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CONVERGENCIA FUERTE DE UN ESQUEMA DE MILSTEIN PARA UNA EDE DE
TIPO CEV Y ALGUNAS CONTRIBUCIONES AL ANÁLISIS DEL MODELO DE

NEURONAS DE Morris-Lecar ESTOCÁSTICO

Desde muy temprano en el desarrollo de la teoría de procesos estocásticos ha existido
un creciente interés por aplicar sus herramientas en diferentes contextos; ya en el año 1900
Bachelier creó un modelo de movimiento Browniano para describir el mercado de acciones en
París [7], y desde entonces el rango de aplicaciones del modelamiento estocástico ha seguido
creciendo y hoy en día incluye desde economía hasta biología.

Esta tesis tiene dos partes, cada una de ellas dedicada al estudio de un modelo estocástico
diferente. En la primera se estudia la aproximación numérica de la solución de una ecuación
diferencial estocástica con aplicaciones en finanzas. Mientras que en la segunda se estudia
un modelo estocástico para neuronas con énfasis en los “comportamientos asintóticos”.

La primera parte de esta tesis se organiza como sigue. En el Capítulo 2 se presenta una
breve introducción a los métodos clásicos de aproximación de soluciones de ecuaciones difer-
enciales estocásticas y se recuerdan sus propiedades de convergencia. Luego, en el Capítulo
3 se estudia un esquema numérico para aproximar las soluciones de

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs.

Esta ecuación se puede ver como la generalización del modelo CIR para tasas de interés y
tiene un gran rango de aplicaciones en finanzas. El principal resultado de este capítulo es
la convergencia fuerte con tasa 1 del esquema numérico estudiado a la solución exacta de la
ecuación. Este capítulo está basado en un trabajo conjunto con Mireille Bossy [16], el cual
ha sido aceptado para su publicación en la revista Bernoulli.

En la segunda parte de esta tesis se estudia el modelo de Morris-Lecar para una red de
neuronas. El principal objetivo es estudiar el comportamiento del sistema cuando el tiempo
o el número de neuronas se va a infinito. Sin embargo, antes de abordar esas temáticas, se
discuten dos versiones estocásticas para el modelo de Morris-Lecar, y la relación entre ellas.
Los resultados principales de esta parte de la tesis son la caracterización del comportamiento
límite, en intervalos de tiempo finito, para una red de neuronas cuando el número de neuronas
diverge a infinito y un resultado de sincronización para una red finita de neuronas cuando el
tiempo diverge a infinito.
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STRONG CONVERGENCE OF A MILSTEIN SCHEME FOR A CEV-LIKE SDE AND
SOME CONTRIBUTIONS TO THE ANALYSIS OF THE STOCHASTIC

MORRIS-LECAR MODEL

From very early in the development of the theory of stochastic processes there has been an
increasing interest to apply its tools in different contexts; already in 1900 Bachelier created
a model of Brownian motion to describe the stock market in Paris [7], and since then, the
range of application of stochastic modeling has keep growing and nowadays includes from
economy to biology.

This thesis has two parts, each of them dedicated to the study of a different stochastic
model. In the first part, we study the numerical approximation of the solutions of a stochastic
differential equation with applications in finance. In the second part, we study a stochastic
model for neurons with emphasis in “asymptotic behaviors”.

The first part of this thesis goes as follows: in Chapter 2 we present a short introduction
to the most classical methods to approximate solutions of stochastic differential equations,
and we recall their convergence properties. Next, in Chapter 3 we study a numerical scheme
to approximate the solutions of

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs.

This equation can be seen as a generalization of the CIR model for interest rates, and it
has a great range of application in finance. The main result of this chapter is the strong
convergence at rate 1 of the studied numerical scheme to the exact solution. This chapter is
based on a joint work with Mireille Bossy [16], which has been accepted for publication in
the Bernoulli Journal.

In the second part of this thesis we study the stochastic version of the Morris-Lecar
model for neurons. Our interest is the asymptotic behaviors of the system, meaning, the
limit behaviors when the time or the number of neurons goes to infinity. Nevertheless, before
addressing these issues, we discuss two different stochastic versions of the Morris-Lecar model,
and the connection between them. The main results of this part are the relation between this
models, the limit behavior on a finite time interval for both of the stochastic models when
the number of neurons goes to infinity and a synchronization result for a finite number of
neurons when the time goes to infinite.
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Chapter 1

Introduction

“Y el azar se le iba enredando
poderoso, invencible.”

Causas y azares,
Silvio Rodriguez.

In this thesis we address the study of two stochastic models, the first one from finance
and the second one from neuroscience. Although this two models are quite different, and we
study them from very different perspectives, they are both described in terms of stochastic
differential equations.

In the next section we give an intuitive and rough approximation to stochastic differential
equations, we do not aim to give a compressive and precise introduction to the subject, but
to show through a simple example how stochastic differential equations can be included in
modeling. For a complete and detailed introduction to the the theory of stochastic calculus
and stochastic differential equations see [44], [52] or [69].

1.1 Stochastic Differential Equations

From a very intuitive perspective, stochastic differential equations (SDE) driven by a Brow-
nian motion can be seen as the formalization of the idea of a dynamical system evolving
according to an ordinary differential equation (ODE) subject to random perturbations. For
example, if we are modeling the instantaneous interest rate Xt, it is known that X is a process
attracted to a long term value, let us say b > 0, the simpler model we can propose is

dXt = a(b−Xt)dt, (1.1.1)

1



Chapter 1. Introduction

with a > 0. This equation is linear with constant coefficients, so it has an explicit solution
given by

Xt = X0e
−at + (1− e−at)b,

and effectively, as the time goes to infinity, Xt goes to b. Even more, Xt is positive for all
times, which is an important property of the instantaneous interest rate. But, what happened
if we want to add a random perturbation to the equation, the reason to do this could be take
into account some measurement errors, or maybe the previous knowledge of X tell us that
in its nature there is some intrinsic randomness.

Inspired in the central limit theorem, we could assume that the random perturbation we
want to add is a normal random variable with zero mean (in average the measurement errors
cancel with each other), a variance increasing in time (the errors are cumulative), also it
is desirable certain independence between the errors between [t1, t2] and the errors between
[t3, t4] if t3 ≥ t2. The mathematical formalization of this idea is the Brownian motion.

The Brownian motion should be the most famous continuous time Markov process. Own
its name to the Scottish botanist Robert Brown, who observed in the motion of a pollen
grain suspended in water in 1827. About 70 years later, Einstein in [26] explain the Brow-
nian motion as the consequence of the interaction between the pollen grain and the water
molecules. And twenty years later, Wiener [80, 81] gave a rigorous proof of the existence of
the process. The Brownian motion or Wiener process satisfies

1. W0 = 0 a.s.,

2. Wt −Ws ∼ N(0, t− s),

3. ∀0 < t1 < t2 < . . . < tn, the random variablesWt1 ,Wt2−Wt1 ,Wt3−Wt2 , . . . ,Wtn−Wtn−1

are independent.

Let us go back to the equation (1.1.1), we can add the noise given by a Browian motion
multiply for a parameter ε > 0 and obtain

dXt = a(b−Xt)dt+ εdWt, (1.1.2)

Give a full meaning to this equation is not easy, as a function of t, the trajectories of the
Brownian motion are nowhere differentiable, and then what does it mean dWt? The answer
for this question was given by Itô in [45], and according with Itô’s theory the equation (1.1.2)
has for solution

Xt = X0e
−at + (1− e−at)b+ εe−at

∫ t

0

easdWs, (1.1.3)

which is the well known Orstein-Uhlenbeck process. In [46], Itô established that under a
Lipschitz condition for the coefficients a SDE like (1.1.2) has a unique solution.

In [77] Vasicek proposed to use the Orstein-Uhlenbeck process (1.1.3) as a model for the
instantaneous interest rate. However, it can be shown that this process has normal law, and
then, there is a positive probability of Xt being negative, regardless the values of X0 and b.
A solution to this problem was given by Cox, Ingersoll and Ross in [20], where they propose

2



1.2. Part I: A Milstein Scheme for a CEV like SDE

to use a Feller diffusion [31] as model for the interest rate, that is

dXt = a(b−Xt)dt+ ε
√
XtdWt. (1.1.4)

Although there is not a closed formula for the solution of (1.1.4), it can be shown that the
mean of this process is attracted to b, the process is always non negative, and under the
condition 2ab > ε2, the process is strictly positive.

1.2 Part I: A Milstein Scheme for a CEV like SDE

Numerical Schemes for SDE

In the previous section we have seen how easy is to find a SDE without an explicit solution.
So, it is very natural to ask for numerical methods that allows to approximate the value of a
process defined though a SDE at some given time. The first answer to this question, is the
natural extension of the Euler scheme to the stochastic setting. Let us recall that for a ODE
of the form

dXt = b(Xt)dt, X0 = x0,

the Euler scheme given the temporal grid 0 = t0 < t1 < t2 < . . . < tn = T is given by

Xt0 = x0

Xtn+1 = Xtn + b(Xtn)(tn+1 − tn).

Then for the SDE
dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0, (1.2.1)

the Euler-Maruyama scheme [57] will be

Xt0 = x0

Xtn+1 = Xtn + b(Xtn)(tn+1 − tn) + σ(Xtn)(Wtn+1 −Wtn).
(1.2.2)

Two natural question arise immediately:

1. Does the numerical scheme converge to the exact solution of the (2.1.1) when the time
grid becomes finer and finer?

2. Do we know the speed of this convergence?

This questions have not absolute answer and will depend on the hypothesis we assume about
b and σ. If both functions are Lipschitz, the numerical scheme effectively converges to the
exact solution when the step size of the grid, that is ∆t = max{ti+1− ti}, goes to zero. Even
more, the convergence occurs with rate

√
∆t. This means, that when the step size of the grid

is divided by four, the approximation error of the scheme is reduced by half.

3



Chapter 1. Introduction

Although the Euler-Maruyama scheme has in his favor to be quite economic in its hy-
potheses, has the downside of its rate of convergence being

√
∆t. We will see later that the

rate of convergence can be improved to ∆t, by considering the Milstein scheme, but the price
to pay is that b and σ needs to be twice continuously differentiable with bounded derivatives.

Numerical Schemes for a CEV like SDE

The main objective of this part of the thesis is to study a numerical scheme for the equation

dXt = b(Xt)dt+ σ|Xt|αdWt, (1.2.3)

where σ > 0 and α ∈ [1/2, 1). It is can be shown that the solutions of this equation are
almost surely positive.

The importance of equation (1.2.3) comes from its applications, mainly in finance. For
example, this equation is used to model instantaneous interest rate (for α = 1/2 and b(x) =
a− bx, equation (1.2.3) becomes the CIR equation (1.1.4)), or to model stochastic volatility.
An application outside the field of finance comes from fluid mechanics, where is used to
model the instantaneous turbulent frequency (see [25]). All this potential applications has
motivated a great interest in find numerical schemes to approximate the solution of equation
(1.2.3). See for example [1–3], [10], [14], [39] and [50,51].

Notice that in this case the function σ(x) = σ|x|α, so it is not Lipchitz, and then the
convergence of the Euler-Maruyama scheme is not obvious. Even worse, we can not ensure
that the scheme will preserve the positiveness of the initial condition. Indeed,

Xt1 = Xt0 + b(Xt0)(t1 − t0) + σXα
t0

(Wt1 −Wt0),

and Wt1 − Wt0 has normal law with zero mean and variance equal to t1 − t0, so there is
positive probability of Xt1 being negative.

A very simple solution to this problem is symmetrize the scheme, that is

Xt0 = x0

Xtn+1 = |Xtn + b(Xtn)(tn+1 − tn) + σXα
tn(Wtn+1 −Wtn)|.

(1.2.4)

Following this strategy Bossy and Diop in [14], proved the convergence at rate
√

∆t of the
symmetrized Euler scheme to the exact solution under some hypothesis on b and σ.

The main result of the first part of this thesis will be the convergence at rate ∆t of a
symmetrized Milstein scheme that we will define later.

4



1.3. Part II: Stochastic Morris-Lecar Model

Summary of Part I

The first part of this thesis is composed by two chapters. In Chapter 2 we present the two
more classical and standard numerical schemes for SDEs: The Euler-Maruyama scheme and
The Milstein scheme. In the case of the Euler-Maruyama scheme we present the Theorem
that characterize the convergence of the scheme towards the exact solution without proof.
In the case of the Milstein scheme we give a proof because it will serve us as a guide in the
proof of the main theorem of the first part of the thesis.

In Chapter 3 we present the main result of this part of the thesis which is the strong
convergence at rate ∆t of a symmetrized version of the Miltein scheme. The structure of this
chapter is the following: First we introduce the scheme and enunciate the main Theorem.
Then, we state several technical Lemmas, use them to prove the main Theorem, after that
we include a section with numerical experiments that allows to test our scheme, and compare
it with other known schemes in practice. Next we discuss the main conclusions of this part
of the thesis, to end the chapter with the proof of the technical Lemmas.

1.3 Part II: Stochastic Morris-Lecar Model

Before to pass to the mathematical model we study in the second part of this thesis, let us
introduce some of the language that we will need.

Some basic elements from neuroscience

This short section does not intend to be a complete and precise introduction to neuroscience.
We just present a few elements needed to follow the mathematical developments we will do
later. Most of the material has been taken from Chapter 1 in [27].

The basic structure of a neuron is showed in Figure 1.3.1a. A neuron have a soma which
is the processing center of the neuron, dendrites which are the input lines of a neuron, and
an axon which serves to connect with other neurons.

Like any other cells, neurons are enclosed by a membrane that separate them from the
medium, and produce a difference in the concentration of ions between the inside and the
outside. As a result, there is a difference of electrical potential between the two sides of the
membrane, which we call the membrane potential or membrane voltage. If there is no external
stimulus, the membrane will be at it resting potential. However, neurons are excitable cells1,
meaning that they are capable of change its membrane potencial by allowing the pass of ions
through channels embedded in their membrane, as we see in Figure 1.3.1b.

1Muscle cells are also excitable cells.

5



Chapter 1. Introduction

The ion channels are selective, in the sense that each channel allows the pass of a specific
ions. This motivate us to talk about Calcium channels, Potassium Channels, Sodium chan-
nels, etc. Additionally, the ion channels are voltage-gated , which means that the channels
will open and close depending on the voltage membrane.

The main characteristic of neurons, is their ability to propagate information. This propa-
gation is in the form of a transient electrical signal called action potential or spike. An action
potential correspond to an abrupt change in the neuron’s membrane potential, which start
when the membrane potential reach certain threshold, and then propagates through the axon
to other neurons. Once a neuron has spiked, can not do it again immediately. This is called
te refractory period.

A very important feature about the action potential is that the amplitud and speed of it
does not depend on the stimulus. If the stimulus, let us say an input current, is not enough
to raise the voltage over to the threshold mentioned before, the neuron will not spike. On
the other hand, once the membrane voltage has reached the aforementioned threshold, the
resulting spike will have the same amplitud and speed no matter by how much the threshold
was exceeded. This implies that the information contained in the stimulus will be codified
in the frequency of the spikes.

Nucleus

Dendrites

Soma

Axon

Axon
TerminalsNEURON

(a) Basic structure of a neuron. (b) Ion Channel.

Figure 1.3.1: Basis structure of a Neuron and Ion Channels. 2

Neurons communicate with each other through synapses. Synapses can be chemical or
electrical. In a chemical synapses there exist a small separation, call the synaptic cleft,
between the axon of the presynaptic neuron and the dendrites of the postsynaptic one.
To communicate an action potential to the postsynaptic neuron, the presynaptic one will
release chemical neurotransmitters to the synaptic cleft. As a result of the reception of

2This images have been taken from Wikimedia Commons.
Left Image: By derivative work: Notjim (talk)Neurone.png: Looxix at fr.wikipedia - Neurone.png, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4824168
Right image: By Tom Mork - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=
19402370
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1.3. Part II: Stochastic Morris-Lecar Model

this neurotransmitters, the membrane voltage of the postsynaptic neuron will change. If
the change in the membrane potential of the postsynaptic neuron is big enough, an action
potential will be generated by the postsynaptic neuron and transmitted to its neighbors. In
Figure 1.3.2a we display a chemical synapse.

On the other hand, in a electrical synapses there exist a intercellular channel that allows
the permanent flux of ion between the inside of both neurons. We display an electrical
synapse in Figure 1.3.2b.

(a) Chemical Synapse. Neuron A release neu-
rotransmitters into the synaptic cleft.

(b) Electrical Synapse. Neurons A and B are
connected by a gap junctions that allow the
permanent flux of ions between them.

Figure 1.3.2: Different type of synapses. 3

Deterministic Mathematical Models

There exist three families of models to describe the dynamic of a neuron: Binary models,
Leaky integrate-and-fire models and dynamical models. We are interested in the third type.
For details in binary models see [58], and for a review on Leaky integrate-and-fire models
see [18].

3This images have been taken from Wikimedia Commons.
Left Image: By vectorization: Mouagip (talk)Synapse_diag1.png: Drawn by
fr:Utilisateur:DakeCorrections of original PNG by en:User:NretsThis vector graphics image was cre-
ated with Adobe Illustrator. - Synapse_diag1.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=11438067
Right image: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=282849
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Chapter 1. Introduction

The dynamical models have the advantage of being much more realistic, although they
are much more difficult to analyze. In this models, the membrane potential evolution is
completely describe through a dynamical system. For example the famous Hodgking Huxley
model [41] is given by

CdVt = Iext − gKn
4(V − VK)− gNam

3h(V − VNa)− gL(V − VL)

dmt = ρm(Vt)(1−mt)− ζm(Vt)mt

dnt = ρn(Vt)(1− nt)− ζn(Vt)nt

dht = ρh(Vt)(1− ht)− ζh(Vt)ht,

where V is the membrane potential, n is the proportion of potassium ion channels and m y
h are the proportion of two different type of sodium channels.

Due to the nonlinearities in the dynamic for V , and the high dimensionality of the Hodgkin
Huxley model, is quite standard to consider a simplification of the model, being the FitzHugh
Nagumo the more standard one.

In the FitzHugh Nagumo model a neuron is describe by two variables, the voltage V and
a recovery variable w. There is no direct interpretation to the recovery variable w, so instead
of using this model, we will consider the Morris-Lecar model for neurons4 [63] which is given
by

CdVt = Iext − gKn(V − VK)− gCam(V − VCa)− gL(V − VL)

dmt = ρm(Vt)(1−mt)− ζm(Vt)mt

dnt = ρn(Vt)(1− nt)− ζn(Vt)nt,

(1.3.1)

where in this case, m represent the proportion of open Calcium channels. Notice that there
is a dimension reduction in this model compared with the one from Hodgkin and Huxley,
and the dynamics for V is “more linear”.

Stochastic mathematical models

Nowadays there is enough evidence to say that there is an intrinsic randomness in neurons.
In fact, it is known that each ion channel behaves as a two state continuous time Markov
process, that jumps from close to open with rate ρx(Vt), and from open to close with rate
ζx(Vt). In this way the more natural stochastic model that can be proposed for a neuron is
the Hybrid model, proposed in [67].

In the hybrid model the voltage of the neuron evolves according to a continuous dynamic,
as in the Morris-Lecar model, but the proportion of open channels are jump processes taking
values in the set {1/Nc, . . . , 1− 1/Nc, 1}, where Nc is the number of channels in the neuron.

4Originally, Morris and Lecar propose their model for the voltage oscillations of a muscle fiber of a barnacle.
Later has become a popular model for neurons.
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1.3. Part II: Stochastic Morris-Lecar Model

Although the hybrid model has the advantage of being very physiologically meaningful,
it has the downside of been very expensive to simulate. This motivate the approximation of
the hybrid model by a diffusive model. Inspired in the Langevin approximation of the hybrid
model in [8] is proposed a diffusive model for the dynamics of the ions channels.

In this part of the thesis we will study the stochastic versions of the Morris-Lecar model:
the hybrid and the diffusive one.

The mean field approach

Our main interest are not single neurons. Our main interest are networks of N interacting
neurons, where N is large. How large? In a human brain there are around 85, 000, 000, 000 of
neurons5, each of them interacting in mean field way with approximately 10, 000 neighbors6.

Given a system of interacting particles (in our case neurons), the interaction is of mean
field type, if the aggregate effect of the system over a single particle depends only on the
empirical measure of the whole particle system. For instance, if we denote by b(X(i), X(j))
the interaction between the particle i and the particle j, the dynamics of the i-th particle
can be of the form

dX
(i)
t = F (X

(i)
t )dt+G(X

(i)
t )dWt +

1

N

∑
j

b(X
(i)
t , X

(j)
t ). (1.3.2)

This kind of system was introduced by Kac [49] to study the Boltzman equation in sta-
tistical mechanics. The key point of (1.3.2) is that, under suitable hypotheses, when the
number N of interacting particles diverges to infinity, finitely many particles start to behave
as independent copies of the process given by

dX̄t = F (X̄t)dt+G(X̄t)dWt +

∫
b(X̄t, y)µt(dy),

µt = law(X̄t),

(1.3.3)

or to be precise, for any k ∈ N, when the number of particles goes to infinity, the law of k
fixed particles tends to P⊗k, where P is the law of the solution of (1.3.3). This property is
called propagation of chaos. For further background on this topic see [60] and [74].

In this part of the thesis, we are going to assume that the interaction between neurons is
of mean field type. This assumption as been made by several authors in the last years. See
for example [8], [15], [23], [29], [33] and [62].

5See [6].
6See [27, p.7]
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Chapter 1. Introduction

Our goal

The main objective of this part of the thesis is to study networks of interacting neurons. We
are interested in the asymptotic behavior of the neurons when either the time or the size of
the network goes to infinity.

Summary of Part II

The second part of this thesis is composed by a single chapter. The first section is devoted to
a small introduction that complement what we have said here. In the following section, we
discuss some modeling issues for the stochastic version of the Morris-Lecar model for a single
neuron. We continue in the next section with models for a network of neurons interacting
under chemical and electrical synapses. Next we pass to the first asymptotic limit, and we
prove the propagation of chaos property for finite time windows. In the following section, we
discuss the behavior of a network of finite size when the time goes to infinity. In particular,
we prove an interesting result on synchronization. We finish the chapter with a summary of
the main conclusions of our work.
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Part I

Strong Convergence of the Symetrized
Milsteim Scheme
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Chapter 2

Numerical Schemes for Stochastic
Differential Equations

2.1 Introduction

Let us consider the following time homogeneous Stochastic Differential Equation (SDE for
short)

dXt = b(Xt)dt+ σ(Xt)dWt, (2.1.1)

where W is a standard d-dimensional Brownian motion over a filtered probability space
(Ω,F , (Ft)t≥0,P) which satisfies the usual hypothesis, (ie) the filtration is right continuous
and complete. The functions b : Rd → Rd and σ : Rd → Rd × Rd will be regular enough
so (2.1.1) has a unique strong solution, which is true for example if b and σ are Lipschitz
functions with linear growth. For details see [44], [52], [65], [69].

Even when (2.1.1) is well posed, there are only a few cases when the solution for this
equation can be analytically computed, and in most of the situations some approximating
scheme is needed. In the rest of this chapter we will present two classical approximation
schemes and their main features.

Before presenting the schemes, let us introduce some notation that we will use for the rest
of Part I of the thesis. Let x0 > 0, T > 0, and N ∈ N. We define the constant step size
∆t = T/N and the time grid {tk}Nk=0, with tk = k∆t. We introduce also the function

η : [0, T ]→ {t0, . . . , tN}
η(t) = supk∈{1,...,N}{tk : tk ≤ t},

in words, to a given t, η assigns the element of the grid which is just to the left of t.

13



Chapter 2. Numerical Schemes for Stochastic Differential Equations

2.2 The Euler-Maruyama Scheme

The Euler-Maruyama Scheme (EMS), is the natural extension of the Euler scheme for ODE
to the stochastic setting. It was proposed by Maruyama in [57], and has the advantage
of being applicable for a wide range of SDE. On the downside, as we see next, it rate of
convergence is only 1/2.

The EMS (X̂tk , k = 0, . . . , N) is given by

X̂tk =

{
X0, for k = 0,

X̂tk−1
+ b(X̂tk−1

)∆t+ σ(X̂tk−1
)(Wtk −Wtk−1

), for k = 1, . . . , N.

In the following, we use the time continuous version of the EMS, (X̂t, 0 ≤ t ≤ T ) given by

X̂t = X̂η(t) + b(X̂η(t))(t− η(t)) + σ(X̂η(t))(Wt −Wη(t)), (2.2.1)

from where is easy to conclude

X̂t = X0 +

∫ t

0

b(X̂η(s))ds+

∫ t

0

σ(X̂η(s))dWs. (2.2.2)

This last integral representation is quite useful to prove the following

Proposition 2.2.1. Suppose that the functions b and σ are globally Lipschitz. Let p ≥ 1 be
an integer such that E [‖X0‖2p] <∞. Then there exists an increasing function K such that,
for any integer N ≥ 1,

E

[
sup
t∈[0,T ]

‖Xt − X̂t‖2p

]
≤ K(T )∆tp.

A sketch of the proof of this Proposition can be found in [75], and a complete proof in [30].

2.3 The Milstein Scheme

The Milstein scheme was introduced by Milstein in [61] for one dimensional SDEs having
smooth diffusion coefficient. Introducing an appropriated correction term, this scheme has
better convergence rate for the strong error than the classical Euler-Maruyama scheme (see
Proposition 2.3.2 bellow).

With the previous notations, the Milstein Scheme (MS) (X̃tk , k = 0, . . . , N) is given by

X̃tk =


X0, for k = 0,

X̃tk−1
+ b(X̃tk−1

)∆t+ σ(X̃tk−1
)(Wtk −Wtk−1

)

+1
2
σ(X̃tk−1

)σ′(X̃tk−1
)
[
(Wtk −Wtk−1

)2 −∆t
]
, for k = 1, . . . , N.
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2.3. The Milstein Scheme

In the following, we use the time continuous version of the MS, (X̃t, 0 ≤ t ≤ T ) satisfying

X̃t = X̃η(t) + b(X̃η(t))(t− η(t)) + σ(X̃η(t))(Wt −Wη(t))

+
1

2
σ(X̃η(t))σ

′(X̃η(t))
[
(Wt −Wη(t))

2 − (t− η(t))
]
,

(2.3.1)

Just as in the case of the EMS, the MS can also be represented as a semimartingale

X̃t = X0 +

∫ t

0

b(X̃η(s))ds+

∫ t

0

[
σ(X̃η(s)) + σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]
dWs. (2.3.2)

Using this integral representation and Itô’s calculus, is quite standard to prove the following
Lemma, which proof we omit.

Lemma 2.3.1. Suppose that the functions b and σ are globally Lipschitz and have linear
growth. Then for any p ≥ 1

E( sup
0≤t≤T

X̃2p
t ) ≤ C(1 + E(X2p

0 )), (2.3.3)

and
sup
t∈[0,T ]

E
[
|X̃t − X̃η(t)|2p

]
≤ K(T )∆tp. (2.3.4)

Proposition 2.3.2. Suppose that the functions b and σ are twice continuously differentiable
with bounded derivatives. Let p ≥ 1 be an integer such that E|X0|4p <∞. Then there exists
an increasing function K such that, for any integer N ≥ 1,

sup
t∈[0,T ]

E
[
|Xt − X̃t|2p

]
≤ K(T )∆t2p.

Since the next chapter deals with the extension of the Milstein scheme to a specific SDE,
we include the proof of this proposition because it will guide us in the proof of the main
result of the next chapter.

Proof. Let us consider Ẽt = Xt − X̃t. Then

dẼt = [b(Xt)− b(X̃η(t))]dt+
[
σ(Xt)− σ(X̃η(t))− σ(X̃η(t))σ

′(X̃η(t))(Wt −Wη(t))
]
dWt.

So, by Itô’s Lemma, we have for all p ≥ 1

E(Ẽ2p
t ) =2p

∫ t

0

E
(
Ẽ2p−1
s [b(Xs)− b(X̃η(s))]

)
ds

+ p(2p− 1)

∫ t

0

E
(
Ẽ2p−2
s

[
σ(Xs)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2
)
ds.
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If, in the second term on the right-hand side we add and subtract σ(X̃s), we obtain the
following bound for the 2p-th moment of the error:

E(Ẽ2p
t ) ≤C

∫ t

0

E
(
Ẽ2p−1
s [b(Xs)− b(X̃η(s))]

)
ds+ C

∫ t

0

E
(
Ẽ2p−2
s

[
σ(Xs)− σ(X̃s)

]2
)
ds

+ C

∫ t

0

E
(
Ẽ2p−2
s

[
σ(X̃s)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2
)
ds.

Applying the Lipschitz property in the second term of the right-hand side, and Young’s
inequality to the third, we obtain

E(Ẽ2p
t ) ≤C

∫ t

0

E
(
Ẽ2p−1
s [b(Xs)− b(X̃η(s))]

)
ds+ C

∫ t

0

E
(
Ẽ2p
s

)
ds

+ C

∫ t

0

E
([
σ(X̃s)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2p
)
ds.

Adding and subtracting b(X̃s), and using the Lipschitz property of b we get

E(Ẽ2p
t ) ≤C

∫ t

0

E
(
Ẽ2p−1
s [b(X̃s)− b(X̃η(s))]

)
ds+ C

∫ t

0

E
(
Ẽ2p
s

)
ds

+ C

∫ t

0

E
([
σ(X̃s)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2p
)
ds.

(2.3.5)

Let us assume for now

E
([
σ(X̃s)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2p
)
≤ C∆t2p, (2.3.6)

and
E
(
Ẽ2p−1
s [b(X̃s)− b(X̃η(s))]

)
≤ sup

u≤s
E(Ẽ2p

u ) + C∆t2p. (2.3.7)

Then, the bound (2.3.5) becomes

E(Ẽ2p
t ) ≤C

∫ t

0

sup
u≤s

E
(
Ẽ2p
u

)
ds+ C∆t2p.

Since the right side of this last bound is increasing, we can take supremum on the left side
to obtain

sup
u≤t

E(Ẽ2p
u ) ≤C

∫ t

0

sup
u≤s

E
(
Ẽ2p
u

)
ds+ C∆t2p,

from where, thanks to Gronwall’s Lemma we can conclude

sup
u≤t

E(Ẽ2p
u ) ≤ C∆t2p.
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2.3. The Milstein Scheme

It only remains to prove (2.3.6) and (2.3.7). We start with (2.3.6). To do so, we apply the
Itô formula to σ(X̃s). We have

σ(X̃s)− σ(X̃η(s)) =

∫ s

η(s)

σ′(X̃u)dX̃u +
1

2

∫ s

η(s)

σ′′(X̃u)d〈X̃〉u

=

∫ s

η(s)

σ′(X̃u)b(X̃η(s))du

+

∫ s

η(s)

σ′(X̃u)
[
σ(X̃η(s)) + σ(X̃η(s))σ

′(X̃η(s))(Wu −Wη(s))
]
dWu

+
1

2

∫ s

η(s)

σ′′(X̃u)
[
σ(X̃η(s)) + σ(X̃η(s))σ

′(X̃η(s))(Wu −Wη(s))
]2

du.

So,

E
([
σ(X̃s)− σ(X̃η(s))− σ(X̃η(s))σ

′(X̃η(s))(Ws −Wη(s))
]2p)

≤ CE

([∫ s

η(s)

σ(X̃η(s))
[
σ′(X̃u)− σ′(X̃η(s))

]
dWu

]2p
)

+ CE

([∫ s

η(s)

σ′(X̃u)σ(X̃η(s))σ
′(X̃η(s))(Wu −Wη(s))dWu

]2p
)

+ CE

([∫ s

η(s)

σ′(X̃u)b(X̃η(s))du

]2p
)

+ CE

([∫ s

η(s)

σ′′(X̃u)
[
σ(X̃η(s)) + σ(X̃η(s))σ

′(X̃η(s))(Wu −Wη(s))
]2

du

]2p
)
.

