DESCRIPCIÓN Y COMPARACIÓN ANATÓMICA DE HUESOS DE
Sicalis flaveola, Saltator similis, Sporophila angolensis, Sporophila caerulescens, CON FINES DE IDENTIFICACIÓN EN SITIOS DE
SUCESOS PRODUCTO DEL TRÁFICO ANIMAL, EN BRASIL

Sebastián Alejandro Figueroa Fernández

Memoria para optar al Título
Profesional de Médico Veterinario
Departamento de Patología Animal

PROFESOR GUÍA: Dr. Gustavo Farías Roldán

SANTIAGO, CHILE
2017
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS VETERINARIAS Y PECUARIAS
ESCUELA DE CIENCIAS VETERINARIAS

DESCRIPCIÓN Y COMPARACIÓN ANATÓMICA DE HUESOS DE
Sicalis flaveola, Saltator similis, Sporophila angolensis, Sporophila
caeulescens, CON FINES DE IDENTIFICACIÓN EN SITIOS DE
SUCESOS PRODUCTO DEL TRÁFICO ANIMAL, EN BRASIL

Sebastián Alejandro Figueroa Fernández

Memoria para optar al Título
Profesional de Médico Veterinario
Departamento de Patología Animal

PROFESOR GUÍA: Dr. Gustavo Farías Roldán

SANTIAGO, CHILE
2017

Nota Final ……………

Prof. Guía Gustavo Farías Roldán ………………………
Profesor Corrector Ricardo Olivares Pérez-Montt ………………………
Profesor Corrector Cristóbal Briceño Urzúa ………………………
AGRADECIMIENTOS

A mi Familia y Amigos, en especial a mis padres, hermanos y a mis amigos Víctor Toledo y Lisette Monardes, por la confianza que depositaron en mí y el apoyo incondicional que me ofrecieron, sin los cuales no habría podido llegar hasta aquí.
Índice

RESUMEN ... 1
ABSTRACT .. 3
INTRODUCCIÓN .. 5
REVISIÓN BIBLIOGRÁFICA .. 6
TRÁFICO DE ANIMALES: Contexto global y Sud-americano .. 6
TRÁFICO DE AVES: Brasil .. 8
OSTEOLOGÍA COMPARATIVA DE AVES: Aplicación potencial en la identificación forense de restos óseos en SS ... 10
 1) Osteología comparativa en Passeriformes: ... 12
OBJETIVO GENERAL .. 13
OBJETIVOS ESPECÍFICOS .. 13
MATERIALES Y MÉTODOS .. 14
RESULTADOS ... 17
 Descripción .. 17
 1) Saltator similis .. 17
 2) Sicalis flaveola .. 29
 3) Sporophila angolensis ... 41
 4) Sporophila caerulescens ... 53
Comparación ... 65
 1) Cráneo .. 65
 2) Esternón .. 70
 3) Húmero .. 75
 4) Pelvis ... 77
Índice de Tablas y Figuras

Tabla 1: Identificación genética de las especies estudiadas ... 15

Figura 1: Fotografías A. Saltator similis, B. Sicalis flaveola, C. Sporophila angolensis, D. Sporophila caerulescens .. 14
Figura 2 Cráneo Saltator similis .. 19
Figura 3 Esternón Saltator similis .. 21
Figura 4 Húmero Saltator similis .. 23
Figura 5 Pelvis y sinsacro Saltator similis .. 26
Figura 6 Fémur Saltator similis .. 28
Figura 7 Cráneo Sicalis flaveola .. 31
Figura 8 Esternón Sicalis flaveola ... 33
Figura 9 Húmero Saltator similis .. 35
Figura 10 Pelvis y sinsacro Sicalis flaveola ... 38
Figura 11 Fémur Sicalis flaveola .. 40
Figura 12 Cráneo Sporophila angolensis ... 43
Figura 13 Esternón Sporophila angolensis .. 45
Figura 14 Húmero Sporophila angolensis .. 47
Figura 15 Pelvis y sinsacro Sporophila angolensis ... 50
Figura 16 Fémur Sporophila angolensis ... 52
Figura 17 Cráneo Sporophila caerulescens .. 55
Figura 18 Esternón Sporophila caerulescens ... 57
Figura 19 Húmero Sporophila caerulescens .. 59
Figura 20 Pelvis y sinsacro Sporophila caerulescens .. 62
Figura 21 Fémur Sporophila caerulescens .. 64
Figura 22 Comparación cráneo visión lateral ... 68
Figura 23 Comparación cráneo visión caudal ... 69
Figura 24 Comparación esternón visión dorsal ... 73
Figura 25 Comparación esternón visión lateral ... 74
Figura 26 Comparación Húmero Visión caudal .. 76
Figura 27 Comparación pelvis visión lateral ... 79
Figura 28 Comparación pelvis visión dorsal ... 80
Figura 29 Comparación fémur visión craneal ... 82
RESUMEN

El tráfico de vida silvestre es una industria multimillonaria que amenaza la biodiversidad. Dentro del tráfico animal, destaca el comercio ilícito de aves. Brasil es el hogar de una de las faunas más ricas de aves en el mundo, con 1.832 especies, destacando a las aves paseriformes como las más abundantes. Estas últimas son víctimas comunes de tráfico en este país con más del 70% del total de especímenes traficados cada año. Este ilícito representa una de las pocas actividades económicas para los pobladores amazónicos. El elevado grado de clandestinidad e ilegalidad que caracteriza este comercio, dificultan su estudio y control. Se estima que cerca del 80% de las aves capturadas mueren asfixiadas antes de llegar a su destino. Según datos de la Policía Federal de Brasil algunas de las especies más requisadas entre el 2006 a 2014 fueron: Sporophila angolensis (2,6%), Saltator similis (12,3%), Sporophila caerulescens (15,4%) y Sicalis flaveola (29,2%), datos que se obtuvieron mediante la identificación de especies.

La mayoría de las partes de esqueletos de aves se pueden identificar por lo menos a nivel de la familia, incluso utilizando piezas anatómicas aisladas. En relación con investigaciones forenses es posible producir claves de identificación ilustradas, que se utilicen en el trabajo de campo. Este estudio tuvo como objetivo entregar una herramienta forense que permita, la identificación en terreno de restos óseos hallados en sitios del suceso, mediante morfología, de cuatro especies de aves del orden Passeriforme. Elaborando para ello una guía osteológica descriptiva y comparativa, en base a osamentas facilitadas por el Museo de Ciencias Naturales de la Pontificia Universidad Católica de Minas Gerais.

Es así como, los resultados hicieron posible evidenciar: En el cráneo a) variabilidad morfológica en la región escamosa del temporal, siendo más o menos abultada con presencia del surco temporal en Sporophila spp, y Saltator similis y sin presencia del surco temporal en Sicalis flaveola; b) dirección oblicua del proceso postorbital en Sporophila angolensis o más bien vertical en Saltator similis, Sicalis flaveola y Sporophila caerulescens; c) prolongación lateral del hueso prefrontal con vértice aguzado en Saltator similis y Sporophila angolensis o más bien romo en Sicalis flaveola y Sporophila caerulescens. A nivel de esternón: a) dimensiones de un rostro uniforme en toda su extensión en Saltator similis y Sporophila angolensis y variable en las otras especies; b) procesos craneolaterales más extendidos en Saltator similis o más verticales en Sicalis flaveola y
Sporophila spp: presencia de agujeros neumáticos visibles en la línea media del esternón en Saltator similis o imperceptibles en los otros; d) pilares coracoides curvos en Sporophila angolensis o relativamente rectos en las otras especies; e) presencia de un agujero craneal a la incisura esternal sólo en Saltator similis. A nivel de pelvis caben destacar: a) pubis mayoritariamente recto en Sporophila angolensis y curvo en las otras especies; b) agujero obturado menos delimitado en Sporophila caerulescens que en las otras especies, entre otras.

Por lo anteriormente expuesto, se puede concluir que es posible la identificación mediante la morfología osteológica, al comparar osamentas de las especies Saltator Similis, Sicalis flaveola, Sporophila angolensis y Sporophila caerulescens, entre ellas.
ABSTRACT

Wildlife traffic is a multimillion-dollar industry that threatens biodiversity. Within the animal traffic, the illegal trade of birds stands out. Brazil is home to one of the richest faunas of birds in the world, with 1,832 species, emphasizing Passeriforme birds as the most abundant. This taxon is a common trafficking victim in this country with more than 70% of the total number of specimens trafficked each year. This illicit represents one of the few economic activities for the Amazonian people. The high degree of clandestinity and illegality that characterizes this trade makes it difficult to study and control. It is estimated that about 80% of the captured birds die asphyxiated or are abandoned before reaching their destination. According to data from the Federal Police of Brazil, Among the most seized species between 2006 and 2014 were: Sporophila angolensis (2.6%), Saltator similis (12.3%), Sporophila caerulescens (15.4%) and Sicalis Flaveola (29.2%), data obtained through the identification of species.

Most parts of bird skeletons can be identified at least to the family level, even using isolated anatomical pieces. In relation to forensic investigations it is possible to produce illustrated identification keys that can be used in the field work. The main objective of this study is to provide a forensic tool that allows the identification of bone rests found in crime scene by morphology of four species of birds of the Passeriforme order. Developing a descriptive and comparative osteological guide. The skeletons provided by the Museum of Natural Sciences of the Pontifical Catholic University of Minas Gerais were used.

It is possible to evidence: a) morphological variability in the squamous region of the temporal, being in some more or less bulging with presence of the temporal sulcus Sporophila spp, and Saltator similis and others without presence of the temporal sulcus Sicalis flaveola; b) oblique direction of the postorbital process Sporophila angolensis or rather vertical Saltator similis, Sicalis flaveola Sporophila caerulescens; c) Prolongation of prefrontal bone with sharp apex Saltator similis, Sporophila angolensis or blunt Sicalis flaveola and Sporophila caerulescens. At the sternum level: a) Dimensions of a uniform face in all its extension in Saltator similis and Sporophila angolensis and variable in the other species; b) Craneolateral processes more extensive Saltator similis or more vertical Sicalis flaveola and Sporophila spp; c) Presence of visible pneumatic holes in the midline of the sternum Saltator similis or imperceptible in the others; d)
Curved coracoid pillars *Sporophila angolensis* or relatively straight in the other species; e) Presence of a cranial foramen to the sternal fenestra only in *Saltator similis*. At pelvic level it is possible to emphasize: a) pubis is mostly straight in *Sporophila angolensis* and curved and in the other species; b) sealed foramina less delimited in *Sporophila caerulescens* than in other species, among others.

Identification by osteological morphology is possible by comparing the bones of the species *Saltator Similis, Sicalis flaveola, Sporophila angolensis* and *Sporophila caerulescens* among them.
INTRODUCCIÓN

La Medicina Veterinaria Forense (MVF), es la disciplina encargada de tender un puente entre el pensamiento jurídico y el biológico, con el propósito de intervenir en los hechos delictivos que involucren directa o indirectamente animales, tales como maltrato animal, delitos contra el medio ambiente, abigeato, tráfico ilegal de fauna silvestre, entre otros. Esta tarea se lleva a cabo con la reconstrucción de hechos e investigación en el sitio del suceso (SS), mediante el uso de técnicas criminalísticas como balística, fotografía, trazología e identificación de especies.

Esto último, busca asociar a animales o sus restos encontrados en un SS a un taxón conocido, utilizando para ello técnicas moleculares y/o morfológicas (anatomía comparativa). Esta disciplina, dada la gran biodiversidad del planeta, resulta ser una de las de mayor desarrollo dentro de la MVF, ya que, la tipificación de los delitos varía según la especie involucrada. Esto se refleja en los delitos de tráfico, donde la gravedad dependerá de si el espécimen está protegido por leyes locales y/o dentro del listado de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) y en cuál Apéndice (I, II y III) se encuentre, ya que, estos ofrecen diferentes niveles y tipos de protección ante la explotación.

El tráfico ilegal de fauna silvestre, es una práctica frecuente en nuestros días situándose como el tercer “mercado negro” del mundo. Se caracteriza por la captura de especímenes de su ambiente natural con el fin de venderlos como mascotas y/o partes de éstos (plumas, huesos, órganos, etc.). Esta actividad se lleva a cabo mayormente en zonas de mayor biodiversidad, como Sudamérica, destacándose dentro de ésta, Brasil, y a las aves como el grupo más traficado desde la Amazonía. La gran mayoría de aves que se trafican muere por las condiciones en que son transportadas, es por esto que la identificación es crucial, no solo para poder tipificar los delitos, sino también para cuantificar el número de especies traficadas, y de esta forma poder asignar los recursos públicos y privados de la manera más eficiente para combatir esta problemática.

La siguiente Memoria de Título tuvo por finalidad aportar nuevos conocimientos anatómicos osteológicos, que permitan la identificación de osamentas, de algunas especies de aves, comúnmente traficadas y encontradas en SS.
REVISIÓN BIBLIOGRÁFICA

TRÁFICO DE ANIMALES: Contexto global y Sud-americano.

