TABLA DE CONTENIDO

1	INTRODUCCIÓN	1
	1.1 Hipótesis	2
	1.2 Objetivos	2
	1.2.1 Objetivos Específicos	2
	1.3 ALCANCES Y LIMITACIONES	2
	1.4 Metodología Propuesta	3
	1.5 Estructura de Tesis	3
2	ESTADO DEL ARTE	4
	2.1 TECNOLOGÍA HARDWARE IN THE LOOP	4
	2.2 Aerogenerador	6
	2.3 CLASIFICACIÓN SEGÚN LA DISPOSICIÓN DE SU EJE DE ROTACIÓN	6
	2.3.1 Aerogeneradores de Eje Horizontal	6
	2.3.1.1 Componentes Mecánicos	7
	2.3.1.2 Componentes Eléctricos	7
	2.3.1.3 Sistema de Control	8
	2.4 PRINCIPALES CONFIGURACIONES DE LOS WECS (EN INGLÉS, WIND ENERGY CONVERSION SYSTEM)	8
	2.4.1 Velocidad Fija	8
	2.4.1.1 Generador SCIG	8
	2.4.2 Velocidad Variable	9
	2.4.2.1 Generador DFIG	9
	2.4.2.2 Generador SCIG, PMSG Y WRSG	9
	2.4.2.3 Modos De Operación Para Velocidad Variable	10
	2.5 MODELO MATEMÁTICO DEL AEROGENERADOR	11
	2.5.1 Modelo Mecánico de la Turbina Eólica	11
	2.5.2 Cálculo de Torque	15
	2.6 MPPT (MAXIMUN POWER POINT TRACKING)	17
2.6.1 Búsqueda del punto más Alto (en Inglés, Hill Climb Search, HCS.) Algoritmo MPPT basado Direct Power Control (DPC)		17
	2.6.2 Retroalimentación de Señal de Potencia (en inglés, Power Signal Feedback, PSF). Algoritmo MPF basado en Indirect Power Control (IPC)	РТ 18
	2.6.3 Razón de Velocidad de Punta de Aspa (en inglés, Tip Speed Radio, TSR). Algoritmo MPPT basad en Indirect Power Control (IPC)	lo 18
	2.6.4 Torque Óptimo (en inglés, Optimal Torque, OT). Algoritmo MPPT basado en Indirect Power Con (IPC)	trol 18
	2.7 PITCH CONTROL.	19
	2.7.1 Velocidad del viento	20
	2.7.2 Velocidad mecánica del generador	20
	2.7.3 Potencia nominal del generador	20