(2.3.8)

We will show now that each term in right side of the last bound is itself bounded by C∆t2p.
For the first and the second term we will use the Burkholder-Davis-Gundy inequality (see [52,
p. 166]), which says that there exists a constant Cp depending only on p such that

E
([∫ s

η(s)

σ(X̃η(s))
[
σ′(X̃u)− σ′(X̃η(s))

]
dWu

]2p)
≤ CpE

([∫ s

η(s)

σ(X̃η(s))
2
[
σ′(X̃u)− σ′(X̃η(s))

]2

du

]p)
.

To continue with the computation recall that for q ≥ 1, by Jensen’s inequality(∫ b

a

f(s)ds

)p
≤ (a− b)p−1

∫ b

a

f(s)pds, (2.3.9)

so, thanks to the Lipschitz property of σ′,

E
([∫ s

η(s)

σ(X̃η(s))
[
σ′(X̃u)− σ′(X̃η(s))

]
dWu

]2p)
≤ C∆tp−1

∫ s

η(s)

E
(
σ(X̃η(s))

2p
[
X̃u − X̃η(s)

]2p
)
du.

17



Chapter 2. Numerical Schemes for Stochastic Differential Equations

From here, thanks to Cauchy Schwartz inequality, (2.3.3), and (2.3.4) we conclude

E
([∫ s

η(s)

σ(X̃η(s))
[
σ′(X̃u)− σ′(X̃η(s))

]
dWu

]2p)
≤ C∆t2p.

With the same arguments we used to bound the first term in (2.3.8), we can tackle the second
one

E
([∫ s

η(s)

σ′(X̃u)σ(X̃η(s))σ
′(X̃η(s))(Wu −Wη(s))dWu

]2p)
≤ E

([∫ s

η(s)

σ′(X̃u)
2σ(X̃η(s))

2σ′(X̃η(s))
2(Wu −Wη(s))

2du

]p)
≤ C∆tp−1

∫ s

η(s)

E
(
σ(X̃η(s))

2p(Wu −Wη(s))
2p

)
du,

where, in the last line, we have used that σ′ is bounded. To finish this computation we
have to recall that the increments of the brownian motion are independent and normally
distributed, so

E
([∫ s

η(s)

σ′(X̃u)σ(X̃η(s))σ
′(X̃η(s))(Wu −Wη(s))dWu

]2p)
≤ C∆t2p.

To complete the proof of (2.3.6), it only remains to bound the third and fourth terms in
(2.3.8). To this end, we just have to apply (2.3.9) and recall the finiteness of the moments
of the MS given by (2.3.3) in Lemma 2.3.1.

Now we are going to prove (2.3.7). To do so, first we introduce the notation

Σ̃u = σ(Xu)− σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))],

for the difference of the diffusion coefficient of X and X̃.

If we apply Itô’s Lemma to the function f(x, y) = x2p−1(b(y0) − b(y)) and the vector of
semimartingales (Ẽ , X̃) between η(s) and s we obtain

E
(
Ẽ2p−1
s [b(X̃η(s))− b(X̃s)]

)
= CpE

∫ s

η(s)

Ẽ2p−1
u

[
b′(X̃u)b(X̃u) +

1

2
b′′(X̃u)σ

2(X̃η(s))[1 + σ′(X̃η(s))(Wu −Wη(s))]

]
du

+CpE
∫ s

η(s)

Ẽ2p−2
u [b(Xu)− b(X̃η(s))]

[
b(X̃u)− b(X̃η(s))

]
du

+CpE
∫ s

η(s)

Ẽ2p−3
u [b(X̃η(s))− b(X̃u)]Σ̃

2
udu

+CpE
∫ s

η(s)

Ẽ2p−2
u Σ̃u

(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)
du

=: I1 + I2 + I3 + I4.
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By the finiteness of the moments of X̃, the boundedness of b′ and b′′, the linear growth of b
and σ, and the finiteness of the moments of a normal random variable, we can apply Holder’s
inequality and get

I1 ≤
∫ s

η(s)

[
E
(
Ẽ2p
u

)]1−1/2p

×
[
E

((
(b′ · b)(X̃u) +

1

2
b′′(X̃u)σ

2(X̃η(s))
[
1 + σ′(X̃η(s))(Wu −Wη(s))

]2
)2p
)]1/2p

du

≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t.

For the bound of I2, if we add and subtract b(X̃u) inside of the first parenthesis, since b is
Lipschitz, we have

I2 ≤C
∫ s

η(s)

E
(
Ẽ2p−1
u |X̃u − X̃η(s)|

)
du+ C

∫ s

η(s)

E
(
E2p−2
u |X̃u − X̃η(u)|2

)
du

≤C
[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t3/2 + C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/p

∆t2.

To bound I3, we notice that

Σ̃2
u ≤ 2

(
σ(Xu)− σ(X̃u)

)2

+ 2
(
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
)2

,

and then thanks to the Lipschitz property of b and σ, we obtain

I3 ≤ C

∫ s

η(s)

E
(
Ẽ2p−1
u |X̃η(s) − X̃u|

)
du

+ C

∫ s

η(s)

E
(
Ẽ2p−3
u |X̃η(s) − X̃u|

(
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
)2
)
du.

For the first term in the right-hand side we have

∫ s

η(s)

E
(
Ẽ2p−1
u |X̃η(s) − X̃u|

)
du ≤

∫ s

η(s)

[
E
(
E2p
u

)]1− 1
2p

[
E
(
|X̃η(s) − X̃u|2p

)] 1
2p

≤C
[
sup
u≤s

E
(
E2p
u

)]1−1/2p

∆t3/2,
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due to the bound (2.3.4). For the second term, we apply Hölder’s inequality to get

∫ s

η(s)

E
(
Ẽ2p−3
u |X̃η(s) − X̃u|

(
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
)2
)
du

≤
∫ s

η(s)

E
(
Ẽ2p
u

)1−3/2p

E
(
|X̃η(s) − X̃u|2p

)1/2p

× E
((

σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ
′(X̃η(u))(Wu −Wη(u))

)2p
)1/p

du

≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−3/2p

∆t7/2.

To summarize

I3 ≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t3/2 +

[
sup
u≤s

E
(
Ẽ2p
u

)]1−3/2p

∆t7/2.

Now we bound I4

I4 ≤
∫ s

η(s)

E
∣∣∣∣Ẽ2p−2
u Σ̃u

(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)∣∣∣∣ du
≤ C

∫ s

η(s)

E
∣∣∣∣Ẽ2p−1
u

(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)∣∣∣∣ du
+

∫ s

η(s)

E
∣∣∣Ẽ2p−2
u

(
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
)

×
(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)∣∣∣∣ du.

Again, by Holder’s inequality the first term in the right side is bounded by

∫ s

η(s)

E
∣∣∣∣Ẽ2p−1
u

(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)∣∣∣∣ du
≤
∫ s

η(s)

E
(
Ẽ2p
u

)1−1/2p

E

([
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

]2p
)1/2p

du

≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t,
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2.3. The Milstein Scheme

thanks to the boundedness of b′ and σ′, the linear growth of σ and the finiteness of the
moments of a normal random variable. For the second term in the right side of the bound
for I4, again by Holder’s inequality∫ s

η(s)

E
∣∣∣Ẽ2p−2
u

(
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
)

×
(
b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]

)∣∣∣∣ du
≤
∫ s

η(s)

E
(
Ẽ2p
u

)1−1/p

E
([
σ(X̃u)− σ(X̃η(u))− σ(X̃η(u))σ

′(X̃η(u))(Wu −Wη(u))
]2p
)1/2p

× E
([

b′(X̃u)σ(X̃η(u))[1 + σ′(X̃η(s))(Wu −Wη(s))]
2p
])1/2p

du

≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/p

∆t2,

So

I4 ≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t+ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/p

∆t2.

Putting all the last calculations in we find

E
(
Ẽ2p−1
s [b(X̃η(s))− b(X̃s)]

)
≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t+ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/2p

∆t3/2

+ C

[
sup
u≤s

E
(
Ẽ2p
u

)]1−1/p

∆t2 +

[
sup
u≤s

E
(
Ẽ2p
u

)]1−3/2p

∆t7/2.

Applying Young’s Inequality in all terms in the right, we get

E
(
Ẽ2p−1
s [b(X̃η(s))− b(X̃s)]

)
≤ C

[
sup
u≤s

E
(
Ẽ2p
u

)]
+ C∆t2p.
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Chapter 3

Strong convergence of the symmetrized
Milstein scheme for some CEV-like SDEs

Based on a joint work with
Mireille Bossy [16], accepted for
publication in Bernoulli Journal.

3.1 Introduction and main result

As we saw in the previous chapter, under suitable hypotheses the Milstein Scheme has a better
convergence rate than the classical Euler Maruyama Scheme. This well-know fact produces
remarks on blogs, internet forums, and software packages that sometimes recommend to
use the Milstein scheme for constant elasticity of variance (CEV) models in finance, or its
extension with stochastic volatility as SABR model, (see e.g Delbaen and Shirakawa [24] and
Lions and Musiela [55] for a discussion on the (weak) existence of such models); CEV are
popular stochastic volatility models of the form

dXt = µXtdt+ σXγ
t dWt

with 0 < γ < 1. But the interesting fact in this story is that the rate of convergence of the
Milstein scheme, for such family of processes with 0 < γ < 1 is not yet well studied, to the
best of our knowledge.

In this chapter we establish a rate of convergence result for a symmetrized version of the
Milstein scheme applied to the solution of the one dimensional SDE

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs, (3.1.1)
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Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

where x0 > 0, σ > 0 and 1
2
≤ α < 1. Of course Equation (3.1.1) does not satisfies the

hypothesis to apply the classical result of Milstein [61]. In particular, the diffusion coefficient
is only Hölder continuous whereas the classical hypothesis is to have a C2 diffusion coefficient.

The main picture of our convergence rate result is that Milstein scheme stays of order one
in the case of Equation (3.1.1), but some attention must be paid to the values of b(0), α and
σ.

There exist in the literature other strategies for the discretization of the solution to (3.1.1).
There are some results based on the Lamperti transformation of the equation, for example,
by Alfonsi [1,3], and by Chassagneux, Jacquier and Mihaylov [19]. And also, there some are
results where the equation (3.1.1) is discretized directly, as in Berkaoui, Bossy and Diop [10]
or in Kahl and Jackël [50]. In the numerical experiments section, we compare the symmetrized
Milstein scheme with a selection of schemes proposed in the aforementioned references. We
also experiment the symmetrized Milstein scheme in a multilevel Monte Carlo application
and we compare with other schemes.

In the whole chapter, we work under the following basis-hypothesis:

Hypothesis 3.1.1. The power parameter α in the diffusion coefficient of Equation (3.1.1)
belongs to [1

2
, 1). The drift coefficient b is Lipschitz with constant K > 0, and is such that

b(0) > 0.

Hypothesis 3.1.1 is a classical assumption to ensure a unique strong solution valued in
R+. We assume it in all the forthcoming results of the chapter, without recall it explicitly.
To state the convergence result (see Theorem 3.1.6), another Hypothesis 3.1.5 will be added
and discussed, that in particular constrains the values α, b(0) and σ.

3.1.1 The symmetrized Milstein scheme

To complete our task we follow the ideas of Berkaoui, Bossy and Diop in [10] who analyze the
rate of convergence of the strong error for the symmetrized Euler scheme applied to Equation
(3.1.1). Although, whereas they utilize an argument of change of time, we consider first a
weighted Lp(Ω)-error for which we prove a convergence result, and then we utilize this result
to prove the convergence of the actual Lp(Ω)-error.

We consider x0 > 0, T > 0, and N ∈ N. We define the constant step size ∆t = T/N and
tk = k∆t. Over this discretization of the interval [0, T ] we define the Symmetrized Milstein
Scheme (SMS) (X tk , k = 0, . . . , N) by
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3.1. Introduction and main result

X tk =


x0, for k = 0,∣∣∣∣X tk−1

+ b(X tk−1
)∆t+ σX

α

tk−1
(Wtk −Wtk−1

) +
ασ2

2
X

2α−1

tk−1

[
(Wtk −Wtk−1

)2 −∆t
]∣∣∣∣ ,

for k = 1, . . . , N.

In the following, we use the time continuous version of the SMS, (X t, 0 ≤ t ≤ T ) satisfying

X t =
∣∣∣Xη(t) + b(Xη(t))(t− η(t)) + σX

α

η(t)(Wt −Wη(t))

+
ασ2

2
X

2α−1

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
] ∣∣∣, (3.1.2)

where η(t) = supk∈{1,...,N}{tk : tk ≤ t}. We also introduce the increment process (Zt, 0 ≤ t ≤
T ) defined by

Zt = Xη(t) + b(Xη(t))(t− η(t)) + σX
α

η(t)(Wt −Wη(t))

+
ασ2

2
X

2α−1

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
]
,

(3.1.3)

so that X t = |Zt|. Thanks to Tanaka’s Formula, the semi-martingale decomposition of X t is
given by

X t = x0 +

∫ t

0

sgn(Zs)b(Xη(s))ds+ L0
t (X)

+

∫ t

0

sgn(Zs)
[
σX

α

η(s) + ασ2X
2α−1

η(s) (Ws −Wη(s))
]
dWs

(3.1.4)

where sgn(x) = 1− 21[x≤0].

Moment upper bound estimations for X and X

We summarize some facts about the process (Xt, 0 ≤ t ≤ T ), the proofs of which can be
found in Bossy and Diop [14].

Lemma 3.1.2. For any q ≥ 1, there exists a positive constant C depending on q, but also
on the parameters b(0), K, σ, α and T such that, for any x0 > 0,

E
[

sup
0≤t≤T

X2q
t

]
≤ C(1 + x2q

0 ). (3.1.5)

When 1
2
< α < 1, for any q > 0,

sup
0≤t≤T

E
[
X−qt

]
≤ C(1 + x−q0 ). (3.1.6)

When α = 1
2
, for any q such that 1 < q < 2b(0)

σ2 − 1,

sup
0≤t≤T

E
[
X−qt

]
≤ Cx−q0 . (3.1.7)
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Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

Lemma 3.1.3. Let (Xt, 0 ≤ t ≤ T ) be the solution of (3.1.1) with 1
2
< α < 1. For all µ ≥ 0,

there exists a positive constant C(T, µ), increasing in µ and T , depending also on b, σ, α
and x0 such that

E exp

(
µ

∫ T

0

ds

X
2(1−α)
s

)
≤ C(T, µ). (3.1.8)

When α = 1
2
, the inequality (3.1.8) holds if b(0) > σ2

2
and µ ≤ σ2

8
(2b(0)
σ2 − 1)2.

Notice that the condition b(0) > σ2/2 is also imposed by the Feller test in the case α = 1
2

for the strict positivity of X, that allows to rewrite Equation (3.1.1) as

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ
√
XsdWs.

Using the semimartingale representation (3.1.4), we prove the following Lemma regarding
the existence of moments of any order for X t.

Lemma 3.1.4. For any q ≥ 1, there exists a positive constant C depending on q, but also
on the parameters b(0), K, σ, α and T such that for any x0 > 0,

E
[

sup
t∈[0,T ]

X
2q

t

]
≤ C(1 + x2q

0 ).

The proof of this lemma is based on the Lipschitz property of b and classical combination
of Itô formula and Young Inequality. For the sake of completeness, we give a short proof in
the Appendix.

3.1.2 Strong rate of convergence

The main result of this works is the strong convergence at rate one of the SMS X to the
exact process X. The convergence holds in Lp for p ≥ 1. To state it, we add to Hypothesis
3.1.1 the following.
For any x in R+, we denote dxe the rounded up integer.

Hypothesis 3.1.5.

(i) Let p ≥ 1. To control the Lp(Ω)-norm of the error, if α > 1
2
we assume b(0) > 2α(1 −

α)2σ2. Whereas for α = 1
2
we assume b(0) > 3(2[p ∨ 2] + 1)σ2/2.

(ii) The drift coefficient b is of class C2(R), and b′′ has polynomial growth.

We now state our main theorem. To lighten the notation, we consider for α ∈ (1
2
, 1)

bσ(α) := b(0)− 2(1− α)2ασ2,

K(α) := K +
ασ2

2
(2α− 1)[2(1− α)]−

2(1−α)
2α−1

(3.1.9)
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3.1. Introduction and main result

and we extend this definitions to α = 1
2
taking limits. So, bσ(1

2
) = lim

α→1
2
bσ(α) = b(0)−σ2/4,

and K(1
2
) = lim

α→1
2
K(α) = K. Notice that limα→1K(α) = K + σ2/2, and since K(α) is

continuous on (1
2
, 1), we have that K(α) is bounded. This is especially important in the

definition of ∆max(α) bellow, because tells us that α 7→ ∆max(α) is strictly positive and
bounded on [1

2
, 1).

Theorem 3.1.6. Assume Hypotheses 3.1.1 and 3.1.5. Define a maximum step size ∆max(α)
as

∆max(α) =
x0

(1−
√
α)bσ(α)

∧


1

4αK(α)
, for α ∈ (1

2
, 1)

1

4K
∧ x0, for α = 1

2
.

(3.1.10)

Let (Xt, 0 ≤ t ≤ T ) be the process defined on (3.1.1) and (X t, 0 ≤ t ≤ T ) the symmetrized
Milstein scheme given in (3.1.2). Then for any p ≥ 1 that allows Hypotheses 3.1.5, there
exists a constant C depending on p, T , b(0), α, σ, K, and x0, but not on ∆t, such that for
all ∆t ≤ ∆max(α),

sup
0≤t≤T

(
E
[
|Xt −X t|p

] ) 1
p ≤ C∆t. (3.1.11)

About Hypothesis 3.1.5. Notice that for α > 1
2
, Assumption (i) does not depend on

p and becomes easier to fulfill as α increases. On the other hand, for α = 1
2
, Assumption

(i) depends on p in a unpleasant manner. However, as we will see later in Section 3.4 (see
Table 3.4.1), this kind of dependence in p is expected, and similar conditions are asked in
the literature for other approximation schemes in order to obtain similar rate of convergence
results.

Also, notice that (i) is a sufficient condition: in the numerical experiments we still observe
a rate of convergence of order one for parameters that do not satisfy it, but we also observe
that for parameters such that b(0) � σ2, although the convergence occurs, it does in a
sublinear fashion.

On the other hand, Assumption (ii) is the classical requirement for the strong convergence
of the Milstein scheme. As we will see later in the proof of the main theorem, with the help
of the ItÃť formula, this hypothesis let us conclude that

E
[
|Xs −Xs|2p−1

(
b(Xη(s))− b(Xs)

)]
≤ C

(
sup
u≤s

E
[
|Xu −Xu|2p

]
+ ∆t2p

)
instead of

E
[
|Xs −Xs|2p−1

(
b(Xη(s))− b(Xs)

)]
≤ C

(
sup
u≤s

E
[
|Xu −Xu|2p

]
+ ∆tp

)
,

which is the classical bound obtained for the Euler-Maruyama scheme under a Lipschitz
condition for a drift b.
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Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

The rest of this chapter is organized as follow. In Section 3.2 we state some preliminary
results on the scheme which will be building blocks in the proof of Theorem 3.1.6. Section
3.3 is devoted to the proof of the convergence rate. The main idea is first to introduce a
weight process in the L4p(Ω)-error. Wet get the rate of convergence for this weighted error
process, and we use this intermediate bound to control the L2p(Ω)-error, from where we finally
control the Lp(Ω)-error. Also, as a byproduct we obtain the order one convergence of the
Projected Milstein Scheme (see 3.3.3). In section 3.4, we display some numerical experiments
to show the effectiveness of the theoretical rate of convergence of the scheme, but also to test
Hypotheses 3.1.5-(i) on a set of parameters. In this section we also shows how the inclusion
of the SMS in a Multilevel Monte Carlo framework could help to optimize the computational
time of weak approximation of assets valuation. Finally, in Section 3.5 we present the proof
of the preliminary results on the scheme.

3.2 Some preliminary results for X

This short section is devoted to state some results about the behavior of X, their proofs
are postponed to Section 3.5. All these results hold under Hypothesis 3.1.5-(i) which is in
fact stronger than what we need here. So, we present the next lemmas with their minimal
hypotheses (still assuming Hypothesis 3.1.1).

Lemma 3.2.1 (Local error). For any x0 > 0, for any p ≥ 1, there exists a positive constant
C, depending on p, T , the parameters of the model b(0), K, σ, α, but not on ∆t such that

sup
0≤t≤T

E
[
|X t −Xη(t)|2p

]
≤ C∆tp.

By construction the scheme X is nonnegative, but a key point of the convergence proof
resides in the analysis of the behavior of X or Z visiting the point 0. The next Lemma shows
that although Zt is not always positive, the probability of Zt being negative is actually very
small under suitable hypotheses.

Lemma 3.2.2. For α ∈ [1
2
, 1), if b(0) > 2α(1 − α)2σ2, and ∆t ≤ 1

2K(α)
, then there exists a

positive constant γ, depending on the parameters of the model, but not on ∆t, such that

sup
k=0,...,N−1

P
(

inf
tk<s≤tk+1

Zs ≤ 0

)
≤ exp

(
− γ

∆t

)
. (3.2.1)

In particular,
sup

0≤t≤T
P
(
Zt ≤ 0

)
≤ C exp

(
− γ

∆t

)
. (3.2.2)

To prove Lemma 3.2.2, it is necessary to establish before the following one, which although
technical, gives some intuition about the difference between the SMS and the Symmetrized
Euler scheme presented in [10].
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Lemma 3.2.3. For α ∈ [1
2
, 1), if b(0) > 2α(1− α)2σ2, we set x̄(α) = bσ(α)

K(α)
> 0. Then for all

t ∈ [0, T ], and for all ρ ∈ (0, 1],

P
[
Zt ≤ (1− ρ)bσ(α)∆t, Xη(t) < ρx̄(α) ] = 0.

Roughly speaking, from this lemma we see that when Zη(t) > 0, Zt becomes negative only
when

|Zt − Zη(t)| > ρx̄(α).

But observe that only the left-hand side of this inequality depends on ∆t, and its expectation
decreases to zero proportionally to

√
∆t, according to Lemma 3.2.1.

Now imposing ∆t small enough, we prove an explicit bound for the local time moment of
X.

Lemma 3.2.4. For α ∈ [1
2
, 1), if b(0) > 2α(1 − α)2σ2 and ∆t ≤ 1

2K(α)
∧ x0

(1−
√
α)bσ(α)

, then
there exist positive constants C and γ > 0 depending on α, b(0), K, and σ but not in ∆t
such that

E
(
L0
T (X)2

)
≤ C

1√
∆t

exp

(
−γ
2∆t

)
.

We end this section with another key preliminary result, which is the convergence rate
of order 1 for the corrected local error. Although the classical local error is of order 1/2, as
stated in Lemma 3.2.1, the local error seen by the diffusion coefficient function, corrected
with the Milstein term stays of order 1.

Lemma 3.2.5 (Corrected local error process). Let us fix p ≥ 1, and α ∈ [1
2
, 1). For α > 1

2
,

assume b(0) > 2α(1 − α)2σ2, whereas for α = 1
2
, assume b(0) > 3(2p + 1)σ2/2. Then, there

exists C > 0, depending on the parameters of the model but not in ∆t, such that for all
∆t ≤ ∆max(α), the Corrected Local Error satisfies

sup
0≤t≤T

E
[∣∣∣σXα

t − σX
α

η(t) − ασ2X
2α−1

η(t) (Wt −Wη(t))
∣∣∣2p] ≤ C∆t2p.

3.3 Proof of the main Theorem 3.1.6

The proof of Theorem 3.1.6 is built in several steps. First, we work with the L2p(Ω)-norm
of the error, for p ≥ 1, then at the last step of the proof we go back to the Lp(Ω)-norm for
p ≥ 1.

In what follows we denote
Et := X t −Xt

and
Σt := sgn(Zt)

[
σX

α

η(t) + ασ2X
2α−1

η(t) (Wt −Wη(t))
]
− σXα

t
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so that
dEt =

(
sgn(Zt)b(Xη(t))− b(Xt)

)
dt+ dL0

t (X) + ΣtdWt.

Also, to make the notation lighter, we will denote the Corrected Local Error by

Dt(X) := σX
α

t − σX
α

η(t) − ασ2X
2α−1

η(t) (Wt −Wη(t)).

3.3.1 The Weighted Error

Before to prove the main theorem, we establish in the Proposition 3.3.1 the convergence of a
weighted error. For p ≥ 1, let us consider (βt, 0 ≤ t ≤ T ), defined by

βt = 2p‖b′‖∞ + 2p(4p− 1) +
8α2p(4p− 1)σ2

X
2(1−α)
t

, (3.3.1)

and the Weight Process (Γt, 0 ≤ t ≤ T ) defined by

Γt = exp

(
−
∫ t

0

βsds

)
. (3.3.2)

The Weight Process is adapted, almost surely positive, and bounded by 1. Its paths are
non increasing and hence has bounded variation, and also satisfies

dΓt = −βtΓtdt.

The process (Γt)t≥0 can be seen as an integrating factor in the sense of linear first order
ODE (see for example [73]). When we apply the Itô’s Lemma to Γ2

tE
4p
t , instead of E4p

t alone,
we can remove a very annoying term that appears in the righthand side upper bound (see
the proof of Lemma 3.3.3). The exponential weight in a Lp(Ω)-norm is a useful tool to obtain
a priori upper bound. As an example, for the existence and uniqueness of the solution of
a Backward SDE, it is introduced a norm with exponential weight, such that the operator
associated to the BSDE is contractive under this new norm (see proof of Theorem 1.2 in [68]).
In the same way, here we introduce this exponential weight to get the following a priori error
bound, which will allow us to prove Theorem 3.1.6.

Proposition 3.3.1 (Weighted Error). Under the hypotheses of Theorem 3.1.6, for p ≥ 1 and
α ∈ [1

2
, 1), there exists a constant C not depending on ∆t such that for all ∆t ≤ ∆max(α)

sup
0≤t≤T

E
[
Γ2
tE

4p
t

]
≤ C∆t4p. (3.3.3)

Remark 3.3.2.
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(i) Since we are going to work first with the L2p(Ω)-norm of the error, when α = 1
2
, Hypothesis

3.1.5-(i) becomes

b(0) >
3(2[2p ∨ 2] + 1)σ2

2
=

3(4p+ 1)σ2

2
,

in particular (
2b(0)

σ2
− 1

)
> 12p+ 2. (3.3.4)

(ii) From Lemma 3.1.2, the process β has polynomial moments of any order for α > 1
2
, and

when α = 1
2
, there exists C such that E[βqt ] < C, for all 1 < q < 2b(0)/σ2 − 1. From the

previous point in this Remark, it follows that the process β has moments at least up to order
12p+ 2.

(iii) From the definition β in (3.3.1), and due to Lemma 3.1.3, there exists a constant C such
that E[Γ−qT ] < C for all q > 0 when α > 1

2
, whereas for α = 1

2
, the q-th negative moment of

the weight process is finite, as soon as

2p(4p− 1)σ2 q ≤ σ2

8

(
2b(0)

σ2
− 1

)2

.

Notice that, thanks to point (i) in this Remark, a sufficient condition such that this last
inequality holds is

16p(4p− 1) q ≤ (12p+ 2)2 .

We cut the proof of Proposition 3.3.1 in two technical lemmas.

Lemma 3.3.3. Under the hypotheses of Theorem 3.1.6, for p ≥ 1 and α ∈ [1
2
, 1), there exists

a constant C not depending on ∆t such that for all ∆t ≤ ∆max(α)

E[Γ2
tE

4p
t ] ≤ 4p

∫ t

0

E
[
Γ2
sE4p−1
s

(
b(Xη(s))− b(Xs)

)]
ds+ 4p‖b′‖∞

∫ t

0

sup
0≤u≤s

E[Γ2
uE4p

u ]ds+ C∆t4p.

(3.3.5)

Lemma 3.3.4. Under the hypotheses of Theorem 3.1.6, for p ≥ 1 and α ∈ [1
2
, 1), there exists

a constant C not depending on ∆t such that for all ∆t ≤ ∆max(α), and for any s ∈ [0, T ]

|E[Γ2
sE4p−1
s (b(Xη(s))− b(Xs))]| ≤ C sup

u≤s
E[Γ2

uE4p
u ] + C∆t4p. (3.3.6)

As we will see soon, we prove (3.3.6) with the help of the Itô’s formula applied to b, and
here is where we need b of class C2 required in Hypotheses 3.1.5-(ii).

Proof of Proposition 3.3.1. Thank to Lemmas 3.3.3 and 3.3.4, we have

E[Γ2
tE

4p
t ] ≤ C

∫ t

0

sup
u≤s

E[Γ2
uE4p

u ]ds+ C∆t4p.
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and since the right-hand side is increasing, it follows

sup
s≤t

E[Γ2
sE4p
s ] ≤ C

∫ t

0

sup
u≤s

E[Γ2
uE4p

u ]ds+ C∆t4p,

from where we conclude the result thanks to Gronwall’s Inequality.

Now we present the proof of the technical lemmas.

Proof of Lemma 3.3.3. By the integration by parts formula,

E[Γ2
tE

4p
t ] = 4pE

[∫ t

0

Γ2
sE4p−1
s

{
sgn(Zs)b(Xη(s))− b(Xs)

}
ds

]
+ 2p(4p− 1)E

[∫ t

0

Γ2
sE4p−2
s Σ2

sds

]
+ 4pE

[∫ t

0

Γ2
sE4p−1
s dL0

s(X)

]
− E

[∫ t

0

2βsΓ
2
sE4p
s ds

]
.

Thanks to Lemma 3.2.4 and the control in the moments of the exact process in Lemma 3.1.2
we have

E
[∫ t

0

Γ2
sE4p−1
s dL0

s(X)

]
≤ E

[∫ t

0

|X4p−1
s |dL0

s(X)

]
≤

√
E
[

sup
0≤s≤T

X8p−2
s

]
E
[
L0
T (X)2

]
≤ C∆t4p.

On the other hand, with sgn(x) = 1 − 21{x<0}, calling ∆Ws = Ws −Wη(s), we get for all
0 ≤ s ≤ t

Σ2
s ≤ 2

[
σXα

s − σX
α

s

]2
+ 2

[
σX

α

s − σX
α

η(s) − ασ2X
2α−1

η(s) ∆Ws

]2

+RΣ
s 1{Zs<0},

where we put aside all the terms multiplied by 1{Zs<0} in

RΣ
s :=4

[
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

]
×
{
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws + σXα
s − σX

α

s + σX
α

s − σX
α

η(s) − ασ2X
2α−1

η(s) ∆Ws

}
.
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So, from the previous computations, the Lipschitz property of b, and Young’s Inequality, we
conclude

E[Γ2
tE

4p
t ] ≤ 4p

∫ t

0

E
[
Γ2
sE4p−1
s

(
b(Xη(s))− b(Xs)

)]
ds

+4p‖b′‖∞
∫ t

0

E
[
Γ2
η(s)E

4p
η(s)

]
ds+ 4p‖b′‖∞

∫ t

0

E[Γ2
sE4p
s ]ds

+4p(4p− 1)E
[∫ t

0

Γ2
sE4p−2
s

(
σXα

s − σX
α

s

)2
ds

]
+(4p− 2)(4p− 1)E

[∫ t

0

Γ2
sE4p
s ds

]
+2(4p− 1)

∫ t

0

E[Ds(X)4p]ds

− E
[∫ t

0

2βsΓ
2
sE4p
s ds

]
+

∫ t

0

E
[
Rs1{Zs<0}

]
ds+ C∆t4p.

where Rs = 4p(4p− 1)E4p−2
s RΣ

s + 8pE4p−1
s b(Xη(s)), and from Lemma 3.2.2 we have

E
[
Rs1{Zs<0}

]
≤ C∆t4p.

Since ∆t ≤ ∆max(α) and Remark 3.3.2-(i), we can apply Lemma 3.2.5 so E[Ds(X)4p] ≤
C∆t4p. Introducing these estimations in the previous computations, we have

E[Γ2
tE

4p
t ] ≤4p

∫ t

0

E
[
Γ2
sE4p−1
s

(
b(Xη(s))− b(Xs)

)]
ds

+ 4p‖b′‖∞
∫ t

0

E
[
Γ2
η(s)E

4p
η(s)

]
ds

+ (4p‖b′‖∞ + (4p− 2)(4p− 1))E
[∫ t

0

Γ2
sE4p
s ds

]
+ 4p(4p− 1)E

[∫ t

0

Γ2
sE4p−2
s

(
σXα

s − σX
α

s

)2
ds

]
− E

[∫ t

0

2βsΓ
2
sE4p
s ds

]
+ C∆t4p.

