complex behaviors of dynamical systems,
various different but closely related definitions of chaos are introduced, such as Li-Yorke
chaos, Devaney chaos, distributional chaos and so on. It is important to understand the
relationships among the various definitions of chaos. We refer the reader to the survey
[16] for recent developments of this topic.

Following the ideas in [18], we usually define the Li-Yorke chaos as follows. A dy-
namical system(X,T) is calledLi-Yorke chaoticif there is an uncountable subsetSof X
such that for every two distinct pointsx,y∈ S, one has

liminf
n→∞

d(Tnx,Tny) = 0, and limsup
n→∞

d(Tnx,Tny)> 0.
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In [18], Li and Yorke showed that if a continuous interval mapf : [0,1] → [0,1] has a
periodic point of period 3, then it is Li-Yorke chaotic. Moreover, if an interval map has
positive topological entropy then it is Li-Yorke chaotic, and this is in fact true for general
systems, as shown by Blanchard, Glasner, Kolyada, and Maass[5], and in fact one can
know from their proof that if(X,T) has an ergodic invariant measure which is not measur-
able distal then same conclusion holds. However, there exist some interval maps which
are Li-Yorke chaotic while have zero topological entropy [35, 28]. Interested readers
can find in the survey [16] more information on Li-Yorke chaos and recent developments
related to it.

In [27], using ideas from probability theory, Schweizer and Smı́tal introduced a strength-
ening of Li-Yorke chaos, so called distributional chaos. For x,y in X andn∈N, we define
a functionΦn

xy on the real line by

Φn
xy(t) =

1
n#
(

{0≤ i ≤ n−1: d(T ix,T iy)< t}
)

,

where #(·) denotes the number of elements of a finite set. It is clear thatΦn
xy is a dis-

tribution function. A dynamical system is calleddistributionally chaoticif there is an
uncountable subsetSof X such that for every non-diagonal pair(x,y) ∈ S×S is ditribu-
tionally scrambled, i.e., one has

(1) for everyt > 0, limsupn→∞ Φn
xy(t) = 1, and

(2) there exists someδ > 0 such that liminfn→∞ Φn
xy(δ ) = 0.

Since then it has evolved into three variants of so-called distributional chaos DC1, DC2
and DC3 (ordered from strongest to weakest), and the distributional chaos is the DC1.
Pikula [25] showed that positive topological entropy does not imply DC1 chaos. Smı́tal
conjectured that it does imply DC2 (see e.g. [29]). This problem has been around for
several years and several partial solutions had been given (see e.g. [24] for systems with
uniformly positive entropy or [29] for some other cases) before it was finally solved by
Downarowicz [7] (see [10] for an alternative proof). Note that while in general it is not
true that positive topological entropy does not imply distibutional chaos, it is true for
interval maps. In fact, it turns out that a continuous mapf : [0,1] → [0,1] has positive
topological entropy if and only if it is distributionally chaotic [27].

Another popular definition of chaos was introduced by Devaney in [6]. A dynamical
system(X,T) is calledDevaney chaoticif it satisfies the following three properties:

(1) (X,T) is topological transitive;
(2) (X,T) has sensitive dependence on initial conditions;
(3) the set of periodic points of(X,T) is dense inX.

Note that the condition of sensitivity is redundant in the definition of Devaney chaos [3].
It is clear that Devaney chaos is a global property of the dynamical system, while

Li-Yorke chaos or distributional chaos is a local one. Neither Li-Yorke chaos nor distri-
butional chaos can imply Devaney chaos in general. In 2002, Huang and Ye showed that
Devaney chaos implies Li-Yorke chaos [11]. But Devaney chaos does not always imply
distributional chaos, as there are some examples of Devaneychaotic systems without dis-
tributionally scrambled pairs [22], see also [9] for another approach. But in some special
case, Devaney chaos can imply distributional chaos. It is shown in [17] that an interval
map has positive topological entropy if and only if it has a Devaney chaotic subsystem,
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then also if and only if it is distributionally chaotic. For asubshift of finite type it is distri-
butionally chaotic if and only if it has a Devaney chaotic subsystem [34]. It is well known
that a subshift is of finite type if and only if it has the shadowing property [32]. Recall
that a sequence{xn}

∞
n=0 is aδ -pseudo-orbitfor T if d(xn+1,Txn)< δ for all n∈ Z+, and

is ε-tracedby a pointx ∈ X if d(Tnx,xn) < ε for all n ∈ Z+. We say that a dynamical
system(X,T) has theshadowing propertyif for any ε > 0 we can find aδ > 0 such that
eachδ -pseudo-orbit forT is ε-traced by some point ofX.