	2.8 MODELO DEL GENERADOR	22
	2.9 Obtención de la Potencia de Referencia de PMSG	
	2.10 PERFIL DE VIENTO	25
	2.10.1 Modelo de Velocidad Viento	26
	2.11 TOPOLOGÍA DEL CONVERTIDOR DE POTENCIA BACK-TO-BACK (BTB)	28
3	BANCO EXPERIMENTAL	29
	3.1 TRIPHASE: PM5F60R	29
	3.2 ESTRUCTURA DEL TRIPHASE PM5F60R:	30
	3.2.1 Topología Back-To-Back en la Unidad Triphase PM5F60R	30
	3.2.1.1 Capacitor de Enlace (DClink)	32
	3.2.1.2 Inversor Trifásico de 3 Piernas de dos Niveles (VSC1 y VSC2)	32
	3.2.1.3 Filtro LCL	32
	3.2.2 Fuente de Alimentación de Entrada y Salida a la Unidad Triphase PM5F60R	32
	3.2.2.1 Alimentación de Rectificadores	33
	3.2.2.2 Alimentación de Inversor VSC1	33
	3.2.2.3 Alimentación de Inversor VSC2	34
	3.2.3 Resumen de los Parámetros del Triphase PM5F60R	34
4	ESTRATEGIAS DE CONTROL	35
	4.1 "GRID-SIDE CONVERTER CONTROL"	35
	4.1.1 Ecuaciones dinámicas del conversor del lado de la red	36
	4.1.2 Diseño de Control PI de Corriente	37
	4.1.3 Diseño de Control PI de Tensión	39
	4.1.4 Diseño del Phase-Locked Loop (PLL)	42
	4.2 DRIVE CONTROL	44
	4.2.1 Teoría de la Potencia Instantánea P-Q	45
	4.2.2 Ecuaciones dinámicas del conversor del lado de la máquina	45
	4.2.3 Control Resonante Proporcional (en inglés, Proportional-Resonant Controller, PR)	46
	4.2.3.1 PR de Corriente	48
4.2.3.2 PR de Corriente con Compensación de Armónicos (en inglés, Harmonic Compensator		C)48
	4.2.3.3 Diseño del Control PR+HC	49
	4.3 ACTIVE DAMPING	55
	4.3.1.1 Filtro LCL	56
5	RESULTADOS	63
	5.1 Obtención de Curva De Potencia Cp (λ , β) (sin considerar Pitch Control)	63
	5.1.1 Resultados	63
	5.2 VARIACIÓN DE PARÁMETROS ELÉCTRICOS Y MECÁNICOS DEL AEROGENERADOR ANTE VARIACIÓN DE	C A
	5.2.1 Resulted os	04 ۶۸
	5.2 VALIDACIÓN DE DITCH CONTROL $\boldsymbol{\beta}$	04 47
	$J_{1,2}$ valuation defitier control \mathbf{p}	07

	5.3.1	Resultados	67
	5.4 Perfii	L DE VIENTO	69
	5.4.	1.1 Resultados	69
	5.5 VALIE	DACIÓN ALGORITMO MPPT	71
	5.5.1	Resultados	71
	5.6 ALGO	RITMO MPPT ANTE VARIACIÓN DE INERCIA DEL AEROGENERADOR	73
	5.6.1	Resultados	73
	5.7 CALID	DAD DE SEÑAL	76
	5.7.1	Control PR	77
	5.7.2	Control PR + HC 5 ^{TO} _7 ^{mo}	79
	5.7.3	Control PR + HC 5 ^{TO} _7 ^{mo} + Active Damping	81
6	CONCLU	USIONES	83
7	BIBLIO	GRAFÍA	85
8	ANEXOS	5	91
	8.1 Anexo sistema e	O A: CÓDIGO FUENTE DE LA EMULACIÓN DE UN AEROGENERADOR CONECTADO A LA RED A TRAVÉS D XPERIMENTAL BACK-TO-BACK MEDIANTE LA TÉCNICA "HARDWARE IN THE LOOP"	e un 91
	8.2 ANEX	O B: CÓDIGO FUENTE PARA SINTONIZACIÓN DEL CONTROL Y COMPENSACIÓN DEL 5™ Y 7™ ARMÓNIC CIÓN DE PLANTAS CON Y SIN ACTIVE DAMPING	ю ү 98
	8.3 Anexe través de	O C: DIAGRAMA DE BLOQUES DE LA EMULACIÓN DE UN AEROGENERADOR CONECTADO A LA RED A E UN SISTEMA EXPERIMENTAL BACK-TO-BACK MEDIANTE LA TÉCNICA "HARDWARE IN THE LOOP"	.100
	8.4 Anex	O D: TRASFORMACIONES AL MARCO DE REFERENCIA SINCRÓNICO Y ESTACIONARIO	.102
	8.4.1	Transformación al marco de referencia sincrónico	.103
	8.4.2	Transformación al marco de referencia estacionario	.104
	8.5 Anex	O E: CÁLCULO DE CORRIENTE DE CORTOCIRCUITO E IMPEDANCIAS DEL TRANSFORMADOR	.106
	8.5.1	Cortocircuito Trifásico	.106
	8.5.2	Impedancia Interna del Transformador	.106