Now we use the particular form of the weight process. Since for all 1
2
≤ α ≤ 1, for all x ≥ 0,

y ≥ 0,
|xα − yα|(x1−α + y1−α) ≤ 2α|x− y|, (3.3.7)

we have

E
∫ t

0

Γ2
sE4p−2
s

(
σXα

s − σX
α

s

)2
ds ≤ E

∫ t

0

Γ2
sE4p
s

4α2σ2

X
2(1−α)
s

ds,

and then, from the definition of β in (3.3.1), we conclude

E[Γ2
tE

4p
t ] ≤ 4p

∫ t

0

E
[
Γ2
sE4p−1
s

(
b(Xη(s))− b(Xs)

)]
ds+ 4p‖b′‖∞

∫ t

0

E
[
Γ2
η(s)E

4p
η(s)

]
ds+ C∆t4p.
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from where

E[Γ2
tE

4p
t ] ≤ 4p

∫ t

0

E
[
Γ2
sE4p−1
s

(
b(Xη(s))− b(Xs)

)]
ds+ 4p‖b′‖∞

∫ t

0

sup
0≤u≤s

E[Γ2
uE4p

u ]ds+ C∆t4p.

Proof of Lemma 3.3.4. By integration by parts

E
[
Γ2
sE4p−1
s (b(Xη(s))− b(Xs))

]
= −E

∫ s

η(s)

2ΓuE4p−1
u (b(Xη(s))− b(Xu))βuΓudu

+ E
∫ s

η(s)

Γ2
ud
(
E4p−1
u (b(Xη(s))− b(Xu))

)
.

(3.3.8)

Applying Hölder’s Inequality to the first term in the right-hand side we have∣∣∣E∫ s

η(s)

Γ2
uE4p−1

u [b(Xη(s))− b(Xu)]βudu
∣∣∣

≤
∫ s

η(s)

(
E
[
Γ2
uE4p

u

])1− 1
4p
(
E
[
|b(Xη(s))− b(Xu)|4pβ4p

u

]) 1
4p du.

Recalling the Remark 3.3.2-(ii), we have that E[β8p
u ] is finite, so applying Lemma 3.2.1,

E
[
|b(Xη(s))− b(Xu)|4pβ4p

u

]
≤
√
E
[
|b(Xη(s))− b(Xu)|8p

]
E[β8p

u ] ≤ C∆t2p.

Then, ∣∣∣∣E∫ s

η(s)

Γ2
uE4p−1

u [b(Xη(s))− b(Xu)]βudu

∣∣∣∣ ≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t3/2.

Applying the Itô’s Formula to the second term in the right-hand side of (3.3.8), and taking
expectation we get

E
∫ s

η(s)

Γ2
ud
(
E4p−1
u [b(Xη(s))− b(Xu)]

)
= −σE

∫ s

η(s)

Γ2
uE4p−1

u

(
b′(Xu)b(Xu) +

σ2

2
b′′(Xu)X

2α
u

)
du

+(4p− 1)E
∫ s

η(s)

Γ2
uE4p−2

u (b(Xη(s))− b(Xu))
{
sgn(Zu)b(Xη(s))− b(Xu)

}
du

+
σ2

2
(4p− 1)(4p− 2)E

∫ s

η(s)

Γ2
uE4p−3

u (b(Xη(s))− b(Xu))Σ
2
udu

−(4p− 1)σ2E
∫ s

η(s)

Γ2
uE4p−2

u b′(Xu)X
α
uΣudu

+
(4p− 1)

2
E
∫ s

η(s)

Γ2
uE4p−2

u (b(Xη(s))− b(Xu))dL
0
u(X)

=: I1 + I2 + I3 + I4 + I5.

(3.3.9)
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By the finiteness of the moment of X, the linear growth of b, and the polynomial growth of
b′′, applying Holder’s inequality, we have

|I1| ≤ C

∫ s

η(s)

(
E[Γ2

uE4p
u ]
)1− 1

4p

(
E
[
|b′(Xu)b(Xu) +

σ2

2
b′′(Xu)X

2α
u |4p

]) 1
4p

du

≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t.

For the bound of I2, since b is Lipschitz, and sgn(x) = 1− 21{x<0}, we have

|I2| ≤C
∫ s

η(s)

E
[
Γ2
uE4p−2

u |Xη(s) −Xu||Xη(s) −Xu|
]
du

+ C

∫ s

η(s)

E
[
Γ2
uE4p−1

u |Xη(s) −Xu|
]
du+

∫ s

η(s)

E|R(2)
u 1{Zu<0}|du

≤C
(

sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
2p

∆t2 + C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t3/2 + C∆t4p

Where again, all the terms multiplied by 1{Zu<0} are putted in the rest R(2)
u , and the expec-

tation of the product is bounded with Lemma 3.2.2.

In a similar way for the bound of I3, decomposing Σu with sgn(x) = 1− 21{x<0},

|I3| ≤C
∫ s

η(s)

E
[
Γ2
uE4p−3

u |Xη(s) −Xu|Ds(X)2
]
du

+ C

∫ s

η(s)

E
[
Γ2
uE4p−3

u |Xη(s) −Xu|
(
σXu − σXα

u

)2
]
du+

∫ s

η(s)

E|R(3)
u 1{Zu<0}|du.

For the first term in the right-hand side we have

E
[
Γ2
uE4p−3

u |Xη(s) −Xu|Ds(X)2
]
≤
(
E[Γ2

uE4p
u ]
)1− 3

4p
(
E[|Xη(s) −Xu|4p]

) 1
4p
(
E[Ds(X)4p]

) 1
2p

≤
(

sup
u≤s

E[Γ2
uE4p

u ]

)1− 3
4p

∆t5/2,

due to the bound for the increments of the exact process and Lemma 3.2.5. For the second
term, applying (3.3.7), and noting that from Remark 3.3.2-(ii), the exact process has negative
moments up to of order 12p+ 2

E[Γ2
uE4p−3

u |Xη(s) −Xu|(σXu − σXα
u )2]

≤ CE[Γ2
uE4p−1

u |Xη(s) −Xu|
1

X
2(1−α)
u

]

≤ C
(
E[Γ2

uE4p
u ]
)1− 1

4p
(
E[|Xη(s) −Xu|8p]

)1/8p
(
E
[

1

X
16(1−α)p
u

])1/8p

≤
(

sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t1/2.
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We control the third term in the right-hand side in the bound for |I3| using again Lemma
3.2.2, so

|I3| ≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 3
4p

∆t7/2 +

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t3/2 + C∆t4p.

Now we bound |I4|.

|I4| ≤ C

∫ s

η(s)

E|Γ2
uE4p−2

u Du(X)b′(Xu)X
α
u |du

+ C

∫ s

η(s)

E|Γ2
uE4p−2

u (σXu − σXα
u )b′(Xu)X

α
u |du+

∫ s

η(s)

E|R(4)
u 1{Zu<0}|du.

We control the first term in the right-hand side using HÃűlder’s inequality, Lemma 3.2.5 and
the control in the moments of the exact process for all 0 ≤ u ≤ s

E|Γ2
uE4p−2

u Du(X)b′(Xu)X
α
u | ≤ (E[Γ2

uE4p
u ])1− 1

2p (E[Ds(X)4p])
1
4p (E[b′(Xu)

4pX4pα
u ])

1
4p

≤C
(

sup
u≤s

[Γ2
uE4p

u ]

)1− 1
2p

∆t.

For the second term in the right-hand side of the bound for |I4|, we use one more time (3.3.7),
and the existence of negative moments of the exact process X, and then

E|Γ2
uE4p−2

u

[
σXu − σXα

u

]
b′(Xu)X

α
u |

≤ CE[Γ2
uE4p−1

u

1

X
(1−α)
u

b′(Xu)X
α
u ] ≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

.

To control the third term in the right-hand side of the bound for |I4| we use Lemma 3.2.2
just as before. So

|I4| ≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
2p

∆t2 + C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t+ C∆t4p.

Finally,

|I5| =
(4p− 1)

2
E
∫ s

η(s)

Γ2
uX

4p−2
u |b(Xη(s))− b(Xu)|dL0

u(X)

≤ CE
[
sup
u≤s

[
1 +X4p−1

u

]
L0
T (X)

]
≤ C

√
E
[
sup
u≤s

[
1 +X4p−1

u

]2]√E[L0
T (X)2] ≤ C∆t4p,

the last inequality comes from Lemmas 3.1.2 and 3.2.4.
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Putting all the last calculations in (3.3.8) we obtain

∣∣E[Γ2
sE4p−1
s (b(Xη(s))− b(Xs))]

∣∣ ≤ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t3/2 + C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
4p

∆t

+ C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 1
2p

∆t2 + C

(
sup
u≤s

E[Γ2
uE4p

u ]

)1− 3
4p

∆t7/2

+ C∆t4p.

Applying Young’s Inequality in all terms in the right, we get the desired inequality (3.3.6).

Remark 3.3.5. Proceeding as in the Proof of Lemma 3.3.4, if p = 1 or p ≥ 3/2, is not difficult
to prove ∣∣E [E2p−1

s (b(Xη(s))− b(Xs))
]∣∣ ≤ C sup

u≤s
E[E2p

u ] + C∆t2p. (3.3.10)

Notice that (3.3.10) is similar to (3.3.6) with the process Γ = 1. The restriction on p comes
from the following observation. Applying the Itô’s Lemma to the function (x, y) 7→ x2p−1y
for p ≥ 1, with the couple of processes (E·, b(Xη(·))− b(X·)), in the analogous of the identity
(3.9) with Γ = 1, it will appear a term of the form

E
∫ s

η(s)

E2p−3
u [b(Xη(s))− b(Xu)]Σ

2
udu.

The restriction p ≥ 3/2 avoids the situation where 2p− 3 is negative.

3.3.2 Proof of Theorem 3.1.6

We start by controlling the L2p-error. First, assume p = 1 or p ≥ 3/2. By the Itô’s formula
we have

E[E2p
t ] = 2pE

∫ t

0

E2p−1
s

{
sgn(Zs)b(Xη(s))− b(Xs)

}
ds

+ 2pE
∫ t

0

E2p−1
s dL0

s(X) + p(2p− 1)E
∫ t

0

E2p−2
s Σ2

sds.

As we have seen before, E
∫ t

0
E2p−1
s dL0

s(X) ≤ C∆t2p, and sgn(x) = 1− 21{x<0}, so

E[E2p
t ] ≤ 2pE

∫ t

0

E2p−1
s

[
b(Xη(s))− b(Xη(s))

]
ds

+ 2pE
∫ t

0

E2p−1
s

[
b(Xη(s))− b(Xs)

]
ds

+ 8p(2p− 1)E
∫ t

0

E2p−2
s

[
σX

α

s − σXα
s

]2
ds

+ 8p(2p− 1)E
∫ t

0

E2p−2
s Ds(X)2ds+ E

∫ t

0

Rs1{Zs<0}ds+ C∆t2p,

(3.3.11)

37



Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

where Rs = 4p(2p− 1)E2p−2
s

[
σX

α

η(s) + ασ2X
2α−1

η(s)

(
Ws −Wη(s)

)]
+ 8pE2p−1

s b(Xη(s)). If we use
the Lipschitz property of b, and Young’s inequality in the first term in the right of (3.3.11),
Lemma 3.2.5 in the fourth one, and Lemma 3.2.2 in the fifth one, we have

E[E2p
t ] ≤ C

∫ t

0

sup
u≤s

E[E2p
u ]ds+ 2p

∫ t

0

E[E2p−1
s (b(Xη(s))− b(Xs))]ds

+ 8p(2p− 1)

∫ t

0

E[E2p−2
s (σX

α

s − σXα
s )2]ds+ C∆t2p.

(3.3.12)

And, according to Remark 3.3.5, we have∣∣E[E2p−1
s (b(Xη(s))− b(Xs))]

∣∣ ≤ C sup
u≤s

E[E2p
u ] + C∆t2p.

On the other hand, using again (3.3.7), we have

E[E2p−2
s (σX

α

s − σXα
s )2] ≤ CE[E2p

s X
−2(1−α)
s ] = CE[ΓsE2p

s X
−2(1−α)
s Γ−1

s ],

and applying Cauchy-Schwartz inequality,

E[Γs E2p
s

1

X
2(1−α)
s

Γ−1
s ] ≤(E[Γ2

sE4p
s ])

1
2

(
E[

1

X
4(1−α)
s

Γ−2
s ]

) 1
2

.

The first term in the right-hand side is the weight error controlled by Proposition 3.3.1. To
control the second one, let us recall Remark 3.3.2. For α > 1

2
, the exact process and the

weight process Γ have negative moments of any order, therefore the second term in the last
inequality is bounded by a constant. On the other hand, for α = 1

2
we need a finer analysis.

From the second point in Remark 3.3.2, the 12p+ 2-th negative moment of the exact process
is finite, and since

16p(4p− 1) 2
6p+ 1

6p
< (12p+ 2)2,

according with the third point of Remark 3.3.2, the 2(6p+ 1)/6p-th negative moment of the
weight process Γ is also finite. Therefore, when α = 1

2
,

E
[

1

X
4(1−α)
s

Γ−2
s

]
= E

[
1

X2
s

Γ−2
s

]
≤
(
E
[

1

X12p+2
s

]) 1
6p+1

(
E
[
Γ
−2 6p+1

6p
s

]) 6p
6p+1

≤ C,

and then in any case

E
[
ΓsE2p

s

1

X
2(1−α)
s

Γ−1
s

]
≤ C∆t2p.

Introducing all the last computations in (3.3.12) we get

E[E2p
t ] ≤ C

∫ t

0

(
sup
u≤s

E
[
E2p
u

])
ds+ C∆t2p.
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Since the right-hand side is increasing, thanks to Gronwall’s Inequality we have, for p = 1 or
p ≥ 3/2,

sup
0≤t≤T

(
E[E2p

t ]
) 1

2p ≤ C∆t.

We extend to p ∈ (1, 3/2), thanks to Jensen’s inequality

(E[E2p
t ])

1
2p ≤ (E[E

6
2
t ])

2
6 ≤ C∆t,

and we conclude that (E[E2p
t ])

1
2p ≤ C∆t for all p ≥ 1 satisfying Remark 3.3.2-(i).

Now we control the Lp-error. For α = 1
2
and p ≥ 2, denoting p′ = p

2
≥ 1,

sup
0≤t≤T

(E [Ept ])
1
p = sup

0≤t≤T

(
E[E2p′

t ]
) 1

2p′ ≤ C∆t.

Hypothesis 3.1.5-(i) gives

b(0) >
3(2p+ 1)σ2

2
=

3(4p′ + 1)σ2

2
.

Since (3.3.4) in Remark 3.3.2 is satisfied, we can control the L2p′(Ω)-norm of the error and
then

sup
0≤t≤T

(E[Ept ])
1
p = sup

0≤t≤T

(
E[E2p′

t ]
) 1

2p′ ≤ C∆t.

If p ∈ [1, 2), Hypothesis 3.1.5-(i) is b(0) > 15σ
2

2
, which is enough to bound the L2(Ω)-norm

of the error, and then from Jensen’s inequality

sup
0≤t≤T

(E[Ep])
1
p ≤ sup

0≤t≤T

(
E[E2

t ]
) 1

2 ≤ C∆t.

The case α > 1/2 is easier. Since the Hypothesis in the parameters for this case does not
depend on p, we can conclude for any p ≥ 1 from Jensen’s inequality and the control for the
L2p(Ω)-norm of the error.
Remark 3.3.6. Let us mention an example of extension of our convergence result, based on
simple transformation method: consider the 3/2-model, namely the solution of

rt = r0 +

∫ t

0

c1rs(c2 − rs)ds+

∫ t

0

c3 r
3/2
s dWs.

Applying the ItÃť’s Formula to vt = f(rt), with f(x) = x−1, we have

vt = v0 +

∫ t

0

(
c1 + c2

3 − c1c2vs
)
ds+

∫ t

0

c3 v
1/2
s dBs,

where Bs = −Ws is a Brownian motion. We can approximate v with the SMS v̄, and then
define r̄t := 1/v̄t. Then we can deduce the strong convergence with rate one of r̄t to rt from
our previous results.

Transformation methods can be used in a more exhaustive manner, in the context of CEV-
like SDEs and we refer to [19] for approximation results and examples, using this approach.
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3.3.3 Strong Convergence of the Projected Milstein Scheme

The Projected Milstein Scheme (PMS) is defined by X̂0 = x0, and

X̂tk =
(
X̂tk−1

+ b(X̂tk−1
)∆t+ σX̂α

tk−1
(Wtk −Wtk−1

) +
ασ2X̂2α−1

tk−1

2

[
(Wtk −Wtk−1

)2 −∆t
] )+

,

where for all x ∈ R, (x)+ = max(0, x). The continuous time version of the (PMS) is given by

X̂t =
(
X̂η(t)+b(X̂η(t))∆t+σX̂

α
η(t)(Wt−Wη(t))+

ασ2X̂2α−1
η(t)

2

[
(Wt −Wη(t))

2 −∆t
] )+

. (3.3.13)

Notice that for all t ∈ [0, T ], 0 ≤ X̂t ≤ X t, then the positive moments of the PMS are
bounded (see Lemma 3.1.4).

To obtain a strong convergence rate for the PMS, we first show that the PMS and the
SMS coincide with a large probability.

Lemma 3.3.7. Let us consider the stopping time τ = inf{s ≥ 0 : Xs 6= X̂s}. Assume that
b(0) > 2α(1− α)2σ2 and ∆t ≤ 1/(2K(α)). Then for any p ≥ 1,

P (τ ≤ T ) ≤ C∆tp.

Proof. Notice that τ is almost surely strictly positive because both schemes start from the
same deterministic initial condition x0. On the other hand

P (τ ≤ T ) =
N−1∑
i=0

P (τ ∈ (tk, tk+1]),

and according to Lemma 3.2.2

P (τ ∈ [ti, ti+1)) = P
(

inf
tk<s≤tk+1

Zs ≤ 0, X tk = X̂tk

)
≤ P

(
inf

tk<s≤tk+1

Zs ≤ 0

)
≤ exp

(
− γ

∆t

)
.

So,

P (τ ≤ T ) ≤ T

∆t
exp

(
− γ

∆t

)
.

Since for any p ≥ 1, there exists a constant Cp such that exp(−γ/∆t)/∆t ≤ Cp∆t
p, we have

P (τ ≤ T ) ≤ C∆tp.

Corollary 3.3.8. Assume Hypotheses 3.1.1 and 3.1.5. Consider a maximum step size
∆max(α) defined in (3.1.10). Let (Xt, 0 ≤ t ≤ T ) be the process defined on (3.1.1) and
(X̂t, 0 ≤ t ≤ T ) the Projecter Milstein scheme given in (3.3.13). Then for any p ≥ 1 that
allows Hypotheses 3.1.5, there exists a constant C depending on p, T , b(0), α, σ, K, and x0,
but not on ∆t, such that for all ∆t ≤ ∆max(α),

sup
0≤t≤T

(
E[|Xt − X̂t|p]

) 1
p ≤ C∆t. (3.3.14)

40



3.4. Numerical Experiments and Conclusion

Proof. Notice that for all t ∈ [0, T ], with τ = inf{s ≥ 0 : Xs 6= X̂s},

E[|X̂t −Xt|p] = E[|X̂t −Xt|p1{τ≤T}] + E[|X̂t −Xt|p1{τ>T}]

≤
√

E[|X̂t −Xt|2p]P (τ ≤ T ) + E[|X t −Xt|p] ≤ C∆tp

where the last inequality comes from Lemma 3.3.7 and Theorem 3.1.6.

3.4 Numerical Experiments and Conclusion

We start this section with the analysis of two numerical experiments. The first one aims
to study empirically the strong rate of convergence of the SMS in comparison with other
schemes proposed the literature. The second one aims to study the impact of including the
SMS in a Multilevel Monte Carlo application.

3.4.1 Empirical study of the strong rate of converge

In this experiment we compute the error of the schemes as a function of the step size ∆t for
different values of the parameters α and σ.

For α > 1
2
we compare the SMS with the Symmetrized Euler Scheme (SES) introduced

in [10], and with the Balanced Milstein Scheme (BMS) presented in [51]. Whereas for α = 1
2
,

in addition to the aforementioned schemes, we will also compare SMS with the Modified
Euler Scheme (MES) proposed in [19], and with the Alfonsi Implicit Scheme (AIS) proposed
in [1].

Let us first, shortly review those different schemes.

Alfonsi Implicit Scheme (AIS). Proposed in [1], the AIS can be applied to equation
(3.1.1) when the drift is a linear function. A priori, the AIS can be applied for α ∈ [1

2
, 1), but

is relevant to observe that only when α = 1
2
, the AIS is in fact an explicit scheme (also know

as drift-implicit square-root Euler approximations ) whereas in any other case is not. This
implies that in order to compute the AIS for α > 1

2
, at each time step it is necessary to solve

numerically a non linear equation. This extra step in the implementation of the scheme brings
questions about the impact of the error of this subroutine in the error of the scheme, and
about the computing performance of the scheme. Since this questions are beyond the scope
of the present work, we include the AIS in the comparison only in the Cox–Ingersol–Ross
(CIR) case (linear drift and α = 1

2
). In this context, the AIS can be use only if σ2 > 4b(0), for

other values of the parameters the AIS is not defined. In terms of convergence, when α = 1
2
,

according to Theorem 2 in Alfonsi [3], the AIS converges in the Lp(Ω)-norm, for p ≥ 1, at
rate ∆t when (1 ∨ 3p/4)σ2 < b(0). When α > 1

2
, the AIS (see Section 3 of [3]) converge as

soon as b(0) > 0, at rate ∆t to the exact solution.
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Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

Balanced Milstein Scheme (BMS). The BMS was introduced by Kahl and Schurz
in [51], and although its convergence it is not proven for Equation (3.1.1) (see Remark 5.12
in [51]), numerical experiments shows a competitive behavior (see [50]). Also, the BMS can
be easily implemented for α ∈ [1

2
, 1), so we decide to include it in our numerical comparison.

Modified Euler Scheme (MES). Introduced in [19], the MES can be applied to the
Equation (3.1.1) for α ∈ [1

2
, 1) when the drift has the form b(x) = µ1(x)− µ2(x)x for µ1 and

µ2 suitables functions. The rate of convergence in the L1(Ω)-norm of the MES depends on
the parameters. For α = 1

2
the rate is 1 if σ2 is big enough compared with b(0), and it is

ρ < 1 in other case. When α > 1
2
, the MES converges at rate 1 as soon as b(0) > 0 (see

Proposition 4.1 in [19]). When α > 1
2
, the implementation of the MES requires some extra

tuning which is not explicitly given in [19] (see Remark 5.1), so we implement the MES only
for α = 1

2
.

Symmetryzed Euler Scheme (SES). The SES, introduced in [10], is an explicit scheme
which can be apply to the equation (3.1.1) for α ∈ [1

2
, 1) and any Lipschitz drift function b.

It has the weakest hypothesis over b of all the schemes discussed in this chapter. If α = 1
2
,

according to Theorem 2.2 in [10], the rate of convergence of the SES is
√

∆t under suitable
conditions for b(0), σ2 and K. When α > 1

2
the SES converge at rate

√
∆t as soon as b(0) > 0

(see Theorem 2.2 in [10]).

We summarize the theoretical analysis of the schemes above in Table 3.4.1 for α = 1
2
, and

in Table 3.4.2 for α > 1
2
.

Simulation setup

In our simulations we consider a time horizon T = 1, and x0 = 1. In order to include as
many schemes as possible we consider for all simulations a linear drift

b(x) = 10− 10x.

To measure the error of each scheme, we estimate its L1(Ω)-norm for which a theoretical rate
is proposed for all the selected schemes.

Let E|ESMS
T |, E|EBMS

T |, E|ESES
T |, E|EMES

T |, and E|EAIS
T | be the L1(Ω)-norm of the error for the

SMS, BMS, SES, MES and AIS respectively. To estimate these quantities, we consider as a
reference solution the AIS approximation for ∆t = ∆max(α)/212 when α = 1

2
, and the SMS

for ∆t = ∆max(α)/212 when α > 1
2
. Then for each

∆t ∈
{

∆max(α)

2n
, n = 1, . . . 9

}
,
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Scheme Norm Drift Convergence’s Condition Theoretical
rate

SMS Lp, p ≥ 1

b Lipschitz, b ∈ C2

b(0) > 3 (2[p ∨ 2] + 1) σ
2

2
1b′′ with polynomial

growth

AIS [3]
Lp,

b(x) = a− bx b(0) > (1 ∨ 3
4p)σ

2 1
p ∈ [1, 4b(0)3σ2 )

BMS undetermined

MES [19] L1

b(x) = µ1(x)− µ2(x)x b(0) > 5σ2

2 1

µi ∈ C2b ∩ C0b , µ1 ≥ 0 b(0) > 3σ2

2
1
2

µ′
1 ≤ 0, µ′

2 ≥ 0 b(0) > σ2
(

1
6 ,

1
2 −

σ2

2b(0)+σ2

)

SES [10] Lp, p ≥ 1 b Lipschitz

b(0) >
[√

8
σ2K(p2 ∨ 1) + 1

]
σ2

2 ,

K(q) = K(16q − 1)

∨4σ2(8p− 1)2

1
2

Table 3.4.1: Summary of the condition over the parameters for the convergence of the different
schemes for α = 1

2
.

Scheme Norm Drift Convergence’s Condition Theoretical
rate

SMS Lp, p ≥ 1
b Lipschitz, b ∈ C2

b′′ with polynomial growth
b(0) > 2α(1− α)2σ2 1

AIS Lp, p ∈ [1, 4b(0)3σ2 ) b(x) = a− bx b(0) > 0 1

BMS undetermined

MES L1

b(x) = µ1(x)− µ2(x)x

b(0) > 0 1µi ∈ C2b ∩ C0b , µ1 ≥ 0

µ′
1 ≤ 0, µ′

2 ≥ 0

SES Lp, p ≥ 1 b Lipschitz b(0) > 0 1
2

Table 3.4.2: Summary of the condition over the parameters for the convergence of the different
schemes when α > 1

2
.

we estimate E|E ···T | by computing 5× 104 trajectories of the corresponding scheme, and com-
paring them with the reference solution. The results of these simulations are reported in
Figures 3.4.1 (α = 1

2
) and 3.4.2 (α > 1

2
). The graphs plot the LogE|E ···T | in terms of the

Log∆t, and we have added the plot of the identity map to serve as reference for rate of order
1. The schemes with a slope smaller than the slope of the reference line have an order of
convergence smaller than one. To obtain a more quantitative comparison of the schemes, we
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Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

also perform a regression analysis on the model

log(E|E ···T |) = ρ log(∆t) + C.

Notice that ρ̂, the estimated value for ρ, corresponds to the empirical rate of convergence of
the different schemes. We present the result of this regression analysis in Tables 3.4.3 and
3.4.4.

Empirical results for α = 1
2
. Figure 3.4.1 and Table 3.4.3 present the result for the CIR

case. From Table 3.4.1, we observe that we can distinguish five cases for the parameters.

The first case (σ2 = 1) is such that b(0) > 6σ2: the SMS, the AIS, and the MES have
a theoretical rate of convergence equal to ∆t, whereas the SES has a theoretical rate of
convergence equal to

√
∆t. In Figure 3.4.1a, we observe that the graphs of the SMS, the

AIS, the BMS, and the MES seem parallel to the reference line, which is expected, while the
SES has a smaller slope. This is also confirms in the first line of the Table 3.4.3, where we
observe that the empirical rates of convergence are close to the theoretical ones. Notice that
the BMS has a competitive empirical rate of convergence, although the theoretical one is not
known.

σ2

Observed L1(Ω) convergence rate ρ̂ (and its R2 value)

SMS AIS BMS MES SES

ρ̂ (R2) ρ̂ (R2) ρ̂ (R2) ρ̂ (R2) ρ̂ (R2)

1 0.996 (99.9%) 1.006 (99.9%) 1.006 (99.9%) 0.996 (99.9%) 0.594 (99.3%)

4 0.997 (99.9%) 1.005 (99.9%) 1.004 (99.9%) 0.996 (99.9%) 0.534 (99.8%)

6.25 0.998 (99.9%) 1.004 (99.9%) 1.000 (99.9%) 0.994 (99.9%) 0.524 (99.9%)

9 0.998 (99.9%) 1.002 (99.9%) 0.986 (99.9%) 0.789 (99.9%) 0.516 (99.9%)

36 0.641 (99.7%) 0.628 (99.8%) 0.454 (99.3%) 0.358 (99.4%) 0.472 (99.9%)

Table 3.4.3: Empirical rate of convergence ρ̂ for the L1(Ω)-error of the schemes when α = 1
2

for different values of σ2.

The second case (σ2 = 4) is such that b(0) ∈ (5σ
2

2
, 6σ2), now only the AIS and the MES

have a theoretical rate of convergence equal to ∆t. However, how we can see in Figure
3.4.1b the SMS still shows a linear behavior in this case. Recall that the condition over the
parameters is a sufficient condition and we believe that could be improved. Notice that also
the BMS shows a linear behavior. In the second line of Table 3.4.3, we can observe that
empirical rates of convergence are close to one for all the scheme but the SES.
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In Figure 3.4.1c, we illustrate the third case (σ2 = 6.25) and then b(0) ∈ (3σ2/2, 5σ2/2).
In this case, only the AIS has a theoretical rate of convergence equal to one. For the MES
is
√

∆t, but in the graphics we still observe a linear behavior for the MES, and also for the
SMS and the BMS. This is confirm in the third line of Table 3.4.3.

The fourth case is (σ2 = 9) and b(0) ∈ (σ2, 3σ2/2), which we display in Figure 3.4.1d. For
this values of the parameters the theoretical rate of convergence is known only for the AIS
and the MES. Nevertheless, we observe in the graphs and in the fourth line of Table 3.4.3
that all the schemes seems to reach their optimal convergence rates.

Finally, the fifth case is (σ2 = 36) and then b(0) < σ2. In this case all the schemes have
a sublinear behavior as we can see in Figure 3.4.1d and the fifth line of Table 3.4.3. This
case illustrate the necessity of some condition over the parameters of the model to obtain the
optimal rate of convergence for the SMS.

Empirical results for α > 1
2
. In Figure 3.4.2 and Table 3.4.4 we present the results of

the simulations for α = 0.6, and α = 0.7.

In these cases, it can be observed in numerical experiments that the MES needs smaller
∆t to achieve its theoretical order one convergence rate, unless one tunes the projection
operator in the manner of Remark 5.1 in [19]. Since this tuning is not explicitly given we do
not include the MES in these simulations.

Parameters Observed L1(Ω) convergence rate ρ̂ (and its R2 value)

α σ2
SMS BMS SES

ρ̂ (R2) ρ̂ (R2) ρ̂ (R2)

0.6

49 0.9819 (99.9%) 0.7296 (99.1%) 0.5273 (99.8%)

53.29 0.9766 (99.9%) 0.7788 (99.3%) 0.5133 (99.9%)

144 0.6609 (98.9%) 0.4336 (97.3%) 0.5074 (99.9%)

0.7

64 1.004 (99.9%) 0.9022 (99.7%) 0.5242 (99.8%)

81 0.9991 (99.9%) 0.8813 (99.7%) 0.5327 (99.7%)

225 0.9146 (99.7%) 0.6497 (97.6%) 0.6410 (99.2%)

Table 3.4.4: Empirical rate of convergence ρ̂ for the L1(Ω)-error, when α > 1
2
for different

values of α and σ2.
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We have observed in the numerical experiments three cases for the parameters. The first
one is when b(0) > 2α(1 − α)2σ2 (σ2 = 49 and σ2 = 64). In this case, Theorem 3.1.6 holds
and we observe the order one convergence (see Figures 3.4.2a, 3.4.2b, and first and fourth row
in Table 3.4.4). The second case is when the parameters do not satisfy b(0) > 2α(1− α)2σ2

(σ2 = 53.29 and σ2 = 81), and then we can not apply Theorem 3.1.6, but in the numerical
simulations we still observe the order one convergence (see Figures 3.4.2c, 3.4.2d, and second
and fifth row in Table 3.4.4). Finally the third case, is when σ � b(0), and then we do not
observe a linear convergence anymore (see Figures 3.4.2e, 3.4.2f, and third and six row in
Table 3.4.4). Notice that in the three cases the SMS performs better than the BMS, specially
when σ2 grows. (see Table 3.4.4).

