EVALUACION DEL METODO DE CONFUSION SEXUAL EN EL CONTROL DE Cydia molesta (Busck) (Lepidoptera: Tortricidae) Y SU EFECTO SOBRE POBLACIONES DE INSECTOS Y ACAROS ASOCIADOS A DURAZNOS EN CHILE*

Tomasio Curkovic S.**
Roberto Gonzalez R.
Gerardo Barria P.

ABSTRACT

The mating disruption control technique was evaluated against conventional insecticide schedules for the control of the Oriental Fruit Moth (OFM); Cydia molesta (Busck) in peaches. In both treatments, the damage by OFM and other associated pests was lower than the established economic injury level < 0.66%. Male captures in the pheromone treatment was significantly lower than those captured in the insecticide treated plot (0.8% versus 99.2%). Phytophagous mile population, mainly European red and two spotted mite, was lower than in the insecticide plot area to the point that no acaricide treatments were needed. The associated insect population fauna in that particular agroecosystem was assessed with aid of corrugated band traps wrapped around the trunk. Thus, the diversity and insect abundance was higher in the pheromone plots, particularly natural enemies. The most represented insect Order was Coleoptera, principally the species Eriopis connexa, Antarcitial sp. and Conoderus rufangulus.

RESUMEN

Se evaluó el método de confusión sexual (FCS) vs tratamientos con plaguicidas convencionales (testigo) en el control de Cydia molesta (Busck) en duraznos. En ambos tratamientos se estableció que el daño en frutos por C. molesta y otras plagas fue < 0.66%, inferior al umbral económico. Las capturas de machos de C. molesta presentaron diferencias significativas entre los tratamientos, obteniendo el 0.8% en FCS y el 99.2% en testigo, lo que verificó la confusión sexual. En tratamiento FCS se superó el umbral económico para acaricidas fúngicos, haciendo innecesario el control químico. La cantidad y diversidad de insectos encontrados en trampas de agregación (TA) fue notable y constantemente superior en tratamiento FCS respecto del testigo, especialmente entre depredadores y parásitos. Coleópteros fue el Orden más representado en TA, principalmente Eriopis connexa, Antarctalia sp. y Conoderus rufangulus.

INTRODUCCION

Las feromonas se han definido como sustancias secretadas externamente por un organismo, las cuales aún a concentraciones bajas, provocan una respuesta específica en individuos de la misma especie (Guerrero 1988). Según su efecto se conocen como feromonas de alarma, de agregación, sexuales, etc. Las sexuales son producidas frecuentemente por las hembras para atraer machos de su misma especie, y posteriormente copular (Richards y Davies 1983). La polilla oriental de la fruta (POF) Cydia molesta (Busck) emite a gran distancia la feromona sexual para atraer de machos (Davidson 1985).

Método de feromonas para confusión sexual (FCS).

La confusión sexual también afecta las capturas de machos en trampas cebadas con feromona sintética, en sectores tratados con FCS donde las colectas cesan y son prácticamente nulas en su respectivo período de acción (Rothschild 1975, González et al. 1990). Este comportamiento sucedería por habituación a ciertas cantidades de estos atractivos, dificultad en la ubicación de las hembras (y trampas de feromona) y repulsión a partir de ciertas concentraciones (Guerrero 1988). Debido a ello, el monitoreo en sectores tratados con FCS es una forma de evaluar el éxito del método, desde la perspectiva de la ocurrencia de la confusión sexual (González et al. 1990). Por lo tanto el método de FCS reduce el
daño en frutos, el cual permite evitar el uso de plaguicidas, con los consecuentes beneficios a los consumidores y al ambiente (González et al. 1990).