En la actualidad la caza constituye, en términos legales, un deporte que permite dar muerte o captura de ejemplares que no se encuentren en riesgo de extinción, pero, por otro lado, también existe un movimiento de cacería ilegal de diversas especies, donde muchas de ellas sí se encuentran en peligro de extinción (Camis et al., 2010). Como señalan Camis et al. (2010), esta actividad representa uno de los comercios ilegales más grandes del mundo, tal como indican Duñabeita y Rodríguez (2004), según datos de la interpol, se estima que los beneficios totales del tráfico de animales a nivel mundial alcanzan los veinte mil millones de euros anuales. Tanto es así, que estimaciones indican que este comercio es considerado el tercer mercado negro del mundo, tras el tráfico de drogas y armas (Farías et al., 2012). Esta actividad puede incluir elementos decorativos, medicina tradicional, vestimenta, y animales vivos como compañía y/u ornamentación (Hamilton y Erhart, 2012). Adicionalmente a esto, el comercio ilegal de fauna silvestre está ligado a otros tipos de comercios ilícitos, evidencia anecdótica indica que cargamentos de fauna lícitos e ilícitos, se han encontrado junto con los envíos de otros productos de contrabando, incluyendo drogas, armas, vehículos robados, y seres humanos. Por ejemplo, condones llenos de cocaína colombiana que habían sido insertados en una caja de serpientes, otros casos incluyen loros exóticos de contrabando con pastillas de metanfetamina (Wyler y Sheik, 2013).

En los países Amazónicos, en el comercio interno, la carne supone el mayor ingreso para los pobladores, mientras que en el mercado de las exportaciones, la venta de pieles, plumas y otras estructuras tegumentarias es la más importante: la cacería y comercio de carne se desenvuelven dentro de una economía informal, local y mayormente ilegal, que no genera estadísticas confiables, y cuyos alcances reales se desconocen. La obtención de pieles, cueros y otras estructuras tegumentarias como caparazones, plumas y lana para el mercado externo, es un incentivo mejor conocido para la caza (Camis et al., 2010).

El período entre 1945-1970 fue la edad de oro del tráfico desde Sudamérica, durante la cual
muchos campesinos, incentivados por los precios, se internaron en las selvas amazónicas en busca de animales. Hoy en día, el comercio de fauna silvestre que implique caza, persecución y destrucción, al igual que el comercio de especies y de productos derivados de ellas se encuentra expresamente prohibido en los países que pertenecen a los dominios amazónicos (Camis et al., 2010). Pese a esto, América del Sur es el principal exportador hacia el continente europeo, el que a su vez es uno de los mayores consumidores de las especies en vías de extinción y se sitúan como el primer importador mundial de felinos y papagayos, el segundo en primates, boas y pitones, y el tercero de tortugas. Cada país tiene sus preferencias: los alemanes coleccionan reptiles e insectos; los belgas adoran los pájaros exóticos; los holandeses prefieren corales y los franceses muestran especial predilección por loros y guacamayos (Duñabeita y Rodríguez, 2004). Es así como en general, la dirección de los flujos de comercio de vida silvestre es de países en vías de desarrollo a países desarrollados, por ejemplo, Japón, EEUU y la UE son los compradores más importantes, mientras que China se sitúa como el mayor exportador, con otros países del sudeste asiático, países africanos y Sudamérica, siendo Brasil el principal exportador de este continente (Camis et al., 2010).

Las formas de contrabando varían, encontrando especímenes en chalecos o ropa interior con bolsillos especiales, equipaje, contenedores, ocultos entre carga legal, e incluso en compartimentos como dentro de una pierna ortopédica. Este tipo de métodos suelen ser perjudiciales para los animales, y con frecuencia mueren durante el transporte (Rosen y Smith, 2010).

El tráfico de vida silvestre es una industria multimillonaria que amenaza la biodiversidad y actúa como una vía potencial de propagación de las especies invasoras y de enfermedades (Rosen y Smith, 2010). Como menciona Wilson (2010), esta supone un riesgo potencial para la salud humana en la propagación de enfermedades como la gripe aviar (H5N1) y el síndrome respiratorio agudo severo (SARS), entre otras, como es el caso que mencionan Rosen y Smith (2010), en que se decomisaron 76 cacatúas de contrabando que entraron en el Reino Unido desde Singapur portando psitacosis, en un caso similar en 1994, la psitacosis causó neumonía atípica en siete funcionarios de aduanas que tuvieron contacto con aves confiscadas.
TRÁFICO DE AVES: Brasil

Las aves han sido utilizadas por milenios para numerosos propósitos, desde su uso tradicional como comida, para la explotación de sus partes como adornos y accesorios decorativos, e incluso para medicina tradicional. De alrededor de 10.000 especies de aves conocidas en el mundo, 3.649 especies (37% del total conocido), son utilizadas extensamente como mascotas, siendo esta la principal presión para el uso directo de este taxón. Este tipo de explotación de aves, junto con la caza para la comida, remedios o adornos tradicionales, se extiende a 4.561 especies de aves, utilizadas directamente por los seres humanos (Alves et al., 2013).

Como indican Camis et al. (2010), el tráfico de aves representa una de las pocas actividades económicas en donde se pueden obtener beneficios por parte de los pobladores amazónicos. El comercio de fauna silvestre en el Amazonas se divide en dos; el comercio local, el que constituye la mayor parte de esta actividad y que supone un bajo aporte económico, y el comercio internacional, el que, aunque menos frecuente, produce mayores beneficios económicos (Camis et al., 2010). Esto se ve reflejado en el caso documentado por Low y Jorquera (2012), en donde se da una notoria diferencia entre los precios del mercado local con los del internacional; por ejemplo, los Guacamayos rojos (Ara macao), tiene un valor de 6.000 pesos mexicanos en el mercado interno y 500.000 en el externo, lo mismo ocurre en el caso del Guacamayo verde (Ara militaris), que va de los 3.000 pesos en el mercado local a los 400.000 pesos en el internacional. Un libre aprovechamiento comercial a escala local puede ser sostenible, pero su extensión a la demanda nacional e internacional conlleva de forma inevitable a la sobreexplotación, pérdida del recurso y con ello, de los ecosistemas. El elevado grado de clandestinidad e ilegalidad que caracteriza este comercio dificultan su estudio y control (Camis et al., 2010).

Se ha visto que las especies de aves que son cazadas y/o capturadas sus poblaciones son afectadas, con una implicación ecológica inmediata y evidente (Alves et al., 2013). Esto se debe, además de la práctica ilegal en sí misma, a la gran mortalidad que existe en el proceso de comercialización, lo que provoca un mayor número de animales capturados. Se estima que cerca del 80% de las aves capturadas mueren asfixiadas antes de llegar a su destino o son abandonadas en los centros de acogida, control de puestos marítimos, estaciones de tren o aeropuertos, además debido a estas
condiciones a menudo se pelean, mutilan o se matan entre ellas (Duñabeitia y Rodríguez, 2004; Alves et al., 2012; Low y Jorquera 2012).

Brasil es el hogar de una de las faunas más ricas de aves en el mundo, con 1.832 especies. Estas cifras representan el 57 % del total de especies de aves registradas en América del Sur, haciendo de este uno de los países más importantes para las inversiones en conservación. El orden Passeriformes comprende el mayor número de familias y especies de aves del mundo, siendo Brasil uno de los países más ricos en aves de este orden, las que son una víctima común de tráfico en este país (Godoy y Matushima, 2010).

Hay muchas razones para la preferencia de ciertas familias de aves. La familia Emberizidae, son requeridas como aves de jaula, ya que son extremadamente resistentes, son granívoras, su pequeño tamaño permite que un gran número de ellos pueda mantenerse juntos en jaulas pequeñas y tienen un atractivo popular debido a su colorido plumaje, mientras que por otro lado, los psitácidos son las aves de compañía más populares del mundo debido a su capacidad para imitar voces humanas, así como su inteligencia, belleza y docilidad, siendo sólo superada por los perros y gatos en popularidad global (Alves et al., 2012). Es por lo anterior que los animales más traficados en Brasil son aves, y dentro de estas destaca el orden Passeriformes con más del 70% del total. Según datos de la Policía Federal de Brasil dentro de las especies más requisadas entre el 2006 a 2014 se encontraron: Sporophila angolensis con 4.156 ejemplares (2,6% del total de aves aprendidas en el periodo), Saltator similis con 19.246 ejemplares (12,3%), Sporophila caerulescens con 24.177 (15,4%) y Sicalis flaveola con 45.803 ejemplares (29,2%), siendo estas tres últimas por lejos las más incautadas y unas de las aves más traficadas en Brasil (Reis, 2015).

La clasificación taxonómica de las cuatro aves antes mencionadas es aún tema de debate, es así como el género Saltator es incluido en Thraupidae por Clements et al. (2016), en Cardinalidae por la comunidad internacional de ornitólogos (IOC) (Gill y Donsker, 2016) y por la Sociedad Española de Ornitología (Josep et al., 2013), a pesar que el Comité de Clasificación Sudamericano (SACC) (2016), mantiene todo el género en Incertae sedis. El género Oryzoborus fue integrado dentro de Sporophila por el SACC (2016) y por Clements et al. (2016), pero mantenidos

1 REIS, S. 2015. Perito Criminal del Departamento de Policía Federal, Brasil. [Comunicación Personal]
separados por el IOC (Gill y Donsker, 2016), sin embargo en las tres listas se incluyen dentro de la familia Thraupidae, mientras que la Sociedad Española de Ornitología, mantiene separados ambos géneros y los clasifica en la familia Emberizidae. El género Sicalis es incluido en la familia Thraupidae tanto por el SACC (2016), IOC (Gill y Donsker, 2016), y Clements et al. (2016), pero en la familia Emberizidae por la Sociedad Española de Ornitología (Josep et al., 2013).

Los nombres en castellano para estas cuatro especies, según la Sociedad Española de Ornitología son: Pepitero verdoso, (Saltator similis); Chirigüe azafranado, (Sicalis flaveola); Semillero curió, (Oryzoborus angolensis); Semillero corbatita, (Sporophila caerulescens) (Josep et al., 2013).

OSTEOLOGÍA COMPARATIVA DE AVES: Aplicación potencial en la identificación forense de restos óseos en SS.

Las aves poseen adaptaciones anatómicas para el vuelo, entre las que se encuentran un húmero alargado, un radio delgado y corto, una ulna más gruesa y larga que el radio, mientras que los metacarpianos y las falanges (dos a cinco) son alargados y cubiertos por el patagio, que representan la mayoría del ala. Los huesos del carpo y metacarpianos se fusionan creando el carpo-metacarpo. El esternón es más amplio para apoyar la unión de los músculos responsables de vuelo. El coracoides y clavícula se colocan entre la escápula para proporcionar un marco rígido para ayudar en el vuelo y actuar como amortiguadores. Presentan una pelvis que está abierta ventralmente. Sus miembros inferiores también presentan la fusión de los huesos tibia-tarso y tarso-metatarso (Dyce et al., 1999; Dewey, 2013).

La mayoría de las partes de esqueletos de aves se pueden identificar por lo menos a nivel de la familia, incluso utilizando piezas anatómicas aisladas. Sin embargo, la identificación más precisa depende de la presencia de rasgos distintivos en el hueso, siendo los huesos mayores de los miembros, del cráneo, la pelvis, el esternón y la cintura escapular los más adecuados para la identificación, incluso si estos huesos están incompletos. Mediante un material bien conservado, la mayoría de los especímenes se puede identificar a nivel de género, y con frecuencia al de especie (DEFRA, 2005). Clásicamente, las colecciones osteológicas de aves son usadas para estudios comparativos, y como una referencia básica para la identificación de huesos o fragmentos de éstos. Usualmente en las colecciones osteológicas de aves, se encuentran sólo uno o pocos individuos
por especie, este número es suficiente para muchos propósitos, tales como la identificación de especies, pero difícilmente sirve para entender la variabilidad intraespecífica (Mlikovsky, 2010).

En osteología forense humana la primera pregunta es: ¿es humano?, esta es una pregunta simple y por lo general se contesta por exclusión. Sin embargo, la identificación de los animales es más difícil de hacer porque hay múltiples posibilidades (Bell, 2011). Como regla general, los fragmentos óseos de animales, sobre todo si son de los miembros e incluyen una superficie articular, pueden ser identificables (Cooper y Cooper, 2007). Hay algunas especies, sin embargo, que no se pueden diferenciar usando métodos morfológicos anatómicos, por ejemplo, lo que ocurre entre la oveja y la cabra, que, aunque son claramente distintos, parecen idénticos utilizando identificación osteológica (Bell, 2011). La identificación de los huesos de especies estrechamente relacionadas y de tamaño similar es siempre un problema. Una identificación fiable siempre debe basarse en una colección comparativa, pero en el caso de las especies estrechamente relacionadas se necesitan, al menos, unos pocos ejemplares de cada especie. Las diferencias pequeñas funcionan bien y nos permiten diferenciar las dos especies (Bochenski, 2008).

Es esencial durante cualquier investigación de vida silvestre poder identificar la especie en cuestión (DEFRA, 2005; Johnson, 2012). La identificación morfológica es a menudo el primer paso para determinar con qué especies se está tratando (Sellar, 2009). Un examen morfológico es generalmente suficiente para determinar el hueso e identificar, por ejemplo, un hipopótamo, mamut o un elefante, pero no diferenciar entre los elefantes asiáticos y africanos. Como ambas especies están en CITES, este nivel de identificación no es suficiente, por lo que el conocimiento taxonómico es esencial, ya que según la especie traficada se analizan los cargos que pueden establecerse (DEFRA, 2005; Johnson, 2012).