ÍNDICE DE TABLAS

TABLA 2.1. PARÁMETROS DEL MODELO DEL AEROGENERADOR	23
TABLA 3.1. RESUMEN DE LOS PARÁMETROS DEL TRIPHASE PM5F60R	34
TABLA 5.1. NIVEL DE ARMÓNICOS COMO PORCENTAJE DE LA FUNDAMENTAL	70
TABLA 5.2. LÍMITES DE DISTORSIÓN PARA SISTEMAS DE GENERACIÓN DE DISTRIBUCIÓN COMO PORCENTAJE DE LA FUNDAMENTAL	76
TABLA 5.3. CALIDAD DE SEÑAL DE CORRIENTE MEDIANTE ACCIÓN PR	78
TABLA 5.4. CALIDAD DE SEÑAL DE CORRIENTE MEDIANTE ACCIÓN PR Y COMPENSACIÓN HC DEL 5 ^{TO} Y 7 ^{MO} ARMÓNIC	CO 80
TABLA 5.5. CALIDAD DE SEÑAL DE CORRIENTE MEDIANTE ACCIÓN PR + HC 5 ^{TO} - 7 ^{MO} Y ACTIVE DAMPING	82
TABLA 8.1. TENSIÓN DE CORTOCIRCUITO μ <i>cc</i> NORMALIZADA PARA LOS TRANSFORMADORES MT/BT DE DISTRIBUCI PÚBLICA [58]	ón 106

ÍNDICE DE ILUSTRACIONES

FIGURA 2.1. ARQUITECTURA DE LA TÉCNICA HARDWARE-IN-THE-LOOP IMPLEMENTADA EN TRIPHASE PM5F60I	R5
FIGURA 2.2. CONFIGURACIÓN WECS CON GENERADOR SCIG [3].	8
FIGURA 2.3. CONFIGURACIÓN WECS CON GENERADOR DFIG.	9
FIGURA 2.4. CONFIGURACIÓN WECS CON GENERADOR SCIG, PMSG Y WRSG [3]	10
FIGURA 2.5. REGIONES DE OPERACIÓN DE UN AEROGENERADOR	10
FIGURA 2.6. CURVA DE COEFICIENTE DE POTENCIA VS LAMBDA PARA DISTINTOS VALORES DE β	12
FIGURA 2.7. MODELO DE TURBINA EÓLICA CONSIDERANDO ALGORITMO OT PARA MPPT	15
FIGURA 2.8. CÓDIGO DISCRETO DEL MODELO DE LA TURBINA	15
FIGURA 2.9. MODELO PARA CÁLCULO DE TORQUE	16
FIGURA 2.10. CÓDIGO DISCRETO DEL CÁLCULO DE TORQUE	17
FIGURA 2.11. COEFICIENTE DE POTENCIA EN FUNCIÓN DE LA RAZÓN DE VELOCIDAD DE PUNTA DE ASPA [38]	18
FIGURA 2.12. ESTRATEGIA DE CONTROL. VELOCIDAD DEL VIENTO	20
FIGURA 2.13. ESTRATEGIA DE CONTROL. VELOCIDAD MECÁNICA DEL GENERADOR	20
FIGURA 2.14. ESTRATEGIA DE CONTROL. POTENCIA DEL GENERADOR	20
FIGURA 2.15. MODELO DE ESTRATEGIA PITCH CONTROL IMPLEMENTADO "POTENCIA DEL GENERADOR"	21
FIGURA 2.16. CÓDIGO DISCRETO DEL MODELO DE LA ESTRATEGIA DE CONTROL "POTENCIA DEL GENERADOR" IMPLEMENTADO.	22
FIGURA 2.17. MODELO DEL GENERADOR PMSG	24
FIGURA 2.18. POTENCIA GENERADA POR LA PMSG	25
FIGURA 2.19. CÓDIGO DISCRETO DE LA OBTENCIÓN DE LA POTENCIA DE REFERENCIA DE LA PMSG	25
FIGURA 2.20. GENERACIÓN DE LA VELOCIDAD DE VIENTO POR MODELO ARMA IMPLEMENTADO EN MATLAB/SIM	1ULINK 28
FIGURA 3.1. EQUIPO TRIPHASE PM5F60R. (A) VISTA FRONTAL. (B) VISTA POSTERIOR	29
FIGURA 3.2. DIAGRAMA ELÉCTRICO DE LA TOPOLOGÍA DE LA UNIDAD TRIPHASE PM5F60R	