Situación de la polilla oriental de la fruta en Chile.
La polilla oriental de la fruta, *C. moleta*, es una especie originaria de China, distribuida en vastas regiones del mundo. Se introdujo a Chile en 1971, y se distribuyó unos 400 km en menos de cinco años (González 1978). Actualmente se encuentra entre la IV y X regiones (aproximadamente 31°-41° latitud sur) como la principal plaga de duraznos en el país, por lo cual este cultivo se transformó en uno de los más intervenidos con productos químicos (González 1986). Para controlar *C. moleta* se efectúan de 3 a 6 aplicaciones de plaguicidas en la temporada (dependiendo de la fecha de cosecha) para lograr una producción económicamente acceptable (antes sólo se efectuaban 1 a 2 tratamientos contra *Myzus persicae* (Sulzer) y *Quadraspidiotus perniciosus* (Comstock) (González 1978 y 1986). Considerando además las limitaciones cuarternarias que esta especie representa hacia algunos mercados como México y Colombia, el control de esta plaga es obligatorio en la práctica (Universidad de Chile 1993).

Los criterios de control convencional se fundamentan en el uso de trampas cebadas con feromonas sintéticas para el monitoreo de machos, lo que permite conocer la dinámica poblacional de la especie en las condiciones del cultivo. Así, es posible pronosticar los momentos oportunos para aplicar plaguicidas, con resultados cercanos a un 100% de control (González 1993b). Estas poblaciones capturadas en dichas trampas evidencian la presencia y presión de la plaga en condiciones de campo, y permiten prever las áreas más conflictivas del huerto (Villaseca 1993). Como una técnica alternativa al manejo con plaguicidas, se ha estudiado el método de confusión sexual sobre *C. moleta* y *Cydia pomonella* (González et al. 1990; Kurkovic y González 1992; González y Kurkovic 1992; González 1993a). Sin embargo, todavía no se ha evaluado el impacto de la implementación de esta técnica sobre otros insectos del agroecosistema.

El presente trabajo tuvo como objetivos evaluar el uso de feromonas para confusión sexual de *C. moleta* en duraznos, con respecto al uso de agroquímicos, y comparar su efecto sobre las poblaciones de insectos y ácaros asociados a hortalizas comercializadas en hortas comerciales tratados con FCS vs aquellos tratados con métodos convencionales.

MATERIAL Y MÉTODOS
Los ensayos se efectuaron en la temporada 1993/1994 en duraznos en plantaciones (cvs. Fortuna y Dixon de 4 años, plantados a 5x4 m), en el Campus Antumalal de la Facultad de Ciencias Agrarias y Forestales de la Universidad de Chile, La Pintana, Región Metropolitana, Chile. Ambos tratamientos se implementaron en una hectárea de cada variedad, con una superficie de aproximadamente dos ha por tratamiento.

Los tratamientos fueron feromonas para confusión sexual (FCS), libre de plaguicidas en el período de evaluaciones (desde el 25/08/93 hasta el inicio de cosecha, 11-18/01/94), y tratamiento de plaguicidas convencionales (testigo) en sectores contiguos. El sector testigo recibió los tratamientos mediante aplicaciones con nebulizadora, con un gasto de 2.000 l/ha (Cuadro 1).

En tratamiento FCS contra *C. moleta*, se emplearon emisores Check Mate que contienen (Z)-8-Dodecen-1-yl acetate (3.0%), (E)-8-Dodecen-1-yl acetate (0.52%), (Z)-8-Dodecen-1-ol (0.09%) e ingredientes inertes (91.33%). Cada emisor se dosificó con un mínimo de 180 mg de ingrediente activo y se emplearon en dosis de 270 emisores/ha, equivalentes a 48.6 g.l.a./ha. Se efectuó una aplicación de FCS el 25/08/93 y otra el 25/11/93, considerando una residualidad de alrededor de 12 semanas. Para los registros de machos de POF se emplearon trampas tipo Pherocon con emisor de feromona sintética reemplazado cada 6-8 semanas.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTO</td>
</tr>
<tr>
<td>Lorubic en 50 WP</td>
</tr>
<tr>
<td>Dinicon 40 FMT</td>
</tr>
<tr>
<td>Gusanilo 35 FMT</td>
</tr>
<tr>
<td>Imidan 50 FMT</td>
</tr>
</tbody>
</table>