Frente a un caso de identificación mediante morfología, el analista, deberá comparar similitudes entre el elemento y pruebas de ejemplares de especies de origen conocido, utilizando información adicional de referencias científicas. Para definir grupos taxonómicos como familias, géneros y especies se utilizan características morfológicas compartidas cuantitativas y/o cualitativas. En ausencia de materiales físicos de referencia comparativos, deben ser utilizados datos métricos y no
métricos (por ejemplo, descripciones anatómicas y guías de identificación osteológicas). La interpretación de los datos debe seguir la jerarquía de la taxonomía (SWGILD, 2012).

Osteología comparativa en Passeriformes:

El reconocimiento de las aves por su morfología externa resulta relativamente fácil; pero cuando se trata de reconocerlas a la vista de algunas piezas óseas, los problemas se acentúan, sobre todo si corresponden a un Passeriforme. Este orden incluye un gran número de especies existentes en el mundo que son presa de muchos otros animales, en cuyos excrementos y regurgitaciones aparecen restos óseos de estas aves (Moreno, 1985). Esto se suma a la mortalidad natural y a la producida por la acción humana mediante el tráfico, aunque también suelen ser abundantes en yacimientos arqueológicos y paleontológicos (Seijas y Trejo, 2011). Sin embargo, la determinación de estos restos óseos es problemática debido a la escasez de trabajos que permitan su identificación y de colecciones de referencia, las que suelen ser incompletas (Moreno, 1985; Seijas y Trejo, 2011). En lo que se refiere específicamente al orden Passeriformes, la clave dicotómica para la identificación de las especies ibéricas de Moreno (1985), es útil pero no incluye a las familias de distribución neotropical, para las cuales no han sido publicadas claves de identificación. Por lo tanto, resulta relevante la elaboración de nuevas claves que permitan la identificación de otras familias de Passeriformes que pueda ser extrapolable a distintos escenarios sudamericanos (Seijas y Trejo, 2011). Es por esto que Seijas y Trejo (2011), elaboraron una clave dicotómica para la identificación de las 13 familias del orden Passeriformes presentes en el noroeste patagónico, en base al análisis de los caracteres osteológicos del cráneo.

En relación con investigaciones forenses es posible producir claves de identificación ilustradas, que se puedan utilizar en el trabajo de campo por personas con menos experiencia, como una ayuda para la evaluación y la incautación inicial (DEFRA, 2005; Johnson, 2012).

La presente memoria de título tuvo como objetivo central entregar una herramienta forense que permita, la identificación en terreno de restos óseos hallados en SS, mediante morfología, de cuatro especies de aves del orden Passeriformes: Saltator similis, Sporophila caerulescens, Sporophila angolensis y Sicalis flaveola, que son altamente traficadas. Elaborando para ello una guía osteológica descriptiva y comparativa.
OBJETIVO GENERAL
Describir y comparar las estructuras anatómicas de diferentes huesos que permitan la identificación de diferentes especies de aves del orden Passeriformes traficadas ilegalmente, para su identificación en sitios de suceso en Brasil.

OBJETIVOS ESPECÍFICOS

- Describir las características anatómicas del cráneo, esternón, pelvis, húmero y fémur de las especies chirigüe azafranado (Sicalis flaveola), pepitero verdoso (Saltator similis), semillero sabanero (Sporophila angolensis), corbatita común (Sporophila caerulescens).

- Establecer, mediante comparación, características diferenciales morfológicas específicas entre los huesos de cráneo, esternón, pelvis, húmero y fémur de las especies chirigüe azafranado (Sicalis flaveola), pepitero verdoso (Saltator similis), semillero sabanero Sporophila angolensis), corbatita común (Sporophila caerulescens), para permitir la identificación entre ellas.
MATERIALES Y MÉTODOS

Se utilizaron osamentas de pepitero verdoso (*Saltator similis*), chirigüe azafranado (*Sicalis flaveola*), semillero sabanero (*Sporophila angolensis*) y corbatita común (*Sporophila caerulescens*) facilitadas por el Museo de Ciencias Naturales de la Pontificia Universidad Católica de Minas Gerais, Brasil. Estas especies corresponden al orden *Passeriformes*, que es uno de los taxones mayormente traficados en Brasil. Correspondiendo a las especies indicadas en la Figura 1, de acuerdo a los estudios moleculares realizados con anterioridad por el museo (Tabla 1).

Figura 1: Fotografías A. *Saltator similis*, B. *Sicalis flaveola*, C. *Sporophila angolensis*, D. *Sporophilia caerulescens*
Tabla 1: Identificación genética de las especies estudiadas.

<table>
<thead>
<tr>
<th>n° de registro</th>
<th>Especie</th>
<th>Genero</th>
<th>Edad</th>
<th>Identificación molecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>1426</td>
<td>Saltator similis</td>
<td>Macho</td>
<td>Adulto</td>
<td>No</td>
</tr>
<tr>
<td>1877</td>
<td>Saltator similis</td>
<td>Macho</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>6715</td>
<td>Saltator similis</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>6723</td>
<td>Saltator similis</td>
<td>Macho</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>2230</td>
<td>Sicalis flaveola</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>5687</td>
<td>Sicalis flaveola</td>
<td>Macho</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>5692</td>
<td>Sicalis flaveola</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>7083</td>
<td>Sicalis flaveola</td>
<td>Macho</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>3541</td>
<td>Sporophila angolensis</td>
<td>Sin registro</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>3542</td>
<td>Sporophila angolensis</td>
<td>Macho</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>4881</td>
<td>Sporophila angolensis</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>4884</td>
<td>Sporophila angolensis</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>1388</td>
<td>Sporophila caerulescens</td>
<td>Macho</td>
<td>Adulto</td>
<td>No</td>
</tr>
<tr>
<td>1652</td>
<td>Sporophila caerulescens</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
<tr>
<td>1658</td>
<td>Sporophila caerulescens</td>
<td>Hembra</td>
<td>Adulto</td>
<td>Si</td>
</tr>
</tbody>
</table>

Para el estudio, debido a la disponibilidad y calidad del material, se utilizaron dos a tres ejemplares por especie, con el fin de acceder a los huesos seleccionados para el estudio (cráneo, esternón, pelvis, sinsacro, húmero y fémur). Estos fueron registrados mediante fotografías con cámara digital Nikon D60 ® y Nikon D3200 ®, utilizando un testigo métrico (en centímetros) y luz artificial. El hueso se dispuso sobre un fondo de tela negra, para facilitar su posterior manejo fotográfico. Las fotografías fueron editadas con programa Photoshop Element 6.0 ®, permitiendo un mejor contraste para el análisis y descripción de sus estructuras.
- **Objetivo 1:**

Para cumplir este objetivo se utilizó la Nomenclatura Anatómica Veterinaria Ilustrada (Schaller, 1996) y la Nomina Anatómica Aviar (Baumel, 1993).

Se estudiaron con especial atención las características particulares presentes en las articulaciones óseas, su tamaño y forma general, presencia/ausencia de estructuras o formas diferentes, y los sitios de inserción, ya que, son los que proporcionan un diagnóstico de las especies como lo señalan algunos autores (Bochenski, 2008; Bell, 2011).

- **Objetivo 2:**

Para este objetivo se utilizaron como referencia la Clave para la identificación de los *Passeriformes* del noroeste patagónico en base a la osteología craneal (Seijas y Trejo, 2011) y la Guía de identificación de rapaces ibéricas por restos óseos (García, 2013).

Las estructuras óseas, que presentaron características distintivas se resaltaron a fin de permitir una mejor descripción anatómica incorporando en dichas fotografías el nombre anatómico de la estructura específica que las diferencia. Teniendo en cuenta, como menciona Bochenski (2008), que, debido al número de ejemplares utilizados, esta guía puede ser útil al unir más de una diferencia hallada por hueso y siempre existiendo la posibilidad que aparezcan individuos atípicos que no concuerden con los resultados de este estudio.

Se dispusieron las fotografías de las especies en estudio correspondientes a un mismo hueso una al lado de otra en una única imagen, las estructuras a comparar se marcaron mediante flechas y/o círculos.

Los resultados obtenidos se analizaron y se compararon, resaltando, las diferencias que permitieron la diferenciación entre las cuatro especies estudiadas, estas diferencias se utilizaron para la elaboración de una clave dicotómica por hueso.
RESULTADOS

Descripción

1) Saltator similis

1.a- Cráneo

En la visión lateral (Figura 2A), se denota la forma angular que adopta el pico en su vértice en el rostro de la maxila (1) (lo que es posible observar también en las vistas B y C). Posee un borde dorsal homogéneo y convexamente curvo en toda su extensión desde su origen, en la sutura fronto nasal (2) (base del pico) hasta su vértice con una orientación dorsoventral-caudocraneal, mientras que los bordes tomiales (3) son relativamente rectos (Figura 2A y C). Un delgado proceso maxilar del hueso nasal (4) delimita caudalmente las narinas (Figura 2A y B: 5), que son elipsoides y ubicadas cercanas a su base a ambos costados de la línea media del pico. Posee dos forámenes orbitocraneales (Figura 2A: 6), de aspecto ovalado, uno de situación dorsal y otro caudoventral. Caudolateral a ellas se ubica el proceso postorbital (7), el que se proyecta desde el hueso frontal en forma oblicua caudoventralmente hasta la altura del origen del proceso cigomático (8), el cual es aplanado en sentido caudo-craneal; en dirección dorsoventral-caudocraneal proyectándose hasta la altura del arco cigomático (9).

En su visión dorsal (Figura 2B) a nivel de la articulación fronto-nasal, el hueso prefrontal (10) (ubicado entre los huesos nasal y frontal) se proyecta lateralmente formando un vértice agudo, que sobrepasa la proyección caudal de los bordes tomiales.

En la visión ventral, Figura 2C, el hueso palatino (11) se dispone lateralmente al vómer (12) proyectándose lateralmente como una placa ensanchada aplastada con una cara dorsomedial y otra ventrolateral.

A ambos lados de la cabeza, desde el maxilar (Figura 2A: 13) se proyecta hacia caudal el hueso yugal (14), el que es aplanado hasta el hueso yugal cuadrado (15), estos tres últimos forman el arco cigomático (9).

2 Nota: cabe señalar que el hueso cuadrado está ausente en la colección en todos ejemplares estudiados
En la Figura 2D, el cráneo presenta una curvatura transversa continua de forma latero lateral predominantemente convexa, originándose a nivel del temporal, un punto de inflexión hacia lateral en donde es posible observar un “abultamiento” (globoso), en la porción escamosa del temporal (17), evidenciando sobre este un claro surco escamoso (Figura 2A y D: 18). En la vista lateral (Figura 2A), también se evidencia una convexidad desde los parietales hacia caudal, mientras que la porción craneal del hueso frontal es aplanada (Figura 2B: 19).
Figura 2. Cráneo de Saltator similis

1.b- Esternón

El esternón está formado por dos láminas de hueso plano, que se unen en la línea media, desde la cual se proyecta hacia craneal el denominado rostro esternal (Figura 3: 1), el que se bifurca en su extremo rostral, originando dos estructuras óseas curvas de pequeña longitud. En la mayor parte de su extensión mantiene su grosor, hasta la bifurcación y con un borde ventral rectilíneo. Se puede evidenciar dos desarrollados procesos craneolaterales (2), desde donde se proyectan hacia caudal los procesos costales (Figura 3A, C: 3), que se articulan con las costillas, medial a ellos se ubican los pilares costales (Figura 3A: 4). En la misma vista, inmediatamente caudal y dorsalmente al rostro esternal se presentan los pilares coracoides (5), con orientación hacia los procesos craneolaterales formando un borde craneal del esternón convexo, con una leve proyección hacia los pilares costales. En la línea media, caudal al origen de los pilares coracoides se presenta un agujero neumático (Figura 3A: 6). En la Figura 3B a ambos lados del rostro esternal y ventral a los pilares coracoides se encuentran los surcos articulares de los coracoides (Figura 3B: 7). Sobre la Carina y en el piso del esternón, se presenta una serie de poros neumáticos. Desde los pilares costales se proyectan caudolateralmente las trabéculas laterales (Figura 3A: 8), las cuales también toman una dirección dorsal en su trayecto. Las trabéculas medianas (Figura 3A: 9), ventral a las anteriores, forman la incisura esternal (10). El borde caudal de ambas trabéculas medianas origina un margen caudal (11) del esternón de forma rectilíneo. Craneal al origen de la incisura esternal es posible observar un agujero formado entre ambas trabéculas, originado por una proyección lateral de la trabécula mediana. Ventral a la línea media del cuerpo del esternón, se proyecta una lámina aplanada lateralmente denominada carina (Figura 3B: 12), que va disminuyendo su altura de craneal a caudal. Presenta un borde craneal rectilíneo y uno ventral convexo, originando en su porción craneal, un vértice agudo denominado vértice de la carina (13).
Figura 3 Esternón de *Saltator similis*
1. c- Húmero

Presenta una cabeza del húmero (Figura 4A: 1), de posición craneal y de superficie lisa. Dorsal a ella se encuentra el tubérculo dorsal (2), que se continua hacia distal en la cresta deltoídea (3). Por su cara opuesta (Figura 4B), y ventral a la cabeza del húmero, se observa la incisura de la cabeza del húmero (4). Esta incisura se ubica en posición oblicua con respecto al eje longitudinal del hueso; ventral a ella se observa el tubérculo ventral (5). Presenta dos agujeros neumáticos, un agujero craneal y uno caudal (6), que se encuentran alojados en la fosa neumotricipital (7). Esta fosa se encuentra parcialmente dividida por la cruz dorsal (8). La delimitan ventralmente la cruz ventral (9) y dorsalmente el margen caudal (10). Ventral a la cruz ventral se encuentra la crestabicipital (11).