FIGURA 3.3. DIAGRAMA ELÉCTRICO DE LA CONFIGURACIÓN BACK-TO-BACK DEL TRIPHASE PM5F60R	31
FIGURA 3.4. CONFIGURACIÓN DEL FILTRO LCL DE LOS CONVERSORES V_{VSC1} y V_{VSC2}	32
FIGURA 3.5. DIAGRAMA ELÉCTRICO DE LA FUENTE DE ALIMENTACIÓN DE I/O AL EQUIPO TRIPHASE PM5F60R	33
FIGURA 4.1. SISTEMA DE CONTROL GRID-SIDE CONVERTER	35
FIGURA 4.2. CONVERTIDOR (VSC1) CONECTADO A LA RED MEDIANTE FILTRO L	37
FIGURA 4.3. ESQUEMA DE CONTROL VECTORIAL GRID-SIDE CONVERTER	38
FIGURA 4.4. LUGAR DE LA RAÍZ CONTROLADOR DE CORRIENTE	39
FIGURA 4.5. DIAGRAMA DEL SISTEMA PARA CÁLCULO DE BALANCE DE POTENCIAS	39
FIGURA 4.6. DIAGRAMA DE BLOQUES DEL LAZO DE CONTROL DE TENSIÓN	41
FIGURA 4.7. LUGAR DE LA RAÍZ CONTROLADOR DE TENSIÓN	41
FIGURA 4.8. (A) DIAGRAMA DE BLOQUES DE UN PLL CONVENCIONAL, (B) VECTOR VOLTAJE Y VECTOR UNITARIO FICTICIO CREADO POR EL PLL	42
FIGURA 4.9. DISEÑO DEL PLL CON ORIENTACIÓN DEL VOLTAJE DE LA RED	43
FIGURA 4.10. SISTEMA DRIVE CONTROL	44
FIGURA 4.11. CONVERTIDOR (VSC2) CONECTADO A LA RED MEDIANTE FILTRO L	46
FIGURA 4.12. ESQUEMA DE CONTROL VECTORIAL DRIVE CONTROL CON CONTROLADOR RESONANTE MULTI-VARIAB	le. 47
FIGURA 4.13. SISTEMA DE CONTROL CONSIDERANDO RETARDO DE TRANSPORTE	50
FIGURA 4.14. PARÁMETROS DE DISEÑO DEL CONTROL RESONANTE DE CORRIENTE	51
FIGURA 4.15. CÓDIGO DE CONVERSIÓN DE "S" A "Z" DE MODELO DE PLANTA CONSIDERANDO RETARDO	52
FIGURA 4.16. CÓDIGO DE CONVERSIÓN DE "S" A "Z" DEL CONTROLADOR RESONANTE Y COMPENSACIÓN DE ARMÓNICOS.	52
FIGURA 4.17. MÉTODO DEL LUGAR DE LA RAÍZ PARA SINTONIZACIÓN DE CONTROLADORES	52
FIGURA 4.18. DIAGRAMA DE BODE DEL CONTROL RESONANTE PROPORCIONAL (PR) DE CORRIENTE	53
FIGURA 4.19. DIAGRAMA DE BODE DEL CONTROL DE COMPENSACIÓN (HC) DEL 5^{to} armónico	53
FIGURA 4.20. DIAGRAMA DE BODE DEL CONTROL DE COMPENSACIÓN (HC) DEL 7 ^{mo} armónico	54
FIGURA 4.21. DIAGRAMA DE BODE DEL CONTROL DE CORRIENTE (PR) Y COMPENSACIÓN (HC) DEL 5 ^{to} , 7 ^{mo} Armónic	0. 54
FIGURA 4.22. POSIBLES POSICIONES PARA AMORTIGUAMIENTO RESISTIVO	55
FIGURA 4.23. ESTRATEGIA DE CONTROL ACTIVE DAMPING PARA ESTRATEGIAS DE CONTROL (A) "GRID-SIDE CONVERTER CONTROL" Y (B) "DRIVE CONTROL".	56
FIGURA 4.24. CIRCUITO ELÉCTRICO DE UN FILTRO LCL	56
FIGURA 4.25. COMPARACIÓN DEL PERFIL DE ATENUACIÓN ENTRE UN FILTRO L(ROJO) Y UN FILTRO LCL(AZUL)	57
FIGURA 4.26. SEÑAL DE CORRIENTE EN CONDICIONES NOMINALES CON ACCIÓN DEL CONTROL RESONANTE	
FIGURA 4.27. ESPECTRO DE FOURIER DE LA SEÑAL DE CORRIENTE DE LA RED	58
FIGURA 4.28. CIRCUITO ELÉCTRICO DE UN FILTRO LCL CONSIDERANDO PÉRDIDAS CON IMPEDANCIA VIRTUAL	59
FIGURA 4.29. CIRCUITO ELÉCTRICO DE UN FILTRO LCL CONSIDERANDO PÉRDIDAS CON IMPEDANCIA VIRTUAL SIMPLIFICADO	59
FIGURA 4.30. DIAGRAMA DE NYQUIST DE LA PLANTA Y CONTROLADOR CON COMPENSACIÓN, SIN CONSIDERAR ACT DAMPING.	ive 62