Evaluaciones en ambos tratamientos:
- Porcentaje de daño en *C. moleta* (POF) y otras plagas en alrededor de 2.000 frutos por tratamiento a cosecha. Para ello se colectó alrededor de 100 frutos en 20 árboles elegidos al azar en cada tratamiento.
- Monitoreo de machos de *C. moleta* con trampas de feromona sexual sintética en todo el período, para evaluar el éxito de la confusión sexual. Se dispusieron dos trampas por tratamiento y se revisaron tres veces por semana.
- Recuentos periódicos de ácaros fitófagos *Panonychus ulmi* (Koch) y *Tetranychus urticae* (Koch) y ácaros depredadores *Neoseiulus chilenensis* (Dorsse) y *Agistemus longisetus* (González) en 50 hojas por tratamiento, en cada fecha (Cuadro 4). Estas especies se evaluaron anteriormente como indicadores ecológicos (Marín 1992).

- Colectas de la entomofauna asociada a duraznos con distintas trampas de atracción (TA) por tratamiento, revisadas y reemplazadas mensualmente. Estas trampas de atracción consisten en bandas de cartón corregido de 10 cm de ancho y largo variable, dispuestas alrededor de la base del tronco de los árboles. Las TA se usaron anteriormente para colectar larvas de *C. mohota* (Vickers y Rothschild 1985), y para prospección de insectos y ácaros en los frutos tratados con plaguicidas convencionales (Curkovic et al. 1993). El material colectado se determinó por comparación con ejemplares identificados en colecciones nacionales (Museo Nacional de Historia Natural, Museo Depto. Sanidad Vegetal de la Facultad de Ciencias Agrarias y Forestales, Universidad de Chile, ubicadas en Santiago, Chile).

RESULTADOS Y DISCUSION

Daño en frutos. La proporción de daño en frutos para cada cultivar se presenta en los Cuadros 2 y 3. Se revisaron unos 1.000 frutos para cada tratamiento. El daño de *C. mohota* (POF) y *C. pomolona* (CM) se determinó en laboratorio por la presencia de pelé anal en las larvas de *C. mohota* o su ausencia en larvas de *C. pomolona*. Además se encontró daño de “cortador”, causado por larvas de *Leptidopteros* de la familia Noctuidae y de “Eula” *proellia* sp. (*Leptidoptera: Tortricidae*).

Por el carácter primario de esta plaga, su control es una necesidad en plantaciones comerciales. En investigaciones anteriores en Chile un testigo absoluto sin tratamientos de control (ni FCS, ni uso de plaguicidas), alcanzó hasta un 30% de frutos dañados (Marín 1992). Por ello algunos trabajos sólo comparan la eficiencia del método FCS con el uso de plaguicidas convencionales (Fitch y Kirsh 1990, González et al. 1990). En atención a lo anterior, la experiencia de este artículo se efectuó sin testigo absoluto, para evitar las potenciales pérdidas en una superficie de 2 ha (área asignada a cada tratamiento). Cabe señalar que el umbral de daño económico en frutos para esta especie en el país es alrededor de 0 a 1%, según el destino de la producción (0% en mercados donde *C. mohota* es cuarentenera) (González et al. 1990, González 1993b).

CUADRO 3. Daño (Kg) en duraznos cv. Dixon a cosecha (18/01/94).