En la epífisis distal y de posición dorsal se presenta un prominente proceso supracondilar dorsal (Figura 4A, B: 12), sobre el cóndilo dorsal (Figura 4A: 13), el cual se separa del cóndilo ventral (14), por la incisura intercondilar (15). Ventral a los cóndilos y de posición central se halla la fosa olecraneana (Figura 4B: 16), que los separa del proceso flexor (17). Una destacada fosa del músculo braquial (Figura 4A:18), se evidencia sobre el epicóndilo ventral (19).
Figura 4 Húmero *Saltator similis*

A. Humero derecho visión craneal
B. Humero derecho visión caudal

1- Cabeza del húmero (*Caput humeri*) 2- Tubérculo dorsal (*Tuberculum dorsale*) 3- Cresta deltoidea (*Crista delt. pect.*) 4- Incisura de la cabeza (*Incisura capiti*) 5- Tubérculo ventral (*Tuberculum ventrale*) 6- Agujero pneumático (*Fosa pneum.*.) 7- Fosa neuromotricipital (*Fossa pneumotricipitalis*) 8- Crus dorsal (*Crus dorsale fossae*) 9- Crus ventral (*Crus ventrale fossae*) 10- Margen caudal (*Margo caudalis*) 11- Cresta bicipital (*Crista bicipitalis*) 12- Proceso supracondilar dorsal (*Processus supracondylaris dorsalis*) 13- Cóndilo dorsal (*Condylus dorsalis*) 14- Cóndilo ventral (*Condylus ventralis*) 15- Incisura intercondilar (*Incisura intercondylaris*) 16- Fosa oleariana (*Fossa olearia*) 17- Proceso flexor (*Processus Flexorius*) 18- Fosa del músculo braquial (*Fossa m. brachialis*) 19- Epicóndilo ventral (*Epicondylus ventralis*)
1.d. Pelvis

En la Figura 5, se puede apreciar a ambos coxales articulados al sinsacro, para formar la pelvis. Cada coxal está compuesto por tres huesos; ilion, isquion y pubis.

Ilion, en la Figura 5B se puede observar en cada coxal la presencia de una ala preacetabular (Figura 5B: 1) y una postacetabular (Figura 5A: 2). La primera es aplanada, originando dos bordes y dos caras, un borde dorsomedial, denominado cresta iliaca dorsal (Figura 5C: 3), y un borde ventrolateral. Se fusiona a los procesos costales del sinsacro (Figura 5A: 4), dejando libre a la cresta espinosa de este último (Figura 5B: 5). Las caras medioventral de ambas alas preacetubulares se fusionan con el sinsacro (Figura 5A: 6), a los procesos transversos (Figura 5A: 7). Dejando separado su borde dorsomedial de la cresta del sinsacro. Por otro lado, en la cara ventral el ala postacetabular forma la fosa renal (8).

En su porción caudal, por su vista lateral (Figura 5C), el ilion se encuentra delimitando dorsalmente el agujero ilioisquiático (9), y dorsal a éste, posee una cresta dorsolateral del ilion (10) desarrollada, la cual termina caudalmente en la espina dorsolateral del ilion (11), de forma aguzada. Esta espina caudalmente se proyecta hacia medial, como se muestra en la vista dorsal (Figura 5B).

Isquion, en su vista lateral (Figura 5C), la porción craneal del isquion delimita el agujero acetabular (12), dorsocaudal a él se ubica el antitrocánter (13), el que es posible observar también en la vista dorsal (Figura 5B). Inmediatamente caudal al agujero acetabular y delimitado por el isquion y el pubis, se ubica el agujero obturador (Figura 5C: 14), de forma circular en su porción craneal y elíptica en su porción caudal. El isquion se proyecta caudalmente originando dos procesos uno caudoventral, denominado proceso isquiático terminal (15), el que es de forma aguzada y se proyecta lateralmente al encuentro del pubis (Figura 5A, B), uniéndose a este, y otro de posición dorsal al anterior, denominado proceso marginal caudal (16), generándose entre esta y la espina dorsolateral del ilion una evidente escotadura.

Pubis: es un hueso delgado largo (Figura 5: 17) y aplanado latero-lateralmente en toda su extensión, que se proyecta desde el agujero acetabular hacia caudal ventrolateralmente al isquion,
uniéndose en su trayecto al proceso isquiático terminal, para finalizar en una punta dirigida hacia medial.

Sinsacro: por la visión dorsal (Figura 5B), en su porción preacetabular se denota una cresta espinosa del sinsacro, la que se une a la cresta iliaca dorsal. Desde esta unión se proyecta caudolateralmente hacia el antitrocánter la cresta dorsolateral. En su porción media, se une al ala postacetabular del ilion mediante la sutura iliosinsacral (18), la que desaparece en la porción postacetabular del sinsacro, quedando una separación entre éste y el ilion. Por la vista ventral (Figura 5A), se observa la unión del sinsacro con el ilion mediante tres pares de procesos costales, el primer par nace de la extremidad craneal del sinsacro (19), desde este punto los cuerpos de las vértebras que conforman el sinsacro se ensanchan hasta la última vértebra preacetabular que posee proceso costal, para luego angostarse marcadamente hasta la extremidad caudal del sinsacro (20), en la zona postacetabular del sinsacro, los procesos transversos se fusionan lateralmente para formar 3 a 4 pares de agujeros intratransversos (Figura 5B, 21).
Figura 5 Pelvis y sinsacro de *Saltator similis*
1. e- Fémur

En la Figura 6 (A, B), se aprecia el fémur de esta especie, recto, presentando una leve curvatura hacia medial en sus epífisis.

En su epífisis proximal, presenta una pequeña cabeza (Figura 6A: 1), con cuello (2) definido, su cara articular antitrocanterica (3), es relativamente plana. Por su vista caudal (Figura 6B), presenta un trocánter femoral (4), el que se proyecta hacia distal en una cresta trocantérica (5), poco definida, medial a ella se posiciona la fosa trocantérica (6). Por su vista craneal (Figura 6A), en la diáfisis se observa la presencia de la línea intermedia craneal (7), la que se extiende desde el trocánter hasta su último tercio.

En su epífisis distal, por la cara craneal (Figura 6A), presenta una tróclea (8), con dos labios paralelos al eje del fémur. Por su cara caudal presenta dos cóndilos, uno medial (Figura 6B: 9) y otro lateral (10), de similar tamaño, ambos de forma elíptica, el cóndilo medial toma una posición dorsal con respecto al lateral.
Figura 6 Fémur de Saltator similis
2) *Sicalis flaveola*

2.a- Cráneo

En la visión lateral (Figura 7A), se observa que el pico posee un borde dorsal homogéneo y convexamente curvo en toda su extensión desde su origen, en la sutura fronto nasal (2) (base del pico), hasta su vértice en el rostro de la maxila (1), con una orientación dorsoventral-caudocraneal, mientras que los bordes tomiales (3), son cóncavos, desde el vértice al maxilar (13). Su vértice es anguloso y de orientación craneal. Un delgado proceso maxilar del hueso nasal (4), delimita caudalmente con las narinas (Figura 7A, B: 5) elipsoides, de gran tamaño en relación a la superficie total del pico, ubicadas cercano a su base a ambos costados de la línea media de éste. Dos forámenes orbitocraneales de aspecto ovalado (Figura 7A: 6), se aprecian al fondo de la cavidad orbital, uno de situación dorsal y otro caudoventral. Caudolateral a ellas se ubica el proceso postorbital (7), el que se proyecta desde el hueso frontal en forma oblicua caudoventralmente hasta la altura de la porción media del proceso cigomático del temporal (8), el cual es aplanado dorsoventralmente y se proyecta desde el temporal hasta la altura del arco cigomático (9), en dirección craneoventral.

En su visión dorsal (Figura 7B), a nivel de la articulación fronto-nasal, el hueso prefrontal (10), se proyecta lateralmente formando un vértice romo, que sobrepasa el eje longitudinal que se proyecta desde el arco cigomático hacia craneal.

En la visión ventral (Figura 7C), el hueso palatino (11), ubicado a ambos lados del vómer (12), se proyecta lateralmente como una placa ensanchada aplastada con una cara dorsomedial y otra ventrolateral (en la figura se puede observar dicha condición, en uno solo de ellos, por fractura de su homólogo).

A ambos lados de la cabeza, y desde el maxilar hasta el hueso cuadrado (ausente en todas las muestras), se originan los arcos cigomáticos (Figura 7A: 9), compuestos por el maxilar (13), hueso yugal (14) y yugal cuadrado (15).
En la visión caudal (Figura 7D), el cráneo presenta una curvatura transversa continua de forma latero lateral predominantemente convexa hasta la base del cráneo, en la región escamosa del temporal (17) formada por los huesos parietales, también evidente en la figura 7A. Presenta un hueso frontal aplanado (7B: 19).
Figura 7 Cráneo de *Sicalis flaveola*
2.b- Esternón

Por las vistas dorsal, lateral y craneal (Figura 8A, B y C, respectivamente), se puede observar en su extremo craneal un rostro esternal (1) simple, bifurcándose en su extremo rostral, originando dos estructuras óseas rectilíneas de pequeña longitud. Su origen es ancho disminuyendo en grosor hasta la bifurcación, su borde ventral es convexo. En la Figura 8 en todas sus vistas, se puede evidenciar dos desarrollados procesos craneolaterales (2), desde donde se originan hacia caudal los procesos costales (Figura 8A, C: 3), que se articulan con las costillas, medial a ellos se ubican los pilares costales (Figura 8A: 4). En la misma vista, inmediatamente caudal y dorsalmente al rostro esternal se presentan los pilares coracoides (5), con orientación hacia los procesos craneolaterales, formando un borde craneal del esternón recto, con una leve proyección hacia los pilares costales. En la Figura 8B, a ambos lados del rostro esternal y ventral a los pilares coracoides se encuentran los surcos articaulares de los coracoides (7). Estos se proyectan lateroventralmente a los procesos craneolaterales. Desde los pilares costales se proyectan caudolateralmente las trabéculas laterales (Figura 8A, C: 8), las cuales también toman una dirección dorsal en su trayecto, terminando en un extremo ensanchado. Ventromedial a esta última, se observa la trabécula mediana (Figura A: 9), generando un espacio entre ellas, denominado incisura esternal (10), el borde caudal de ambas trabéculas medianas origina el margen caudal del esternón (11), de forma convexa. Ventral a la línea media del cuerpo del esternón se dispone una lámina aplanada lateralmente (Figura 8B: 12), de distintas dimensiones en su recorrido denominada carina esternal. Siendo ancha en su porción craneal, disminuyendo esta dimensión hacia caudal, presentando un borde craneal y un borde ventral, originando en su porción craneal un vértice agudo denominado vértice de la carina (13).
Esternón *Sicalis flaveola*

A. Visión dorsal B. Visión lateral C. Visión craneal

1. Rostrum esternal (*Rostrum sterni*) 2. Proceso craneolateral (*Processus cranio lateral*)
5. Pilar coracoideas (*Pila coracoidea*) 6. Agujero pneumático (*Foramen pneumatum*)
7. Surco articular del coracoideas (*Sulcus artic Coracoideus*) 8. Trabécula lateral (*Trabecula lateralis*)
9. Trabécula mediana (*Trabecula mediana*) 10. Incisura esteral (*Incisura sterni*)
11. Margen caudal (*Margo caudalis*) 12. Carina esternal (*Carina sterni*)
13. Vertice de la carina (*Apex carinae*)
2.c- Húmero

En la Figura 9A, en la epífisis proximal y de situación lateral se encuentra el tubérculo dorsal (2) que se continúa hacia distal en la cresta deltoídea (3). Por su cara opuesta y medial a la cabeza del húmero (1) se observa la incisura de la cabeza del húmero (Figura B: 4). Medio distal a ella se observa el tubérculo ventral (5). Presenta dos agujeros neumáticos, un agujero craneal y uno caudal (6), que se encuentran alojados en la fosa neumotricipital (7). Esta fosa se encuentra dividida completamente por la cruz dorsal (8). La delimitan ventralmente la cruz ventral (9), y dorsalmente el margen caudal (10), el que se proyecta hacia la diáfisis. Ventral a la cruz ventral se encuentra la cresta bicipital (11).