In [1] Arai and Chinen introduced the concept ofP-chaos by changing the condition of
transitivity in the definition of Devaney chaos to the shadowing property, and they proved
that when the state spaceX is connected if a dynamical system(X,T) is P-chaotic, then it
is Devaney chaotic with positive topological entropy and exhibits a distributionally scram-
bled pair. Note that in zero-dimensional caseP-chaotic system may have zero topological
entropy, see [1, Example 4.5]. We do not know whetherP-chaos with positive topological
entropy can always imply distributional chaos.

Another natural question inspired by [1] is whether Devaney chaos under the shadow-
ing property can imply distributional chaos. In this note weshall give a positive answer
to this question. In fact, we will prove a bit more. More specifically, we show that it
implies the generalized multivariant distributional chaos [31]. Recall that for a dynamical
system(X,T) andn ≥ 2, ann-tuple (x1,x2, . . . ,xn) ∈ Xn is distributionally n-scrambled
if it satisfies

(1) for anyt > 0, the upper density of{n∈ Z+ : d(Tnxi ,Tnx j)< t, 1≤ i < j ≤ n} is
one, and

(2) there exists someδ > 0 such that the upper density of{n∈ Z+ : d(Tnxi ,Tnx j) >
δ , 1≤ i < j ≤ n} is one.

A subsetC of X is calleddistributionally n-scrambledif any pairwise distinctn points in
C form a distributionallyn-scrambled tuple. A dynamical system(X,T) is calleddistri-
butionally n-chaoticif there is an uncountable distributionallyn-scrambled set inX.

Similarly, if the separated constantδ is uniform for all pairwise distinctn-tuples in
C, we can definedistributionally n-δ -scrambled setsanddistributional n-δ -chaos. Note
that the notions of distributionaln-chaos and distributional(n+1)-chaos are different in
general [30, 15].

Now we are ready to state our main result as follows.

Theorem 1.1. Let (X,T) be a non-periodic transitive system and has the shadowing
property. Then

(1) if (X,T) has a fixed point, then there exists a dense Mycielski subset Kof X such
that K is distributionally n-δn-scrambled for all n≥ 2 and someδn > 0.

(2) if (X,T) has a periodic point, then there exists a Mycielski subset K of X such that
K is distributionally n-δn-scrambled for all n≥ 2 and someδn > 0.

In particular, a Devaney chaotic system with the shadowing property is distributionally
chaotic.

This paper is organized as follows. For preparation we recall in Section2 some basic
definitions and results that will be needed. In Section3 we introduce the multivariant
version of the notions of regional proximity,ε-asymptoticity (for givenε > 0) and distal-
ity, and explore their connections for dynamical system with the shadowing property, see
Lemmas3.2and3.3. As an application we yield the proof of Theorem1.1.
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2. PRELIMINARIES

In this section we introduce some basic notions and facts in topological dynamics,
which will be used later.

Let F be a subset ofZ+. Theupper densityof F is defined by

d(F) = limsup
n→∞

1
n

#(F ∩{0,1, . . . ,n−1}).

Let X be a compact metric space. A subsetA of X is called aCantor setif it is home-
omorphic to the standard Cantor ternary set and aMycielski setif it can be expressed
as a union of countably many Cantor sets. For convenience we restate here a version of
Mycielski’s theorem [21, Theorem 1] which we shall use.

Theorem 2.1(Mycielski Theorem). Let X be a perfect compact metric space. If for every
n≥ 2, Rn is a dense Gδ subset of Xn, then there exists a dense Mycielski subset K of X
such that for any distinct n points x1,x2, . . . ,xn ∈ K, the tuple(x1,x2, . . . ,xn) is in Rn.

Let (X,T) be a dynamical system. If a closed subsetY of X is T-invariant, i.e.,T(Y)⊂
Y, then the restriction(Y,T|Y) of (X,T) toY is itself a dynamical system, and we call it a
subsystemof (X,T). If there is no ambiguous, we will denote the restrictionT|Y by T for
simplicity.

A dynamical system(X,T) is calledtransitiveif for every two non-empty open subsets
U andV of X there is ann∈N such thatTnU ∩V 6= /0. A pointx∈ X is called atransitive
point if the orbit of x, Orb(x,T) = {x,Tx,T2x, . . .}, is in dense inX i.e., Orb(x,T) = X.
In our setting, whenX is a compact metric space, if(X,T) is transitive then the collection
of transitive points is a denseGδ set inX. If a transitive system has an isolated point
then the system consists of just one periodic orbit. So for a non-periodic transitive system
(X,T), the spaceX is always perfect.