The second and third case show us that some restriction has to be impose on the parame-
ters to observe the convergence of order one. But our restriction, although sufficient, it seems
to be too strong, specially for α close to one.
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Figure 3.4.1: Step size ∆t versus the estimated L1(Ω)-strong error for the CIR Process (Log-
Log scale). The identity map serves as a reference line of rate one.
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Figure 3.4.2: Step size ∆t versus the estimated L1(Ω)-error for α > 1
2
and different values

for σ2 (Log-Log scale). The identity map serves as a reference line of rate one. .
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3.4.2 Application of the SMS in Multilevel Monte Carlo

We continue this section by testing the SMS in the context of a multilevel Monte Carlo appli-
cation widely used nowadays in computational finance (see e.g. [40] and references therein).
Multilevel Monte Carlo is an efficient technique introduced by Giles [35] to decrease the
computational complexity of an estimator combining Monte Carlo simulation and time dis-
cretization scheme for a given threshold in the accuracy. For details we refer to [34,35,40].

For this experiment, we consider the classical but non trivial test-case of the Zero Coupon
Bound (ZCB) pricing of maturity T ,

B(0, T ) = E
[
exp

(
−
∫ T

0

rsds
)]

,

under the hypothesis that the short interest rate dynamics (rt, t ≥ 0) is modeled with a CIR
process (α = 1

2
and b(x) = a− bx) :

drt = (a− brt)dt+ σ
√
rtdWt.

In this context, the price of the ZCB admits a wellknown closed-form solution given by (see
e.g [20, 54])

B(0, T ) = A(T )e−B(T )r0 ,

where r0 is the initial value of the interest rate, and for λ =
√
b2 + 2σ2

A(T ) =

[
2λe(b+λ)T/2

(λ+ b)(eλT − 1) + 2λ

] 2a
σ2

, B(T ) =
2(eλT − 1)

(λ+ b)(eλT − 1) + 2λ
.

Let EB̂(∆t(l)) a discrete-time weak approximation of B(0, T ) with the time step ∆t(l). We
consider the L-level Monte Carlo estimator :

ŶT =
1

N0

N0∑
i=1

B̂(i)(∆t(0)) +
L∑
l=1

1

Nl

Nl∑
i=1

(
B̂(i)(∆t(l))− B̂(i)(∆t(l−1))

)
.

For a targeted mean-square error ε2 on the computation of the quantity B(0, T )

E[(ŶT −B(0, T ))2] = O(ε2),

one can choose the following a priori parametrization of the MLMC method in order to
minimize the computational time (complexity) (see [34, 35, 40]): we use the estimation L =
log ε−1

log 2
; from one level to the next one the time step is divided by 2, ∆t(l) = 1

2(l+1) ; the number

of trajectories to simulate is estimated with Giles formula [35]

Nl =
2

ε2

√
Vl∆tl

(
L∑
l=0

√
Vl/∆t(l)

)
,
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with Vl = Var
(
B̂(1)(∆t(l))− B̂(1)(∆t(l−1))

)
. As an estimator for the bias variance, the strong

rate of convergence of the discretisation scheme enters as a key ingredient in the Nl a priori
estimation. A scheme with a reduced strong bias will then allow a smaller Nl. We apply the
MLMC computation for the SMS, the PMS, the AIS and the BMS.

We summarize the results of the performance comparison between the four schemes in
Table 3.4.5. The computation have been run using a initial interest rate r0 = 1, the maturity
of the bond T = 1, the drift parameters a = b = 10, the volatility σ = 1. For the MLMC
simulation, we fix a minimum number of trajectories equal to 500, and a minimal number of
levels equal to 6.

In Table 3.4.5, we give the measures of the CPU time for a set of three decreasing targeted
errors, as long as the effective measured error and the total number of simulated trajectories.
As expected, the required threshold error has been reached by the MLMC strategy. As also
expected (see Giles [34]), Milstein schemes perform better than their Euler versions. Finally,
as ε decreases, the SMS clearly performs better than his PMS version.

ε = 1.0e-03
(L = 9, ∆t(L) = 1/210)

SMS PMS AIS BMS

CPU time

(N0 + · · ·+NL)
(observed error)

0.2304

(792 651)
(1.970e-05)

0.2657

(950 838)
(3.347e-04)

0.264

(990 769)
(3.132e-04 )

0.274

(992 432)
(3.292e-04)

ε = 1.0e-04
(L = 13, ∆t(L) = 1/214)

SMS PMS AIS BMS

CPU time

(N0 + · · ·+NL)
(observed error)

16.871

(56 229 224)

(4.870e-05)

20.843

(70 876 600)

(1.091e-04)

17.311

(73 824 621)

(9.538e-06)

16.95

(73 668 115)

(2.203e-06)

ε = 1.0e-05
(L = 16, ∆t(L) = 1/217)

SMS PMS AIS BMS

CPU time

(N0 + · · ·+NL)
(observed error)

1589.6

(5 531 879 264)

(4.752e-06)

1910.7

(6 913 546 698)

(5.889e-06)

1576.4

(7 368 734 119)

(3.912e-06)

1540.2

(7 333 474 098)

(5.653e-07)

Table 3.4.5: CPU time to achieve the target error for the different schemes. The observed
error is |ŶT −B(0, T )|.
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3.4.3 Conclusion

In this chapter we have recovered the classical rate of convergence of the Milstein scheme in
a context of non smooth diffusion coefficient, although we have to impose some restrictions
over the parameters of the SDE (3.1.1) to ensure the theoretical order one of convergence.
Typically, if the quotient b(0)/σ2 is big enough we will observe the optimal convergence rate.

In the numerical simulations we have observed that, despite the fact it is necessary to
impose some restriction over the parameters of SDE (3.1.1) to obtain the order one conver-
gence, Hypothesis 3.1.5 seems to be not optimal, specially for α = 1

2
. Also, through numerical

simulations, we have observed that the use of SMS could improve the computation times in
a Multilevel Monte Carlo framework, at least as well as the (CIR specialized) one-order
schemes.

Although our result seems more restrictive in term of hypotheses on the set of parameters,
in particular if we compare SMS with Lamperti’s transformation-based schemes (see the
recent works in [3] and [19], the SMS can be applied to a more general class of drifts functions
and in various contexts. It is thus a useful complement of the existing literature.

3.5 Proofs for preliminary lemmas

3.5.1 On the Positive Moments of the SMS

Proof of Lemma 3.1.4. Let us recall the notations ∆s = s − η(s), and ∆Ws = Ws −Wη(s).
Let us define τm = inf{t ≥ 0 : X t ≥ m}. Then by ItÃť’s Formula, Young’s inequality and
the Lipschitz property of b, we have

E[X
2p

t∧τm ] ≤ x2p
0 + CE

[∫ t∧τm

0

X
2p

s + C +X
2p

η(s)ds

]
+ CE

[∫ t∧τm

0

(
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

)2p

ds

]
.

(3.5.1)

From the definition of X, a straightforward computation shows that for all s ∈ [0, t] almost
surely

X
2p

s ≤ C

(
1 +X

2p

η(s) + ∆W
2p

1−α
s +

(
∆W 2

s −∆s
) 2p

2(1−α)

)
.
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Putting this in (3.5.1), we have

E[X
2p

t∧τm ] ≤ x2p
0 + CE

[∫ t∧τm

0

1 +X
2p

η(s) +
(
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

)2p

ds

]
+ CE

[∫ t∧τm

0

∆W
2p

1−α
s +

(
∆W 2

s − (s− η(s))
) 2p

2(1−α) ds

]
≤ x2p

0 + CE
[∫ t∧τm

0

1 +X
2p

η(s) +X
2pα

η(s) +X
2p(2α−1)

η(s) ∆W 2p
s ds

]
+ C

∫ T

0

E
[
∆W

2p
1−α
s

]
+ E

[(
∆W 2

s −∆s
) 2p

2(1−α)
]
ds.

Since α ∈ [1
2
, 1) we have X2pα

η(s) ≤ 1 + X
2p

η(s), and then, using Young’s Inequality and the
finiteness of the moments of Gaussian random variables, we conclude

E[X
2p

t∧τm ] ≤ Cx2p
0 + CE

[∫ t∧τm

0

X
2p

η(s)ds

]
≤ Cx2p

0 + C

∫ t

0

sup
u≤s

E[X
2p

u∧τm ]ds.

Since the right-hand side is increasing, we can take supremum in the left-hand side and from
here, applying Gronwall’s inequality, and taking m→∞ we get

sup
t≤T

E[X
2p

t ] ≤ Cx2p
0 .

From here, following standard argument using Burkholder-Davis-Gundy inequality we can
conclude on Lemma 3.1.4.

3.5.2 On the Local Error of the SMS

Proof of Lemma 3.2.1. From the definition of X, and the algebraic inequality for positive
real numbers (a1 + . . .+ an)p ≤ np(ap1 + . . .+ apn) we have

∣∣X t −Xη(t)

∣∣2p ≤ 32p
(
b(Xη(t))

2p(t− η(t))2p + σ2pX
2αp

η(t)(Wt −Wη(t))
2p

+
α2pσ4p

22p
X

(2α−1)2p

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
]2p)

.

Thanks to the linear growth of b, Lemma 3.1.4 and the properties of the Brownian Motion
it is quite easy to conclude the existence of a constant C such that

E
[
|X t −Xη(t)|2p

]
≤ C∆tp,

from where the result follows.
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3.5.3 On the Probability of SMS being close to zero

From bσ(α) and K(α) defined in (3.1.9), let us recall the notation

x̄(α) :=
bσ(α)

K(α)

introduced in Lemma 3.2.3. As bσ(α) > 0 under Hypothesis 3.1.5-(i), x̄(α) is bounded away
from 0. In particular,

lim
α→1

2

x̄(α) =
(b(0)− σ2/4)

K
, whereas lim

α→1
x̄(α) =

b(0)

K + σ2/2
.

Proof of Lemma 3.2.3. Denoting ∆Ws = (Ws −Wη(s)), and ∆s = s − η(s), we have for all
s ∈ [0, T ],

Zs =
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +Xη(s) +

(
b(Xη(s))−

ασ2

2
X

2α−1

η(s)

)
∆s.

From the Lipschitz property of b and the following bound for any x > 0

x2α−1 ≤ 4(1− α)2 + (2α− 1)[2(1− α)]−
2(1−α)
2α−1 x, (3.5.2)

we have

Zs ≥
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +Xη(s) +
(
bσ(α)−K(α)Xη(s)

)
∆s. (3.5.3)

So,

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
≤ P

[ασ2

2
X

2α−1
η(s) ∆W 2

s + σX
α
η(s)∆Ws +Xη(s) +

(
ρbσ(α)−K(α)Xη(s)

)
∆s ≤ 0, Xη(t) < ρx̄(α)

]
.

From the independence of ∆Ws with respect to Fη(s), if we denote by N a standard Gaussian
variable, we have

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
≤ E

[
P
(ασ2

2
x2α−1∆sN 2 + σ

√
∆sxαN + x+ [ρbσ(α)−K(α)x] ∆s ≤ 0

)∣∣∣
x=Xη(s)

1{Xη(s)<ρx̄(α)}

]
.

Notice that in the right-hand side we have a quadratic polynomial of a standard Gaussian
random variable. Let us compute its discriminant:

∆(x, α) = σ2x2α∆s− 2ασ2x2α−1∆s (x+ (ρbσ(α)−K(α)x) ∆s)

= −(2α− 1)σ2x2α∆s− 2ασ2x2α−1∆s2 (ρbσ(α)−K(α)x) .

Since bσ(α) > 0, we have ∆(x, α) < 0 for all α ∈ [1
2
, 1), and x ≤ ρx̄(α). So, for all ∆s ≤ ∆t

we have
P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
= 0,

taking ∆s = ∆t we conclude on the Lemma.
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Proof of Lemma 3.2.2. We have

P
(

inf
tk≤s<tk+1

Zs ≤ 0

)
= P

(
inf

tk≤s<tk+1

Zs ≤ 0, X tk ≥ x̄(α)

)
+ P

(
inf

tk≤s<tk+1

Zs ≤ 0, X tk < x̄(α)

) (3.5.4)

We start with the second term in the right hand of the last inequality. By continuity of the
path of Z and Lemma 3.2.3, we have

P
(

inf
tk≤s<tk+1

Zs ≤ 0, X tk < x̄(α)

)
=

∑
s∈Q∩(tk,tk+1]

P
(
Zs ≤ 0, X tk < x̄(α)

)
= 0.

On the other hand, from 3.5.3 we have

Zs ≥ σX
α

η(s)∆Ws + (1−K(α)∆s)Xη(s) + bσ(α)∆s. (3.5.5)

Then

P
(

inf
tk≤s<tk+1

Zs ≤ 0, X tk ≥ x̄(α)
)

≤ P
(

inf
tk<s≤tk+1

X
1−α
η(s)

σ
+

(
bσ(α)−K(α)Xη(s)

)
∆s

σX
α

η(s)

+ ∆Ws ≤ 0, X tk ≥ x̄(α)
)

= E
[
ψ(X tk)1{Xtk

≥x̄(α)}
]
,

where the last equality holds thanks to the Markov Property of the Brownian motion, for

ψ(x) = P
(

inf
0<u≤∆t

x1−α

σ
+
bσ(α)−K(α)x

σxα
u+Bu ≤ 0

)
,

where (Bt) denotes a Brownian Motion independent of (Wt).

If (Bµ
t , 0 ≤ t ≤ T ) is a Brownian motion with drift µ, starting at y0, then for all y ≤ y0,

we have (see [13]):

P
(

inf
0<s≤t

Bµ
s ≤ y

)
=

1

2
erfc

(
y0 − y√

2t
+
µ
√
t√

2

)
+

1

2
exp (−2µ(y0 − y)) erfc

(
y0 − y√

2t
− µ
√
t√

2

)
,

(3.5.6)

where for z ∈ R, erfc z =
√

2/π
∫∞√

2z
exp (−u2/2) du. In our case y0 = x1−α/σ, µ = (bσ(α)−

K(α)x)/σxα, and y = 0. Then

ψ(x) =
1

2
erfc

(
[(1−K(α)∆t)x+ bσ(α)∆t]√

2∆tσxα

)
+

1

2
exp

(
−2[bσ(α)−K(α)x]x

σ2x2α

)
erfc

(
x− [bσ(α)−K(α)x]∆t√

2∆tσxα

)
.
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Since ∆t ≤ 1/2K(α), for any x ≥ x̄(α), the arguments in the erfc function in the last equality
are both positives, and then recalling that for all z > 0 erfc(z) ≤ exp(−z2), we obtain

ψ(x) ≤ 1

2
exp

(
− [(1−K(α)∆t)x+ bσ(α)∆t]2

2∆tσ2x2α

)

+
1

2
exp

(
−2[bσ(α)−K(α)x]x

σ2x2α

)
exp

(
− [x− [bσ(α)−K(α)x]∆t]2

2∆tσ2x2α

)
≤ exp

(
− [(1−K(α)∆t)x+ bσ(α)∆t]2

2∆tσ2x2α

)
.

So, for all x ≥ x̄(α)

ψ(x) ≤ exp

(
−(1−K(α)∆t)2x2(1−α)

2σ2∆t

)
.

Then

P
(

inf
tk≤s<tk+1

Zs ≤ 0, X tk ≥ x̄(α)
)
≤ E

[
exp

(
−

(1−K(α)∆t)2X
2(1−α)

tk

2σ2∆t

)
1{Xtk

≥x̄(α)}
]

≤ exp

(
−(1−K(α)∆t)2x̄(α)2(1−α)

2σ2∆t

)
,

and finally, choosing γ = x̄(α)2(1−α)/8σ2, we get

P
(

inf
tk≤s<tk+1

Zs ≤ 0
)
≤ exp

(
− γ

∆t

)
.

3.5.4 On the Local Time of the SMS at Zero

The Stopping Times (Θα,
1
2
≤ α < 1)

In what follows, we consider

Θα = inf
{
s > 0 : Xs < (1−

√
α)bσ(α)∆t

}
. (3.5.7)

Lemma 3.5.1. Assume b(0) > 2α(1 − α)2σ2, and ∆t ≤ 1/(2K(α)) ∧ x0/[(1 −
√
α)bσ(α)].

Then there exists a positive constant γ depending on α, b(0), K and σ but not on ∆t such
that

P(Θα ≤ T ) ≤ T

∆t
exp

(
−γ
∆t

)
. (3.5.8)

Proof. First, notice that the condition ∆t < x0/[(1 −
√
α)bσ(α)] ensures that the stopping

time Θα is almost surely strictly positive.

To enlighten the notation along this proof, let us call lσ(α) := (1 −
√
α)bσ(α), and ζk =

inftk<s≤tk+1
Zs. We split the proof in three steps.

55



Chapter 3. Strong convergence of the SMS for some CEV-like SDEs

Step 1. Let us prove that for a suitable function ψ : R → [0, 1] and the set Ak = {X tk >
x̄(α)
√
α} ∈ Ftk :

P (Θα ≤ T ) ≤
N−1∑
k=0

E
(
ψ(X tk)1Ak

)
(3.5.9)

Indeed,

P (Θα ≤ T ) ≤
N−1∑
k=0

P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t

)
.

But, for each k = 0, . . . , N − 1

P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t

)
= P

(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t, X tk < x̄(α)

√
α
)

+ P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t, X tk ≥ x̄(α)

√
α
)
.

Since lσ(α)∆t = (1−
√
α)bσ(α)∆t ≤ x̄(α)

√
α, we have

P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t, X tk < x̄(α)

√
α
)

≤ P
(
ζk ≤ lσ(α)∆t, X tk < x̄(α)

√
α
)

≤
∑

s∈Q∩(tk,tk+1]

P
(
Zs ≤ lσ(α)∆t, X tk < x̄(α)

√
α
)

= 0,

thanks to Lemma 3.2.3. On the other hand, we have

P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t, X tk ≥ x̄(α)

√
α
)

= P
(
ζk ≤ lσ(α)∆t, X tk ≥ x̄(α)

√
α
)

≤ P
(

inf
tk<s≤tk+1

X
1−α
η(s)

σ
+

(
bσ(α)−K(α)Xη(s)

)
∆s

σX
α

η(s)

+ ∆Ws ≤
lσ(α)∆t

σX
α

η(s)

, X tk ≥ x̄(α)
√
α
)

= E
[
ψ(X tk)1{Xtk

>x̄(α)
√
α}
]
,

where the inequality comes from (3.5.3), and the last equality holds thanks to the Markov
Property of the Brownian motion, for

ψ(x) = P
(

inf
0<u≤∆t

x1−α

σ
+
bσ(α)−K(α)x

σxα
u+Bu ≤

lσ(α)∆t

σxα

)
,

where (Bt) denotes a Brownian Motion independent of (Wt). Summarizing

P
(
ζk ≤ lσ(α)∆t, X tk > lσ(α)∆t

)
≤ E

[
ψ(X tk)1{Xtk

>x̄(α)
√
α}
]
,

and we have (3.5.9) for Ak =
{
X tk > x̄(α)

√
α
}
.
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Step 2. Let us prove that for all x ≥ x̄(α)
√
α:

ψ(x) ≤ exp

(
−(1−K(α)∆t)2(x̄(α)

√
α)2(1−α)

2σ2∆t

)
. (3.5.10)

Applying again (3.5.6), we have

ψ(x) =
1

2
erfc

(
[(1−K(α)∆t)x+

√
αbσ(α)∆t]√

2∆tσxα

)
+

1

2
exp

(
−2[bσ(α)−K(α)x][x− (1−

√
α)bσ(α)∆t]

σ2x2α

)
× erfc

(
1√

2∆tσxα

[
(1 +K(α)∆t)x− (2−

√
α)bσ(α)∆t

])
=: A(x) +B(x).

Since ∆t ≤ 1/(2K(α)), and erfc(z) ≤ exp(−z2) for all z > 0 we have

A(x) ≤ 1

2
exp

(
− [(1−K(α)∆t)x+

√
αbσ(α)∆t]

2

2σ2∆tx2α

)
≤ 1

2
exp

(
−(1−K(α)∆t)2x2(1−α)

2σ2∆t

)
.

On the other hand, for x ≥ x̄(α)
√
α, and ∆t ≤ 1/(2K(α)), it follows

x > (2−
√
α)bσ(α)∆t/(1 +K∆t),

so the argument of the function erfc in B is positive, and then

B(x) ≤ 1

2
exp

(
−2[bσ(α)−K(α)x][x− (1−

√
α)bσ(α)∆t]

σ2x2α

)
× exp

(
− [(1 +K(α)∆t)x− (2−

√
α)bσ(α)∆t]

2

2∆tσ2x2α

)

=
1

2
exp

(
− [(1−K(α)∆t)x+

√
αbσ(α)∆t]

2

2∆tσ2x2α

)

≤ 1

2
exp

(
−(1−K(α)∆t)2x2(1−α)

2σ2∆t

)
.

So

ψ(x) = A(x) +B(x) ≤ exp

(
−(1−K(α)∆t)2x2(1−α)

2σ2∆t

)
,

and since the right-hand side is decreasing on x, we have (3.5.10).
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Step 3. Let us conclude. Putting together (3.5.9) and (3.5.10) we have

P (Θα ≤ T ) ≤
N−1∑
k=0

E
(
ψ(X tk)1{Xtk

>x̄(α)
√
α}
)

≤
N−1∑
k=0

exp

(
−(1−K(α)∆t)2(x̄(α)

√
α)2(1−α)

2σ2∆t

)
P
(
X tk > x̄(α)

√
α
)

≤ C

∆t
exp

(
− γ

∆t

)
with γ = (x̄(α)

√
α)2(1−α)/(8σ2).

Proof of Lemma 3.2.4. From (3.1.4), standard arguments show that E[L0
T (X)4] ≤ C(T ). On

the other hand, thanks to Corollary VI.1.9 on Revuz and Yor [72, p. 212], we have almost
surely

L0
T∧Θα(X) = lim

ε↓0

1

ε

∫ T∧Θα

0

1[0,ε)(Xs)d〈X〉s = 0,

because for ε < (1−
√
α)bσ(α)∆t, and s ≤ T ∧Θα, 1[0,ε)(Xs) = 0. a.s. Now, since

L0
T (X) = L0

T (X)1{Θα<T} + L0
T∧Θα(X)1{T≤Θα} = L0

T (X)1{Θα<T},

we can conclude that

E[L0
T (X)2] = E[L0

T (X)21{Θα<T}] ≤
√

E[L0
T (X)4]P (Θα < T ) ≤ C

√
1

∆t
exp

(
− γ

∆t

)
.

3.5.5 On the negative moments of the stopped increment process
(Zt∧Θα

)

To prove Lemma 3.2.5 (see section 3.5.6 below), we need to control the negative moments
of the stopped increment process {Zt∧Θα}0≤t≤T . This is the object of the following lemmas,
that can be summarize in the following

Lemma 3.5.2. Let q ≥ 1. Let Θα be the stopping time defined in (3.5.7). Let us assume
∆t ≤ ∆max(α). Moreover, let us assume b(0) > 2α(1 − α)2 when α ∈ (1

2
, 1), and b(0) >

3
2
σ2(q + 1) when α = 1

2
. Then there exists a constant C depending on b(0), σ, α, T and q

but not on ∆t, such that

∀t ∈ [0, T ], E
[
Z
−q
t∧Θα

]
≤ C

(
1 +

1

xq0

)
.
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Existence of Negative Moments. Case α = 1
2

The proof of the existence of Negative Moments of Zt∧Θα has two parts. First we study the
quotient Xη(s)/Zs, and then we proof the main result of the section.

Lemma 3.5.3. For α = 1
2
, and ∆t ≤ 1/(4K) ∧ x0 we have

sup
0≤s≤T

P

(
Zs ≤

Xη(s)

2

)
≤ C∆t

15
8σ2

bσ(1/2). (3.5.11)

To prove this lemma, we need the following auxiliary result which is a straightforward
adaptation of the Lemma 3.6 in [14].

Lemma 3.5.4. Assume Hypothesis 3.1.1 holds, and b(0) > σ2/4. Assume also that ∆t ≤
1/(4K) ∧ x0. Then, for any γ ≥ 1 there exists a constant C depending on the parameters
b(0), K, σ, x0, T , and also on γ, such that

sup
k=0,...,N

E exp

(
− X tk

γσ2∆t

)
≤ C

(
∆t

x0

) 2
σ2
bσ(1/2)(1− 1

2γ )
.

Proof. First, from the definition of X tk we have

X tk ≥ X tk−1
+ (bσ(1/2)−KX tk−1

)∆t+ σ
√
X tk−1

(
Wtk −Wtk−1

)
,

then

E exp
(
−µ0X tk

)
≤ E exp

(
−µ0

[
X tk−1

+ (bσ(1/2)−KX tk−1
)∆t+σ

√
X tk−1

(
Wtk −Wtk−1

) ])
,

where µ0 = 1/γσ2∆t. From here, just as in Lemma 3.6 in [14], we conclude

E exp
(
−µ0X tk

)
≤ exp (−µ0bσ(1/2)∆t)E exp

(
−µ0X tk−1

[
1−K∆t− σ2∆t

2
µ0

])
. (3.5.12)

Then if we introduce the same sequence (µj)j ≥ 0 of Lemma 3.6 in [14], given by

µj =

{
1

γσ2∆t
, j = 0,

µj−1

[
1−K∆t− σ2∆t

2
µj−1

]
, j ≥ 1.

We can repeat the proof in [14] and find out that if ∆t ≤ 1/(2K) then, the sequence (µj)j ≥ 0
is nonnegative, decreasing and satisfies the following bound

µj ≥ µ1

(
1

1 + σ2

2
∆t(j − 1)µ0

)
−K

(
∆t(j − 1)µ0

1 + σ2

2
∆t(j − 1)µ0

)
, ∀j ≥ 1.
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On the other hand making the same calculations to obtain (3.5.12) we can get for any
j ∈ {0, . . . , k − 1},

E exp
(
−µjX tk−j

)
≤ exp

(
−µjbσ(1/2)(1

2
)∆t
)
E exp

(
−µjX tk−j−1

[
1−K∆t− σ2∆t

2
µj+1

])
,

from where, by an induction argument we have

E
(
−µ0X tk

)
≤ exp

(
−bσ(1/2)

k−1∑
j=0

µj∆t

)
exp (x0µk).

From here, and the bound for the sequence (µj)j ≥ 0, we have

E
(
−µ0X tk

)
≤ C

(
∆t

x0

) 2bσ(1/2)

σ2
(1− 1

2γ )
.

From where we see immediately

sup
k=0,...,N

E exp

(
− X tk

γσ2∆t

)
≤ C

(
∆t

x0

) 2bσ(1/2)

σ2
(1− 1

2γ )
.

Proof of Lemma 3.5.3. We start by proving

sup
0≤s≤T

P

(
Zs ≤

Xη(s)

2

)
≤ sup

k=0,...,N
E exp

(
− X tk

γσ2∆t

)
. (3.5.13)

Indeed, if we call ∆s = s− η(s), and ∆Ws = (Ws −Wη(s)), then

P

(
Zs ≤

Xη(s)

2

)
≤ P

(
σ
√
Xη(s)∆Ws + bσ(1/2)∆s+ (1−K∆s)Xη(s) ≤

Xη(s)

2

)

≤ E

P
∆Ws√

∆s
≤
bσ(1/2)∆s+ (1

2
−K∆s)Xη(s)

σ
√
Xη(s)

∣∣∣∣∣∣Fη(s)


≤ E exp

(
−

(bσ(1/2)∆s+ (1
2
−K∆s)Xη(s))

2

2σ2∆sXη(s)

)

≤ E exp

(
−

(1− 2K∆t)2Xη(s)

8σ2∆t

)
.

From here, the bound (3.5.13) follows easily, and then we conclude using Lemma 3.5.4.

Lemma 3.5.5. Let Θ 1
2
be the stopping time defined in (3.5.7), and q ≥ 1. If ∆t ≤ ∆max(1/2),

and
b(0) >

3

2
σ2(q + 1). (3.5.14)

Then there exists a constant C depending on b(0), σ, α, T and q but not on ∆t, such that

∀t ∈ [0, T ], E
[
Z
−q
t∧Θ 1

2

]
≤ C

(
1 +

1

xq0

)
.
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Proof. Let us call ∆Ws := (Ws −Wη(s)), and ∆s := (s− η(s)). By Ito’s formula

E
[
Z
−q
t∧Θ 1

2

]
=

1

xq0
− q E

[∫ t∧Θ 1
2

0

b(Xη(s))

Z
q+1

s

ds

]

+
q(q + 1)

2
E

[∫ t∧Θ 1
2

0

1

Z
q+2

s

(
σ
√
Xη(s) +

σ2

2
∆Ws

)2

ds

]
.

(3.5.15)

But, (
σ
√
Xη(s) +

σ2

2
∆Ws

)2

≤ σ2Xη(s) + σ2Zs, P− a.s. (3.5.16)

Indeed, (
σ
√
Xη(s) +

σ2

2
∆Ws

)2

=σ2

(
Xη(s) + σ

√
Xη(s)∆Ws +

σ2

4
∆Ws

)
=σ2

(
Xη(s) + Zs − (Xη(s) + b(Xη(s))∆s−

σ2

4
∆s)

)
.

But, thanks to the Lipschitz property of b,

Xη(s) + b(Xη(s))∆s−
σ2

4
∆s ≥ Xη(s) +

(
b(0)−KXη(s)

)
∆s− σ2

4
∆s

= bσ(1/2)∆s+ (1−K∆s)Xη(s) ≥ 0,

since ∆s ≤ ∆t ≤ 1/(2K), and bσ(1/2) > 0. So we have (3.5.16). Introducing (3.5.16) in
(3.5.15), and using b(x) ≥ b(0)−Kx, we have

E
[
Z
−q
t∧Θ 1

2

]
≤ 1

xq0
− q E

[∫ t∧Θ 1
2

0

b(0)

Z
q+1

s

ds

]
+ qKE

[∫ t∧Θ 1
2

0

Xη(s)

Z
q+1

s

ds

]

+
q(q + 1)

2
σ2E

[∫ t∧Θ 1
2

0

1

Z
q+2

s

{
Xη(s) + Zs

}
ds

]
.

(3.5.17)

Since

Xη(s)

Zs

≤
Xη(s)

Zs

1{Zs≤Xη(s)/2} + 2,

and applying Hölder’s Inequality for some ε > 0, we have

E
[
Z
−q
t∧Θ 1

2

]
≤ 1

xq0
− qE

[∫ t∧Θ 1
2

0

b(0)

Z
q+1

s

ds

]
+ 2qKE

[∫ t∧Θ 1
2

0

1

Z
q

s

ds

]

+
3q(q + 1)

2
σ2E

[∫ t∧Θ 1
2

0

1

Z
q+1

s

ds

]

+
C

∆tq+2

∫ T

0

(
E[X

1/ε

η(s)]
)ε

P
(
Zs ≤ Xη(s)/2

)1−ε
ds.
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Since b(0) > 3σ2(q + 1)/2, we have 15bσ(1/2)/8σ2 > 2q + 2, so choosing ε = q/(2q + 2), and
applying Lemma 3.5.3 we have

P
(
Zs ≤ Xη(s)/2

)1−ε ≤ C∆tq+2,

and then

E
[
Z
−q
t∧Θ 1

2

]
≤ 1

xq0
+ 2qKE

[∫ t∧Θ 1
2

0

1

Z
q

s

ds

]
+ q

(
3(q + 1)

2
σ2 − b(0)

)
E

[∫ t∧Θ 1
2

0

1

Z
q+1

s

ds

]
+ C.

Since from the Hypotheses, the third term in the right-hand side is negative, we can conclude
thanks to Gronwall’s Lemma.