En la epífisis distal y de posición dorsal se presenta un prominente proceso supracondilar dorsal (Figura 9A: 12), sobre el cóndilo dorsal (13), el cual se separa del cóndilo ventral (14), por la incisura intercondilar (15). Ventral a los cóndilos y de posición central se halla la fosa olecrananeana (Figura 9B: 16), que los separa del proceso flexor (17). Una destacada fosa del músculo braquial (Figura 9A:18), se evidencia sobre el epicondilo ventral (19).
Figura 9. Húmero de Sicalis flaveola

Húmero *Sicalis flaveola*

A. Humero derecho visión craneal
B. Humero derecho visión caudal

1- Cabeza del húmero (*Caput humeri*)
2- Tubérculo dorsal (*Tuberculum dorsale*)
3- Cresta deltoidea (*Crista delt. pect.*)
4- Incisura intercondilar (*Incisura intercondylaris*)
5- Tubérculo ventral (*Tuberculum ventrale*)
6- Agujero pneumatico (*Fosa pneuma.*)
7- Fosa neumotricipital (*Fossa pneumotricipitalis*)
8- Crus dorsal (*Crus dorsale fossae*)
9- Crus ventral (*Crus ventrale fossae*)
10- Margen caudal (*Margo caudalis*)
11- Cresta bicipital (*Crista bicipitalis*)
12- Proceso supracondilar dorsal (*processus supracondylaris dorsalis*)
13- Cóndilo dorsal (*Condylus dorsalis*)
14- Cóndilo ventral (*Condylus ventralis*)
15- Incisura de la cabeza (*Incisura capitii*)
16- Fosa olecraneana (*Fossa olecrani*)
17- Proceso flexor (*Processus Flexorius*)
18- Fosa del músculo braquial (*Fossa m. brachialis*)
19- Epicondilo ventral (*Epicondylus ventralis*)
2.d- Pelvis

Ilion, en la Figura 10, se puede observar en cada coxal la presencia de un ala preacetabular (Figura 10B: 1) y una postacetabular (Figura 10A: 2). La primera es aplanada, originando dos bordes y dos caras, un borde dorsomedial, denominado cresta iliaca dorsal (Figura 10C: 3), y un borde ventrolateral. Las caras medioventral de ambas alas preacetabulares se fusionan con el sinsacro (Figura 10A: 6). Por otro lado, en la cara ventral del ala postacetabular forma la fosa renal (Figura 10A: 8)

En su porción caudal, por su vista lateral (Figura 10 C), el ilion se encuentra delimitando dorsalmente el agujero ilioisquiático (9), y dorsal a este posee una cresta dorsolateral del ilion (10) desarrollada, la cual termina caudalmente en una espina dorsolateral del ilion (11), de forma aguzada. Esta espina se proyecta caudalmente, como se muestra en la vista dorsal (Figura 10B).

Isquion, en su vista lateral (Figura 10C) la porción craneal del isquion delimita el agujero acetabular (12), dorsocaudal a él se ubica el antitrocánter (13), el que es posible observar también en la vista dorsal (Figura 10B). Inmediatamente caudal al agujero acetabular y delimitado por el isquion y el pubis, se ubica el agujero obturador (Figura 10C: 14), de forma circular y enteramente delimitado. El isquion se proyecta caudalmente originando dos procesos uno caudoventral, denominado proceso isquiático terminal (15), el que es de forma aguzada y se proyecta lateralmente al encuentro del pubis, generándose entre éste y la espina dorsolateral del ilion un borde prácticamente recto.

Pubis: (Figura 10: 17), es un hueso delgado largo y aplanado latero-lateralmente en toda su extensión, que se proyecta desde el acetábulo hacia caudal ventralateralmente al isquion, llegando a la altura del proceso isquiático terminal.

Sinsacro: por la visión dorsal (Figura 10B), en su porción preacetabular se denota una cresta espinosa del sinsacro (Figura 10B: 5), la que se une a la cresta iliaca dorsal (Figura 10C: 3). Desde esta unión se proyecta caudolateralmente hacia el antitrocánter (13). En su porción media se une al ala postacetabular del ilion mediante la sutura iliosinsacral (Figura 10B: 18), la que desaparece
en la porción postacetabular del sinsacro, quedando una separación estrecha entre éste y el ilion. Por la vista ventral (Figura 10A), se observa la unión del sinsacro con el ilion mediante cuatro pares de procesos costales, el primer par nace de la extremidad craneal del sinsacro (19), desde este punto los cuerpos de las vértebras que conforman el sinsacro se ensanchan hasta la última vértebra preacetabular que posee proceso costal, para luego angostarse marcadamente hasta la extremidad caudal del sinsacro (20), en la zona postacetabular del sinsacro, los procesos transversos se fusionan lateralmente para formar cuatro a cinco pares de agujeros intratransversos (Figura 10B: 21).
Figura 10 Pelvis y sinsacro de *Sicalis flaveola*

A. Visión ventral B. Visión dorsal C. Visión lateral derecha

1. Ala preacetabular (*Ala preacetabularis*)
2. Ala postacetabular del ilion (*Ala postacetabili.*)
3. Cresta iliaca dorsal (*Crista iliaca dorsalis*)
4. Proceso costal (*Procesus costalis*)
5. Cresta espinosa del sinsacro (*Crista spinosa synsacri*)
6. Sinsacro (*Synsacrum*)
7. Procesos transversos (*Processus transversus*)
8. Fosa renal (*Fossa renalis*)
9. Agujero ilioisquiático (*Foramen iliobrachiicum*)
10. Cresta dorsolateral del ilion (*Crista dorsali.*)
11. Espina dorsolateral del ilion (*Spina dorsolati.*)
12. Agujero acetabular (*Foramen acetabulare*)
13. Antitrocanter (*Antitrochanter*)
14. Agujero obturador (*Foramen obturaturn*)
15. Proceso isquiático terminal (*Procesus terminale ischiadicus*)
16. Proceso marginal caudal (*Procesus marginalis caudalis*)
17. Eje pélvico (*Scapus pubis*)
18. Sutura iliosacral (*Sutura iliopsisacri*)
19. Extremidad craneal del sinsacro (*Extremitas craniali synsacri*)
20. Extremidad caudal del sinsacro (*Extremitas caudalis synsacri*)
21. Agujeros intratransversos (*Foramina intertransversaria*)
2.e- Fémur

En la Figura 11 (A, B), se aprecia el fémur de esta especie, recto, presentando una leve curvatura hacia medial en sus epífisis.

En su epífisis proximal, presenta una pequeña cabeza (Figura 11A: 1) con cuello (2) ancho, su cara articular antitrocantérica (3), es ligeramente cóncava. Por su vista caudal (Figura 11B), presenta un trocánter femoral (4) el que se proyecta hacia distal en una cresta trocantérica (5), medial a ella se posiciona la fosa trocantérica (6).

En su epífisis distal, por la cara craneal (Figura 11A), presenta una tróclea (8), con dos labios paralelos, ligeramente oblicuos al eje del fémur, en una dirección proximodistal-lateromedial. Por su cara caudal (Figura 11B), presenta dos cóndilos, uno medial (9) y uno lateral (10) de similar tamaño, ambos de forma elíptica, el cóndilo medial toma una posición dorsal con respecto al lateral.
Figura 11 Fémur de *Sicalis flaveola*

Fémur *Sicalis flaveola*

A. Visión craneal, fémur derecho B. Visión caudal, fémur derecho

1- Cabeza del fémur (*caput ossis femoris*)
2- Cuello del fémur (*Colium ossis femoris*)
3- Cara articular antitrocanterica (*Facies articularis antipectinephrica*)
4- Trocánter femoral (*Trochanter femoris*)
5- Cresta trocanterica (*Crista trochantica*)
6- Fosa trocanterica (*Fossa trochantica*)
7- * Línea intermedia craneal (*Linea intermus cranialis*)
8- Troclea fibular (*Trochlea fibularis*)
9- Cóndilo medial (*Condylus medialis*)
10- Cóndilo lateral (*Condylus lateralis*)

Ausente
3) *Sporophila angolensis*

3.a- Cráneo

En la visión lateral (Figura 12A), se denota la forma angular que adopta el pico en su vértice en el rostro de la maxila (1), (lo que es posible observar también en las vistas B y C). Posee un borde dorsal homogéneo y convexamente curvo desde su origen, en la sutura fronto nasal (2) (base del pico), hasta la altura de la narina (Figura 12A, B: 5), desde donde se proyecta hacia el vértice en forma rectilínea. Sus bordes tomales (Figura 12A: 3), son predominantemente rectilíneos. Un delgado proceso maxilar del hueso nasal (4), delimita caudalmente unas narinas elipsoides, ubicadas cercano a su base a ambos costados de la línea media del pico. Posee un foramen orbitocraneal (6), de gran desarrollo y de aspecto ovalado. Caudolateral a él se ubica el proceso postorbital (7), el que se proyecta desde el hueso frontal en forma oblicua dorsoventralmente hasta la altura del último tercio del proceso cigomático del temporal (8). Este último es aplanado en sentido caudo-craneal, y se proyecta paralelamente al proceso postorbital desde el temporal hacia el arco cigomático (9).

En su visión dorsal (Figura 12B), a nivel de la articulación fronto-nasal a cada lado, los huesos prefrontales (10) (ubicado entre los huesos nasal y frontal), se proyectan lateralmente formando un vértice agudo, que no sobrepasa la proyección caudal de los bordes tomales.

En la visión ventral el hueso palatino (Figura 12C: 11), se dispone lateralmente al vómer (12), proyectándose lateralmente como una placa ensanchada aplastada con una cara dorsomedial y otra ventrolateral.

A ambos lados de la cabeza, desde el maxilar se proyecta hacia caudal el hueso yugal (Figura A: 14), hasta el hueso yugal cuadrado (15), estos tres últimos forman el arco cigomático (9), el que se articula caudalmente con el hueso cuadrado (16).

En la visión caudal (Figura 12D), el cráneo presenta transversalmente una curvatura convexa, originándose a nivel del temporal un punto de inflexión hacia lateral en donde es posible observar un “abultamiento” (globoso), en la porción escamosa del temporal (Figura 12A, D: 17), evidenciando sobre el un claro surco escamoso (18). En la vista lateral (Figura 12A), también se
evidencia una convexidad, formada por los huesos parietales, desde su unión con los huesos frontales (Figura 12B: 19) hacia caudal, mientras que la porción craneal del hueso frontal es aplanada.
Figura 12 Cráneo de *Sporophila angolensis*
3b- Esternón

Por las vistas dorsal, lateral y craneal (Figura 13A, B y C, respectivamente), se puede observar en su extremo craneal un rostro esternal (Figura 13: 1) simple, bifurcándose en su extremo rostral, originando dos estructuras óseas rectilíneas de pequeña longitud. Su origen es ancho disminuyendo en grosor hasta la bifurcación, su borde ventral es convexo. En la Figura 13 A y B, se pueden evidenciar dos desarrollados procesos craneolaterales (2), desde donde se originan hacia caudal los procesos costales (Figura 13A, B: 3), que se articulan con las costillas, medial a ellos se ubican los pilares costales (Figura 13A: 4). En la misma vista, inmediatamente caudal y dorsalmente al rostro esternal, se presentan los pilares coracoides (5), con orientación hacia los procesos craneolaterales formando un borde craneal del esternón convexo, con una leve proyección hacia los pilares costales. En la Figura 13B, a ambos lados del rostro esternal, y ventral a los pilares coracoides, se encuentran los surcos articulares de los coracoides (7). Estos se proyectan lateroventralmente a los procesos craneolaterales. Desde los pilares costales se proyectan caudolateralmente las trabéculas laterales (Figura 13A, B: 8), las cuales también toman una dirección dorsal en su trayecto, terminando en un extremo ensanchado. Ventromedial a esta última, se observa la trabécula mediana (Figura 13A: 9), generando un espacio entre ellas, denominado incisura esternal (10), el borde caudal de ambas trabéculas medianas origina el margen caudal del esternón (11), de forma convexa. Ventral a la línea media del cuerpo del esternón se dispone una lámina aplanada laterolateralmente, de distintas dimensiones en su recorrido denominada carina esternal (Figura 13B: 12). Siendo ancha en su porción craneal, disminuyendo esta dimensión hacia caudal, presentando un borde craneal y un borde ventral, originando en su porción craneal un vértice agudo denominado vértice de la carina (13), el que es romo.
Figura 13. Esternón de Sporophila angolensis

A. Visión dorsal B. Visión lateral C. Visión craneal

3.c- Húmero

En la Figura 14A, se presenta una cabeza humeral (1), de posición craneal y de superficie lisa. Dorsal a ella se encuentra el tubérculo dorsal (2), que se continua hacia distal en la cresta deltoídea (3). Por su cara opuesta (Figura 14B) y ventral a la cabeza del húmero, se observa la incisura de la cabeza del húmero (4). Esta incisura se ubica en posición oblicua con respecto al eje longitudinal del hueso; ventral a ella se observa el tubérculo ventral (5). Presenta dos agujeros neumáticos, uno craneal y otro caudal (6), que se encuentran alojados en la fosa neumotricipital (7). Esta fosa se encuentra parcialmente dividida por la cruz dorsal (8). La delimitan ventralmente la cruz ventral (9) y dorsalmente el margen caudal (10). Ventral a la cruz ventral se encuentra la cresta bicipital (11).