A dynamical system(X,T) is calledweakly mixingif the product system(X×X,T×T)
is transitive. For anyn∈ N, then-fold product system of(X,T) is denoted by(Xn,T(n)).
It is not hard to see that for anyn∈ N, (Xn,T(n)) is weakly mixing provided that(X,T)
is.

Consider{0,1} as a topology space with the discrete topology and letΣ = {0,1}Z+

with the product topology. ThenΣ is a Cantor space. We write the elements ofΣ in the
form asx = x0x1x2 . . . . The shift mapfrom σ to itself is defined byσ(x)n = xn+1 for
n ∈ Z+. It is clear thatσ is a continuous surjection. The dynamical system(Σ,σ) is
called thefull shift. If X is non-empty, closed andσ -invariant then we call the dynamical
system(X,σ) asubshift.

For an open coverU of X, let N(U) denote the smallest cardinality of a subcover of
U. By the compactness ofX, N(U) is always finite. IfU andV are two open covers of
X, thenU

∨

V = {U ∩V : U ∈ U,V ∈ V} is called their common refinement. LetUn =
U
∨

T−1U
∨

· · ·
∨

T−n+1U, whereT−kU = {T−kU : U ∈ U}. The topological entropy of
U with respect to Tis defined by

htop(U,T) = lim
n→+∞

logN(Un)

n
,

and thetopological entropy of(X,T) is

htop(T) = suphtop(U,T),
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where the supremum ranges over all open coversU of X. We refer to the textbook [33]
for more details related to the topological entropy.

A non-diagonal pair(x1,x2) ∈ X2 is said to be anentropy pair if wheneverW1 and
W2 are closed disjoint neighbourhoods ofx1 andx2, the open cover{Wc

1 ,W
c
2} has positive

topological entropy [4]. More generally, we call a non-diagonal tuplex=(x1, . . . ,xn)∈Xn

anentropy tupleif wheneverW1, . . . ,Wl are closed pairwise disjoint neighbourhoods of the
distinct points in the listx1, . . . ,xn, the open cover{Wc

1 , . . . ,W
c
l } has positive topological

entropy [12]. We say that a dynamical system(X,T) hasuniformly positive entropy of all
ordersif for eachn≥ 2, every non-diagonal tuple inXn is an entropy tuple.

Let (X,T) and(Y,S) be two dynamical systems. We say that a continuous mapπ : X →
Y is afactor mapif π is onto and intertwines the actions, i.e.,π ◦T = S◦π , and in which
case(Y,S) is called afactorof (X,T). The following theorem says that the entropy tuples
can be lifted from a factor.

Theorem 2.2([12], Proposition 2.4). Letπ : (X,T)→ (Y,S)be a factor map. If(y1, . . . ,yn)
is an entropy n-tuple inY then there exist x1, . . . ,xn∈X such thatπ(xi)= yi and(x1, . . . ,xn)
is an entropy n-tuple in X.

A dynamical system(X,T) is said to havesensitive dependence on initial conditions
(or just sensitive) if there exists someδ > 0 such that for eachx ∈ X and eachε > 0
there arey ∈ X with d(x,y) < ε andk ∈ N such thatd(Tkx,Tky) > δ . In [36] Xiong
generalized the notion of sensitivity to multi-variant sensitivity. Using ideas from the
local entropy theory, Ye and Zhang [37] introduced the notion of sensitive tuples. An
n-tuple(x1,x2, . . . ,xn) ∈ Xn is calledsensitiveif xi 6= x j for all 1≤ i < j ≤ n and for any
n ≥ 2, any neighborhoodUi of xi , i = 1,2, . . . ,n, and any non-empty open subsetU of
X there existk ∈ N andyi ∈ U such thatTk(yi) ∈ Ui for i = 1,2, . . . ,n. We will use the
follow result.

Theorem 2.3([37], Theorem 4.4). If a dynamical system(X,T) is transitive, then for
every n≥ 2, any entropy n-tuple is sensitive.

3. PROOF OF THE MAIN RESULT

In this section, we will prove the main result Theorem1.1. First we need to introduce
some notions.