Existence of Negative Moments. Case α > 1
2

Lemma 3.5.6. For α ∈ (1
2
, 1), if b(0) > 2α(1 − α)2σ2 and ∆t ≤ 1/(4αK(α)), there exists

γ > 0 such that

sup
0≤s≤T

P
(
Zs ≤

(
1− 1

2α

)
Xη(s)

)
≤ exp

(
− γ

∆t

)
. (3.5.18)

Proof. Let us call ∆Ws := (Ws −Wη(s)), ∆s := (s− η(s)), and

q(Xη(s),∆Ws) =
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +
Xη(s)

2α
+
(
bσ(α)−K(α)Xη(s)

)
∆s.

Notice that for fix x ∈ R, q(x, ·) is a quadratic polynomial. Using (3.5.3), we have

P
(
Zs ≤

(
1− 1

2α

)
Xη(s)

)
≤ P

(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

)
+ P

(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≥ x̄(α)

)
,

where recall, x̄(α) = bσ(α)/K(α). But

P
[
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

]
= E

[
P
(
q(x,
√

∆sN ) ≤ 0
) ∣∣∣

x=Xη(s)

1{Xη(s)≤x̄(α)}

]
,

where N stands for a standard Gaussian random variable. As in the Lemma 3.2.3, we have
a quadratic polynomial in N , its discriminant is

∆ = σ2x2α∆s− 2ασ2x2α−1∆s
[ x

2α
+ (bσ(α)−K(α)x) ∆s

]
= −2ασ2x2α−1∆s2 (bσ(α)−K(α)x) ,

so if x ≤ x̄(α), ∆ < 0 and the quadratic form in N has not real roots, and in particular is
non negative almost surely. Then

P
(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

)
= 0.
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On the other hand,

P
(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≥ x̄(α)

)
≤ E

P(N ≤ −bσ(α)∆s+
(

1
2α
−K(α)∆s

)
x

σxα
√

∆s

)∣∣∣∣∣
x=Xη(s)

1{Xη(s)≥x̄(α)}

 ,
and since ∆t ≤ 1/(4αK(α)) we can apply the exponential bound for Gaussian tails and get

P
(
q(Xη(s),∆Ws) ≤ 0,Xη(s) ≥ x̄(α)

)
≤ E

exp

(
−
(

1
2α
−K(α)∆s

)2
x2(1−α)

σ2∆s

)∣∣∣∣∣
x=Xη(s)

1{Xη(s)≥x̄(α)}

 .
We conclude by taking γ = x̄(α)2(1−α)/(16σ2).

Lemma 3.5.7. Let Θα be the stopping time defined in (3.5.7). Let us assume for α ∈ (1
2
, 1),

b(0) > 2α(1−α)2, and ∆t ≤ ∆max(α), then for all q ≥ 1, there exists a constant C depending
on b(0), σ, α, T and p but not on ∆t, such that

∀t ∈ [0, T ], E
[
Z
−q
t∧Θα

]
≤ C

(
1 +

1

xq0

)
.

Proof. Let us call ∆Ws := Ws −Wη(s). By Ito’s formula and the Lipschitz property of b,

E
[
Z
−q
t∧Θα

]
≤ 1

xq0
− qE

[∫ t∧Θα

0

b(0)

Z
q+1

s

ds

]
+ qKE

[∫ t∧Θα

0

Xη(s)

Z
q+1

s

ds

]

+
q(q + 1)

2
E

[∫ t∧Θα

0

1

Z
q+2

s

(
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

)2

ds

]
. (3.5.19)

Following the same ideas to prove (3.5.16), for all s ∈ [0, t] we can easily prove that almost
surely (

σX
α

η(s) + ασ2X
2α−1

η(s) ∆Ws

)2

≤ σ2X
2α

η(s) + 2ασ2X
2α−1

η(s) Zs.

Introducing this bound in the previous inequality, we have

E
[
Z
−q
t∧Θα

]
≤ 1

xq0
− qE

[∫ t∧Θα

0

b(0)

Z
q+1

s

ds

]
+ qKE

[∫ t∧Θα

0

Xη(s)

Z
q+1

s

ds

]

+
q(q + 1)

2
σ2E

[∫ t∧Θα

0

1

Z
q+2

s

{
X

2α

η(s) + 2αX
2α−1

η(s) Zs

}
ds

]
.

(3.5.20)

since for r ∈ {1, 2α− 1, 2α},(
Xη(s)

Zs

)r

≤

(
Xη(s)

Zs

)r

1
{Zs≤Xη(s)(1−

1
2
α)}

+

(
2α

2α− 1

)r
.
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we get

E
[
Z
−q
t∧Θα

]
≤ 1

xq0
− qE

[∫ t∧Θα

0

b(0)

Z
q+1

s

ds

]
+

2α

2α− 1
qKE

[∫ t∧Θα

0

1

Z
q

s

ds

]

+
q(q + 1)

2
σ2 (2α)2α+1

(2α− 1)2α
E

[∫ t∧Θα

0

1

Z
q+2(1−α)

s

ds

]

+ CE

[∫ t∧Θα

0

{
Xη(s)

Z
q+1

s

+
X

2α

η(s)

Z
q+2

s

+
X

2α−1

η(s)

Z
q+1

s

}
1
{Zs≤Xη(s)(1−

1
2
α)}
ds

]
.

The last term in the previous inequality is bounded because of the definition of Θα and the
Lemma 3.5.6. Indeed,

E
[ ∫ t∧Θα

0

{
Xη(s)

Z
q+1

s

+
X

2α

η(s)

Z
q+2

s

+
X

2α−1

η(s)

Z
q+1

s

}
1
{Zs≤Xη(s)(1−

1
2
α)}
ds
]

≤ C

∆tq+2

∫ T

0

√
E
[(
Xη(s) +X

2α

η(s) +X
2α−1

η(s)

)2
]
P
(
Zs ≤ Xη(s)

(
1− 1

2α

))
ds

≤ C

∆tq+2
exp

( γ

∆t

)
≤ C.

So, (3.5.20) becomes

E
[
Z
−q
t∧Θα

]
≤ 1

xq0
− qE

[∫ t∧Θα

0

b(0)

Z
q+1

s

ds

]
+

2α

2α− 1
qKE

[∫ t∧Θα

0

1

Z
q

s

ds

]

+
q(q + 1)

2
σ2 (2α)2α+1

(2α− 1)2α
E

[∫ t∧Θα

0

1

Z
q+2(1−α)

s

ds

]
+ C.

(3.5.21)

But, for any A1, A2 > 0, the mapping z 7→ A1

zq+2(1−α) − A2

zq+1 is bounded, and (3.5.21) becomes

E
[
Z
−q
t∧Θα

]
≤ 1

xq0
+ 2qKE

[∫ t∧Θα

0

1

Z
q

s

ds

]
+ C,

from where we can conclude applying Gronwall’s Lemma.

3.5.6 On the corrected local error process

Proof of Lemma 3.2.5. Let us recall the notation in the proof of the main Theorem

Ds(X) := σX
α

s − σX
α

η(s) − ασ2X
2α−1

η(s) (Ws −Wη(s)), (3.5.22)

and also introduce

Su∧Θα(X) := σX
α

η(s∧Θα) + ασ2X
2α−1

η(s∧Θα)(Wu∧Θα −Wη(s∧Θα)),
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and ∆Ws := (Ws −Wη(s)).

Using Lemma 3.5.1, and the finiteness of the moments of D, is easy to prove

E
[
Ds(X)2p

]
≤ CE

[
Ds∧Θα(X)2p1{Θα≥η(s)}

]
+ C∆t2p.

Then we only have to prove

E
[
Ds∧Θα(X)2p1{Θα≥η(s)}

]
≤ C∆t2p. (3.5.23)

Notice that Xs∧Θα = Zs∧Θα , so

Ds∧Θα(X)1{Θα≥η(s)} =
{
σZ

α

s∧Θα − σX
α

η(s∧Θα) − ασ2X
2α−1

η(s∧Θα)∆Ws∧Θα

}
1{Θα≥η(s)}.

Then applying ItÃť’s Formula to the function σ|x|α which is C2 for x ≥ C∆t, we have

Ds∧Θα(X)1{Θα≥η(s)} =
{∫ s∧Θα

η(s∧Θα)

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

+

∫ s∧Θα

η(s∧Θα)

α2σ3X
2α−1

η(s∧Θα)

Z
1−α
u∧Θα

∆Wu∧ΘαdWu

+

∫ s∧Θα

η(s∧Θα)

ασ

Z
1−α
u∧Θα

b(Xη(s∧Θα))du

−
∫ s∧Θα

η(s∧Θα)

1

2

α(1− α)σ

Z
2−α
u∧Θα

Su∧Θα(X)2du
}
1{Θα≥η(s)}

=: J1 + J2 + J3 − J4.

(3.5.24)

Notice that on the event {η(s) ≤ Θα} we have η(s) = η(s ∧Θα), and then

E[|J1|2p] = E

∣∣∣∣∣
∫ s∧Θα

η(s)

1{Θα≥η(s)}

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

∣∣∣∣∣
2p
 .

By the Burkholder-Davis-Gundy inequality, there exists a constant Cp depending only on p
such that

E

∣∣∣∣∣
∫ s∧Θα

η(s)

1{Θα≥η(s)}

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

∣∣∣∣∣
2p


≤ (ασ2)2pCpE

∫ s∧Θα

η(s)

(
X

1−α
η(s∧Θα) − Z

1−α
u∧Θα

Z
1−α
u∧ΘαX

1−α
η(s∧Θα)

)2

X
2α

η(s∧Θα)1{Θα≥η(s)}du

p ,
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observing that the integrand in the right-hand side is positive. And we have

E[|J1|2p] ≤ (ασ2)2pCpE

∫ s

η(s)

(
X

1−α
η(s∧Θα) − Z

1−α
u∧Θα

Z
1−α
u∧Θα
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But for x, y ≥ 0, and β ∈ [0, 1
2
) it holds |xβ − yβ|(x1−β + y1−β) ≤ 2|x− y|, so

E[|J1|2p] ≤ CE
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Let a > 1. Thanks to Hölder’s inequality we have
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.

We use Lemma 3.2.1 to bound the Local Error of the scheme

E
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) 2ap
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ap
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On the other hand, when α > 1
2
, we have control of any negative moment of Zu∧Θα , so
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whereas when α = 1
2
, we choose a > 1, such that 2b(0)/σ2 > 3(2ap + 1), so we have control

of the 2ap-th negative moment of Zu∧Θα . And then
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So, in any case we have
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And then we can conclude E[|J1|2p] ≤ C∆t2p.

Using the same arguments for E[|J2|2p], we have

E[|J2|2p] ≤ CpE
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To bound E[|J3|2p] we proceed as follows
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Finally for E[|J4|2p] we consider first α > 1
2
. In this case we have control of any negative

moment of Zu∧Θα . So proceeding as before
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The case α = 1
2
is a little more delicate. Let us recall the identity used in the proof of (3.5.16)
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so, we have from the definition of Θ 1
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Then
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So for every α ∈ [1
2
, 1), E[J2p

4 ] ≤ C∆t2p, from where we conclude on the Lemma.
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Chapter 4

Stochastic Morris-Lecar Model for
Neurons

Powered@NLHPC: This research
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of the NLHPC (ECM-02)

4.1 Introduction

The study of the brain can be trace back to the ancient greeks, but it was in the middle of
the 20th century when the Mathematical Neuroscience started. Probably, the breaking point
was in 1952 with the work of Alan Lloyd Hodgkin and Andrew Fielding Huxley [41]. In this
seminal work, they explain through a nonlinear system of ordinary differential equations, the
ionic mechanisms underlying the propagation of action potentials in the squid giant axon.

Although Hodgkin Huxley model is highly validated and physiologically meaningful, it has
the drawback of being mathematically complex. This fact has motivated the development of
others neuron models that aim to be mathematically simpler, but still representative of the
phenomena under study. Examples of those alternative models are the FitzHugh Nagumo
model [32,64], and the Morris-Lecar model [63]. We have chosen to focus in the Morris-Lecar
model because is simpler than the Hodgkin Huxley model, but it is still consistent with the
kinetic formalism. In addition, most of our results can be extended to the Hodgking Huxley
model.
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Despite of the accuracy of the aforementioned deterministic models, nowadays there is
enough evidence showing that there is an intrinsic randomness in the behavior of the neu-
rons. Even more, some researchers claim that this stochastic facilitation is essential for the
functioning of them (See discussion in [37]).

Then, the question remains. How to incorporate randomness to the deterministic models?
In this Chapter we follow the ideas of Pakdaman et al. in [67] and we consider an hybrid
model, that is, a continuous process representing the voltage of the membrane of a neuron,
coupled with two jump processes representing the proportion of open ion channels. Since the
hybrid process can be very expensive to simulate, we also consider a diffusive approximation
for the hybrid model proposed in [8,15]. Notice that we are interested in (large) networks of
neurons, so the simulation cost for each neuron can not be too high.

Our main goal in this Chapter is to study the asymptotic behaviors of a network of inter-
acting neurons, (i.e.) the behavior of the network when either the number of neurons or the
time goes to infinity.

This chapter is organized as follows. First in Section 4.2 we discuss some modeling issues
for a single neuron. We recall the original deterministic Morris-Lecar model and then we
introduce two stochastic versions of it: the hybrid model and its diffusive approximation. In
Section 4.3 we incorporate interaction to the models discussed in the previous section, and
we prove the well posedness of these interacting systems and that its solution are uniformly
bounded on time. In Section 4.4 we study the behavior of a network of neurons in a finite
time window when the number of neurons goes to infinity. We show for both stochastic
models that the propagation of chaos property holds. That is, fixed finitely many neurons
are asymptotically independent when the number of neurons goes to infinity. In Section 4.5,
we discussed about the longtime behavior of the particle system and of the nonlinear process.
Finally in Section 4.6 we summarize the conclusions of this Chapter.

4.2 Single Neuron Model

4.2.1 Deterministic Model for a Single Neuron

In [63], Morris and Lecar propose the following model for the voltage oscillations of a muscle
fiber of a barnacle.

C0
dVt
dt

= I − gCamt(Vt − VCa)− gKnt(Vt − VK)− gL(V − VL)

dmt

dt
= λm(Vt)[m∞(Vt)−mt]

dnt
dt

= λn(Vt)[n∞(Vt)− nt],

(4.2.1)
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where I stands for the input current, m represents the proportion of open channels for Cal-
cium ions, n represents the proportion of open channels for Potasium ions, and the functions
m∞, λm, n∞ and λn are given by

m∞(v) =
1

2

{
1 + tanh

(
v − V1

V2

)}
, λm(v) = λ̄m cosh

(
v − V1

2V2

)
n∞(v) =

1

2

{
1 + tanh

(
v − V3

V4

)}
, λn(v) = λ̄n cosh

(
v − V3

2V4

)
,

(4.2.2)

where the constants λm, λn, V1, V2, V3, V4, are chosen by fitting some experimental data.
In Table 4.2.1 are shown the values obtained by Morris and Lecar [63] for these constants.

Parameter Value Parameter Value Parameter Value Parameter Value
gCa 4 VCa 100 V1 10 V3 10
gK 8 VK −70 V2 15 V4 10
gL 2 VL −50 λ̄m 1 λ̄n 1/15
C0 20

Table 4.2.1: Example of values for the parameters of the model. Taken from [63].
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tice that min{λx(V ) : V ∈ R} > 0.

Figure 4.2.1: Auxiliary functions of Morris-Lecar Model

In Figure 4.2.2 we observe an example of the trajectories of the Morris-Lecar model for
the parameters in Table 4.2.1, and input current I = 65 [µA].

The system (4.2.1) can exhibit several behaviors depending on the value of the parameters.
Some examples of the response of the system for different values of the input current I are
displayed in Figure 4.2.3. Further analysis on this model from the dynamical system point
of view can be found in [27, p. 59], in [56], and in [71].
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Figure 4.2.2: Example of the trajectories of the Morris-Lecar Model.
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(a) I = 61 [µA]. Low frequency, damped oscil-
lations.
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(b) I = 65 [µA]. Low frequency oscillations

0 100 200 300 400 500
Time [ms]

30

20

10

0

10

20

30

V
o
lt

a
g
e
 [

m
V

]

Voltage vs Time.

(c) I = 100 [µA]. High frequency oscillations
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Figure 4.2.3: Different responses of the system for different values of the input current I.
Other parameters are fixed according to Table 4.2.1.
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In the following, we will consider that the membrane capacitance C0 = 1, or in other
words we normalize the equation for the voltage. Also, for x = n,m, we will use the more
modern notation:

ρx(Vt) = λx(Vt)x∞(Vt),

ζx(Vt) = λx(Vt)[1− x∞(Vt)],

thus, the model for a single neuron is written as

dVt
dt

= I − gCamt(Vt − VCa)− gKnt(Vt − VK)− gL(Vt − VL)

dmt

dt
= ρm(Vt)(1−mt)− ζm(Vt)mt

dnt
dt

= ρn(Vt)(1− nt)− ζn(Vt)nt.

(4.2.3)

In Figure 4.2.4 we show the functions ρ and ζ for m and n. Notice that for x = m,n,
min{ρx + ζx} > 0.
Remark 4.2.1. In what follows we will assume without further comments that the functions
ρx and ζx are bounded and Lipschitz. Even if this is not globally true for the explicit formulas
that define them, we will see that independently of the properties of ρx and ζx, the voltage
coordinate is bounded, that is, there exists some compact interval [−V max

∞ , V max
∞ ] from where

Vt does not escape. So we only care about ρx and ζx in this compact interval, where these
functions are uniformly bounded and Lipschitz.
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(a) Rate functions for Calcium channels.
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Figure 4.2.4: Rate functions for ion channels. Notice that min{ρx + ζx} > 0.

4.2.2 The Hybrid Model for a Single Neuron

Although the model (4.2.3) mimics with great precision the data obtained experimentally
(see [63]), it somehow ignores the intrinsic randomness present in the evolution of the ionic
channels. To take into account this random nature, we consider the hybrid model proposed
by Pakdaman, Thieullen & Wainrib in [67].
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For Nc ∈ N, the hybrid model XNc
t = (V Nc

t ,mNc
t , nNct ), will be given by

dV Nc
t

dt
= I − gCam

Nc
t (V Nc

t − VCa)− gKn
Nc
t (V Nc

t − VK)− gL(V Nc
t − VL), (4.2.4)

and mNc
t , nNct Markov Processes taking values in

ENc =

{
0,

1

Nc

, . . . ,
Nc − 1

Nc

, 1

}
.

In this model we consider a single neuron having Nc channels of each type. The variable
V Nc
t will represent the voltage of the membrane cell, whereas mNc

t and nNct will represent the
proportion of open Calcium and Potassium channels respectively.

The process xNct , for x = m,n, is built by considering that each of the Nc x-type channels
behaves independently from the other as a time continuous Markov process which changes
from close to open at rate ρx(V Nc

t ), and from open to close at a rate ζx(V Nc
t ).

Let us denote
λx0(V, u) = Nc(1− u)ρx(V ),

λx1(V, u) = Ncuζx(V ).
(4.2.5)

Hence the jump rate of xNc , at state (V, u), is given by

λx(V, u) = λx0(V, u) + λx1(V, u),

and the transition probabilities of xNc are given by

P
(
xNct+h − x

Nc
t =

1

Nc

∣∣∣∣ (V Nc
t , xNct ) = (V, u)

)
= λx0(V, u)h+ o(h),

P
(
xNct+h − x

Nc
t = − 1

Nc

∣∣∣∣ (V Nc
t , xNct ) = (V, u)

)
= λx1(V, u)h+ o(h),

P
(
xNct+h − x

Nc
t = 0

∣∣ (V Nc
t , xNct) = (V, u)

)
= 1− λx(V, u)h+ o(h),

and for any other r ∈ R

P
(
xNct+h − x

Nc
t = r

∣∣ (V Nc
t , xNct) = (V, u)

)
= o(h).

Notice that the process XNc is an example of a Piecewise Deterministic Markov Process
(PDMP). See [22] and [47] for general background.
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The infinitesimal generator L of the hybrid process is given by

Lf(V,m, n) = [I − gCam(V − VCa)− gKn(V − VK)− gL(V − VL)]
∂f

∂V
(V,m, n)

+ λm0 (V,m, n)

[
f

(
V,m+

1

Nc

, n

)
− f (V,m, n)

]
+ λm1 (V,m, n)

[
f

(
V,m− 1

Nc

, n

)
− f (V,m, n)

]
+ λn0 (V,m, n)

[
f

(
V,m, n+

1

Nc

)
− f (V,m, n)

]
+ λn1 (V,m, n)

[
f

(
V,m, n− 1

Nc

)
− f (V,m, n)

]
.

(4.2.6)

The fact that this dynamics defines globally a unique PDMP is discussed later.

In Figures 4.2.5 and 4.2.6 we display some trajectories of the hybrid model for different
values of the number of channels Nc = 50, 500, 1000, 10000, and in Table 4.2.2 we report
the computation time of each simulation. Notice that the computation time seems to grow
linearly with the number of channels. This can be a limitation for the use of this model since
in a neuron the order of magnitud of the number of ion channels is in the tens of thousands
(See [17]).

Nc Computation Time [s]
50 43.54
500 280.04
1000 576.87
10000 5586.90

Table 4.2.2: Computation time in a standard laptop for the simulation of the hybrid model
for one neuron for different values of Nc. Simulations coded in Python3.
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Figure 4.2.5: Examples of trajectories for the Stochastic Morris-Lecar Model for different
number of ion channels. First row Nc = 50. Second row Nc = 500.
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(b) Proportions of open ion channels.
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(d) Proportions of open ion channels.

Figure 4.2.6: Examples of trajectories for the Stochastic Morris-Lecar Model for different
number of ion channels. First row Nc = 1000. Second row Nc = 10000.
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4.2. Single Neuron Model

The Integral Representation of the Proportion Processes

For x = m,n, let N x
0 ,N x

1 be two independent Poisson Measures on R+×R+ with intensities
dλ⊗ ds, then the discrete components of the hybrid model can be represented as

xNct = xNc0 +

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (V Ncs− ,x
Nc
s−)}N

x
0 (dλ, ds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx1 (V Ncs− ,x
Nc
s−)}N

x
1 (dλ, ds),

where the jump rates λx1 and λx0 are given in (4.2.5). If we call Ñ x
0 and Ñ x

1 the compensated
Poisson Measures, we have

xNct = xNc0 +

∫ t

0

∫ ∞
0

1

Nc

1{λ≤λx0 (V Ncs− ,x
Nc
s−)}dλds−

∫ t

0

∫ ∞
0

1

Nc

1{λ≤λx1 (V Ncs− ,x
Nc
s−)}dλds

+

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (V Ncs− ,x
Nc
s−)}Ñ0(dλ, ds)−

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx1 (V Ncs− ,x
Nc
s−)}Ñ

x
1 (dλ, ds)

= xNc0 +
1

Nc

∫ t

0

λx0(V Nc
s , xNcs )− λx1(V Nc

s , xNcs )ds+Rx
t +Qx

t ,

with Rx and Qx orthogonal martingales, that is, they don’t have simultaneous jumps. Let
us call Mx = Qx +Rx, then we have the following semimartingale decomposition for xNct ,

xNct = xNc0 +

∫ t

0

(1− xNcs )ρx(V
Nc
s )− xNcs ζx(V

Nc
s )ds+Mx

t . (4.2.7)

Summarizing, the hybrid model for a single neuron is given by

V Nc
t = V Nc

0 +

∫ t

0

I − gL(V Nc
s − VL)− gCam

Nc
t (V Nc

s − VCa)− gKn
Nc
t (V Nc

s − VK)ds

mNc
t = mNc

0 +

∫ t

0

(1−mNc
s )ρm(V Nc

s )−mNc
s ζm(V Nc

s )ds+Mm
t .

nNct = nNc0 +

∫ t

0

(1− nNcs )ρn(V Nc
s )− nNcs ζn(V Nc

s )ds+Mn
t .

(4.2.8)

Remark 4.2.2. The well posedness of the equation (4.2.8) is not obvious, but is not difficult
to prove either. We will do the construction later in Lemma 4.3.4.

In the next result, we show that, in any finite time window, if the jump rates are given by
(4.2.5), the martingale part of the processes xNc goes to zero as the number of ion channels
goes to infinity. This tells us that as the number of ion channels increase the dynamic of
the hybrid process becomes closer to the dynamic of the deterministic Morris-Lecar model.
In fact, in Proposition 4.2.4 below we prove the convergence of the hybrid model to the
deterministic one (4.2.3).
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

Lemma 4.2.3. Let T > 0. For x = m,n

E
[
sup
t≤T
|Mx

t |
]
≤

√
(‖ρx‖∞ + ‖ζx‖∞)T

Nc

.

Proof. By Doob’s Inequality

E
[
sup
t≤T

(Mx
t )2

]
≤ 4E

[
(Mx

T )2]
= 4E [〈Mx〉T ] .

On the other hand, 〈Mx〉T = 〈Qx〉T + 〈Rx〉T , and by equality (3.9) in page 62 of Ikeda &
Watanabe [44]

〈Mx〉T =

∫ T

0

∫ ∞
0

(
1

Nc

1{λ≤λNc0 (V Ncs− ,x
Nc
s−))}

)2

dλds+

∫ T

0

∫ ∞
0

(
−1

Nc

1{λ≤λNc1 (V Ncs− ,x
Nc
s−))}

)2

dλds

=
1

N2
c

∫ T

0

λNc0 (V Nc
s , xNcs )) + λNc1 (V Nc

s , xNcs ))ds

=
1

Nc

∫ T

0

(1− xNcs )ρx(V
Nc
s ) + xNcs ζx(V

Nc
s )ds

≤ 1

Nc

∫ T

0

|1− xNcs ||ρx(V Nc
s )|+ |xNcs ||ζx(V Nc

s )|ds.

Hence,

〈Mx〉T ≤
(‖ρx‖∞ + ‖ζx‖∞)T

Nc

,

from the results follows using Burkholder-Davis-Gundy inequality.

Proposition 4.2.4. Given T > 0, let Xt = (Vt,mt, nt) be the solution of (4.2.3), and
XNc
t = (V Nc

t ,mNc
t , nNct ) be the solution of (4.2.8). Then for all T > 0

lim
Nc→∞

E
(

sup
t≤T
‖XNc

t −Xt‖1

)
= 0.

Proof.

|V Nc
t − Vt| ≤

∫ t

0

gL|V Nc
s − Vs|+ gCa|mNc

s ||V Nc
s − Vs|+ gK|nNcs ||V Nc

s − Vs|ds

+

∫ t

0

gCa|Vs − VCa||mNc
s −ms|+ gK|Vs − VK||nNcs − ns|ds

≤ C

∫ t

0

sup
u≤s
‖XNc

u −Xu‖1ds.
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4.2. Single Neuron Model

On the other hand for x = m,n

|xNct − xt| ≤
∫ t

0

(1− xNcs )|ρx(V Nc
s )− ρx(Vs)|+ xNcs |ζx(V Nc

s )− ζx(Vs)|ds.

+

∫ t

0

ρx(Vs)|xNcs − xs|+ ζx(Vs)|xNcs − xs|ds+ |Mx
t |

≤ C

∫ t

0

|V Nc
s − Vs|+ |xNcs − xs|ds+ |Mx

t |.

Adding up these computations, we conclude

‖XNc
t −Xt‖1 ≤ C

∫ t

0

sup
u≤s
‖XNc

u −Xu‖1ds+ sup
s≤t
|Mm

s |+ sup
s≤t
|Mn

s |,

and since the right-hand side is increasing, yields

sup
s≤t
‖XNc

s −Xs‖1 ≤ C

∫ t

0

sup
u≤s
‖XNc

u −Xu‖1ds+ sup
s≤t
|Mm

s |+ sup
s≤t
|Mn

s |.

Taking expectation and applying Proposition 4.2.3, we conclude

E
(

sup
s≤t
‖XNc

s −Xs‖1

)
≤ C

∫ t

0

E
(

sup
u≤s
‖XNc

u −Xu‖1

)
ds+

C√
Nc

,

from where we conclude that

E
(

sup
t≤T
‖XNc

t −Xt‖1

)
≤ CeCT√

Nc

.

Remark 4.2.5. In [67] the authors obtain the convergence of the hybrid model to the deter-
ministic one (4.2.3) in probability.

4.2.3 Diffusive Approximation of the Hybrid Model and Perturbed
Hybrid Model

In [67], the authors obtained a functional central limit theorem, which allows them to propose
a diffusive approximation (or Langevin approximation) of the hybrid system (4.2.8) given by

V ∗t = V ∗0 +

∫ t

0

I − gCams(V
∗
s − VCa)− gKns(V

∗
s − VK)− gL(V ∗s − VL)ds

x∗t = x∗0 +

∫ t

0

ρx(V
∗
s )(1− x∗s)− ζx(V ∗s )x∗sds

+
1√
Nc

∫ t

0

√
ρx(V ∗s )(1− x∗s) + ζx(V ∗s )x∗sdW

x
s , x = m,n,

(4.2.9)
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

where Nc is the number of ion channels. Nevertheless, this equation raises two complex
issues. First, it is not clear in general that this equation is well-posed. Notice that the
argument inside of the square root can become negative if x∗s /∈ [0, 1]. Secondly, Pakdaman
et al. remark that the hybrid model and its Langeving approximation can have quite different
qualitative behavior (See [66]).

For the well posedness of the diffusion, Baladron et al. in [8] proposed to incorporate a
cut-off function χ in the dynamics to ensure the permanence of the proportion processes m
y n in the interval [0, 1].

For the qualitative differences between the hybrid process and its Langevin approximation
there is not a satisfactory solution. Nevertheless, considering the elevated computational
cost of simulating the hybrid model, is interesting and useful to consider the diffusive model,
especially in a context of large network of neurons. This approach has been followed by
several authors in the literature see [21] and the references therein.

The diffusive model proposed in [8] is given by

Vt = V0 +

∫ t

0

I − gCams(Vs − VCa)− gKns(Vs − VK)− gL(Vs − VL)ds

xt = x0 +

∫ t

0

ρx(Vs)(1− xs)− ζx(Vs)xsds

+

∫ t

0

σ
√
|ρx(Vs)(1− xs) + ζx(Vs)xs|χ(xs)dW

x
s , x = m,n.

(4.2.10)

A rigorous proof of the existence and uniqueness of the solution of this equation is given
in [15].

In Figure 4.2.7 we present some sample trajectories of the solution of (4.2.10) for different
levels of noise. For the simulation we considered the cut-off function

χ(x) = 0.1 exp

(
−0.5

1− (2x− 1)2

)
,

and the Euler Maruyama scheme.

In what follows, we will show that the model (4.2.10) can be obtained as the limit in
distribution of a perturbed version of the hybrid model (4.2.8). This is interesting because at
some level it explains the origin of the differences between the hybrid model and its diffusive
approximation.

Let us consider the perturbed hybrid model X̂Nc
t = (V̂ Nc

t , m̂Nc
t , n̂Nct ). The continuous

component V̂ Nc
t will evolve just as in the previous case, that is

dV̂t
dt

= I − gL(V̂t − VL)− gCamt(V̂t − VCa)− gKnt(V̂t − VK),
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4.2. Single Neuron Model
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Figure 4.2.7: Stochastic system (4.2.10) for different values of σ. First row: σ = 0.1. Second
row: σ = 0.5. Third row: σ = 1.
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

but the jump processes will be now characterized by the jump rates

λ̂x0(V, u) = Nc(1− u)ρx(V ) +
Nc

2

2
σ2
x(V, u)χ2(u),

λ̂x1(V, u) = Ncuζx(V ) +
Nc

2

2
σ2
x(V, u)χ2(u),

(4.2.11)

where
σx(V, u) = σ

√
|ρx(V )(1− u) + ζx(V )u|,

and then, the jump rate of the process x = m,n, is given by

λ̂x(V, u) = λ̂x0(V, u) + λ̂x1(V, u).

Later we will check that such a process can be constructed in a unique globally way.