En la epífisis distal y de posición dorsal, se presenta un prominente proceso supracondilar dorsal (Figura 14A: 12), sobre el cóndilo dorsal (13), el cual se separa del cóndilo ventral (14), por la incisura intercondilar (15). Ventral a los cóndilos y de posición central se halla la fosa olecraniana (Figura 14B: 16), que los separa del proceso flexor (17). Una destacada fosa del músculo braquial (Figura 14A: 18), se evidencia sobre el epicondilo ventral (19).
Figura 14 Húmero de *Sporophila angolensis*
3.d. Pelvis

En la Figura 15, se puede apreciar a ambos coxales articulados al sinsacro, para formar la pelvis. Cada coxal está compuesto por tres huesos; ilion, isquion y pubis.

Ilion, en la Figura 15 se puede observar en cada coxal la presencia de un ala preacetabular (Figura 15B: 1) y una postacetubalar (Figura 15A: 2). La primera es aplanada, originando dos bordes y dos caras, un borde dorsomedial, denominado cresta iliaca dorsal (Figura 15C: 3), y un borde ventrolateral. Se fusiona a los procesos costales del sinsacro (Figura 15A: 4), dejando libre a la cresta espinosa de este último (Figura 15B: 5). Las caras medioventral de ambas alas preacetubulares se fusionan con el sinsacro (Figura 15A: 6) a los procesos transversos (7). Dejando separado su borde dorsomedial de la cresta del sinsacro. Por otro lado, en la cara ventral, del ala postacetabular se forma la fosa renal (8).

En su porción caudal, por su vista lateral (Figura 15C) el ilion, se encuentra delimitando dorsalmente el agujero ilioisquiático (9), y dorsal a este, posee una cresta dorsolateral del ilion (10) desarrollada, la cual termina caudalmente en una espina dorsolateral del ilion (11) de forma roma. Esta espina se proyecta hacia caudal, como se muestra en la vista dorsal (Figura 15B).

Isquion, en su vista lateral (Figura 15C), la porción craneal del isquion delimita el agujero acetabular (12), dorsocaudal a él se ubica el antitrocánte (13), el que es posible observar también en la vista dorsal. Inmediatamente caudal al agujero acetabular y delimitado por el isquion y el pubis, se ubica el agujero obturador (14), de forma circular. El isquion se proyecta caudalmente originando dos procesos uno caudoventral, denominado proceso isquiático terminal (Figura 15A: 15), el que es de forma aguzada y se proyecta caudolateralmente al encuentro del pubis, uniéndose a éste, y otro de posición dorsal al anterior, denominado proceso marginal caudal (Figura 15C: 16), generándose entre ésta y la espina dorsolateral del ilion una evidente escotadura.

Pubis: (Figura 15B, C: 17), es un hueso delgado largo y aplanado latero-lateralmente en toda su extensión, que se proyecta desde el acetábulo hacia caudal ventrolateralmente al isquion, uniéndose en su trayecto al proceso isquiático terminal, para finalizar en una punta dirigida hacia medial, sobrepasando al extremo distal del isquion.
Sinsacro: por la visión dorsal (Figura 15B), en su porción preacetabular se denota una cresta espinosa del sinsacro (5), la que se une a la cresta iliaca dorsal. Desde esta unión y hasta el antitrocanter, se proyecta caudolateralmente hacia el antitrocanter, la cresta dorsolateral del ilion. En su porción media se une al ala postacetabular del ilion mediante la sutura iliosinsacral (18), la que desaparece en la porción postacetabular del sinsacro, quedando una separación entre este y el ilion. Por la vista ventral (Figura 15A), se observa la unión del sinsacro con el ilion mediante tres pares de procesos costales, el primer par nace de la extremidad craneal del sinsacro (19), desde este punto los cuerpos de las vértebras que conforman el sinsacro se ensanchan hasta la última vértebra preacetabular que posee proceso costal, para luego angostarse marcadamente hasta la extremidad caudal del sinsacro (20), en la zona postacetabular del sinsacro, los procesos transversos se fusionan lateralmente para formar cuatro a cinco pares de agujeros intratransversos (Figura 15B: 21).
Figura 15 Pelvis y sinsacro de *Sporophila angolensis*
3.e- Fémur

El fémur de esta especie, es ligeramente curvo. En su epífisis proximal, presenta una cabeza y cuello (Figura 16A: 1 y 2), su cara articular antitrocanterica (3), es relativamente plana. Por su vista caudal presenta un trocánter femoral (Figura 16B: 4), el que se proyecta hacia distal en una cresta trocanterica (5), la que, a su vez, da origen medial a ella a una fosa trocanterica (6).

En su epífisis distal, por la cara craneal presenta una tróclea (Figura 16A: 8), con dos labios, con su labio lateral paralelo al eje del fémur, mientras que su labio medial es ligeramente oblicuo a éste en una dirección próximodistal-lateromedial. Por su cara caudal, presenta dos cóndilos de similar tamaño, ambos de forma elíptica, el cóndilo medial (Figura 16B: 9) es levemente proximal respecto al lateral (10).
Figura 16 Fémur de *Sporophila angolensis*
4) *Sporophila caerulescens*

4.a- Cráneo

En la visión lateral (Figura 17A), se denota la forma angular que adopta el pico en su vértice en el rostro de la maxila (Figura 17: 1). Posee un borde dorsal homogéneo y convexamente curvo, desde su origen en la sutura fronto nasal (Figura 17A, B: 2), (base del pico). Sus bordes tomales (Figura 17A: 3), son cóncavos. Un delgado proceso maxilar del hueso nasal (4), delimita caudalmente las narinas (Figura 17A, B: 5) de forma elipsoides, ubicadas cercano a su base a ambos costados de la línea media del pico. Posee tres forámenes orbitocraneales (Figura 17A: 6), uno dorsal de gran desarrollo y de aspecto ovalado y dos ventrales. Caudolateral a ellos se ubica el proceso postorbital (7), el que se proyecta desde el hueso frontal, en forma oblicua dorsoventral-craneocaudal hasta la altura de la base del tercio del proceso cigomático del temporal (8). Este último es aplanado en sentido caudo-craneal, y se proyecta en forma oblicua dorsoventral-caudocraneal desde el temporal hacia el arco cigomático.

En su visión dorsal (Figura 17B), a nivel de la articulación fronto-nasal a cada lado, los huesos prefrontales (10) (ubicado entre los huesos nasal y frontal), se proyectan lateralmente formando un vértice romo, que sobrepasa la proyección caudal de los bordes tomales.

El hueso palatino (Figura 17C: 11), se dispone lateralmente al vómer (12), proyectándose lateralmente como una placa ensanchada aplastada con una cara dorsomedial y otra ventrolateral.

A ambos lados de la cabeza, desde el maxilar se proyecta hacia caudal el hueso yugal hasta el hueso yugal cuadrado, estos tres últimos forman el arco cigomático.

En la vista caudal (Figura 17D), el cráneo presenta transversalmente una curvatura convexa, originándose a nivel del temporal un punto de inflexión hacia lateral, en donde es posible observar un punto de inflexión hacia medial en la porción escamosa del temporal (Figura 17A, D: 17)

3 Nota: cabe señalar que el arco cigomático está ausente en la colección en todos los ejemplares estudiados.

4 Nota: cabe señalar que el hueso cuadrado está ausente en la colección en todos ejemplares estudiados
evidenciando sobre él un surco escamoso (Figura 17A: 18). En la vista lateral (Figura 17A), también se evidencia una convexidad, formada por los huesos parietales, desde su unión con los huesos frontales (Figura 17B: 19) hacia caudal, mientras que la porción craneal del hueso frontal es aplanada.
Craneo *Sporophila caerulescens*

A. Visión lateral B. Visión dorsal C. Visión ventral D. Visión Caudal

4.b- Esternón

Por las visiones dorsal, lateral y craneal (Figura 18 A, B, C, respectivamente), se puede observar en su extremo craneal el rostro externo (1), simple bifurcándose en su extremo rostral. En la porción craneolateral del esternón se presentan dos desarrollados procesos craneolaterales (Figura 18B: 2), desde donde se originan hacia caudal los procesos costales (Figura 18A, C: 3), que se articulan con las costillas, originando medial a ellos los pilares costales (Figura 18A: 4). En la línea mediana, inmediatamente caudal al rostro externo se originan los pilares coracoides (5), que se dirigen hacia los procesos craneolaterales formando un perfil craneal recto, con una proyección hacia los pilares costales. Caudal al origen de los pilares coracoides se denota la presencia de un agujero neumático (6). A ambos lados del rostro externo y ventral a los pilares coracoides, se encuentran los surcos articulares de los coracoides (Figura 18B: 7). Caudolateralmente al pilar costal se encuentra la trabécula lateral (Figura 18A, B: 8), que se proyecta dorsolateralmente. Ventromedial a esta última, se observa la trabécula mediana (Figura 18A: 9), generando un espacio entre ellas, denominado incisura esternal (Figura 18A, B: 10). El margen caudal del esternón es recto (Figura 18A: 11)

Ventral a la línea media del cuerpo del esternón se dispone la carina (Figura 18B: 12), con un borde craneal y un borde ventral, originando en su porción craneal un vértice de la carina (13) romo.
Figura 18 Esternón de *Sporophila caerulescens*
4.c- Húmero

En la Figura 14A, se presenta una cabeza humeral (1), de posición craneal y de superficie lisa, la cual presenta una mayor protuberancia por su cara ventromedial. Dorsal a ella se encuentra el tubérculo dorsal (2), que se continúa hacia distal en la cresta deltoidea (3). Por su cara opuesta (Figura 19B) y ventral a la cabeza del húmero se observa la incisura de la cabeza de húmero (4). Esta incisura se ubica en posición oblicua con respecto al eje longitudinal del hueso; ventral a ella se observa el tubérculo ventral (5). Presenta dos agujeros neumáticos, uno craneal y otro caudal (6), que se encuentran alojados en la fosa neumotricipital (7). Esta fosa se encuentra parcialmente dividida por la cruz dorsal (8). La delimitan ventralmente la cruz ventral (9) y dorsalmente el margen caudal (10). Ventral a la cruz ventral se encuentra la cresta bicipital (11).

En la epífisis distal y de posición dorsal se presenta un prominente proceso supracondilar dorsal (Figura 19A: 12), sobre el cóndilo dorsal (13), el cual se separa del cóndilo ventral (14), por la incisura intercondilar (15). Ventral a los cóndilos y de posición central se halla la fosa olecraneana (Figura 19B: 16), que los separa del proceso flexor (17). Una destacada fosa del músculo braquial (Figura 19A: 18), se evidencia sobre el epicondilo ventral (19).
Figura 19 Húmero Sporophila caerulescens

A. Humero derecho visión craneal B. Humero derecho visión caudal

1- Cabeza del húmero (Caput humeri)
2- Tubérculo dorsal (Tuberculum dorsale)
3- Cresta deltoidea (Crista delt. pect.)
4- Incisura de la cabeza (Incisura capiti)
5- Tubérculo ventral (Tuberculum ventrale)
6- Agujero pneumático (Fosa pneuma.)
7- Fosa neumotricipital (Fossa pnumotricipitalis)
8- Crus dorsal (Crus dorsale fossae)
9- Crus ventral (Crus ventrale fossae)
10- Margen caudal (Margo caudalis)
11- Cresta bicipital (Crista bicipitalis)
12- Proceso supracondilar dorsal (processus supracondylaris dorsalis)
13- Cúspide dorsal (Condylus dorsalis)
14- Cúspide ventral (Condylus ventralis)
15- Incisura intercondilar (Incisura intercondylaris)
16- Fosa olecraneana (Fossa olecrani)
17- Proceso flexor (Processus Flexorius)
18- Fosa del músculo braquial (Fossa m. brachialis)
19- Epicondilo ventral (Epi-condylus ventralis)
20- Surco tricipital (Sulcus Sacp. Tricep)
4.e.- Pelvis

Ilion, en su porción craneal presenta dos alas preacetabulares (Figura 20B: 1), las que son posibles de observar por la visión dorsal, éstas se proyectan hacia medial formando en su borde la cresta iliaca dorsal (Figura 20C: 3). La porción medial del ala acetabular se encuentra dorsal a la extremidad craneal del sinsacro (Figura 20A: 19), cubriendo parte de él, y uniéndose por sus caras ventrales a ambos costados de éste a través de tres pares de procesos costales (4). En su porción caudal, el ilion se encuentra delimitando dorsalmente el agujero ilioisquiatico (Figura 20C: 9), y dorsal a éste posee una cresta dorsolateral del ilion (10), bien desarrollada, la cual termina caudalmente en una espina dorsolateral del ilion (11), poco desarrollada de forma roma, la cual se dirige hacia caudal.

Isquion, en su porción craneal se encuentra delimitando el agujero acetabular (Figura 20C: 12), dorsocaudal a él se ubica el antitrocánter (13), el que es de gran desarrollo. Ventrocaudal al agujero acetabular y delimitado dorsal y ventralmente por el isquion y pubis, respectivamente, se ubica el agujero obturador (14), el que es perforado y enteramente delimitado. Se proyecta en su extremo caudoventral en un proceso terminal del isquion (Figura 20B: 15), roma y dirigida hacia lateral. Se proyecta caudodorsalmente en un proceso marginal caudal (Figura 20C: 16) roma, generándose entre esta y la espina dorsolateral del isquion una concavidad.