<table>
<thead>
<tr>
<th></th>
<th>POF</th>
<th>CM</th>
<th>Cortador</th>
<th>Total daño</th>
<th>Kg revisados</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS</td>
<td>0.51</td>
<td>0.26</td>
<td>0.10</td>
<td>0.63</td>
<td>115.80</td>
</tr>
<tr>
<td>%</td>
<td>0.27</td>
<td>0.18</td>
<td>0.09</td>
<td>0.54</td>
<td>100.00</td>
</tr>
<tr>
<td>Test.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.12</td>
<td>112.34</td>
</tr>
<tr>
<td>%</td>
<td>0.00</td>
<td>0.28</td>
<td>0.09</td>
<td>0.37</td>
<td>100.00</td>
</tr>
</tbody>
</table>

* n de frutos revisados.

<table>
<thead>
<tr>
<th></th>
<th>POF</th>
<th>CM</th>
<th>Eula</th>
<th>Total daño</th>
<th>Kg revisados</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS</td>
<td>0.26</td>
<td>0.09</td>
<td>0.35</td>
<td>0.88</td>
<td>133.23</td>
</tr>
<tr>
<td>%</td>
<td>0.27</td>
<td>0.07</td>
<td>0.26</td>
<td>0.44</td>
<td>100.00</td>
</tr>
<tr>
<td>Test.</td>
<td>0.09</td>
<td>0.35</td>
<td>0.00</td>
<td>0.46</td>
<td>100.00</td>
</tr>
<tr>
<td>%</td>
<td>0.33</td>
<td>0.34</td>
<td>0.00</td>
<td>0.45</td>
<td>100.00</td>
</tr>
</tbody>
</table>

* n de frutos revisados.

90. En atención a lo anterior, la experiencia de este artículo se efectuó sin testigo absoluto, para evitar las potenciales pérdidas en una superficie de 2 ha (área asignada a cada tratamiento). Cabe señalar que el umbral de daño económico en frutos para esta especie en el país es alrededor de 0 a 1%, según el destino de la producción (0% en mercados donde *C. mohota* es cuarentenera) (González et al. 1990, González 1993b).

Los niveles de daño de *C. mohota* en ambos tratamientos (FCS y Testigo), y en ambos cultivares, fueron inferiores al umbral de daño económico aceptado para esta plaga en frutos tratados con insecticidas convencionales. Estos resultados se atribuyen al éxito de la confusión sexual, lo que impedirá la cópula, aún con la plaga presente en el sector de ensayo, evitando el daño en frutos (ver resultados en trampas de feromona).

En ambos tratamientos y cultivares *C. pomolona* fue una importante causa de daño. En ambos cultivares se obtuvo daño total por insectos, ligeramente superior en el tratamiento FCS, aunque siempre bajo los niveles aceptados para frutos comerciales sometidos a tratamientos convencionales en Chile.

Capturas en trampas de feromona sintética. En el período informado (27/VIII/93 a 02/III/94) se encontró un total de 7 individuos (0.8%) en FCS y 866 individuos (99.2%) en testigo. (Fig. 1). Estos resultados coinciden con los obtenidos anteriormente (González et al. 1990, Curkovic y González 1992). Según ellos, es evidente la presencia de la plaga en el área de ensayo, pues ambos tratamientos se encontraban en sectores contiguos. Además los niveles de población encontrados en testigo son propios de lugares con presión de plaga, sometidos a programas regulares de control químico. Aún en frutos con tratamientos de agroquímicos que permiten niveles de daño cercanos al 0%, se obtienen capturas de *C. mohota* (Marín 1992, González et al. 1990). Sin embargo, no se ha establecido un criterio entre nivel de capturas y necesidad de control.
Recuentos de ácaros. Los recuentos de ácaros se efectuaron quincenal o semanalmente, según la evolución observada en sus poblaciones (Cuadro 4). En ambos tratamientos las poblaciones de *P. ulmi* escalaron al comienzo de las evaluaciones (mediados de octubre), indicando su baja presión en estas condiciones. La aparición de *T. urticae* ocurre desde fines de noviembre, y sus densidades de población son menores que las de *P. ulmi*. Los ácaros depredadores, *N. chilenensis* aparecen desde fines de diciembre, y *A. longisetus* desde mediados de enero.