For n ≥ 2, ann-tuple (x1,x2, . . . ,xn) ∈ Xn is calledregionally proximalif for every
ε > 0 there existy1,y2, . . . ,yn ∈ X andk∈ N such thatd(xi ,yi) < ε for i = 1,2, . . . ,n and
diam({Tky1,Tky2, . . . ,Tkyn}) < ε. For a givenε > 0, ann-tuple (x1,x2, . . . ,xn) ∈ Xn is
calledε-asymptoticif

limsup
k→∞

diam({Tkx1,T
kx2, . . . ,T

kxn})< ε.

Remark 3.1. The regionally proximal relation plays an important role inthe study of
topological dynamics One of the important properties of this relation is that it is a closed
invariant equivalence relation for any minimal system and the quotient space obtained
from this relation is the maximal equicontinuous factor of the original system. We refer
the interested readers to [2] and [8] for details on this topic.

Denote byQn(X,T) andAsyεn(X,T) the collection of all regionally proximaln-tuples
and ε-asymptoticn-tuples respectively. It is clear thatQn(X,T) is always closed and
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⋂

ε>0Asyεn(X,T) ⊂ Qn(X,T). For a dynamical system with the shadowing property, we
have the following relationship.

Lemma 3.2. If a dynamical system(X,T) has the shadowing property, then for every
n≥ 2 andε > 0, Qn(X,T)⊂ Asyεn(X,T).

Proof. Fix (x1,x2, . . . ,xn) ∈ Qn(X,T) andε > 0. For every 0< η < ε/2, pick 0< δ < η
provided that everyδ -pseudo-orbit isη-traced.

Since(x1,x2, . . . ,xn) ∈ Qn(X,T), there existy1,y2, . . . ,yn ∈ X andk∈ N such that

d(xi ,yi)< δ , i = 1,2, . . . ,n

and
diam({Tk1y1,T

k1y2, . . . ,T
k1yn})< δ .

For everyi = 1,2, . . . ,n, the sequence

yi ,Tyi, . . . ,T
k−1yi ,T

ky1,T
k+1y1, . . .

is a δ -pseudo-orbit. Thus by the shadowing property for eachi = 1, . . . ,n, there exists
zi ∈ X such that

d(T jzi,T
jyi)< η, j = 0,1, . . . ,k−1, and

d(T jzi ,T
jy1)< η, j = k,k+1, . . . ,

which implies that(z1,z2, . . . ,zn) is ε-asymptotic. For eachi = 1, . . . ,n,

d(xi ,zi)< d(xi ,yi)+d(yi ,zi)< δ +η < 2η,
which ends the proof. �

For a givenε > 0, ann-tuple(x1,x2, . . . ,xn) ∈ Xn is calledε-distal if

lim inf
k→∞

min
1≤i< j≤n

d(Tkxi ,T
kx j)> ε.

We say that ann-tuple isdistal if it is ε-distal for someε > 0. Denote byDε
n(X,T) the

collection of allε-distaln-tuples.

Lemma 3.3. Let (X,T) be a transitive system with the shadowing property. If(X,T) is
sensitive, then for every n≥ 2 there existsε > 0 such that Qn(X,T)⊂ Dε

n(X,T).

Proof. We first show that for everyn≥ 2, there exists ann-tuple which is both sensitive
and distal. Since(X,T) is sensitive, by [14, Proposition 3.1] there exists anm∈ N, a
subsystem(Y,Tm) of (X,Tm) and a factor mapπ from (Y,Tm) to a full shift (Σ,σ).
Since the set of periodic points of(Σ,σ) is dense, pickn pairwise distinct periodic points
u1,u2, . . . ,un in Σ. Then(u1,u2, . . . ,un) is distal. As(Σ,σ) has uniformly positive entropy
of all orders,(u1,u2, . . . ,un) is also an entropyn-tuple. By Theorem2.2 there exists an
entropyn-tuple (v1,v2, . . . ,vn) ∈ Yn such thatπ(vi) = ui for i = 1,2, . . . ,n. Moreover,
(v1,v2, . . . ,vn) is also distal in(Y,Tm), as its image underπ is distal. Then we have that
(v1,v2, . . . ,vn) is an entropy and distaln-tuple for(X,T), because so is it for(Y,Tm). Now
by Theorem2.3, (v1,v2, . . . ,vn) is sensitive.

From the definition of distal tuple, we can pick anε > 0 such that

liminf
k→∞

min
1≤i< j≤n

d(Tkvi ,T
kv j)> 2ε.