Pubis: (Figura 20B, C: 17) está ubicado de craneal a caudal y ventral al isquion, es aplanado latero-lateralmente en toda su extensión. En su parte craneal se proyecta caudomedioventralmente hacia el isquion formando el agujero obturador. Se proyecta caudoventrolateralmente en forma curva, siendo sobrepasado por el extremo distal del isquion.

Sinsacro: por la visión dorsal en su porción preacetabular se denota una cresta espinosa del sinsacro (Figura 20B: 5), desarollada. En su porción media se une a la ala postacetabular del ilion (2), mediante la sutura iliosinsacral (Figura 20A: 18), sólo en contacto con la cresta dorsolateral del ilion y desaparece en la porción postacetabular del sinsacro, quedando una separación estrecha entre éste y el ilion. Por la visión ventral se observa la unión del sinsacro con el ilion mediante tres pares de procesos costales, el primer par nace de la extremidad craneal del sinsacro (19), desde este punto los cuerpos de las vértebras que conforman el sinsacro se enanchan hasta la última
vértebra preacetabular que posee proceso costal, para luego angostarse marcadamente hasta la extremidad caudal del sinsacro (20), en la zona postacetabular del sinsacro, los procesos transversos se fusionan lateralmente para formar seis a siete pares de agujeros intratransversos (Figura 20B: 21).
Figura 20 Pelvis y sinsacro de *Sporophila caerulescens*
4.e- Fémur

El fémur de esta especie, es ligeramente curvo. En su epífisis proximal, presenta una cabeza pequeña (Figura 21A: 1), con cuello (2) poco definido, su cara articular antitrocanterica (3), es levemente cóncava. Por su vista caudal presenta un trocánter femoral (Figura 21B: 4), el que se proyecta hacia distal en una cresta trocanterica (5) pequeña, que se curva ligeramente hacia medial, ésta a su vez da origen medial a ella a una fosa trocanterica (6). Por su vista craneal se denota una línea intermedia craneal (Figura 21A: 7), poco marcada.

En su epífisis distal, por la cara craneal presenta una tróclea (Figura 21A: 8) con dos labios, con su labio lateral paralelo al eje del fémur, mientras que su labio medial es ligeramente oblicuo a éste en una dirección próximodistal-lateromedial. Por su cara caudal, presenta dos cóndilos de similar tamaño, ambos de forma elíptica, el cóndilo medial (Figura 21B: 9), es proximal respecto al lateral (10).
Figura 21 Fémur de *Sporophila caerulescens*
Comparación

5) Cráneo

En cuanto al tamaño de la cabeza de *S similis* (A), contrasta claramente con las otras tres especies, siendo ésta de mayor volumen (Figura 22).

Las cuatro especies estudiadas presentaron un perfil del pico fuertemente angular (Figura 22), sin embargo, mientras *S. similis*, *S. angolensis* y *S. caerulescens* presentan un borde dorsal convexo sin punto de inflexión, *S. flaveola* (B) posee un leve punto de inflexión a nivel de la narina.

En cuanto a los bordes tomiales del pico (Figura 22), tanto *S. similis* como *S. angolensis*, presentan un perfil lateral de aspecto rectilíneo, siendo cóncavo en *S. flaveola* y *S. caerulescens*.

La proyección del vértice del pico (Figura 22), varía entre las especies, siendo más craneal en *S. similis* y *S. flaveola*, y mayoritariamente ventral en *S. angolensis* y *S. caerulescens*, por lo que en la visión dorsal los últimos dos presentan un aspecto más corto que las dos primeras. En esta misma visión se denota otra diferencia entre estas especies en la línea media del cráneo, en donde es posible observar un surco en *S. similis* y *S. flaveola*, no existiendo en las *Sporophila*.

Todas las especies presentan una expansión hacia lateral de los procesos prefrontales, sin embargo, en *S. angolensis* es la única en la cual no sobrepasa la proyección de los bordes tomiales hacia caudal.

En la pared medial de la órbita (Figura 22), es posible observar un único foramen orbital en *S. angolensis*, existiendo dos en *S. similis*, *S. flaveola* y *S. caerulescens*.

Caudal a la órbita (Figura 22), el proceso postorbital se proyecta de manera oblicua en las cuatro especies, tomando una dirección dorsoventral-craneocaudal en *S. similis*, *S. flaveola* y *S. caerulescens*, y dorsoventral-caudocraneal en *S. angolensis*, siendo paralelo al proceso cigomático del temporal, a diferencia de las otras especies en que el postorbital se dirige hacia el proceso cigomático.
El arco yugal en *S. similis* y *S. flaveola* sufre una rotación en su trayecto hacia el hueso cuadrado (ausente en estas muestras), mientras que en *S. angolensis* es aplanado lateralmente en toda su extensión. En *S. caerulescens* el arco cigomático no está presente.

Por la visión caudal (Figura 23), es posible ver un prominente abultamiento en la porción escamosa tanto en *S. similis* como en *S. angolensis*, lo que origina un surco escamoso de aspecto profundo en relación a *S. caerulescens* el que presenta un menor abultamiento y un surco menos definido. En *S. flaveola*, ambas estructuras no se evidencian.

Clave dicotómica de Cráneo

1. a. En el perfil pico se aprecia un punto de inflexión donde su trayectoria normal cambia bruscamente... *Sicalis flaveola*
 b. El perfil del pico es continuamente curvo, sin que exista un punto de inflexión claramente definido ... 2

2. a. Región escamosa no abombada.. *Sporophila caerulescens*
 b. Región escamosa abombada... 3

3. a. La apófisis postorbital se proyecta en dirección dorsoventral-craneocaudal…*Saltator similis*
 b. La apófisis postorbital se proyecta en dirección dorsoventral-caudocraneal... *Sporophila angolensis*
Diagrama explicativo de Clave dicotómica de cráneo

1a. En el perfil pico se aprecia un punto de inflexión donde su trayectoria normal cambia bruscamente

 Sicalis flaveola

 2a. Región escamosa no abombada

 Sporophila caeruleascens

 3a. La apófisis postorbital se proyecta en dirección dorsoventral-craneocaudal

 Saltator similis

1b. El perfil del pico es continuamente curvo, sin que exista un punto de inflexión claramente definido

 2b. Región escamosa abombada

 3b. La apófisis postorbital se proyecta en dirección dorsoventral-caudocraneal

 Sporophila angolensis
Figura 22. Comparación cráneo, visión lateral

A. Saltator similis B. Sicalis flaveola C. Sphorofila angolensis D. Sphorofila caerulecens

1. Proceso postorbital (*processus postorbital*)
2. Proceso cigomático (*processus zygomaticus*)
3. Surco escamoso (*Sulcus squam.*)

--- Linea referencial dirección borde dorsal del pico
----- Linea referencial dirección procesos porstorbital y cigomático
Figura 23 Comparación cráneo visión caudal
6) Esternón

El esternón de *S. similis*, es de mayor tamaño que el de *S. flaveola*, y ambos mayores que *S. angolensis y S. caerulescens* (Figura 24).

El rostro esternal (Figura 24), mantiene su mismo grosor en *S. similis y S. angolensis*, y disminuye cranealmente su grosor en *S. flaveola y S. caerulescens* hasta la bifurcación, desde aquí se extienden dos procesos curvos en *S. similis, S. angolensis y S. caerulescens*, mientras que en *S. flaveola* estos procesos son rectilíneos.

Por la vista lateral (Figura 25), se observa una diferencia en el borde ventral del rostro esternal, siendo principalmente rectilíneo en *S. similis*, convexo en *S. flaveola*, y sigmoideo en *S. angolensis y S. caerulescens*.

El borde craneal de los pilares coracoides (Figura 24), varía su forma entre las especies estudiadas, en *S. similis, S. flaveola y S. caerulescens*, forman un borde craneal rectilíneo, el cual se inflecta en su camino hacia los procesos costales, en *S. angolensis* la inflexión origina un borde curvo.

Otra marcada diferencia es la presencia o ausencia de un agujero neumático caudal al origen de los pilares coracoides, encontrándose en *S. similis y S. caerulescens*, no así en *S. flaveola, S. angolensis* (Figura 24: 1).

Cabe destacar la traslucidez en *S. flaveola, S. angolensis y S. caerulescens* producto de la delgada capa ósea que forma el cuerpo del esternón (Figura 24).

La incisura esternal es elíptica y con vértice roondeado en *S. similis, S. flaveola y S. caerulescens*, y con bordes rectos y vértice agudo en *S. angolensis* (Figura 24).

El margen caudal tiene aspecto rectilíneo en *S. similis* y convexo en las demás especies (Figura 24).

En la visión lateral (Figura 25), un punto relevante de comparación es la carina, siendo su borde ventral curvo en *S. similis* y *S. flaveola* y menos convexo en *S. angolensis* y *S. caerulescens*. En cuanto al vértice de la carina, es agudo en *S. similis* y *S. flaveola* y romo en *S. angolensis* y *S. caerulescens*.

En los esternones de *Saltator similis* estudiados, fue posible observar dos particularidades; la primera es la presencia de una serie de poros neumáticos en la cara dorsal del esternón, y la segunda es la existencia de un agujero craneal al origen de la incisura esternal (Figura 24: 2), No visibles en las otras especies.

Clave dicotómica de esternón

1. a. Presencia de agujero neumático caudal al punto de unión de los pilares coracoides……… 2
 b. Ausencia de agujero neumático caudal al punto de unión de los pilares coracoides………3

2. a. Presencia de un agujero entre las trabéculas…………………………………………..*Saltator similis*
 b. Ausencia de un agujero entre las trabéculas ………………………………………..*Sporophila caerulescens*

3. a. Se forma una marcada concavidad en el punto de unión de los pilares coracoides…………………………………………………………………………..*Sporophila angolensis*
 b. Se forma una línea recta o una leve concavidad en el punto de unión de los pilares coracoides…………………………………………………………………………..*Sicalis flaveola*
Diagrama explicativo de Clave dicotómica de esternón

1a. Presencia de agujero neumático caudal al punto de unión de los pilares coracoídes

2a. Presencia de un agujero entre las trabéculas

- *Saltator similis*

2b. Ausencia de un agujero entre las trabéculas

- *Sporophila caerulescens*

1b. Ausencia de agujero neumático caudal al punto de unión de los pilares coracoídes

3a. Se forma una marcada concavidad en el punto de unión de los pilares coracoídes

- *Sporophila angolensis*

3b. Se forma una línea recta o una leve concavidad en el punto de unión de los pilares coracoídes

- *Sicalis flaveola*
Figura 24 Comparación esternón visión dorsal
Figura 25 Comparación esternón visión lateral
7) **Húmero**

El húmero de *S. similis*, es de mayor tamaño que el de *S. flaveola*, y ambos mayores que *S. angolensis* y *S. caerulescens* (Figura 26).

El húmero no presenta grandes diferencias morfológicas entre las cuatro especies estudiadas, no obstante, es posible notar una fosa neumotricipital dividida en *S. similis* y *S. flaveola* (Figura 26). Es así como el margen caudal es poco definido en *S. similis*, levemente definido en *S. caerulescens*, y delineado en *S. flaveola* y *S. angolensis*. A su vez esto provoca que la fosa neumotricipital sea poco definida en *S. similis*, no así en *S. flaveola*, *S. angolensis* y *S. caerulescens*. Esta fosa presenta una división clara dado por la cruz dorsal en *S. similis* y *S. flaveola*, mientras que en *S. angolensis* y *S. caerulescens* es poco definida.

Una marcada cresta deltoide se evidencia en *S. caerulescens*, característica no evidente en las otras especies (Figura 26).

Clave dicotómica de húmero

1. a. La fosa neumotricipital es poco definida ... *Saltator similis*

 b. La fosa neumotricipital es marcada ….. *Sicalis flaveola, Sporophila angolensis, Sporophila caerulescens*

Diagrama explicativo Clave dicotómica de húmero
Figura 26 Comparación Humero Visión caudal
8) **Pelvis**

En la Figura 27 se presentan la vista lateral de las pelvis de las cuatro especies estudiadas, al compararlas, es posible notar diferencias morfológicas en la espina dorsolateral del ilion, la que es aguzada y dirigida caudomedialmente en *S. similis* (A), aguzada y dirigida caudalmente en *S. flaveola* (B), y roma dirigida caudalmente en *S. angolensis* (C) y *S. caerulescens* (D) (Figura 28).

El proceso terminal del isquion (Figuras 27 y 28), es aguzado y dirigido caudolateralmente en *S. similis* y *S. angolensis*, uniéndose al pubis en *S. similis*, y presenta un extremo romo y dirigido lateralemente en *S. flaveola* y *S. caerulescens*. Entre el proceso marginal caudal del isquion y la espina dorsolateral del ilion se genera una marcada escotadura en *S. similis*, de menor amplitud *S. angolensis* y *S. caerulescens*, y de casi nula existencia en *S. flaveola* debido a la ausencia de un proceso marginal caudal, dado por la forma rectilínea del borde caudal del isquion.

El agujero obturado en *S. similis* está menos delimitado que en las otras especies (totalmente circunscrito).