En tratamiento testigo se observa un aumento de las poblaciones de *P. ulmi* desde mediados de enero (10/1/1994), superior al observado en tratamiento FCS. Esto a pesar de que en el mismo período se encuentra la máxima población de los depredadores *N. chilenensis* y *A. longisetus*. No obstante superar el umbral económico para estas condiciones, no se aplicaron acaricidas en este tratamiento, lo que provocó cierto daño en el follaje de algunas plantas. En general *A. longisetus* presentó bajos niveles de población, excepto el 10/1 con 50 individuos en una hoja.

En tratamiento FCS, las poblaciones de *P. ulmi* y *T. urticae* se mantuvieron bajo el umbral económico durante todo el periodo, por lo cual no se aplicaron acaricidas. Las poblaciones de *T. urticae* superaron a las obtenidas en tratamiento testigo.

Las poblaciones de *T. urticae* fueron inferiores a las observadas en *P. ulmi* en este tratamiento (FCS). Las poblaciones iniciales de depredadores fueron inferiores a las observadas en tratamiento testigo, cercanas alas obtenidas en tratamiento testigo desde fines de enero.

Trampas de agrégation. En las colectas con estas trampas se indican las capturas por tratamiento (FCS y testigo) (Cuadro 5 y 6). Las especies determinadas se presentan con la respectiva suma de capturas de individuos durante el periodo de...
muestreo. Además se señaló el total de especies por Ordenes en cada fecha. Las especies no determinadas, se indican a nivel de género o familia. En los totales se indica entre paréntesis el número de especies por fecha de evaluación. Las TA se instalaron el 07/IX/1993.

El número de ejemplares encontrados en TA aumentó sostenidamente en el período octubre-diciembre y, disminuyó en enero, especialmente entre los Coleópteros, cuando el número de especies capturadas también se redujo ligeramente.

Las especies con más ejemplares capturados son del Orden Coleoptera (81.8%), de los cuales el 88.3% (226) corresponden a depredadores de las familias Coccinellidae (larvas y adultos de E. connexa, H. variegata y H. convergens) y, Carabidae (adultos de Antarcita sp., especie epígrafa frecuentemente encontrada bajo piedras y terrones). Los Coccinellidae se encontraron en el folíaje y TA durante el período de evaluaciones. El Orden Coleoptera fue el más representado en número de especies, con un 72.2%, (13 de las 18 encontradas).

Las especies más representadas fueron E. connexa con 138 (44.1%) y Antarcita sp. con 57 (18.2%). Ambas se encontraron con frecuencia, entre octubre/1993 y enero/1994, con un máximo en diciembre/1993. El número de individuos de E. connexa parasitados por Perillus sp. (Hymenoptera: Braconidae) fue alto en el tratamiento FCS. Además se encontró gran cantidad de aviposturas de Coccinellidae bajo las TA. Otras especies frecuentemente hasta noviembre fueron B. punctulatus y C. rufangulus, las cuales se han colectado anteriormente en este tipo de trampas, especialmente en invierno (Curkovic et al. 1993). Estas dos especies no se detectaron más entre noviembre/1993 y enero/1994.

El segundo lugar en importancia correspondió al Orden Neuroptera, representado por puparios de una especie depredadora (Chrysopa sp., familia Chrysopidae), encontrado en la última evaluación (enero/1994).

El Orden Homoptera incluyó el 8.7% de los ejemplares encontrados, representado por individuos parasitados (probablemente Myzus persicae (Sulzer), familia Aphididae) durante la primera evaluación (octubre/1993), sin volver a encontrarse durante el periodo de evaluaciones. Estos individuos aparentemente buscan lugares protegidos, en donde el parásito emerge. Los parásitos se criaron en laboratorio donde se obtuvieron ejemplares pertenecientes a los géneros Praon, Aphidius (Hymenoptera: Braconidae) (Richards y Davies 1983), y otros sin determinar.