As before, the processes m̂ and n̂ are semimartingales with decomposition

x̂Nct = x̂Nc0 +

∫ t

0

(1− x̂Ncs )ρx(V̂
Nc
s )− x̂Ncs ζx(V̂

Nc
s )ds+ M̂x

t , (4.2.12)

but in this case,〈
M̂x
〉
t

=

∫ t

0

∫ ∞
0

(
1

Nc

1{λ≤λ̂x0 (V̂ Ncs ,x̂Ncs )}

)2

dλds+

∫ t

0

∫ ∞
0

(
−1

Nc

1{λ≤λ̂x1 (V̂ Ncs ,x̂Ncs )}

)2

dλds

=
1

Nc
2

∫ t

0

λ̂x0(V̂ Nc
s , x̂Ncs ) + λ̂x1(V̂ Nc

s , x̂Ncs )ds

=
1

Nc

∫ t

0

(1− x̂Ncs )ρx(V̂
Nc
s ) + x̂Ncs ζx(V̂

Nc
s )ds+

∫ t

0

σ2(V̂ Nc
s , x̂Ncs )χ(x̂Ncs )ds.

Proposition 4.2.6. When the number of channels Nc goes to infinity, the perturbed hybrid
process (X̂Nc

t )0≤t<∞

V̂ Nc
t = V̂ Nc

0 +

∫ t

0

I − gL(V̂ Nc
s − VL)− gCam

Nc
t (V̂ Nc

s − VCa)− gKn̂Nct (V̂ Nc
s − VK)ds

m̂Nc
t = m̂Nc

0 +

∫ t

0

(1− m̂Nc
s )ρm(V̂ Nc

s )− m̂Nc
s ζm(V̂ Nc

s )ds+ M̂m
t .

n̂Nct = n̂Nc0 +

∫ t

0

(1− n̂Ncs )ρn(V̂ Nc
s )− n̂Ncs ζn(V̂ Nc

s )ds+ M̂n
t .

(4.2.13)

converges in distribution to the solution of (4.2.10).

The proof is a straightforward application of the following theorem.

Theorem 4.2.7 (Theorem 4.1 in [28, p. 354] ). Let a = (aij) be a continous, symmetric,
nonnegative definite, dxd matrix-valued function on Rd and let b : Rd → Rd be continuous.
Let

A =

{(
f,Gf :=

1

2

∑
aij∂i∂jf +

∑
bi∂if

)
: f ∈ C∞c (Rd)

}
,
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4.2. Single Neuron Model

and suppose that the CRd martingale problem for A is well posed.

For n = 1, 2, . . . , let Xn and Bn be processes with sample paths in DRd [0,∞), and let An =
(Ai,jn ) be a symmetric d×d matrix-valued process such that Aijn has sample paths in DR[0,∞)
and An(t) − An(s) is nonnegative definite for t > s ≥ 0. Set Fnt = σ(Xn(s), Bn(s), An(s) :
s ≤ t).

Let τ rn = inf{t : ‖Xn(t)‖ ≥ r or ‖Xn(t−)‖ ≥ r}, and suppose that

Mn := Xn −Bn (4.2.14)

and

M i
nM

j
n − Aijn , i, j = 1, 2, . . . , d, (4.2.15)

are Fnt -local martingales, and for each r > 0, T > 0, and i, j = 1, . . . , d,

lim
n→∞

E

[
sup

t≤T∧τrn
‖Xn(t)−Xn(t−)‖2

]
= 0, (4.2.16)

lim
n→∞

E

[
sup

t≤T∧τrn
‖Bn(t)−Bn(t−)‖2

]
= 0, (4.2.17)

lim
n→∞

E

[
sup

t≤T∧τrn
‖Aijn (t)− Aijn (t−)‖2

]
= 0, (4.2.18)

sup
t≤T∧τrn

∣∣∣∣B(i)
n (t)−

∫ t

0

bi(Xn(s))ds

∣∣∣∣ P→ 0, (4.2.19)

sup
t≤T∧τrn

∣∣∣∣Aijn (t)−
∫ t

0

aij(Xn(s))ds

∣∣∣∣ P→ 0. (4.2.20)

Suppose that PXn(0)−1 ⇒ ν ∈ P(Rd). Then {Xn} converges in distribution to the solution
of the martingale problem for (A, ν).

Proof of Proposition 4.2.6. In our case, is clear that hypotheses (4.2.14), (4.2.15), (4.2.17),
(4.2.18), (4.2.19) hold. Since the well posedness of the limit equation is established in [15],
all we need to check are hypotheses (4.2.16) and (4.2.20).
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1. Let τ rNc = inf{t ≥ 0 : |X̂Nc
t | ≥ r ∨ |X̂Nc

t− | ≥ r}.Thanks to the continuity of V̂ Nc
·

lim
Nc→∞

E
[

sup
t≤T∧τrNc

‖X̂Nc
t − X̂Nc

t− ‖2
]

= lim
Nc→∞

E

[
sup

t≤T∧τrN
|V̂ Nc
t − V̂ Nc

t− |2 + |m̂Nc
t − m̂Nc

t− |2 + |n̂Nct − n̂Nct− |2
]

= lim
Nc→∞

E

[
sup

t≤T∧τrNc
|m̂Nc

t − m̂Nc
t− |2 + |n̂Nct − n̂Nct− |2

]
≤ lim

Nc→∞

2

Nc
2 = 0.

Then (4.2.16) holds.

2. Thanks to the form of AijNc , we have∣∣∣∣ 1

Nc

∫ t

0

(1− x̂Ncs )ρx(V̂
Nc
s ) + x̂Ncs ζx(V̂

Nc
s )ds +

∫ t

0

σ2(V̂ Nc
s , x̂Ncs )χ(x̂Ncs )ds

−
∫ t

0

σ2(V̂ Nc
s , x̂Ncs )χ(x̂Ncs )ds

∣∣∣∣ ≤ Ct

Nc

.

So, the left-hand side converges almost surely to 0, and hence in probability. Then we
have (4.2.20).

Summing up, the hypotheses of the Theorem 4.2.7 are fulfilled, and our Proposition holds.

Remark 4.2.8. There are several facts to notice about this result:

1. The convergence we obtain thanks to Theorem 4.2.7 is in distribution and without
any information on the rate of convergence. To quantify the rate of convergence of a
sequence of jump processes to their diffusive limit, when there is one, is an interesting
mathematical problem without a general answer. In the context of Boltzmann equation
Godinho in [36] find a coupling between a compensated Poisson Integral and a time-
space white noise, but it is not clear that the ideas in [36] can be extended to the
context of this thesis.

2. Although this result is a simple application of Theorem 4.2.7, it shows that the diffusive
approximation proposed in [8] (4.2.10) is not the limit of the original hybrid model
(4.2.8), and then should not surprise us that it has different properties.

3. In the original hybrid model, the jump rates where linear on Nc; whereas, in the
perturbed hybrid model, we add in each jump rate the quadratic term

Nc
2

2
σ2(X̂Nc

t− )χ(x̂Nct− ).

This term could be interpreted as the increment on the jump rates of the channels due
to the presence of the other channels.
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4.3. Interaction between neurons

4. Notice that in the original hybrid model the jump law of xNct is given by

µNc(V
Nc
t , x, x′) =

(1− x)ρx(V
Nc
t )

(1− x)ρx(V
Nc
t ) + xζx(V

Nc
t )

1{x+ 1
Nc
}(x

′)

+
uζx(V

Nc
t )

(1− x)ρx(V
Nc
t ) + xζx(V

Nc
t )

1{x− 1
Nc
}(x

′),

and it is independent of the number of channels Nc. While in the contrary, in the
perturbed model,

µ̂Nc(V̂
Nc
t , x, x′) =

(1− x)ρx(V̂
Nc
t ) +Ncσ

2(V̂ Nc
t , x)χ(x)/2

(1− u)ρx(V̂
Nc
t ) + xζx(V̂

Nc
t ) +Ncσ2(V̂ Nc

t , x)χ(x)
1{x+ 1

Nc
}(x

′)

+
xζx(V̂

Nc
t ) +Ncσ

2(V̂ Nc
t , x)χ(x)/2

(1− u)ρx(V̂
Nc
t ) + xζx(V̂

Nc
t ) +Ncσ2(V̂ Nc

t , u)χ(x)
1{x− 1

Nc
}(x

′).

so when Nc >> 1 the jump law is

µ̂Nc(V̂
Nc
t , x, x′) ≈ 1

2
1{x+ 1

Nc
}(x

′) +
1

2
1{x− 1

Nc
}(x

′).

Here we find another qualitative difference between the unperturbed hybrid model and
the perturbed one, and consequently, between the former and the diffusive approxima-
tion.

Now that we have discussed the modeling issues arround the stochastic versions of the
Morris-Lecar model, we start the study of network of neurons in this setting.

4.3 Interaction between neurons

In what follows, we will consider a network of N neurons interacting with each other in a
fully connected net. Neurons are not homogeneous. In fact, in the human brain there are
around 10, 000 different kind of neurons1. Nevertheless, we will assume that all the neurons
are of the same kind, because the generalization to several populations it is not difficult.

An connection between neurons is called a synapse. Synapses could be chemical or elec-
trical. We refer briefly to both types in the next paragraphs. For details see Chapter 8
in [27].

Chemical Synapses In a chemical synapses a neurotransmitter is released to the synaptic
cleft (see Figure 1.3.2a) from the pre-synaptic neuron to the post-synaptic one. The release of
this neurotransmitter will occur through some channels, which will open and close depending
on the membrane voltage in a similar way as for the Calcium and Potassium channels. Let

1See [27, p.4]
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

us denote by yt the proportion of open neurotransmitters channels open at time t, and by

ρy(V ) = ar
CT

1 + e−ΛT (V−VT )
, ζy(V ) = ad,

where the constants ar, ad, CT , ΛT and VT are determined experimentally. So, the jump
rates for the process y will be given by

λy0(V, y) = Nc(1− y)ρy(V ),

λy1(V, y) = Ncyζy(V ),
(4.3.1)

or, in the perturbed case, by

λy0(V, y) = Nc(1− y)ρy(V ) +
N2
c

2
σ2
y(V, y)χ2(y)

λy1(V, y) = Ncadζy(V ) +
N2
c

2
σ2
y(V, y)χ2(y),

(4.3.2)

where as before
σy(V, y) = σ

√
|(1− y)ρy(V ) + yζy(V )|. (4.3.3)

Then, for the i-th neuron, the dynamic for the proportion of open neurotransmitter channels
will be

yi,Nct = yi,Nc0 +

∫ t

0

(1− yi,Ncs )ρy(V
i,Nc
s )− yi,Ncs ζy(V

i,Nc
s )ds+My,i

t ,

and due to the chemical synapses coming from neuron j, the contribution to the dynamic of
the voltage of the neuron i will be

−JChy
j,Nc
s (V i,Nc

s − Vrev),

where JCh is the chemical conductance of the network, and Vrev is the reversal potential,
which indicates if the synapses are inhibitory or excitatory. Some values from the literature
for the constants ad, ar, CT ,ΛT , VT appear in Table 4.3.1a. In Figure 4.3.1 we show the rate
functions ρy and ζy.

Electrical Synapses Sometimes the interior of one neuron can be directly connected with
the interior of another neuron through an intercellular channel called gap junction. These
gap junctions allows the constant flow of current between neurons as a result of the difference
of potential between them.

Electrical synapses are less frequent than the chemical ones, but they transmite informa-
tion faster, and also have been observed to induce synchronization between neurons. See [43].

Since current flows from higher voltages to lower ones, the contribution to the dynamic of
the voltage of the neuron i, due to the electrical synapse with neuron j, will be

−JE(V i,Nc
s − V j,Nc

s ),

where JE is the electrical conductance and can be thought of as a measure of the connectivity
of the network. For a further reading on electrical synapses see [43].
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Parameter Value
Vrev 1
CT 1.0
VT 2.0
ΛT 0.2
ar 5.0
ad 0.18

(a) Example of values for the parameters of
the dynamics for the neurotransmitter chan-
nel. The first four rows are taken from [8],
others from [27].

100 50 0 50 100
V [mV]

0

1

2

3

4

5
Jump rates for Neurotransmitter Channels vs Voltage

ρy(V)

ζy(V)

(b) Rate functions for the neurotransmitter
channel.

Figure 4.3.1: Values for the parameters and rate functions for the Neurotransmitter dynamics

Dynamic for the Voltage of a Neuron in a Network Finally, the dynamic for the
potential of the membrane of the neuron in a network will be given by

V i,Nc
t = V i,Nc

0 +

∫ t

0

I − gCam
i,Nc
s t(V i,Nc

s − VCa)− gKn
i,Nc
s (V i,Nc

s − VK)ds

−
∫ t

0

gL(V i,Nc
s − VL)ds− 1

N

N∑
j=1

∫ t

0

JChy
j,Nc
s (V i,Nc

s − Vrev)ds

− 1

N

N∑
j=1

∫ t

0

JE(V i,Nc
s − V j,Nc

s )ds.

(4.3.4)

4.3.1 The Hybrid Model for a Network of Interacting Neurons

In a fully connected network of N neurons, each neuron in the network will be described by
a 4-tuple (V i,Nc ,mi,Nc , ni,Nc , yi,Nc). As before, to describe the dynamics of the different chan-
nels, we will consider N n,i

0 ,N n,i
1 , Nm,i

0 , Nm,i
1 , N y,i

0 and N y,i
1 , independent Poisson Measures

on R+ × R+, each of them with intensity dλ⊗ ds.
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

For each neuron, the dynamic of its membrane voltage will be given by (4.3.4). On the
other hand, for the proportion of open channels we will consider either the jump rates given
by (4.2.5) and (4.3.1), or in the perturbed case, the jump rates given by (4.2.11) and (4.3.2).
With all these notations, the hybrid model for the system will be given by

V
(i)
t = V

(i)
0 +

∫ t

0

I − gCam
(i)
s (V (i)

s − VCa)− gKn
(i)
s (V (i)

s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JChȳ
N
s (Vs − Vrev)ds

−
∫ t

0

JE(V i,Nc
s − V̄ N

s )ds,

x
(i)
t = x

(i)
0 +

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (V
(i)
s− ,x

(i)
s−)}N

x,i
0 (dλ, ds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx1 (V
(i)
s− ,x

(i)
s−)}N

x,i
1 (dλ, ds), for x = m,n, y.

(4.3.5)

where

V̄ N
s =

1

N

N∑
j=1

V j,Nc
s ), ȳNs =

1

N

N∑
j=1

yj,Ncs .

In the following proposition we will prove the boundedness of the solutions of the hybrid
models. This will be crucial to obtain the main results of this chapter.

Proposition 4.3.1. If the initial condition V0 = (V 1,Nc
0 , . . . , V Nc,N

0 ) is bounded, (i.e.) for all
i = 1, . . . , N , |V i,Nc

0 | ≤ V max
0 , then there exist a constant V max

∞ = V max
∞ (V max

0 ) independent of
Nc and N , such that for all t ≥ 0

|V i,Nc
t | ≤ V max

∞ .

Before we prove last proposition, we recall a version of Gronwall’s Lemma which appears
in [4, p. 88].

Lemma 4.3.2. Let x : [0,+∞) → R be a locally absolutely continuous function, let a, b ∈
L1

loc([0,+∞)) be given functions satisfying, for λ ∈ R,

d

dt
x2(t) + 2λx2(t) ≤ a(t) + 2b(t)x(t) for L∞ − a.e. t > 0.

Then for every T > 0 we have

eλT |x(T )| ≤

(
x2(0) + sup

t∈[0,T ]

∫ t

0

e2λsa(s)ds

)1/2

+ 2

∫ T

0

eλt|b(t)|dt.

Proof of Proposition 4.3.1. To simplify the notation we will remove the Nc superscript in
this proof. Notice that calling

R(i)
s = I + gCaVCam

(i)
s + gKVKn

(i)
s + gLVL + JChVrevȳ

N
s ,
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4.3. Interaction between neurons

A(i)
s = gCam

(i)
s + gKn

(i)
s + gL + JChȳ

N
s ,

the dynamic for the potential can be written as

V
(i)
t = V

(i)
0 +

∫ t

0

R(i)
s − A(i)

s V
(i)
s − JEV

(i)
s + JEV̄

N
s ds. (4.3.6)

Then (
V

(i)
t

)2

=
(
V

(i)
0

)2

+ 2

∫ t

0

R(i)
s V

(i)
s − A(i)

s

(
V (i)
s

)2 − JE
(
V (i)
s

)2
+ JEV̄

N
s V

(i)
s ds.

If we add for i = 1, . . . , N we obtain for V = (V (1), . . . , V (N))

‖Vt‖2
2 = ‖V0‖2

2 + 2

∫ t

0

N∑
i=1

[
R(i)
s V

(i)
s − A(i)

s

(
V (i)
s

)2
]
− JE‖Vs‖2

2 +NJE(V̄ N
s )2ds.

Notice that

(V̄ N
s )2 =

1

N2

N∑
i,j=1

V (i)
s V (j)

s ≤ 1

2N2

N∑
i,j=1

(V (i)
s )2 + (V (j)

s )2 =
1

N
‖Vs‖2

2.

Then we have

‖Vt‖2
2 ≤ ‖V0‖2

2 + 2

∫ t

0

‖Rs‖2‖Vs‖2 − gL‖Vs‖2
2ds,

or in its differential form

d

dt
‖Vt‖2

2 + 2gL‖Vt‖2
2 ≤ 2‖Rt‖2‖Vt‖2.

Applying Lemma 4.3.2 to this last inequality, we conclude

‖Vt‖2 ≤ ‖V0‖2e
−gLt + 2e−gLt

∫ t

0

egLs‖Rs‖2ds.

But we have

|R(i)
s | ≤ max

m,n,y∈[0,1]
|I + gCaVCam+ gKVKn+ gLVL + JChVrevy| =: Rmax,

so that

‖Vt‖2 ≤ ‖V0‖2e
−gLt +

2
√
NRmax

gL
e−gLt(egLt − 1) =

√
N

(
V max

0 − 2Rmax

gL

)
e−gLt +

2
√
NRmax

gL
,

and we deduce that√√√√ 1

N

N∑
i=1

(V
(i)
t )2 ≤

(
V max

0 − 2Rmax

gL

)
e−gLt +

2Rmax

gL
.
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On the other hand, notice that

∣∣V̄ N
t

∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

V
(i)
t

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|V (i)
t | ≤

√√√√ 1

N

N∑
i=1

(V
(i)
t )2,

from where ∣∣V̄ N
t

∣∣ ≤ (V max
0 − 2Rmax

gL

)
e−gLt +

2Rmax

gL
.

If we go back to (4.3.6), we observe that

(V
(i)
t )2 = (V

(i)
0 ) + 2

∫ t

0

(R(i)
s + JEV̄

N
s )V (i)

s − (A(i)
s + JE)(V (i)

s )2ds,

from where it follows that

d

dt
(V

(i)
t )2 + 2(gL + JE)(V

(i)
t )2 ≤ 2|R(i)

t + JEV̄
N
t ||V

(i)
t |

≤ 2

(
Rmax + JE

(
V max

0 − 2Rmax

gL

)
e−gLt +

2JERmax

gL

)
|V (i)
t |.

Applying one more time Lemma 4.3.2, we obtain∣∣∣V (i)
t

∣∣∣ ≤ V max
0 e−(gL+JE)t

+ 2e−(gL+JE)t

∫ t

0

e(gL+JE)s

(
Rmax

(
gL + 2JE

gL

)
+ JE

(
V max

0 − 2Rmax

gL

)
e−gLs

)
ds

= V max
0 e−(gL+JE)t + 2Rmax

(
gL + 2JE

gL(gL + JE)

)
(1− e−(gL+JE)t)

+ 2

(
V max

0 − 2Rmax

gL

)(
e−gLt − e−(gL+JE)t

)
=

2Rmax

gL

(
gL + 2JE

gL + JE

)
+ 2

(
V max

0 − 2Rmax

gL

)
e−gLt

+

(
4Rmax

gL
− V max

0 − 2Rmax

gL

(
gL + 2JE

gL + JE

))
e−(gL+JE)t.

If V max
∞ denote the supremum over t ≥ 0 of the right-hand side of last expresion, which is

finite since the right side is bounded, we conclude that ∀i = 1, . . . , N

sup
t≥0

∣∣∣V (i)
t

∣∣∣ ≤ V max
∞ .

Remark 4.3.3. Notice that in the last proof, we only used the boundedness of the processes
m,n and y.

At this point we will show that the hybrid model (4.3.5) is well posed.
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4.3. Interaction between neurons

Lemma 4.3.4. If the initial condition are almost surely bounded, then there exists a unique
strong solution for the system (4.3.5).

Remark 4.3.5. Notice that the rate functions λxi are Lipchitz, since they are a combination
of ρx, ζx and σ2

x.

Remark 4.3.6. Notice that one of the usual hypotheses for an equation like (4.3.5) to be
well-posed is that∫ ∞

0

|f(v1, x1, λ)− f(v2, x2, λ)|2dλ ≤ K
[
|v1 − v2|2 + |x1 − x2|2

]
,

which corresponds to a certain Lipschitz property of the coefficients of the equation.

Since, in our case, f(v, x, λ) = 1{λ≤λxi (v,x)}, we have

|1{λ≤λxi (v1,x1)} − 1{λ≤λxi (v2,x2)}|2 = 1{λxi (v1,x1)∧λxi (v2,x2)≤λ≤λxi (v1,x1)∨λxi (v2,x2)},

and then∫ ∞
0

|1{λ≤λxi (v1,x1)} − 1{λ≤λxi (v2,x2)}|2dλ =

∫ ∞
0

1{λxi (v1,x1)∧λxi (v2,x2)≤λ≤λxi (v1,x1)∨λxi (v2,x2)}dλ

= |λxi (x1, v1)− λxi (x2, v2)|.
≤ Ki,x

λ [|v1 − v2|+ |x1 − x2|] .

Thus, in order to prove the well-posedness of equation (4.3.5), we can’t rely on known results
and we need to do the construction by hand.

Proof of Lemma 4.3.4. We will construct a solution and later we will prove that such solution
is unique.

Existence: Since in the system (4.3.5) involves only integrals with respect to the Lebesgue
measure or with respect to Poisson random measures, we can interpret this system in a
pathwise sense, or in more informal words, ω by ω.

Just as in the previous proof we omit theNc superscript to make the notation easier to read.
In what follows we will call V = (V (1), . . . , V (N)), m = (m(1), . . . ,m(N)), n = (n(1), . . . , n(N))
and y = (y(1), . . . , y(N)).

Let us fix ω ∈ Ω. If we replace ms, ns, ys for some fix m∗, n∗, y∗ ∈ [0, 1]N the equation for
V in (4.3.5) becomes a linear equation with constant coefficient, and then it has an explicit
solution Φt(V0(ω),m∗, n∗, y∗) which, according to Proposition (4.3.6), is uniformly bounded
in time.

On the other hand, since the functions ρx and ζx are bounded, we have, in the non
perturbed case

λxi (v, x) ≤ CNc|x|, for x = m,n, y, and i = 0, 1,
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whereas, in the perturbed case

λxi (v, x) ≤ C(Nc +N2
c )|x|, for x = m,n, y, and i = 0, 1.

So, in both cases we have that λxi (v, x) ≤ Cλ for some Cλ > 0 uniformly on (v, x).

Notice also the different Poisson measures appearing in (4.3.5) can be packed in one
Poisson random measure N on R+×R+×{1, . . . , N}×{m,n, y}×{0, 1}, which have almost
surely a finite number of atoms in the set R = [0, T ]× [0, Cλ]×{1, . . . , N}×{m,n, y}×{0, 1}.
Since the indicator functions appearing in the Poisson integrals form(i), n(i) and y(i) in (4.3.5)
are equal to 0 for λ ≥ Cλ, the only atoms of the Poisson measure we care about, are the
Nω(R) atoms in the set R. Let us call {Jn}Nω(R)

n=1 the sequence of jump times. For notational
convenience J0 := 0. We will construct the solution for (4.3.5) in each interval [Jn, Jn+1]
inductively.

In the interval [0, J1(ω)), mt(ω) = m0(ω), nt(ω) = n0(ω), yt(ω) = y0(ω) so for all t ∈
[0, J1(ω))

Vt = Φt(V0(ω),m0(ω), n0(ω), y0(ω)),

and then, the Poisson integrals for m(i), n(i) and y(i) are well defined in [0, J1(ω)). Now we
extend the solution to the interval [J1(ω), J2(ω)).

Without loss of generality let us assume that the atom associated to J1(ω) is equal to
(J1(ω), λ∗, i,m, 0). This means that a closed Calcium channel of the i-th neuron is candidate
to open. If

λm0

(
V

(i)
J1(ω)−,m

(i)
J1(ω)−

)
≥ λ∗,

then the Calcium channel will change its state to open and m will change to m̂, with m̂(i) =
m(i) + 1/Nc. Then, for t ∈ [J1(ω), J2(ω))

Vt = Φt(VJ1(ω)−, m̂, n0(ω), y0(ω)).

If
λm0

(
V

(i)
J1(ω)−,m

(i)
J1(ω)−

)
< λ∗,

then the Calcium channel will remain closed, and then for t ∈ [J1(ω), J2(ω))

Vt = Φt(V0(ω),m0(ω), n0(ω), y0(ω)).

Iterating this procedure Nω(R) times, we obtain a solution on [0, T ] for each ω in a subset
of probability one of the subjacent probability space.

Uniqueness: Let (Vt,mt, nt, yt)t∈[0,T ] and (Ut, αt, βt, γt)t∈[0,T ], be two solutions for (4.3.5)
for the same initial condition. Then

|V (i)
t − U

(i)
t | ≤

∫ t

0

gCa|VCa − V (i)
s ||m(i)

s − α(i)
s |+ gK|VK − V (i)

s ||n(i)
s − β(i)

s |ds

+

∫ t

0

|gL + gCaα
(i)
s + gKβ

(i)
s + JChγ̄

N
s + JE||V (i)

s − U (i)
s |ds

+

∫ t

0

|JChVrev||ȳNs − γ̄Ns |+ JE|V̄ N
s − ŪN

s |ds.
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Thanks to the uniform bound on V , if we add this last bound for i = 1, . . . , N we have

‖Vt − Ut‖1 ≤ CV

∫ t

0

‖ms − αs‖1 + ‖ns − βs‖1 + ‖ys − γs‖1 + ‖Vs − Us‖1ds.

On the other hand,

m
(i)
t − α

(i)
t =

∫ t+

0

∫ ∞
0

1

Nc

1{
λ≤λm0 (V

(i)
s− ,m

(i)
s−)

} − 1

Nc

1{
λ≤λm0 (V

(i)
s− ,α

(i)
s−)

}Nm
0 (dλds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{
λ≤λm1 (V

(i)
s− ,m

(i)
s−)

} − 1

Nc

1{
λ≤λm1 (V

(i)
s− ,α

(i)
s−)

}Nm
1 (dλds).

Then, we obtain

E
∣∣∣m(i)

t − α
(i)
t

∣∣∣ ≤ E
∫ t+

0

∫ ∞
0

∣∣∣∣ 1

Nc

1{
λ≤λm0 (V

(i)
s− ,m

(i)
s−)

} − 1

Nc

1{
λ≤λm0 (V

(i)
s− ,α

(i)
s−)

}∣∣∣∣Nm
0 (dλds)

+ E
∫ t+

0

∫ ∞
0

∣∣∣∣ 1

Nc

1{
λ≤λm1 (V

(i)
s− ,m

(i)
s−)

} − 1

Nc

1{
λ≤λm1 (V

(i)
s− ,α

(i)
s−)

}∣∣∣∣N x
1 (dλds)

= E
∫ t+

0

∫ ∞
0

∣∣∣∣ 1

Nc

1{
λ≤λm0 (V

(i)
s ,m

(i)
s )

} − 1

Nc

1{
λ≤λm0 (V

(i)
s ,α

(i)
s )

}∣∣∣∣dλds
+ E

∫ t+

0

∫ ∞
0

∣∣∣∣ 1

Nc

1{
λ≤λm1 (V

(i)
s ,m

(i)
s )

} − 1

Nc

1{
λ≤λm1 (V

(i)
s ,α

(i)
s )

}∣∣∣∣dλds
= E

∫ t

0

∫ ∞
0

1

Nc

1{
λm0 (V

(i)
s ,m

(i)
s )∧λm0 (V

(i)
s ,α

(i)
s )≤λ≤λm0 (V

(i)
s ,m

(i)
s )∨λm0 (V

(i)
s ,α

(i)
s )

}dλds
+ E

∫ t

0

∫ ∞
0

1

Nc

1{
λm1 (V

(i)
s ,m

(i)
s )∧λm1 (V

(i)
s ,α

(i)
s )≤λ≤λm1 (V

(i)
s ,m

(i)
s )∨λm1 (V

(i)
s ,α

(i)
s )

}dλds
= E

∫ t

0

1

Nc

|λm0 (V (i)
s ,m(i)

s )− λm0 (V (i)
s , α(i)

s )|ds

+ E
∫ t

0

1

Nc

|λm1 (V (i)
s ,m(i)

s )− λm1 (V (i)
s , α(i)

s )|ds

≤ Km

∫ t

0

(
E
∣∣m(i)

s − α(i)
s

∣∣+ E
∣∣V (i)
s − V (i)

s

∣∣) ds.
Adding over i = 1, . . . , N we conclude that

E [‖mt − αt‖1] ≤ Km

∫ t

0

E [‖ms − αs‖1] + E [‖Vs − Vs‖1] ds.

For the other coordinates the argument is similar. Then, we have

E
[
‖Vt − Ut‖1+ ‖mt − αt‖1 + ‖nt − βt‖1 + ‖yt − γt‖1

]
≤ K

∫ t

0

E [‖Vs − Us‖1 + ‖ms − αs‖1 + ‖ns − βs‖1 + ‖ys − γs‖1] ds,

from where Gronwall’s Lemma yields

E
[
‖Vt − Ut‖1 + ‖mt − αt‖1 + ‖nt − βt‖1 + ‖yt − γt‖1

]
= 0.
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Since the trajectories of (Vt,mt, nt, yt)t∈[0,T ] and (Ut, αt, βt, γt)t∈[0,T ] are càdlàg, we conclude
that both processes are indistinguishable on [0, T ].

Since the solution of (4.3.5) is uniformly bounded for t ≥ 0, we can extend it to [0,∞).

Remark 4.3.7. Notice that the construction procedure of the solution for (4.3.5) provide also
an algorithm to simulate it.
Remark 4.3.8. This proof shows that the single neuron equation is also well posed.

4.3.2 Continuous Approximations for the hybrid models

As in the case of a single neuron, the hybrid interacting system can be approximated by
a continuous one. Let us recall that after compensating the Poisson measures the system
(4.3.5) is equivalent to

V i,Nc
t = V i,Nc

0 +

∫ t

0

I − gCam
i,Nc
s (V i,Nc

s − VCa)− gKn
i,Nc
s (V i,Nc

s − VK)ds

−
∫ t

0

gL(V i,Nc
s − VL)ds−

∫ t

0

JChȳ
N
s (V i,Nc

s − Vrev)ds

−
∫ t

0

JE(V i,Nc
s − V̄ N

s )ds

xi,Nct = xi,Nc0 +

∫ t

0

(1− xi,Ncs )ρx(V
i,Nc
s )− xi,Ncs ζx(V

i,Nc
s )ds+Mx,i

t , x = m,n, y,

(4.3.7)

where recall Mx,i is the difference of two stochastic integrals with respect to compensated
Poisson measures.

Proposition 4.3.9. Fix T > 0 and N ≥ 1, let

XN,Nc
t = (V 1,Nc

t , n1,Nc
t ,m1,Nc

t , y1,Nc
t , . . . , V N,Nc

t , nN,Nct ,mN,Nc
t , yN,Nct ),

be the stochastic process defined by (4.3.7) when the jump rate functions for m and n are
given by (4.2.5) and the jump rate function for y is given by (4.3.1). That is, the hybrid
model is not perturbed. Let

XN
t = (V

(1)
t , n

(1)
t ,m

(1)
t , h

(1)
t , y

(1)
t , . . . , V N

t , n
N
t ,m

N
t , h

N
t , y

N
t ),

be the solution of

V
(i)
t = V i,

0 +

∫ t

0

I − gCam
(i)
s (V (i)

s − VCa)− gKn(i)
s (V (i)

s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JChȳ
N
s (V (i)

s − Vrev)ds

−
∫ t

0

JE(V (i)
s − V̄ N

s )ds

x
(i)
t = x

(i)
0 +

∫ t

0

(1− x(i)
s )ρx(V

(i)
s )− x(i)

s ζx(V
(i)
s )ds, x = m,n, y.