DEVANEY CHAOS PLUS SHADOWING IMPLIES DISTRIBUTIONAL CHAOS 7

For every 0< η < ε/2, we pick 0< δ < η provided that every 2δ -pseudo-orbit isη-
traced. Now fix(x1,x2, . . . ,xn) ∈ Qn(X,T). There existy1,y2, . . . ,yn ∈ X andk1 ∈N such
that

d(xi ,yi)< δ , i = 1,2, . . . ,n

and

diam({Tk1y1,T
k1y2, . . . ,T

k1yn})< δ .

As (v1,v2, . . . ,vn) is a sensitive tuple, there existz1,z2, . . . ,zn ∈ X andk2 ∈ N such that

d(zi ,T
k1y1)< δ

and

d(Tk2zi ,vi)< δ , i = 1,2, . . . ,n.

From the above construction it is not hard to see that for every i = 1,2, . . . ,n, the sequence

yi ,Tyi , . . . ,T
k1−1yi ,zi ,Tzi , . . .T

k2−1zi,vi ,Tvi , . . .

is a 2δ -pseudo-orbit. Hence there existswi ∈ X such that

d(T jwi ,T
jyi)< η, j = 0,1, . . . ,k1−1,

d(T jwi ,T
j−k1zi)< η, j = k1,k1+1, . . . ,k1+k2−1, and

d(T jwi ,T
j−k1−k2vi)< η, j = k1+k2,k1+k2+1, . . . .

Then

liminf
k→∞

min
1≤i< j≤n

d(Tkwi ,T
kw j)> lim inf

k→∞
min

1≤i< j≤n
d(Tkvi ,T

kv j)−2η > 2ε −2η > ε.

Moreover, for eachi = 1,2, . . . ,n,

d(wi ,xi)< d(wi ,yi)+d(yi,xi)< δ +η < 2η,

which ends the proof. �

Theorem 3.4.Let (X,T) be a non-trivial transitive system with the shadowing property.
If Qn(X,T) = Xn for some n≥ 2, then there exists a dense Mycielski subset K of X such
that K is distributionally n-δn-scrambled for someδn > 0.

Proof. Let Rn be the collection of alln-tuples(x1,x2, . . . ,xn) satisfying for anyt > 0 the
upper density of{k ∈ Z+ : d(Tkxi ,Tkx j) < t, 1 ≤ i < j ≤ n} is one, andSn(δ ) be the
collection of alln-tuples satisfying the upper density of{k∈ Z+ : d(Tkxi ,Tkx j)> δ , 1≤
i < j ≤ n} is one. It is not hard to see that

Rn =
∞
⋂

ℓ=1

∞
⋂

q=1

∞
⋂

p=1

∞
⋃

m=p

{

(x1,x2, . . . ,xn) ∈ Xn :

#
({

k∈ {0,1, . . . ,m−1} : d(Tkxi ,Tkx j)<
1
ℓ , 1≤ i < j ≤ n

})

m
> 1−

1
q

}
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and

Sn(δ ) =
∞
⋂

q=1

∞
⋂

p=1

∞
⋃

m=p

{

(x1,x2, . . . ,xn) ∈ Xn :

#
({

k∈ {0,1, . . . ,m−1} : d(Tkxi ,Tkx j)> δ , 1≤ i < j ≤ n
})

m
> 1−

1
q

}

.

ThenRn andSn(δ ) areGδ subsets ofXn.
Now assumeQn(X,T)=Xn for somen≥ 2. It is not hard to see that

⋂

ε>0Asyεn(X,T)⊂
Rn. This, together with Lemma3.2 andQn(X,T) = Xn, immediately implies thatRn is
dense inXn. Since(X,T) is transitive and has the shadowing property, it is either sensitive
or equicontinuous, see for instance [20, Theorem 6] or [14, Theorem 3.3]. ButQn(X,T)=
Xn then(X,T) can not be equicontinuous and hence it is sensitive. By Lemma3.3there is

a δn > 0 such thatQn(X,T) ⊂ Dδn
n (X,T). Observe thatDε

n(X,T) ⊂ Sn(ε) for eachε > 0
andQn(X,T) = Xn, thenSn(δn) is directly dense inXn.