El pubis de *S. angolensis* es mayoritariamente recto, a diferencia de las otras especies, el cual es curvo en la mayor parte de su extensión. La porción caudal de este hueso sobrepasa el extremo distal del isquion, dirigiéndose hacia medial en *S. similis* y *S. angolensis*, en *S. flaveola* el pubis se extiende hasta la altura el extremo distal del isquion, mientras que en *S. caerulescens* es sobrepasado por este último (Figura 27).

La porción media del sinsacro se une al ala postacetabular del ilion mediante la sutura iliosinsacral, la que es completa en *S. angolensis* extendiéndose desde su inicio, en el punto de contacto con la cresta dorsolateral del ilion, hasta su extremo distal. En *S. similis, S. flaveola y S. caerulescens* la sutura desaparece en la porción postacetabular del sinsacro (Figura 28).

Clave dicotómica de Pelvis

1. a. El extremo caudal del pubis sobrepasa al extremo caudal del isquion……………………2
 b. El extremo caudal del pubis no sobrepasa al extremo caudal del isquion…………………3
2. a. Presencia del proceso marginal caudal................................. *Saltator similis*
b. Ausencia del proceso marginal caudal................................. *Sporophila angolensis*

3a. El proceso terminal del isquion se dirige hacia lateral.................. *Sicalis flaveola*
b. El proceso terminal del isquion se dirige caudolateralmente......... *Sporophila caerulescens*

Diagrama explicativo clave dicotómica de pelvis
Figura 27 Comparación pelvis visión lateral
Figura 28 Comparación pelvis visión dorsal
9) **Fémur**

En la Figura 29, se presentan las diferencias, en su vista craneal, entre las cuatro especies estudiadas. Se observa que el fémur de *S. similis*, es de mayor tamaño que el de *S. flaveola*, y ambos mayores que *S. angolensis* y *S. caerulescens*.

Tanto en *S. similis* como en *S. flaveola*, el fémur es de aspecto rectilíneo y relativamente curvo en *S. angolensis* y *S. caerulescens*.

S. similis y *S. flaveola* presentan un cuello de la cabeza del fémur más definido a diferencia de *S. angolensis* y *S. caerulescens*. En cuanto a la línea intermedia craneal, esta es posible observarla en *S. similis*, y en *S. caerulescens*, no siendo visibles en las otras dos especies. En *S. flaveola* los labios de la tróclea son oblicuos al eje longitudinal y paralelos entre sí, mientras que en *S. similis*, *S. angolensis* y *S. caerulescens*, los labios de la tróclea divergen hacia distal, siendo su labio lateral paralelo al eje del fémur y su labio distal oblicuo con respecto a él. (Figura 29)

Por la visión caudal no se distinguen diferencias morfológicamente significativas.

1a. Los labios de la tróclea femoral son paralelos………………..………………..*Sicalis flaveola*

b. Los labios de la tróclea femoral son perpendiculares entre sí……..*Saltator similis, Sporophila angolensis, Sporophila caerulescens*

Diagrama explicativo clave dicotómica de fémur

![Diagrama explicativo clave dicotómica de fémur](image-url)
Figura 29 Comparación fémur visión craneal
Discusión

Según diversos autores, el comercio ilícito de flora y fauna silvestre es diverso. Algunos de los productos de vida silvestre ilícitas más lucrativas incluyen partes de tigre, caviar, marfil, cuernos de rinoceronte, aves, reptiles, insectos, peces. Esta actividad puede incluir elementos ornamentales, medicina tradicional, vestimenta, y animales vivos como compañía y ornamentación (Hamilton y Erhart, 2012)

En general, las vías del comercio de vida silvestre son desde países en vías de desarrollo hacia países desarrollados. América Central y el cono sur, dado su amplia variedad de ecosistemas, incluidos algunos bosques y una gran variedad de especies vegetales y animales, la hacen una rica fuente de estas especies para el tráfico, siendo sus leyes para la penalización y protección muy débiles (Duñabeita y Rodríguez, 2004). A esto se suma además la gran cantidad de pueblos pobres inmersos en la selva, que una oportunidad de ingresos al colaborar en dicho ilícito (Camis et al., 2010).

El tráfico de animales de vida silvestre es considerado el tercero en importancia después de las drogas y armas, aunque información otorgada por la Unión Europea (2014), la considera en cuarto lugar junto a otros ilícitos no mencionados en el presente trabajo. Por tal motivo, y con la finalidad de proteger la biodiversidad y penalizar a los infractores involucrados, se requiere realizar un trabajo en el sitio del suceso, que permita la recolección de los elementos insospechados, los cuales, aplicando una metodología correcta para su identificación, fijación, recolección, embalaje y transporte, puedan convertirse en los medios de prueba que dejen en evidencia la vinculación de un individuo al ilícito investigado. En este contexto la anatomía comparativa nos aporta el primer gran desafío en la identificación de las especies traficadas. (Sellar, 2009; SWGWILD, 2012)

En el presente estudio, fueron analizadas osamentas de 4 especies altamente aprendidas por la Policía Federal de Brasil, como víctimas comunes de trafico animal, lo que se debe principalmente, como menciona Alves et al., (2012), a la docilidad, colorido plumaje y pequeño tamaño de las aves paseriformes.
Cabe destacar que en base a la descripción realizada en este estudio, las cuatro especies (*S. similis*, *S. flaveola*, *S. angolensis*, *S. caerulescens*), calzan dentro de la clave dicotómica de Moreno (1985), como de la familia *Emberizidae*, sin embargo, si bien la Sociedad Española de Ornitología considera a tres de ellas como parte de la familia (Josep *et al.*, 2013), la clasificación taxonómica de estas especies no ha sido consensuada por la comunidad de ornitólogos del mundo, siendo, por ejemplo, clasificadas todas ellas en la Clements checklist (Clements *et al.*, 2016), dentro de la familia *Thraupidae*.

Si bien no es posible encontrar estudios osteológicos comparativos de las especies analizadas en esta memoria de título, existen trabajos similares en *Passeriformes* como la “Clave osteológica para la identificación de paseriformes ibéricos” de Moreno (1985), donde se indica que el esqueleto de un *Passeriformes* posee una serie de rasgos anatómicos, cuya variación según distintos tipos morfológicos los hacen especialmente adecuados para la identificación familiar, genérica y específica. Otro estudio realizado en este orden es la “Clave para la identificación de los *Passeriformes* del noroeste patagónico en base a la osteología craneal” de Seijas y Trejo (2011), la que, al igual que la realizada por Moreno (1985), se basa en la osteología craneal y no analiza elementos postcraneales. Moreno (1985), señala que el cráneo es el elemento que mayor información puede ofrecer, aunque es sumamente frágil a diferencia de los elementos postcraneales que no presentan esta desventaja, sin embargo, estos últimos no poseen la gran variabilidad morfológica del cráneo, no obstante, pudiendo ser muy útiles algunos elementos postcraniales como esternón y húmero.

En cuanto a las similitudes entre *S. angolensis* y *S. caerulescens*, *S. flaveola* y *S. similis* se destaca: a nivel de cráneo unas narinas elipsoides y los procesos cigomáticos y postorbital desarrollados, siendo el primero aplanado en sentido anteroposterior, estas características del cráneo son mencionadas tanto por Moreno (1985) como por Seijas y trejo (2011), dentro de la familia *Emberizidae*. En esternón las especies analizadas presentaron desarrollados procesos costales y carinas prominentes. En húmero es común para las cuatro especies la presencia de un agujero neumático en la epífisis proximal y un prominente proceso supracondilar dorsal, entre otras muchas características comunes. En pelvis destaca el gran desarrollo de la cresta dorsolateral del
ilión y un agujero obturador circular no circunscrito. En fémur, al igual que húmero, son muchas las similitudes, pudiendo destacar la presencia de una leve curvatura hacia medial en sus epífisis.

Las aves del género Sporophila: S. angolensis y S. caerulescens, presentan un pico con vértice más aguzado, que el encontrado en Sicalis flaveola y Saltator similis. Lo mismo ocurre al comparar el tamaño de las narinas, siendo más grandes en el género Sporophila. Por otro lado, y en términos generales, fue posible evidenciar: a) variabilidad morfológica en la región escamosa del temporal, siendo en algunos más o menos abultada con presencia del surco temporal (Sporophila spp, y Saltator similis) y otras sin presencia del surco temporal (Sicalis flaveola). Esta característica fue señalada por Moreno (1985), como un carácter potencial para diferenciar las distintas especies dentro de las aves Emberizidae ibéricas; b) dirección oblicua del proceso postorbital (Sporophila angolensis) o más bien vertical (Saltator similis, Sicalis flaveola Sporophila caerulescens); c) Prolongación lateral del hueso prefrontal con vértice aguzado (Saltator similis, Sporophila angolensis) o más bien romo (Sicalis flaveola y Sporophila caerulescens).

A nivel de esternón: a) dimensiones de un rostro uniforme en toda su extinción en Saltator similis y Sporophila angolensis y variable en las otras especies; b) Procesos craneolaterales más extendidos (Saltator similis) o más verticales (Sicalis flaveola y Sporophila spp) ; presencia de agujeros neumáticos visibles en la línea media del esternón (Saltator similis) o imperceptibles en los otros; d) Pilares coracoides curvos (Sporophila angolensis) o relativamente rectos en las otras especies; e) Presencia de un agujero craneal a la fenestra esternal solo en Saltator similis.

A nivel de pelvis caben destacar: a) pubis de es mayoritariamente recto en Sporophila angolensis y curvo y en las otras especies; b) agujero obturado menos delimitado en Sporophila caerulescens que en las otras especies, entre otras.

Cabe señalar que el número de ejemplares utilizados en este estudio estuvo limitado a la cantidad de osamentas existentes en la colección del museo de Ciencias Naturales de la Pontificia Universidad Católica de Minas Gerais, por lo que recomendamos en futuros estudios contemplar un mayor número de ellas, además de estudios morfométricos. Es importante mencionar como lo hace Mlikovsky (2010), que el bajo número de ejemplares imposibilita el análisis de variabilidad
intraespecífica. No obstante, la comparación macroscópica elaborada entre las 4 especies, permite la identificación a nivel de especie cuando se utilizan cráneo, esternón o pelvis, lo que concuerda con lo señalado por DEFRA (2005) y coinciden con los datos obtenidos por García (2013), quien si bien trabajó en rapaces con datos cuantitativos y cualitativos, llegó a resultados que indican que cráneo, esternón y pelvis presentan características morfológicas cualitativas que permiten distinguir entre especies, sin necesidad de realizar medidas. Sin embargo, al utilizar húmero o fémur por si solos, si bien se hallaron diferencias, no es posible la identificación.

Generalmente en los sitios del suceso donde se hallan osamentas de aves, es difícil encontrar el esqueleto completo, dado los cambios tafonómicos provocados por animales, el ambiente o la desarticulación natural producto de la descomposición (ej.: ausencia del arco yugal, como se denota en el cráneo de Sporophila caerulescens y del hueso cuadrado, en las otras especies).

Es importante señalar que la anatomía, como método identificatorio, es la primera que se utiliza en terreno y puede ser complementada en laboratorio con técnicas moleculares, como la hibridación de ADN, reacción antígeno anticuerpo, entre otras. Hecho que normalmente, debido a lo lejanos e inhóspitos lugares en que se encuentran, se hace imposible realizar de inmediato, tomando la identificación macroscópica mayor fortaleza, por su sencillez, rapidez y bajo costo. Se debe hacer notar la necesidad de la presencia de profesionales veterinarios o afines en SS, con formación forense y/o personal policial capacitado en el área. Para la identificación, es importante no descartar la presencia de derivados encontrados junto a los restos óseos, como pueden ser plumas, huevos, etc., como lo señala Johnson (2012).

Cabe destacar que dentro de las amenazas al medio ambiente que pueden originarse a través del comercio ilegal de vida silvestre o productos derivados de ella se incluyen la posible pérdida de la biodiversidad, introducción de especies invasoras en los diversos ecosistemas y la transmisión de las enfermedades. Además, se suman, amenazas de seguridad nacional dado el vínculo entre el tráfico de vida silvestre y el crimen organizado y corrupción, entre otros.

Lograr determinar un número aproximado de tráfico de aves, permitiría conocer la frecuencia con que ello ocurre y los posibles efectos colaterales a lo que ello puede conllevar, permitiendo por
otro lado, desarrollar protocolos de trabajo en SS, optar a fuentes de financiamiento que permitan el combate contra el tráfico de aves y posicionar esta actividad al nivel del tráfico de armas, drogas, corrupción, falsificación y trata de personas, con el fin de instaurar multas acorde a los beneficios que genera esta actividad y penas judiciales efectivas.
Conclusión

A la vista de los resultados del presente estudio, se puede concluir que es posible la identificación mediante la morfología osteológica, al comparar osamentas de las especies *Saltator Similis, Sicalis flaveola, Sporophila angolensis* y *Sporophila caerulescens*, entre ellas.

Los huesos que presentaron mayores diferencias son los del cráneo, el esternón y la pelvis, a partir de cada uno de ellos es posible llegar a identificar a nivel de especie, al compararlos entre ellos. Por otro lado, si bien, a partir de los huesos de los miembros incluidos en este estudio, húmero y fémur, no es posible llegar a la identificación de la especie en cuestión, si presentan diferencias que aportan a la identificación al sumarlas a las características diferenciales presentes en los otros huesos.
BIBLIOGRAFÍA