(4.3.8)
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Then

E
[

sup
0≤t≤T

‖XN,Nc
t −XN

t ‖1

]
≤ NCeCT√

Nc

.

In particular

lim
Nc→∞

E
[

sup
0≤t≤T

‖XN,Nc
t −XN

t ‖1

]
= 0.

The proof of this Proposition is essentially the same of Proposition 4.2.4, so we omit it.
The only relevant thing to notice, is that the bound is linear in the number of neurons.

In the perturbed case, as before, we only have convergence in distribution.

Proposition 4.3.10. Fix T > 0 and N ≥ 1, let

XN,Nc
t = (V 1,Nc

t , n1,Nc
t ,m1,Nc

t , y1,Nc
t , . . . , V N,Nc

t , nN,Nct ,mN,Nc
t , yN,Nct ),

be the stochastic process defined by (4.3.7). If the jump rate functions for m and n are given
by (4.2.11) and the jump rate function for y is given by (4.3.2), that is the model is perturbed,
and Nc goes to infinity, then the process XN,Nc

t converges in distribution to

XN
t = (V

(1)
t , n

(1)
t ,m

(1)
t , h

(1)
t , y

(1)
t , . . . , V N

t , n
N
t ,m

N
t , h

N
t , y

N
t ),

the solution of

V
(i)
t = V i,

0 +

∫ t

0

I − gCam
(i)
s t(V

(i)
s − VCa)− gKn(i)

s (V (i)
s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JChȳ
N
s (V (i)

s − Vrev)ds

−
∫ t

0

JE(V (i)
s − V̄ N

s )ds

x
(i)
t = x

(i)
0 +

∫ t

0

(1− x(i)
s )ρx(V

(i)
s )− x(i)

s ζx(V
(i)
s )ds

+

∫ t

0

σx(V
(i)
s , x(i)

s )χ(x(i)
s )dW i,x

s , x = m,n, y.

(4.3.9)

Remark 4.3.11. If we go back to the proof of Proposition 4.3.1, we will see that boundedness
is the only property of the variables m,n, y that we have used. Then, the same computation
shows that the solutions of (4.3.8) and (4.3.9) are also bounded.

Proof of Proposition 4.3.10. As before, the proof of this proposition is a straightforward ap-
plication of Theorem 4.2.7. Again, most of the hypotheses hold trivially, and we just have to
check that (4.2.16) and (4.2.20) holds. We have:
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1. Thanks to the continuity of V i,Nc
t

E

[
sup

t≤T∧τrNc
‖XN,Nc

t −XN,Nc
t− ‖2

]
≤ E

[
sup

t≤T∧τrNc

N∑
i=1

|V i,Nc
t − V i,Nc

t− |2
]

+ E

 sup
t≤T∧τrNc

N∑
i=1

 ∑
x∈{n,m,y}

|xi,Nct − xi,Nct− |2


= E

 sup
t≤T∧τrNc

N∑
i=1

 ∑
x∈{n,m,h,y}

|xi,Nct − xi,Nct− |2


≤ 3N

N2
c

.

Since N remains fix as Nc goes to infinity, (4.2.16) holds.

2. For x = m,n we have that the difference between the quadratic variation of Mx,i,Nc

and the diffusion term of the generator of XN valued at XN,Nc is given by∣∣∣∣ 1

Nc

∫ t

0

(1− xi,Ncs )ρx(V
i,Nc
s ) + xi,Ncs ζx(V

i,Nc
s )ds+

∫ t

0

σ2
x(V

i,Nc
s , xi,Ncs )χ(xi,Ncs )ds

−
∫ t

0

σ2
x(V

i,Nc
s , xi,Ncs )χ(xi,Ncs )ds

∣∣∣∣ ≤ Ct

Nc

,

and then the left-hand side converges almost surely to 0, from where (4.2.20) holds.
The argument for y is similar.

4.4 Propagation of Chaos

In the human brain there are from 78.92 × 109 to 95.40 × 109 neurons (See [6]). This
huge amount of interacting objects resemble the mechanical statistic context, and nowadays
is classical in mathematical neuroscience to study the mean field limits of this interacting
network of neurons. There are several works in this direction: [8], [15], [33] and [62], just to
mention a few. A review of the mean field approach in neuroscience can be found in [29]. To
the best of our knowledge, mean field limits are not been studied for the hybrid model, and
in that context our work has some novelty. On the other hand, the existence and convergence
to the mean field limit for a different version of our diffusive model, was proposed in [8] and
proved rigorously in [15]. In contrast with our models, the authors of [8] and [15] consider:

1. A context of several populations.
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4.4. Propagation of Chaos

2. Random processes as conductance coefficients {JE(t)}t≥0, {JCh(t)}t≥0.

3. A white noise appearing in the dynamic for the potential V .

The first point is not difficult to incorporate in our model, in fact it only makes the com-
putations a little harder to write. The second point is a big difference, and in fact is one
of the reasons why in [15] the authors do not obtain an optimal rate of convergence for the
propagation of chaos. We could incorporate bounded processes for the conductances, but
in a more general case we do not know for sure how much of our proof would have to be
changed. The third point is interesting, because on one hand, our results relay heavily on
the fact that almost surely the voltage component is uniformly bounded for t ≥ 0, which is
not true if we add a Brownian motion in the dynamic for V . On the other hand, since we
are considering the hybrid model as starting point, it is very natural to consider noise only
at the channels.

In this section, following [8] and [15], we will only consider chemical synapses. That is, we
take JE = 0. We treat in Section 4.4.2 the Hybrid model, and in Section 4.4.3 the diffusive
model.

4.4.1 Some preliminaries on Propagation of Chaos.

Let us consider a system of N particles X(1), . . . , X(N) interacting in a mean field fashion.
That is, the aggregate effect of system over a single particle depends only on the empirical
measure of the whole particle system. Let µNt be the empirical law of the system at time t,
then the dynamic of X(i) is given by

X
(i)
t = X

(i)
0 +

∫ t

0

σ[X(i)
s , µNs ]dW (i)

s +

∫ t

0

b[X(i)
s , µNs ]ds, (4.4.1)

where σ and b are suitable functions and W (i) are independent Brownian motions.

Associated to the particle system given by (4.4.1) there exists a nonlinear process in the
sense of McKean [59] given as the solution of

X t = X0 +

∫ t

0

σ[Xs, µs]dW
(i)
s +

∫ t

0

b[Xs, µs]ds, µs = law(Xs). (4.4.2)

Under regularity assumptions on b and σ, and exchangeability of the particles in (4.4.1) for
i.i.d. initial conditions, it can be shown that for all T > 0, there exists C(T ) such that

NE
[
sup
t≤T
|X(i)

t −X
(i)

t |2
]
≤ C(T ). (4.4.3)

From this property, it follows that for any k ∈ N, the law of a set of k particles of the
system (4.4.1) converges as the total number of particles goes to infinity to the joint law of
k independent copies of the nonlinear process. In particular, each fixed finite subset of k
particles is asymptotically independient. This property is called propagation of chaos. For
further background see [60] and [74].
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

A posible interpretation for the propagation of chaos is the following: Given an interacting
particle system with N large, the evolution of any particle can be approximated by an
average particle given by the nonlinear process. The error of this approximation will be of
order C(T )/N . Nevertheless, the function C(T ) in the right-hand side of (4.4.3) is usually
increasing, thus if we consider larger time windows the approximation given by the nonlinear
process degrades as T increase.

To have an approximation for the system uniform on time, the particle system has to
propagates chaos uniformly, that is

N sup
t≥0

E
[
|X(i)

t −X
(i)

t |2
]
≤ C. (4.4.4)

Naturally, the uniform propagation of chaos is much more difficult to prove.

4.4.2 Propagation of Chaos for the Hybrid Model

We are interested in the behavior of the model (4.3.7) when the number of neurons goes to
infinity. In what follows, we fix the number of ionic channels Nc, and for the sake of clarity,
we drop the superscript Nc in the notation. Let us recall the hybrid model.

V
(i)
t = V

(i)
0 +

∫ t

0

I − gCam
(i)
s (V (i)

s − VCa)− gKn
(i)
s (V (i)

s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JChȳ
N
s (Vs − Vrev)ds,

x
(i)
t = x

(i)
0 +

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (V
(i)
s− ,x

(i)
s−)}N

x,i
0 (dλds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx1 (V
(i)
s− ,x

(i)
s−)}N

x,i
1 (dλds), for x = m,n, y.
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4.4. Propagation of Chaos

The nonlinear process

Our goal is to show that when the number of neurons increases to infinity (i.e. N → ∞),
any finite set of neurons behave as independent copies of the following nonlinear process.

Ṽt = Ṽ0 +

∫ t

0

I − gCam̃s(Ṽs − VCa)− gKñs(Ṽs − VK)ds

−
∫ t

0

gL(Ṽs − VL)ds−
∫ t

0

JCh〈µ̃ys〉1(Ṽ (i)
s − Vrev)ds,

x̃t = x0 +

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (Ṽs−,x̃s−)}N
x
0 (dλds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (Ṽs−,x̃s−)}N
x
1 (dλds), for x = m,n, y.

〈µ̃ys〉1 =

∫ (1)

0

qµ̃ys(dq), µ̃
y
s = law(ỹs),

(4.4.5)

where for simplicity for all i = 1, . . . , N , lawṼ0) = law(V
(i)

0 ). Consequently,

|Ṽ0| ∈ L∞(Ω). (4.4.6)

Our program is the following:

1. To prove the well-posedness of equation (4.4.5). To do so, we introduce an auxiliary
linear problem, and then we use a fixed point argument.

2. To prove the strong convergence for a particle of the system (4.3.5) to the solution of
(4.4.5).

The auxiliary problem

To prove the existence of the nonlinear process, we introduce an auxiliary problem, and
follow some ideas from [11]. In what comes next we will consider T > 0. Let us denote
R = R× [0, 1]× [0, 1]× [0, 1], and P the set of probability measures over R, then

P1 =

{
Q : Q ∈ P ,

∫
R
|v|+ |u1|+ |u2|+ |u3|Q(dv, du1, du2, du3) <∞

}
.

P1 is a complete and separable metric space when it is endowed with the Wasserstein metric

W(Q1, Q2) = inf
π∈Π(Q1,Q2)

∫
R×R
‖x− y‖1dπ(x, y),

where Π(Q1, Q2) is the set of all couplings between Q1 and Q2, that is the set of all probability
measures π over R×R, whose marginals are Q1 and Q2. For details on Wasserstein metrics
see [70], [78, 79].
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Chapter 4. Stochastic Morris-Lecar Model for Neurons

We also consider the set

C ([0, T ],P1) = {ν : [0, T ]→ P1, ν continuous} ,

endowed with the metric
W(ν1, ν2) = sup

0≤t≤T
W(ν1

t , ν
2
t ).

The metric space (C ([0, T ],P1) ,W) is complete.

For ν ∈ C ([0, T ],P1), and t ∈ [0, T ], we will denote by νyt the marginal law of νt with
respect to its fourth coordinate, that is, for any A ⊂ [0, 1] measurable,

νyt (A) =

∫
R

∫ 1

0

∫ 1

0

∫ 1

0

1A(y)νt(dv, dm, dn, dy),

and we will denote by 〈νyt 〉1 the first moment of νyt , that is

〈νyt 〉1 =

∫ 1

0

yνyt (dy).

Notice that for any ν ∈ C ([0, T ],P1) the function g : [0, T ] → R given by g(t) = 〈νyt 〉1 is
continuous. Indeed, the continuity of g is a direct consequence of the bound

|〈νyt 〉1 − 〈νys 〉1| ≤ W(νt, νs),

since for any coupling between πst of νt and νs we have that

|〈νyt 〉1 − 〈νys 〉1| ≤
∫
R×R
‖x− y‖dπst(x, y).

Let ν ∈ C ([0, T ],P1), and consider the equation

Ṽt = Ṽ0 +

∫ t

0

I − gCam̃s(Ṽs − VCa)− gKñs(Ṽs − VK)ds

−
∫ t

0

gL(Ṽs − VL)ds−
∫ t

0

JCh〈νys 〉1(Ṽ (i)
s − Vrev)ds,

x̃t = x0 +

∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx0 (Ṽs−,x̃s−)}N
x
0 (dλds)

−
∫ t+

0

∫ ∞
0

1

Nc

1{λ≤λx1 (Ṽs−,x̃s−)}N
x
1 (dλds), for: x = m,n, y.

(4.4.7)

Proposition 4.4.1. Assume equation (4.4.7) has a solution (Ṽt, m̃t, ñt, ỹt)0≤t≤∞. Then, there
exists a constant V+ depending on V0 and the parameters of the system, such that

sup
0≤t≤∞

|Ṽt| ≤ V+ a.s. (4.4.8)
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4.4. Propagation of Chaos

Proof. The key point is to notice that the equation for Ṽ can be written as

Ṽt = Ṽ0 +

∫ t

0

Rs − AsṼsds,

where
Rs = I + gLVL + gCaVCam̃s + gKVKñs + JChVrev〈νys 〉1,

and
As = gL + gCam̃s + gKñs + JCh〈νys 〉1.

Then

Ṽt = V0 exp

(
−
∫ t

0

Asds

)
+

∫ t

0

Rs exp

(
−
∫ t

s

Auds

)
ds. (4.4.9)

Let
R+ = max

m,n,ν∈[0,1]
I + gLVL + gCaVCam+ gKVKn+ JChVrevν,

then Rs ≤ R+. Since As ≥ gL,

Ṽt ≤ |V0|e−gLt +

∫ t

0

R+e
−gL(t−s)ds =

(
|V0| −

R+

gL

)
e−gLt +

R+

gL
.

Then the bound (4.4.8) follows taking

V+ = max

{
|V0|,

R+

gL

}
.

Lemma 4.4.2. The linear auxiliary problem (4.4.7) has a unique strong solution.

The proof of this Lemma is the very similar to the proof of Lemma 4.3.4, so we omit it.

Proposition 4.4.3. Let (Ṽt, m̃t, ñt, ỹt)t∈[0,T ] be the solution of (4.4.7). Then the function
t→ law(Ṽt, m̃t, ñt, ỹt) is a continuous function from [0, T ] to P1. That is

law(Ṽ·, m̃·, ñ·, , ỹ·) ∈ C ([0, T ],P1) .

Proof. Notice that

E
(
|Ṽt−Ṽu|

)
≤

E
∫ t

u

|I|+ gCa|Ṽs − VCa|+ gK|Ṽs − VK|+ gL|Ṽs − VL)ds|+ JCh|Ṽ (i)
s − Vrev|ds.

On the other hand, for x = m,n, y

E (|x̃t − x̃u|) ≤ E
∫ t

u

∫ ∞
0

1

Nc

1{λ≤λx0 (Ṽs,x̃s)}dλds+ E
∫ t

u

∫ ∞
0

1

Nc

1{λ≤λx1 (Ṽs,x̃s)}dλds

=
1

Nc

E
∫ t

u

λx0(Ṽs, x̃s) + λx1(Ṽs, x̃s)ds
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From this last inequalities and the boundedness of the integrands, is easy to see

E
(
|Ṽt − Ṽu|

)
+ E (|m̃t − m̃u|) + E (|ñt − ñu|) + E (|ỹt − ỹu|) ≤ C|t− u|,

from where
W1(law(Ṽt, m̃t, ñt, ỹt), law(Ṽu, m̃u, ñu, ỹu)) ≤ C|t− u|.

Thus, the function t→ law(Ṽt, m̃t, , ñt, ỹt) is not just a continuous function from [0, T ] to P1,
it is indeed locally Lipschitz.

Let us consider now the operator

Φ : C ([0, T ],P1)→ C ([0, T ],P1)

ν → law(Ṽ·, m̃·, ñ·, ỹ·),

where (Ṽt, m̃t, ñt, ỹt)t∈[0,T ] is the solution of (4.4.7). Notice that thanks to the last Lemma Φ
is well defined.

Remark 4.4.4. The same computation done to prove (4.4.8), shows that for all t ≥ 0, and for
all ν ∈ C ([0, T ],P1),

supp(Φ(ν)t) ⊂ [−V+, V+]× [0, 1]× [0, 1]× [0, 1].

Lemma 4.4.5. The operator Φ has a unique fixed point, or equivalently the nonlinear equa-
tion (4.4.5) has a unique solution.

Proof. Let ν1, ν2 ∈ C ([0, T ],P1) and X̃
(i)
t = (Ṽ (i), m̃(i), ñ(i), ỹ(i)), i = 1, 2, the solutions of

(4.4.5) for ν1 and ν2 respectively. Then∣∣∣Ṽ (1)
t − Ṽ (2)

t

∣∣∣ ≤ ∫ t

0

∣∣gCam̃
(2)
s + gKñ

(2)
s + gL + JCh〈ν1,y

s 〉1
∣∣ ∣∣∣Ṽ (1)

s − Ṽ (2)
s

∣∣∣ ds
+

∫ t

0

gCa

∣∣∣Ṽ (1)
s − VCa

∣∣∣ ∣∣m̃(1)
s − m̃(2)

s

∣∣+ gK

∣∣∣Ṽ (1)
s − VK

∣∣∣ ∣∣ñ(1)
s − ñ(2)

s

∣∣ ds
+

∫ t

0

JCh

∣∣∣(Ṽ (2)
s − Vrev

)∣∣∣ ∣∣〈ν2,y
s 〉1 − 〈ν2,y

s 〉1
∣∣ ds.

If we call

KV = max {gCa [|VCa|+ V+] , gK [|VK|+ V+] , [gL + gCa + gK + JCh]} ,

and
∆s(ν

1, ν2) :=
∣∣〈ν1,y

s 〉1 − 〈ν2,y
s 〉1

∣∣ ,
we have ∣∣∣Ṽ (1)

t − Ṽ (2)
t

∣∣∣ ≤ KV

∫ t

0

‖X̃(1)
s − X̃(2)

s ‖1ds+

∫ t

0

JCh (V+ + |Vrev|) ∆s(ν
1, ν2)ds.
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Proceeding in the same way as before, we can prove that for x = m,n, y

E
∣∣∣x̃(1)
t − x̃

(2)
t

∣∣∣ ≤ Kx

∫ t

0

(
E
∣∣x̃(1)
s − x̃(2)

s

∣∣+ E
∣∣∣Ṽ (1)
s − Ṽ (2)

s

∣∣∣) ds.
This yields

E
(
‖X̃(1)

t − X̃
(2)
t ‖1

)
≤ (KV +Km +Kn +Ky)

∫ t

0

E
(
‖X̃(1)

s − X̃(2)
s ‖1

)
ds

+

∫ t

0

JCh(V+ + |Vrev|)∆s(ν
1, ν2)ds,

and by Growall’s Lemma it yields,

E
(
‖X̃(1)

t − X̃
(2)
t ‖1

)
≤ exp (Kt)

∫ t

0

JCh(V+ + |Vrev|)∆s(ν
1, ν2)ds, (4.4.10)

where K = KV +Km +Kn +Ky. But if πs is any coupling between ν1
s and ν2

s , we have

∆s(ν
1, ν2) =

∣∣∣∣∫ 1

0

x3 ν
1,y
s (dx3)−

∫ 1

0

x′3ν
2,y
s (dx′3)

∣∣∣∣
≤
∣∣∣∣∫

R
v ν1,V

s (dv)−
∫
R
v′ν2,V

s (dv′)

∣∣∣∣+

∣∣∣∣∫ 1

0

x1 ν
1,m
s (dx1)−

∫ 1

0

x′1ν
2,m
s (dx′1)

∣∣∣∣
+

∣∣∣∣∫ 1

0

x2 ν
1,n
s (dx2)−

∫ 1

0

x′2ν
2,n
s (dx′2)

∣∣∣∣+

∣∣∣∣∫ 1

0

x3 ν
1,y
s (dx3)−

∫ 1

0

x′3ν
2,y
s (dx′3)

∣∣∣∣
=

∣∣∣∣∫
R2

v − v′ πVs (dv, dv′)

∣∣∣∣+

∣∣∣∣∫
[0,1]2

x1 − x′1 πms (dx1, dx
′
1)

∣∣∣∣
+

∣∣∣∣∫
[0,1]2

x2 − x′2 πns (dx2, dx
′
2)

∣∣∣∣+

∣∣∣∣∫
[0,1]2

x3 − x′3 πys (dx3, dx
′
3)

∣∣∣∣
≤
∫

(R×[0,1]3)2
‖X −X ′‖1πs(dvdx1dx2dx3, dv

′dx′1dx
′
2dx

′
3),

where ‖X −X ′‖1 = |v− v′|+ |x1− x′1|+ |x2− x′2|+ |x3− x′3|. Since the last inequality holds
for any coupling between v1

s and v1
s , we have

∆s(ν
1, ν2) ≤ W(ν1

s , ν
2
s ).

On the other hand
W(Φ(ν1)t,Φ(ν2)t) ≤ E

(
‖X̃(1)

t − X̃
(2)
t ‖1

)
.

Putting these two bounds in (4.4.10), we have

W(Φ(ν1)t,Φ(ν2)t) ≤ exp (Kt)

∫ t

0

JCh(V+ + |Vrev|)W(ν1
s , ν

2
s )ds,

so if we call κT = JCh(V+ + |Vrev|) exp(KT ), we deduce that

sup
s≤t
W(Φ(ν1)s,Φ(ν2)s) ≤ κT

∫ t

0

sup
u≤s
W(ν1

u, ν
2
u)ds. (4.4.11)
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Let us consider now the sequence of probability flows νn+1 = Φ(νn), with ν0 = ν ∈ P1.
Iterating the last inequality we conclude that

sup
t≤T
W(νn+1

t , νnt ) ≤ (κTT )n

n!
sup
t≤T
W(ν1

t , ν
0
t ).

Therefore, if m ≥ n we have

sup
t≤T
W(νmt , ν

n
t ) ≤ sup

t≤T
W(ν1

t , ν
0
t )

m−1∑
k=n

(κTT )k

k!
,

but the right-hand side is the tail of a convergent serie, and so goes to zero when n goes to
infinity. Hence {νn}n≥0 is a Cauchy sequence in C ([0, T ],P1), and since this is a complete
metric space, we conclude that the sequence converges. Is easy to show that the limit of the
sequence is the unique fixed point of Φ.

Remark 4.4.6. Thanks to Lemma 4.4.5 we have that the nonlinear equation (4.4.5) is well
posed in [0, T ] for every T > 0. Since the restriction of the solution in the interval [0, T ′] to
the interval [0, T ] with T < T ′ will be a solution, because of the uniqueness of solutions in
[0, T ], we have that the solution for (4.4.5) can be extended to [0,∞).

Propagation of Chaos

Lemma 4.4.7. Let T > 0 and X̃(i)
t = (Ṽ

(i)
t , m̃

(i)
t , ñ

(i)
t , ỹ

(i)
t ) a solution of the nonlinear equation

(4.4.5) and X(i)
t = (V

(i)
t ,m

(i)
t , n

(i)
t , y

(i)
t ) a solution for the N neurons system (4.3.5), then

√
N sup

0≤t≤T
E
(∥∥∥X̃t −Xt

∥∥∥
1

)
≤ TJCh(V+ + |Vrev|)eK̃T .

Proof. Proceeding as before we can show for x = m,n, y

E
(
|x̃(i)
t − x

(i)
t |
)
≤ Kx

∫ t

0

[
E
(
|x̃(i)
t − x

(i)
t |
)

+ E
(
|Ṽ (i)
t − V

(i)
t |
)]
ds,

and for V∣∣∣Ṽ (1)
t − Ṽ (2)

t

∣∣∣ ≤ KV

∫ t

0

‖X̃(1)
s − X̃(2)

s ‖1ds

+

∫ t

0

JChE
(∣∣∣(Ṽ (i)

s − Vrev

)
〈µ̃i,ys 〉1 −

(
V (i)
s − Vrev

)
ȳNs

∣∣∣) ds, (4.4.12)

where µ̃(i)
s = law(ỹ

(i)
t ), 〈µ̃i,ys 〉1 =

∫ (1)

0
yµ̃

(i)
s (dy), and ȳNs is the empirical mean of the variables

y
(i)
s .
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4.4. Propagation of Chaos

To bound the second term in (4.4.12) we introduce the empirical measure of the fourth
component of the nonlinear process ỹNs =

∑N
i=1 ỹ

(i)
s /N . Then

E
(∣∣∣(Ṽ (i)

s − Vrev

)
〈µ̃i,ys 〉1 −

(
V (i)
s − Vrev

)
ȳNs

∣∣∣)
≤ E

(∣∣∣(Ṽ (i)
s − Vrev

)
〈µ̃i,ys 〉1 −

(
Ṽ (i)
s − Vrev

)
ỹNs

∣∣∣)
+ E

(∣∣∣(Ṽ (i)
s − Vrev

)
ỹNs −

(
V (i)
s − Vrev

)
ȳNs

∣∣∣) .
(4.4.13)

Since Ṽ (i)
t is uniformly bound on [0, T ] we have

E
(∣∣∣ (Ṽ (i)

s − Vrev

)
〈µ̃i,ys 〉1 −

(
Ṽ (i)
s − Vrev

)
ỹNs

∣∣∣)
≤ (V+ + |Vrev|)E

(∣∣〈µ̃j,ys 〉1 − ỹNs ∣∣)
= (V+ + |Vrev|)E

(∣∣∣∣∣ 1

N

N∑
j=1

〈µ̃j,ys 〉1 − ỹ(j)
s

∣∣∣∣∣
)

≤ (V+ + |Vrev|)
N

√√√√√E

[ N∑
j=1

〈µ̃j,ys 〉1 − ỹ(j)
s

]2


=
(V+ + |Vrev|)

N

√√√√E

(
N∑
j=1

N∑
k=1

(
〈µ̃j,ys 〉1 − ỹ(j)

s

)(
〈µ̃k,ys 〉1 − ỹ(k)

s

))
,

but the variables ỹ(j) are pairwise independent and identically distributed, so

E

(
N∑
j=1

N∑
k=1

(
〈µ̃j,ys 〉1 − ỹ(j)

s

) (
〈µ̃i,ys 〉1 − ỹ(k)

s

))
= NE

((
〈µ̃1,y

s 〉1 − ỹ(1)
s

)2
)
≤ N.

So,

E
(∣∣∣(Ṽ (i)

s − Vrev

)
〈µ̃i,ys 〉1 −

(
Ṽ (i)
s − Vrev

)
ỹNs

∣∣∣) ≤ V+ + |Vrev|√
N

.

For the second term in (4.4.13) we have

E
(∣∣∣ (Ṽ (i)

s − Vrev

)
ỹNs −

(
V (i)
s − Vrev

)
ȳNs

∣∣∣)
= E

(∣∣∣(Ṽ (i)
s − V (i)

s

)
ỹNs −

(
V (i)
s − Vrev

) (
ỹNs − ȳNs

)∣∣∣)
≤ E

(∣∣∣(Ṽ (i)
s − V (i)

s

)∣∣∣)+ (V+ + |Vrev|)E
(∣∣ỹNs − ȳNs ∣∣) ,

because V (i)
s are uniformly bounded on [0, T ]. By symmetry of the N neurons system and

since the nonlinear processes are i.i.d, we have

E
(∣∣ỹNs − ȳNs ∣∣) ≤ 1

N

N∑
j=1

E
(∣∣ỹ(j)

s − y(j)
s

∣∣) = E
(∣∣ỹ(i)

s − y(i)
s

∣∣) .
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Putting these last computations in (4.4.13), we have

E
(∣∣∣ (Ṽ (i)

s − Vrev

)
〈µ̃i,ys 〉1 −

(
V (i)
s − Vrev

)
ȳNs

∣∣∣)
≤ E

(∣∣∣(Ṽ (i)
s − V (i)

s

)∣∣∣)+ (V+ + |Vrev|)E
(∣∣ỹ(i)

s − y(i)
s

∣∣)+
V+ + |Vrev|√

N
.

Putting these computations back on (4.4.12), we find∣∣∣Ṽ (1)
t − Ṽ (2)

t

∣∣∣ ≤ K̃V

∫ t

0

‖X̃(1)
s − X̃(2)

s ‖1ds+
JCh(V+ + |Vrev|)√

N
.,

and then summarizing all the previous computations we have

E
(∥∥∥X̃(i)

t −X
(i)
t

∥∥∥
1

)
≤ K̃

∫ t

0

E
(∥∥∥X̃(i)

s −X(i)
s

∥∥∥
1

)
ds+

tJCh(V+ + |Vrev|)√
N

,

and then thanks to Gronwall’s inequality we can conclude
√
N sup

0≤t≤T
E
(∥∥∥X̃(i)

t −X
(i)
t

∥∥∥
1

)
≤ TJCh(V+ + |Vrev|)eK̃T ,

in other words for a fixed number of channels Nc propagation of chaos holds.

Remark 4.4.8. The result of propagation of chaos can be easily extended to a model with more
than one population and with JCh, the maximal conductance coefficient, being a stochastic
process uniformly bounded for t ≥ 0.
Remark 4.4.9. The constant K̃ = K̃V +Km +Kn +Ky, and the constant Kx depend on the
functions ρx, ζx, and are independent of Nc in the non perturbed case, and linear on Nc in
the perturbed one.
Remark 4.4.10. It is very natural to try to obtain the bound of the propagation of chaos with
the supremum inside of the expectation, that is,

E
[

sup
0≤t≤T

∥∥∥X̃(i)
t −X

(i)
t

∥∥∥
1

]
≤ C√

N
.

But in this case, this does not seem easy to do. If we apply the Burkholder Davis Gundy
inequality to the martingale part of the hybrid model, it will appear the square root of the
quadratic variation which will not allows to conclude with Gronwall’s inequality. Alterna-
tively, someone could suggest to consider ‖ · ‖2 instead of ‖ · ‖1, but we already explain before
that the indicators inside of the integrals with respect to the Poisson measures, does not get
along with the ‖ · ‖2.

4.4.3 Propagation of Chaos for the Diffusive Model

In this section we are going to prove that the diffusive model for the interacting particle
system (4.3.9) converges, as the number of neurons goes to infinity, to the solution of the
nonlinear equation
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4.4. Propagation of Chaos

Ṽt = Ṽ0 +

∫ t

0

I − gCam̃s(Ṽs − VCa)− gKñs(Ṽs − VK)ds

−
∫ t

0

gL(Ṽs − VL)ds−
∫ t

0

JCh〈µ̃ys〉1(Ṽs − Vrev)ds

x̃t = x̃0 +

∫ t

0

(1− x̃s)ρx(Ṽs)− x̃sζx(Ṽs)ds

+

∫ t

0

σx(Ṽs, x̃s)χ(x̃s)dW
x
s , x = m,n, y

µ̃ys = law(ỹs).

(4.4.14)

This equation has been studied in [15], where have been proved the well posedness of
the equation and a general propagation of chaos result, although with a non optimal rate of
convergence. In our particular case, we obtain a propagation of chaos result with optimal
rate of convergence

√
N .

Proposition 4.4.11. Let T > 0 and X̃(i)
t = (Ṽ

(i)
t , m̃

(i)
t , ñ

(i)
t , ỹ

(i)
t ) a solution of the nonlinear

equation (4.4.14) and X(i)
t = (V

(i)
t ,m

(i)
t , n

(i)
t , y

(i)
t ) a solution for the N neurons system (4.3.9).

Assume that
min

{
inf
v∈R

ρx(V ), inf
v∈R

ζx(V )

}
> 0. (4.4.15)

Then we have
NE

(
sup

0≤t≤T

∥∥∥X̃(i)
t −X

(i)
t

∥∥∥2
)
≤ K(1 + T )eK2T .

Remark 4.4.12. Assumption (4.4.15) is also made in [15]. Notice that in our case, since ρx
and ζx are continuous and the V components of the systems involve are confined in a compact
interval K, we can always replace ρx and ζx by a some functions ρ′x and ζ ′x, such that ρx and
ρ′x agree on K, ζx and ζ ′x too, but ρ′x and ζ ′x satisfy (4.4.15).