La captura de ejemplares disminuyó sostenida y notablemente en el periodo de evaluaciones, especialmente entre los Coleópteros. El número de especies se redujo entre octubre/1993 y enero/1994, intervalo con tres aplicaciones de insecticidas (Cuadro 2).

En el tratamiento testigo el 66.9% de los ejemplares capturados correspondió al Orden Coleoptera. De ellos un 73.1% eran depredadores (Coccinellidae y Carabidae).

Las especies capturadas durante el periodo de evaluaciones en este tratamiento, superaron a las encontradas en FCS. Ello se debería a la gran colecta en las dos primeras evaluaciones (07/10 y 17/11). Estas diferencias prácticamente desaparecieron en las evaluaciones posteriores, una vez inician los tratamientos con insecticidas. Además es notable el menor número de ejemplares de depredadores encontrados en testigo respecto de FCS. Las capturas de E. connexa y Antarcita sp. disminuyeron durante el periodo de evaluaciones, situación opuesta a la observada en tratamiento FCS. Es relevante el menor número de Coccinellidae parasitados en tratamiento testigo (1) respecto de FCS (14). El total de especies de Coleópteros (17) correspondió al 73.9% del total (23).
Neuroptera fue el segundo orden en importancia con el 28.6%, representado por Chrysopa sp. Se encontró una cantidad ligeramente mayor de puparios en tratamiento estándar respecto de FCS. Estos capullos (puparios) están protegidos en las trampas de agregación. Se capturaron en enero, al igual que en FCS. Este estudio duró unos ocho días en condiciones de laboratorio, en Enero.

El orden Homoptera estuvo representado por individuos parasitados Aphididae), con el 16% de los ejemplares encontrados. Los parásitos de pulgones correspondieron a los géneros Pseudaphis y Aphidius, y otros no determinados. Se capturaron en octubre el igual que en FCS, en el período previo a las aplicaciones de insecticidas.

CONCLUSIONES

En ambos tratamientos el daño de C. molesta y otras plagas en frutos, fue inferior al umbral económico (<1%). La confusión sexual se demostró por la captura, prácticamente nulas, en el tratamiento FCS (7 individuos, o sea 0.8% entre Agosto/93 y Marzo/94, mientras que en el testigo, sector inmediatamente contiguo, se capturó gran cantidad de individuos en el mismo período (866, o sea 99.2%). Esto indica que la población de machos de C. molesta fue efectivamente confundida por el método FCS, lo que explicaría el bajo nivel de daño en los frutos.

En el tratamiento FCS no se superó el umbral económico para ácaros fitófagos, haciendo innecesario el control químico. La cantidad y diversidad de insectos encontrados en TA fue notable y constantemente superior en FCS respecto del testigo, especialmente entre depredadores y parásitos.

Se concluye que al no emplear plaguicidas convencionales en el control de plagas, las cuales son manejadas como estrategias alternativas como FCS, se mejoran las condiciones del ecosistema, tanto respecto del número de especies asociadas, como especialmente respecto del número de individuos de esas especies. Con ello, se logra mantener además, un adecuado nivel de enemigos naturales, lo que permite reducir considerablemente las aplicaciones de plaguicidas.

BIBLIOGRAFÍA

AUDEMARD, H. 1984. Experiments on oriental fruit moth (Cydia molesta (Busck) (Lepidoptera: Tortricidae) control by mating disruption with HERCON pheromone disperser. EPRS/WPRS IBC. Conference on attractant pheromones, 18-22 Sept. 1984, laboratory: 76.

GONZALEZ, R. 1986. Fenología de la grafolita a polo de oriental del durazno. ACAVEZ 12:5-12.

VICKERS, R. y ROTHSCHILD, G. 1985. Control of oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae), at a district level by mating disruption with synthetic female pheromone. Bulletin of Entomological Research 75:625-634.