FIGURA 4.31. DIAGRAMA DE NYQUIST DE LA PLANTA Y CONTROLADOR CON COMPENSACIÓN, CONSIDERANDO ACTI	
DAMPING.	62
FIGURA 8.1. DIAGRAMA DE BLOQUES DEL PERFIL DE VIENTO, MODELO DE TURBINA Y CÁLCULO DE TORQUE	100
FIGURA 8.2.OBTENCIÓN DE LA POTENCIA DE REFERENCIA Y PITCH CONTROL	100
FIGURA 8.3. CONTROL DE CORRIENTE RESONANTE Y COMPENSACIÓN DE ARMÓNICOS	101
FIGURA 8.4. ENTRADA DE LA SEÑAL DE REFERENCIA DEL PWM DEL EQUIPO TRIPHASE PM5F60R	101
FIGURA 8.5. MODELO DEL CONVERTIDOR PWM CON FILTRO L	102

ÍNDICE DE GRÁFICOS

GRÁFICA 5.1. CURVA DE POTENCIA Cp para variaciones de $\beta = 0^{\circ} - 5^{\circ} - 10^{\circ} - 15^{\circ} - 20^{\circ}$ en simulación63
GRÁFICA 5.2. CURVA DE POTENCIA Cp para variaciones de $\beta = 0^{\circ} - 5^{\circ} - 10^{\circ} - 15^{\circ} - 20^{\circ}$ en sistema experimental
GRÁFICA 5.3. VARIACIÓN DE VELOCIDAD DEL VIENTO ANTE CAMBIOS DE ESCALÓN EN SIMULACIÓN
GRÁFICA 5.4. VARIACIÓN DE VELOCIDAD DEL VIENTO ANTE CAMBIOS DE ESCALÓN EN SISTEMA EXPERIMENTAL64
GRÁFICA 5.5. VELOCIDAD MECÁNICA DEL AEROGENERADOR EN SIMULACIÓN
GRÁFICA 5.6. VELOCIDAD MECÁNICA DEL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.7. TORQUE DEL AEROGENERADOR EN SIMULACIÓN
GRÁFICA 5.8. TORQUE DEL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.9. POTENCIA DEL AEROGENERADOR EN SIMULACIÓN
GRÁFICA 5.10. POTENCIA DEL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.11. CONTROL MPPT _CP_max EN SIMULACIÓN
GRÁFICA 5.12. CONTROL MPPT_ CP_max EN SISTEMA EXPERIMENTAL
GRÁFICA 5.13. VARIACIÓN DE VELOCIDAD DEL VIENTO ANTE CAMBIOS DE ESCALÓN EN SIMULACIÓN
GRÁFICA 5.14. VARIACIÓN DE VELOCIDAD DEL VIENTO ANTE CAMBIOS DE ESCALÓN EN SISTEMA EXPERIMENTAL67
GRÁFICA 5.15. VELOCIDAD MECÁNICA DEL AEROGENERADOR EN SIMULACIÓN