Proof. Let ∆V
(i)
t = Ṽ

(i)
t − V

(i)
t , and for x = m,n, y, ∆x

(i)
t = x̃

(i)
t − x

(i)
t . Just as before, under

the hypothesis of Ṽ0 being bounded, we have |Ṽt| ≤ V+ a.s. Then

(∆V
(i)
t )2 = −2

∫ t

0

gCa(VCa − Ṽ (i)
s )∆m(i)

s ∆V (i)
s ds− 2

∫ t

0

gK(VK − Ṽ (i)
s )∆n(i)

s ∆V (i)
s ds

− 2

∫ t

0

JCh(Vrev − Ṽ (i)
s )(〈µ̃ys〉1 − ȳNs )∆V (i)

s ds

− 2

∫ t

0

(gL + gCam
(i)
s + gKn

(i)
s + JChȳ

N
s )
(
∆V (i)

s

)2
ds

≤ K1

∫ t

0

sup
u≤s
{
(
∆V (i)

u

)2
+
(
∆m(i)

u

)2
+
(
∆n(i)

u

)2}ds

+

∫ t

0

(〈µ̃ys〉1 − ȳNs )2ds.
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Since the right side is increasing on t, we can take supremum and then expectation to get

E
[
sup
s≤t

(∆V
(i)
t )2

]
≤ K1

∫ t

0

E
[
sup
u≤s
{
(
∆V (i)

u

)2
+
(
∆m(i)

u

)2
+
(
∆n(i)

u

)2}
]
ds

+

∫ t

0

E
[
(〈µ̃ys〉1 − ȳNs )2

]
ds.

The same computation we did in the discrete case, shows that

E
[
(〈µ̃ys〉1 − ȳNs )2

]
≤ E

[
(∆y(i)

s )2
]

+
K2

N
,

from where

E
[
sup
s≤t

(∆V
(i)
t )2

]
≤ K1

∫ t

0

E
[
sup
u≤s

∥∥∥X̃(i)
s −X(i)

s

∥∥∥2
]
ds+

K2t

N
.

On the other hand for x = m,n, y, we have

(∆x
(i)
t )2 =

(∫ t

0

(1− x(i)
t )(ρx(Ṽ

(i)
t )− ρx(V (i)

t ))ds+

∫ t

0

x
(i)
t (ζx(Ṽ

(i)
t )− ζx(V (i)

t ))ds

−
∫ t

0

(
ρx(Ṽ

(j)
s ) + ζx(Ṽ

(j)
s )
)

∆x(i)
s ds+

∫ t

0

σx(Ṽ
(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )dW (i)
s

)2

.

Since (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), and thanks to Jensen’s inequality(∫ t

0

f(s)ds

)2

≤ t

∫ t

0

f(s)2ds,

we have

(∆x
(i)
t )2 ≤ 4t

∫ t

0

(ρx(Ṽ
(i)
t )− ρx(V (i)

t ))2ds+ 4t

∫ t

0

(ζx(Ṽ
(i)
t )− ζx(V (i)

t ))2ds

+ 4t

∫ t

0

(
ρx(Ṽ

(j)
s ) + ζx(Ṽ

(j)
s )
)2

(∆x(i)
s )2ds

+ 4

(∫ t

0

σx(Ṽ
(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )dW (i)
s

)2

.

The functions ρx and ζx are bounded and Lipschitz, then

(∆x
(i)
t )2 ≤ K3t

∫ t

0

(∆V (i)
s )2 + (∆x(i)

s )2ds

+ 4

(∫ t

0

σx(Ṽ
(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )dW (i)
s

)2

,

from where

E
[
sup
s≤t

(∆x(i)
s )2

]
≤ K3T

∫ t

0

E
[
sup
u≤s
{(∆V (i)

u )2 + (∆x(i)
u )2}

]
ds

+ 4E

[
sup
s≤t

(∫ s

0

(
σx(Ṽ

(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )
)
dW (i)

s

)2
]
.
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From the Burkholder-Davis-Gundy inequality, and the Lipschitz property of σx, it follows

E
[

sup
s≤t

(∫ s

0

(
σx(Ṽ

(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )
)
dW (i)

s

)2]
≤ K4E

[∫ t

0

(
σx(Ṽ

(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )
)2

ds

]
.

Under assumption (4.4.15) it is straightforward to prove that the function σx is Lipschitz.
Thus we have

E
[

sup
s≤t

(∫ s

0

(
σx(Ṽ

(i)
s , x̃(i)

s )− σx(V (i)
s , x(i)

s )
)
dW (i)

s

)2]
≤ K4

∫ t

0

E
[
sup
u≤s
{(∆V (i)

u )2 + (∆x(i)
u )2}

]
ds.

Then we have

E
[
sup
s≤t

(∆x(i)
s )2

]
≤ Kx(1 + T )

∫ t

0

E
[
sup
u≤s
{(∆V (i)

u )2 + (∆x(i)
u )2}

]
ds.

Putting all the computations together we obtain

E
[
sup
s≤t

∥∥∥X̃(i)
s −X(i)

s

∥∥∥2
]
≤ K(1 + T )

∫ t

0

E
[
sup
u≤s

∥∥∥X̃(i)
s −X(i)

s

∥∥∥2
]
ds+

K2T

N
,

from where we conclude thanks to Gronwall’s Lemma.

4.5 Long Time Behavior

From the mathematical point of view, it is very natural to try to answer the following three
set of questions:

1. Is there an invariant distribution for the particle system? In that case, Is there conver-
gence of the law of the system to this distribution as t → ∞? Is this convergence to
equilibrium homogeneous in the size of the network N?

2. Is there an invariant distribution for the nonlinear process? In that case, Is there
convergence of the law of the process to this distribution as t→∞?

3. Does uniform propagation of chaos holds? That is

√
N sup

t≥0
E
(∥∥∥X̃(i)

t −X
(i)
t

∥∥∥
1

)
≤ C.
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Notice that if all these questions have a positive answer, then the invariant law of the nonlinear
process can be approximated by the law of the particle system for N and t large. For example,
if f is nice enough,

∣∣∣E [f(X̃∞)
]
− E

[
f(XN

t )
]∣∣∣ ≤ ∣∣∣E [f(X̃∞)

]
− E

[
f(X̃t)

]∣∣∣+
∣∣∣E [f(X̃t)

]
− E

[
f(XN

t )
]∣∣∣ ,

and the first term in the right side can be controlled by the convergence to the equilibrium of
the nonlinear process, whereas the second one can be controlled by the uniform propagation
of chaos.

Unfortunately, we have not been able yet to give a positive answer to these questions, which
have proved to be very difficult. In the case of the diffusive model, the system for the neurons
(4.3.9) is hypoelliptic, not Hamiltonian and with non constant diffusion coefficients. Although
there are some works in the literature addressing models with some of these difficulties,
for example in [12] Bolley et al. study a kinetic equation which is hypoelliptic and not
Hamiltonian or, in [76], Tugaut studies a nonlinear process subject to a non-convex potencial,
the techniques they proposed are very ad-hoc and we did not succeed in adapting them to our
case. In the case of the hybrid models, the main obstacle we found was the incompatibility
between the ‖ · ‖2 norm and the dynamic of the process. The hybrid model is in some degree
dissipative, but exploiting this property requieres to deal with estimations in ‖·‖2, which leads
to bounds we were not able to close. To avoid these difficulties, in [9], Benaïn et al. consider
a metric for the probability laws of hybrid models consisting in the Wasserstain distance for
the continuous components and total variation distance for the proportion processes. We will
comment later more details of that work.

Nevertheless, in the course of trying to understand the long term behavior of the particle
system, we perform numerical simulations and we observed very interesting phenomena of
synchronization, that we discuss in Sections 4.5.2 and 4.5.2.

We continue this section by commenting some known results about the long term behavior
of system of neurons and the nonlinear process.

4.5.1 Some known results from the literature

Although in the literature there are other works that investigate the long time behavior of
neuron models (see for example [33], [42]), we would like to remark two works which we
consider closer to our case.

In the discrete context, we would like to comment the work by Benaïm et al. [9]. Let us
recall the main results of the article.
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Theorem 4.5.1 (Theorem 1.15 in [9]). Let E be a finite set, and for any i ∈ E, F i : Rd → Rd

and smooth field. Let (Zt)t≥0 = (Xt, It)t≥0 be a Markov Process taking values on Rd × E,
defined by its extended generator

Lf(x, i) = 〈F i(x),∇xf(x, i)〉+
∑
j∈E

a(x, i, j) [f(x, j)− f(x, i)] .

Consider the following asumptions:

1. There exists a > 0 and K > 0 such that, for any x, x̃ ∈ Rd and i, j ∈ E,

a(x, i, j) ≥ a and
∑
j∈E

|a(x, i, j)− a(x̃, i, j)| ≤ |x− x̃|.

2. There exists α > 0 such that,

〈x− x̃, F i(x)− F i(x̃)〉 ≤ −α|x− x̃|2, x, x̃ ∈ Rd, i ∈ E.

Let ηt (resp. η̃t) be the distribution at time t of the process Zt starting from η0 (resp.η̃0), then
there exist positive constants r, c and γ such that

W1(ηt, η̃t) ≤ (1 + 2r)(1 + ct) exp

(
− α

1 + α/γ
t

)
, (4.5.1)

where

W1(η, η̃) = inf

{(
E
[
|X − X̃|p

])1/p

+ P(I 6= Ĩ) : (X, I) ∼ η(X̃, Ĩ) ∼ η̃

}
,

and γ depends on the coalescence time of two independent processes defined on E as the
second coordinates of independent copies of Z.

Corollary 4.5.2 (Corollary 1.16 in [9]). Under the hypothesis of the previous Theorem, the
process Z admits a unique invariant measure η∞ and

W1(ηt, η∞) ≤ (1 + 2r)(1 + ct) exp

(
− α

1 + α/γ
t

)
.

As an example, the authors of [9] apply their main result to a single neuron with a
stochastic dynamics given by (4.2.8). Notice that in this case, in the notation of [9], d = 1,
E = {1/Nc, 2/Nc, . . . , 1− 1/Nc, 1}2, i = (m,n) and

F (m,n)(V ) = I − gL(V − VL)− gCam(V − VCa)− gKn(V − VK).

This model does not satisfy the uniform lower bound for the jump rates appearing in Hy-
pothesis 1. In fact,

a

(
x, (m,n) ,

(
m+

2

Nc

, n

))
= 0.
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However, reviewing the proof of Theorem 4.5.1 it can be noticed that the hypothesis of
uniform lower bound for the jump rates is only used to ensure that the coalescent time of
the discrete components of two independent copies of the process starting from different
initial conditions, Tc(x, i, x′, i′), is stochastically bounded by an exponential random variable,
uniformly on x, x′, i, i′. That is, there exists β > 0 such that

∀ x, x′ ∈ Rd, ∀i, i′ ∈ E P (Tc(x, i, x
′, i′) > t) ≤ e−βt.

In the case of the hybrid model (4.2.8), this property holds, thanks to the boundedness of
the continuous part of the hybrid model and the continuity of ρx(·) and ζx(·). On the other
hand, the fields driving the continuous dynamic satisfy the hypothesis of coercitivity. Indeed,

〈V − Ṽ , F (m,n)(V )− F (m,n)(Ṽ )〉 = −gL(V − Ṽ )2 − gCam(V − Ṽ )2 − gKn(V − Ṽ )2

≥ −gL(V − Ṽ )2.

In conclusion, the authors of [9] prove that the hybrid model for a single neuron has a unique
invariant measure, and that the law of the process converges to it as time goes to infinity.

Following the arguments of Benaïm et al. we can apply the same variant of their main
Theorem and obtain the following corollaries.

Corollary 4.5.3. There exists an unique invariant distribution for the perturbed hybrid model
(4.2.13), and as time goes to infinity the law of the solution of (4.2.13) converges to the
invariant distribution.

Proof. Is enough to notice that the jump rates for the perturbed hybrid model are bounded
from below by the jump rates of the original hybrid model, whereas the dynamic for V is
bounded as well.

Corollary 4.5.4. There exists an unique invariant distribution for the particle systems
(4.3.7) interacting under pure chemical synapses. Additionally, as time goes to infinity, the
law of the solution of (4.3.7) converges to the invariant distribution.

Proof. In the notation of [9], in this case d = N , E = {1/Nc, . . . , 1}3N , and

〈V − Ṽ , F (m,n,y)(V )− F (m,n,y)(Ṽ )〉 = −
N∑
i=1

[
gL + gCami + gKni + JCh

N∑
j=1

yj

]
(Vi − Ṽi)2

≥ −gL

N∑
i=1

(Vi − Ṽ )2
i

= −gL‖V − Ṽ ‖2,

so the hypothesis of coercitivity holds. The hypothesis about the exponentially decaying
coalescent time for the discrete component of two independent copies of the process holds
just as before.
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Remark 4.5.5. From the proof of the main Theorem of [9], we observe that the exponential
rate of convergence decreases as the coalescence time Tc(x, i, x′, i′) increases. Also, it is
intuitive that the coalescence time grows with the number of element in E (in the hybrid
model for N neurons |E| = NN

c ). Thus, if we think of the models (4.2.10) or (4.3.9) as
approximations of the discrete models when the number of channels goes to infinite, it is not
clear from these results that the diffusive models will inherit the existence of an invariant
measure.

In the diffusive context, we would like to mention the work by Mischler, Quiñinao and
Toubul [62]. In this work, the authors consider a stochastic version of the FitzHugh-Nagumo
(FHN) model [32,64] for a network of neurons interacting under electrical synapses.

In the FHN model, each neuron is described by its membrane potential V and a recovery
variable w. The dynamics of the network is given by

V
(i)
t = V

(i)
0 +

∫ t

0

Is + V (i)
s (V (i)

s − λ)(1− V (i)
s )− w(i)

s + ε(V (i)
s − V̄ N

s )ds+ σW
(i)
t ,

w
(i)
t = w

(i)
0 +

∫ t

0

bV (i)
s − aw(i)

s ds,

(4.5.2)

where a, b are positive constants representing the timescale and coupling intensity between
the two variables, σ > 0 and {W (i)} is a family of independent Browian motions. Notice that
in this model the electrical interaction has the opposite sign than in our models.

It is proved in [62], that the property of propagation of chaos holds for system (4.5.2), and
that the density of the nonlinear process satisfies the nonlinear PDE

∂tf = ∂w(Af) + ∂V (Bε(Jf )f) + ∂V V f on (0,∞)× R2,

A = A(V,w) = aw − bV, Bε(Jf ) = B(w, V ; ε,Jf ),

Jf = J (f) =

∫
R2

V f(w, V )dV dw,

B(w, V ; ε, j) = V (V − λ)(V − 1) + w − ε(V − j) + I.

(4.5.3)

The main results of [62] are the well-posedness of (4.5.3), existence of stationary solutions
for the PDE for ε ≥ 0 and uniqueness of stationary solutions for small values of ε. Notice
that the case ε = 0 corresponds to a single neuron, so the result of Mischler et al. answers
the question about the existence and uniqueness of a stationary measure in that case.

Summarizing, there is evidence to presume that at least some of the question we present
at the beginning of the section have a positive answer, even if we have not been able to prove
it yet. In the next sections we show the result of some simulations, and we establish the
synchronization of a network of neurons interacting through pure electrical synapses.
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4.5.2 Synchronization

Synchronization is a recurrent phenomena in nature. The synchronized flash of hundreds of
fireflies is an example of how a system of interacting particles can self organize. In the case of
neurons, their synchronization is related to the generation of rhythms as the respiratory one or
the heartbeat. At brain level, synchronization in neurons is related to memory formation [5],
and with epileptic seizures [48].

In this section we present the result of some numerical simulations of a network of Morris-
Lecar neurons under electrical or chemical interactions. The simulations we present where
coded in Python3.0 and performed in the cluster of the National Laboratory for High Per-
formance Computing2.

In the case of electrical interaction, we have found conditions on the parameters of the
system that ensure the synchronization of the network, in a sense to be made precise later.

Pure Electrical Interaction

Let us consider the system with pure electrical interaction

V
(i)
t = V

(i)
0 +

∫ t

0

I − gCam
(i)
s (V (i)

s − VCa)− gKn
(i)
s (V (i)

s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JE(V (i)
s − V̄ N

s )ds

x
(i)
t = x

(i)
0 +

∫ t

0

ρx(V
(i)
s )(1− x(i)

s )− ζx(V (i)
s )x(i)

s ds

+

∫ t

0

σx(V
(i)
s , x(i)

s )dW x,i
s , x = m,n.

(4.5.4)

Recall that, thanks to Proposition 4.3.1 and Remark 4.3.11, the trajectories of the system
are uniformly bounded on t.

Before passing to the main result of this section, we comment the results of some simula-
tions that motivate us. In Figure 4.5.1 we display the results for the simulation of a network
of 100 neurons (first row), 1000 neurons (second row) and 10000 neurons (third row). It is
clear that the system synchronizes, and compared to a system with chemical synapses, the
system synchronizes fast. This result motivate us proving the following result.

Proposition 4.5.6. Let i, j ∈ {1, . . . , N}, and X(k)
t = (V

(k)
t ,m

(k)
t , n

(k)
t ), k = i, j, two neu-

rons of the interacting system (4.5.4) starting from initial conditions X(i)
0 = (V

(i)
0 ,m

(i)
0 , n

(i)
0 ).

Assume that
ηx = inf

V ∈R
{ρx(V ) + ζx(V )} > 0, (4.5.5)

2http://www.nlhpc.cl/en/
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Figure 4.5.1: Trajectories of the Voltage at the beginning of the simulation (left), and when
the system synchronizes (right), for JE = 0.1 and σ = 0.1. First row: Results for 100 neurons.
Second row: Results for 1000 neurons. Third row: Results for 5000 neurons.
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and moreover that JE is big enough. Then there exists η > 0 not depending on N , such that

E
(
‖X(i)

t −X
(j)
t ‖2

2

)
≤ ‖X(i)

0 −X
(j)
0 ‖2

2e
−ηt + σ2C. (4.5.6)

In particular

lim sup
t→∞

E
(
‖X(i)

t −X
(j)
t ‖2

2

)
≤ σ2C.

Proof. Let ∆Vt = V
(i)
t − V

(j)
t , ∆mt = m

(i)
t −m

(j)
t and ∆nt = n

(i)
t − n

(j)
t . Then

(∆Vt)
2 = (∆V0)2 − 2

∫ t

0

gCa(V
(j)
s − VCa)∆ms∆Vs + gK(V (i)

s − VK)∆ns∆Vsds

− 2

∫ t

0

(
gL + JE + gCam

(i)
s + gKn

(i)
s

)
(∆Vs)

2 ds

≤ (∆V0)2 +

∫ t

0

ε(V,m) (∆ms)
2 + ε(V, n) (∆ns)

2 ds

−
∫ t

0

(
2gL + 2JE −

g2
Ca(V+ + |VCa|)2

ε(V,m)
− g2

K(V+ + |VK|)2

ε(V, n)

)
(∆Vs)

2 ds,

where ε(V, x) ∈ (0, 1) will be chosen later.

On the other hand, for x = m,n we have

E
[
(∆xt)

2
]

= E
[
(∆x0)2

]
+ 2

∫ t

0

E
[
(1− x(i)

t )(ρx(V
(j)
t )− ρx(V (i)

t ))∆xs

]
ds

+ 2

∫ t

0

E
[
x

(i)
t (ζx(V

(j)
t )− ζx(V (i)

t ))∆xs

]
ds

− 2

∫ t

0

E
[(
ρx(V

(j)
s ) + ζx(V

(j)
s )
)

(∆xs)
2
]
ds

+

∫ t

0

E
[
σ2
x(V

(j)
s , x(j)

s ) + σ2
x(V

(i)
s , x(i)

s )
]
ds.

But, ρx, ζx are Lipschitz, and

σ2
x(V, x) = σ2|(1− x)ρx(V ) + xζx(V )| ≤ σ2 (‖ρx‖∞ + ‖ζx‖∞) ,

So, we have

E
[
(∆xt)

2
]
≤ E

[
(∆x0)2

]
+

∫ t

0

E
[
L2
ρx + L2

ζx

ε(V, x)
(∆Vs)

2

]
ds

−
∫ t

0

E
[
(2ηx − 2ε(V, x)) (∆xs)

2
]
ds+

∫ t

0

σ2 (‖ρx‖∞ + ‖ζx‖∞) ds.
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Adding up,

E
(
‖X(i)

t −X
(j)
t ‖2

2

)
≤ E

[
‖X(i)

0 −X
(j)
0 ‖2

2

]
−
∫ t

0

E
[(

2gL + 2JE −
g2
Ca(V+ + |VCa|)2 + L2

ρm + L2
ζm

ε(V,m)

−
g2
K(V+ + |VK|)2L2

ρn + L2
ζn

ε(V, n)
−
)

(∆Vs)
2
]
ds

−
∫ t

0

E
[
(2ηm − 3ε(V,m)) (∆ms)

2
]
ds

−
∫ t

0

E
[
(2ηn − 3ε(V, n)) (∆ns)

2
]
ds

+

∫ t

0

σ2 (‖ρm‖∞ + ‖ζm‖∞) ds+

∫ t

0

σ2 (‖ρn‖∞ + ‖ζn‖∞) ds

For JE big enough, we can optimize on the parameters ε(V, x), in order that

η = min
{

2gL + 2JE −
g2
Ca(V+ + |VCa|)2 + L2

ρm + L2
ζm

ε(V,m)
−
g2
K(V+ + |VK|)2L2

ρn + L2
ζn

ε(V, n)
,

2ηm − 3ε(V,m), 2ηn − 3ε(V, n)
}
> 0.

Then, we have for Cζ,ρ = ‖ρm‖∞ + ‖ζm‖∞ + ‖ρn‖∞ + ‖ζn‖∞

E
(
‖X(i)

t −X
(j)
t ‖2

2

)
≤ E

[
‖X(i)

0 −X
(j)
0 ‖2

2

]
− η

∫ t

0

E
(
‖X(i)

s −X(j)
s ‖2

2

)
+

∫ t

0

σ2Cζ,ρds.

If we apply to this inequality the Lemma 4.3.2, we obtain√
E
(
‖X(i)

t −X
(j)
t ‖2

2

)
≤ e−

ηt
2

(
E
[
‖X(i)

0 −X
(j)
0 ‖2

2

]
+

∫ t

0

eηsσ2Cζ,ρds

)1/2

,

from where the result follows.

Remark 4.5.7. From the proof we can find explicit bounds for JE, but this bounds seem to
be sufficient but not necessary. In the simulations we observe synchronization for parameters
that do not satisfy the bounds of the proof.

Remark 4.5.8. For σ = 0, the last proposition implies the full synchronization of the inter-
acting system, which in this case corresponds to the deterministic interacting model (4.3.8).

Remark 4.5.9. In [62], the synchronization of a network of FitzHugh Nagumo neurons in-
teracting through electrical synapses is observed in numerical simulations for JE large in
comparison with the noise of the system.
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Pure Chemical Interaction

Let us start by recalling that in this case the evolution of the system is given by

V
(i)
t = V i,

0 +

∫ t

0

I − gCam
(i)
s t(V

(i)
s − VCa)− gKn

(i)
s (V (i)

s − VK)ds

−
∫ t

0

gL(V (i)
s − VL)ds−

∫ t

0

JChȳ
N
s (V (i)

s − Vrev)ds

x
(i)
t = x

(i)
0 +

∫ t

0

(1− x(i)
s )ρx(V

(i)
s )− x(i)

s ζx(V
(i)
s )ds

+

∫ t

0

σx(V
(i)
s , x(i)

s )χ(x(i)
s )dW i,x

s , x = m,n, y.

(4.5.7)

In this case we have observed a different kind of synchronization than in the case of electri-
cal synapses. Now we observe that the system self organizes in two clusters in anti-phase
synchrony. This can be seen in Figure 4.5.2 where we show the simulation of a network of
ten neurons following the dynamic (4.5.7). In Figure 4.5.3 we show the result of a simulation
for 1000 neurons. To get better graphs, we only display the trajectories of 100 neurons.
We observe that the anti-phase synchronization is still observed, but in this case the system
needs more time to self organize.

For pure chemical interaction we have not been able to prove the anti-phase synchroniza-
tion observed in the simulations. Looking at the proof of Proposition 4.5.6 one can notice
that the same proof can be made for chemical interaction when the gL parameter is big
enough. However this case is not very interesting, since for gL large in comparison with gCa

and gK, the solutions of the system (4.5.7) are not oscillatory, instead they goes very fast to
an equilibrium point.
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Figure 4.5.2: Trajectories of the Voltage V (i) (left) and proportion of open neurotransmitter
channels y(i) (right) for 10 neurons, JCh = 3, σ = 0.01. In the first row we observe the begin-
ning of the evolution, in the second row we observe that the neurons are almost synchronized.
In the third row the neurons have reached the anti-phase synchronization.
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Figure 4.5.3: Trajectories of the Voltage V (i) (left) and proportion of open neurotransmitter
channels y(i) (right) for 100 neurons evolving in a network of 1000 neurons. For JCh = 3
and σ = 0.01. In the first row we observe the beginning of the evolution, in the second row
we observe that the neurons are starting to synchroniz. In the third row the neurons have
reached the anti-phase synchronization.

124



4.6. Conclusions and Open Questions

4.6 Conclusions and Open Questions

.

In this part of the thesis we have discussed several aspect of the stochastic version of the
Morris-Lecar model. To be more precise:

1. In Section 4.2 we have discussed different stochastic versions of the Morris-Lecar model,
trying to understand the relationship between them, but alto their differences. In
concrete we have introduced a perturbed hybrid model and we have proved how the
“standard” diffusive approximation of the hybrid model is in fact the limit in distribution
of this perturbed version.

2. In Section 4.3 we have incorporated interaction into the models discussed in the previous
section and we have showed that the solutions of the different models are almost surely
uniformly bounded for t ≥ 0. This fact has resulted crucial for the proof of all our
results.

3. In Section 4.4 we have studied the behavior of a network of neurons in a finite time
window when the number of neurons goes to infinity. In 4.4.2 we have proved the
propagation of chaos property for the hybrid model, which to the best of our knowledge
was not known. On the other hand, in Section 4.4.3 we have recovered the propagation
of chaos property for the diffusive model, which was already known, but we have been
able to recover the optimal rate of convergence

√
N .

Notice that the propagation of chaos for the diffusive model was already known, but
since the hybrid model and its diffusive approximation can behave quite differently, it
seems natural to ask if the known propagation of chaos result for the diffusive process
is a characteristic of the model, or a characteristic of the phenomena which the model
represents. Our result incline the balance to the second option.

4. In Section 4.5, we have proved the synchronization of the interacting particle system
under electrical interaction when the time goes to infinite.

This result is specially interesting in the light of the inital questions of this section.
Notice that at first sight uniform propagation of chaos and synchronization seem to
be incompatible properties. The first one tells us that for any time, when the number
of neurons goes to infinite, the neurons become less and less correlated uniformly in
time, whereas the second one tells us that for any number of neurons, as the time
goes to infinite, the neurons synchronize i.e. they become highly correlated, but this
incompatibility is only apparent. In fact, it could happen for example, that the network
of neurons propagates chaos uniformly, and its nonlinear process after a long time start
to follow a nearly deterministic trajectory, then by the propagation of chaos property
for a large number of neurons each one of them will starts to behave like the nonlinear
process, and after enough time the finite system will be synchronized. Notice that a
stochastic process follows a deterministic trajectory if its law is a Dirac mass. It seems
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that we should study the density of the law of the nonlinear process with respect to
the Lebesgue measure on R4. If we show some bounds uniform on time for the density
of the nonlinear process, this could allow us to conclude that uniform propagation of
chaos does not holds.

In regard of open questions, our initial questions about the long time behavior of the
particle systems and the nonlinear processes remain unanswered, and the results of Benaïm
et al. [9], and Mischler et al. [62] motivate us to follow the research in that direction.
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Chapter 5

Final Remarks

We would like to start these final remarks by summarizing the main results of this thesis:

• In the first part of this thesis we have obtained a very concrete result, because we start
with a very concrete question. For the equation

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs, (5.0.1)

we have proved, under suitable hypothesis over the coefficient, the strong convergence
of the symmetrized Milstein scheme at rate ∆t.

• In the second part of this thesis we have worked with three stochastic versions of the
Morris-Lecar model: The hybrid model, the perturbed hybrid model and the diffusive
model. We have obtained the following results:

– We have obtain the convergence in L1 of the hybrid model to the classical deter-
ministic model when the number of channels goes to infinity. (The convergence in
probability was already known).

– We have characterized the diffusive model as the limit in distribution of a per-
turbed hybrid model. This is interesting because contribute to the discussion
about the pertinence of the diffusive model as an approximation of the classical
hybrid model.

– We have obtained the property of propagation of chaos on finite time windows
for the hybrid models, and for the diffusive model we have recovered the already
known propagation of chaos property on finite time windows, but we have been
able to obtain a better convergence rate in our specific case.

– We have extended a result of existence of invariant measure and convergence
towards it by Benaïm et al. [9] to the perturbed hybrid model, and to networks of
neurons, although the convergence is not uniform neither in the number of channels
or the number of neurons, so does not tell us anything about the diffusive model
or the non linear process.
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– We have proved the synchronization of the finite system under electrical interac-
tions when the time goes to infinity.

We end this thesis by taking a look into the future.

A very natural continuation to the work of the first part of this thesis would be to study
the weak convergence of the symmetrized Milstein scheme. In the weak analysis framework
instead of studying

E(|Xt −X t|),
we are interested in study the weak error∣∣E[f(Xt)]− E[f(X t)]

∣∣ ,
for f in a suitable set of functions. Of course, if f is Lipchitz, the later is bounded by
the former, but a direct analysis of the weak error could led us to better hypothesis on the
coefficients. In particular, could allows to relax the hypothesis over b(0) and σ2.

The importance of the weak error analysis comes from applications. In many occasion,
particularly in finance, the object of interest is not the process itself but a functional of the
process, so the natural error to control is the weak one.

Another posible continuation in this line of research would be try to apply a suitable ver-
sion of the Symmetrized Milstein Scheme to the Heston model [38] for assets with stochastic
volatility

dSt = µStdt+
√
νtStdW

S
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

ν
t ,

where (W S
t ,W

ν
t ) is a two dimensional Brownian motion with correlated coordinates.

With respect to the second part of the thesis is more evident which are the questions
that remain open. The existence and characterization of invariant measures, and the conver-
gence toward them is a very interesting problem, specially in the light of the synchronization
phenomena that is present in this models.

Synchronization by itself is another posible continuation for the present work. Here we
have attacked the problem from a trajectorial perspective, mainly because existing techniques
to analyze these type of models ( e.g. from dynamical systems, see [53]) do not seem to be
readily applicable or extendable to our context, in which the dimension is going to infinity and
where the role of the randomness cannot be neglected. Nevertheless, it would be interesting
to find a suitable approach to adapt those techniques to this setting, taking for instance into
account the symmetries and exchangeability of the systems of neurons.

Uniform propagation of chaos is also a interesting question that is still open. The propaga-
tion of chaos property in finite time windows allows, for a fixed time interval, to approximate
the interacting neuron system by an average neuron. But as the time grows, if the number
of neurons remains fix, this approximation degrades quite fast.
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In the case of the hybrid model, we have seen that the use of the ‖ · ‖1 does not exploit
the fact that the dynamics are dissipative. From the other side the norm ‖ · ‖2 which is more
appropriate to work with dissipative systems, does not work fine with the stochastic integral
representation of the proportion processes. So, another extension for the work we have done
is to find the right metric to work with the hybrid models.

Other open question is if the synchronization of the interacting system under electrical
interactions can be exploit to simulate large networks more efficiently.

Another open question that this part of the thesis has left us is the convergence of the
perturbed hybrid model to the diffusive model. Up to now, we know that this convergence
is in distribution, but would be very interesting to obtain a stronger convergence.

We want to end this thesis with a thought that remind us that working in research is
about the journey, and not about the destination.

“We have not succeeded in answering all our problems. The answers we have found only
serve to raise a whole set of new questions. In some ways we feel we are as confused as
ever, but we believe we are confused on a higher level and about more important things.1”

1This quote appears in [65, p. 4], but according to Oksendal, was posted outside the mathematics reading
room in Tromsø University.
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