Note that the collection of distributionallyn-δn-scrambled tuples is just the intersection
of Rn andSn(δ ), so it is also a denseGδ subset ofXn by the Baire category theorem. As
X is perfect, the result then follows from the Mycielski Theorem. �

Recall that a dynamical system(X,T) is weakly mixing if the product system(X ×
X,T ×T) is transitive. It is well known that if(X,T) is weakly mixing, then then-th
product system(Xn,T(n)) is also transitive, whereT(n) = X×X×·· ·×X (n-times). For
a weakly mixing system(X,T), it is not hard to see thatQn(X,T) = Xn for all n≥ 2. So
We have the following corollary.

Corollary 3.5. If a non-trivial weakly mixing system(X,T) has shadowing property, then
there exists a dense Mycielski subset K of X such that K is distributionally n-δn-scrambled
for all n ≥ 2 and someδn > 0.

It is shown in [11] that a transitive system with a fixed point contains a dense un-
countable scrambled set (by Mycielski Theorem2.1 this uncountable scramble set can
be chosen to be a Mycielski set). Furthermore, if the system is additionally sensitive,
then it contains a dense Mycielskiδ -scrambled set for someδ > 0 [19]. In [36] Xiong
generalized these results ton-scrambled sets for anyn≥ 2. Our main result Theorem1.1
states that under the shadowing property, these results canbe improved to distributional
n-scrambled sets. Now we are going to prove the main result.

Proof of Theorem1.1. (1) Assume(X,T) has a fixed pointx0. Since(X,T) is transitive,
there exists a transitive pointx∈ X and an increasing sequence{ni} such thatTni x→ x0.
As x0 is a fixed point, we haveTni+ jx→ x0 for any fixed j ∈ Z+. This implies that each
n-tuple(T i1x, . . . ,T inx) is regionally proximal for alli1, . . . , in ∈Z+. Sincex is a transitive
point, the orbit ofx is dense. So the collection

{(T i1x, . . . ,T inx) : i1, . . . , in ∈ Z+}

is dense inXn and thenQn(X,T) = Xn for all n≥ 2. Now the result follows from Theo-
rem3.4.

(2) Assume that(X,T) has a periodic point of periodp. Let x be a transitive point and
Yi = Orb(T ix,T p) for i = 0,1, . . . , p−1. There existsq∈ N with q|p such that we have a
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decomposition

X =Y0∪Y1∪· · ·∪Yq−1,

whereYi 6= Yj for 0 ≤ i < j < q andT(Yi) = Yi+1 (mod q). Moreover, the interior ofY0

(in X) is dense inY0. Now consider the system(Y0,T p), it is transitive and has a fixed
point. By (1), we know that for eachn ≥ 2, Qn(Y0,T p) = Yn

0 . ThenYn
0 ⊂ Qn(X,Tp) ⊂

Qn(X,T). Following the proof of Theorem3.4 we know that the set of distributionally
n-δn-scrambled tuples ofXn is denseGδ in Yn

0 . As Y0 is perfect, applying the Mycielski
Theorem we can get a dense Mycielski subsetK of Y0 which is distributionallyn-δn-
scrambled. �

Remark 3.6. In fact, from the proof of Theorems1.1and3.4, we know that when(X,T)
is transitive with shadowing property, if there exists a closed subsetY of X with non-
empty interior such thatY×Y ⊂Q2(X,T) then(X,T) is distributionally chaotic. It should
be noticed that there are some distributionally chaotic systems which do not have this
property. For example, for the product system of the full shift and an odometer, it is
transitive and has the shadowing property. It is distributionally chaotic and has positive
entropy, because so is the full shift. But the interior of theregional proximal relation is
empty. This leads us to ask the following question.

Question: For a transitive system with the shadowing property, if it has the positive
topological entropy, is it distributionally chaotic (in the sense of DC1)?

As said in the introduction, there exist examples which are of positive topological en-
tropy but not DC1. However, since we know that positive topological entropy implies
chaos DC2 [7, 10], and so hopefully with some additional conditions we can get DC1
from positive topological entropy, and the shadowing property maybe is a suitable one.
Note that at this time the system does not need to have a periodic point, for example the
product system of an odometer with the tent map. This means that more tools are needed
to be developed for the investigation of the above question.

Final Remarks. One of the referees suggested that there is another approachto get a
weaker form of Theorem1.1. By Theorem 6 in [26], a transitive system with fixed point
is chain mixing. It is easy to see that a chain mixing map with the shadowing property is
topologically mixing. By Theorem 1 in [13], we know that if a transitive system has the
shadowing property and a fixed point, then it has the specification property. Now applying
Theorem 1 in [23] it is distributionally chaotic.

Note that our proof of Theorem1.1is new and Lemmas3.2and3.3are of independent
interest.
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