GRÁFICA 5.16. VELOCIDAD MECÁNICA DEL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.17. CORRIENTE EN EJE DIRECTO QUE GENERA EL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.18. ACCIÓN PITCH CONTROL EN SIMULACIÓN
GRÁFICA 5.19. ACCIÓN PITCH CONTROL EN SISTEMA EXPERIMENTAL
GRÁFICA 5.20. PERFIL DE VIENTO EN SISTEMA EXPERIMENTAL. DATOS OBTENIDOS EN LABS. RUTHERFORD EN OXFORD INGLATERRA EN SISTEMA EXPERIMENTAL
GRÁFICA 5.21. PERFIL DE VIENTO_ VELOCIDAD MEDIA, COMPONENTE DE RAMPA, RÁFAGAS Y TURBULENCIAS EN SISTEMA EXPERIMENTAL
GRÁFICA 5.22. FOURIER: PERFIL DE VIENTO_VELOCIDAD MEDIA, RÁFAGAS Y TURBULENCIAS EN SISTEMA EXPERIMENTAL
GRÁFICA 5.23. VARIACIÓN DE VELOCIDAD DEL VIENTO EN SISTEMA EXPERIMENTAL
GRÁFICA 5.24. VARIACIÓN DE LA VELOCIDAD MECÁNICA DEL AEROGENERADOR EN SISTEMA EXPERIMENTAL
GRÁFICA 5.25. VARIACIÓN DE ÁNGULO β en función de la velocidad del viento en sistema experimental71
GRÁFICA 5.26. POTENCIA QUE GENERA EL AEROGENERADOR EN SISTEMA EXPERIMENTAL

GRÁFICA 5.27. MPPT_ Cp en sistema experimental	
GRÁFICA 5.28. CORRIENTE ID QUE GENERA EL AEROGENERADOR EN SISTEMA EXPERIM	ental71
GRÁFICA 5.29. PERFIL DE VIENTO EN SISTEMA EXPERIMENTAL	
GRÁFICA 5.30. VELOCIDAD ROTACIONAL [RPM] ANTE DIFERENTES INERCIAS EN SISTEM	A EXPERIMENTAL74
GRÁFICA 5.31. TENSIÓN DCLINK [V] ANTE VARIACIONES DE INERCIA EN EL SISTEMA EX	VPERIMENTAL74
GRÁFICA 5.32. CORRIENTE EN COMPONENTE DQ, DE LA CORRIENTE QUE INYECTA EL AI SISTEMA EXPERIMENTAL	EROGENERADOR A LA RED EN 74
GRÁFICA 5.33. ACCIÓN DEL CONTROLADOR PR EN SISTEMA EXPERIMENTAL	77
GRÁFICA 5.34. ESPECTRO DE FOURIER_ACCIÓN PR	
GRÁFICA 5.35. ACCIÓN DEL CONTROLADOR PR + HC $5^{\text{to}}_{-}7^{\text{mo}}$ en sistema experiment	`AL79
GRÁFICA 5.36. ESPECTRO DE FOURIER_ACCIÓN PR + HC 5^{TO}_{2} 7 ^{MO}	
GRÁFICA 5.37. ACCIÓN DEL CONTROLADOR PR + HC Y ACTIVE DAMPING EN SISTEMA E	EXPERIMENTAL81
GRÁFICA 5.38. ESPECTRO DE FOURIER_ACCIÓN PR + HC Y ACTIVE DAMPING	