Contents

Resumen ii

Abstract iii

Acknowledgements iv

Abbreviations xi

1 Introduction 1
 1.1 Background ... 1
 1.2 Hypotheses .. 3
 1.3 Objectives .. 3
 1.3.1 General objective ... 4
 1.3.2 Specific objectives ... 4
 1.4 Thesis organization ... 5

2 Theoretical Framework 7
 2.1 Bayesian inference and Monte Carlo methods 7
 2.1.1 Bayesian inference ... 7
 2.1.2 Sequential Monte Carlo methods: Generic particle filter 9
 2.1.3 Regularized particle filter ... 13
 2.2 Tools for signal statistical characterization 15
 2.2.1 Markov chains .. 15
 2.2.2 Concentration inequalities .. 16
 2.2.3 Hypothesis test to infer the order of Markov chains 17
 2.3 Particle filter-based prognosis scheme for dynamic systems . 18
 2.3.1 Prediction for n-steps ahead: Regularized PF-based scheme .. 19
 2.3.2 Statistical characterization of the End-of-Discharge and End-of-Life .. 20

3 Simulating Usage Profiles for Electric Vehicles 23
 3.1 Battery pack: Electrical characterization 25
 3.1.1 Data sources: AESC and DoE’s Advanced Vehicles Testing Program . 26
 3.2 Vehicle mechanical parameters ... 29
 3.3 Mission Map: Terrain characteristics 30
3.4 Driving schedules .. 32
3.5 Power demand for the EV mission completion 34
3.6 Cruise control: An alternative way to obtain the EV required power 35
3.7 EV current consumption: A deterministic usage profile 40

4 Battery Pack Autonomy: Filtering and Prognosis Schemes for the State-
of-Charge 43
 4.1 Metamodel A: An approximation to internal ohmic resistance 44
 4.2 State space model for the SOC 46
 4.3 Determination of the measurement equation parameters 48
 4.4 Regularized particle filter applied to the SOC SS model 50
 4.5 Probabilistic characterization of usage profiles based on Markov chains 53
 4.5.1 Data clustering .. 53
 4.5.2 Maximum likelihood estimation of transition probabilities 54
 4.5.3 Number of states and order of the Markov chain 54
 4.5.4 EV usage profile: A probabilistic model 55
 4.6 Battery pack autonomy: Prognosis scheme applied to the SOC SS model ... 57

5 Battery Pack Remaining Life: Prognosis Schemes applied to the State-of-
Health .. 63
 5.1 Metamodel B: An approximation to Coulomb efficiency 64
 5.2 State space model for the SOH 67
 5.3 Battery pack remaining life: Prognosis scheme applied to the SOH SS model . 69
 5.4 Final considerations .. 74

6 Laboratory Data Acquisition: Individual Lithium-Ion Cell Discharges 77
 6.1 Laboratory implementation ... 77
 6.2 Experimental design .. 79
 6.3 Preliminary results: Cell internal resistance 81
 6.4 Preliminary results: Coulomb efficiency 82
 6.5 Equipment requirements for ideal implementation 85

7 Conclusions .. 87
 7.1 Future work .. 89

Bibliography 90
List of Figures

2.1 A simple graphical representation of a first order homogeneous Markov chain of two states ... 16
3.1 A progression scheme to simulating usage profiles for EVs 24
3.2 General schematics for an ESS in an EV: specific Nissan Leaf example 25
3.3 Characterization of individual new lithium-ion cells at 25°C from AESC 27
3.4 Characterization of a Nissan Leaf battery pack from the DoE’s Advanced Vehicles Testing Program .. 28
3.5 Map and elevation profile of the route between two given cities 32
3.6 EPA vehicle dynamometer driving schedules 33
3.7 Power requisite to keep the EV at HWFET driving schedule speeds 35
3.8 Block diagram of a PI feedback system for cruise control 35
3.9 Optimization methods employed to find the cruise control PI gains 37
3.10 Performance results of the cruise control PI controller when taking into account elevation variations in the mission map 38
3.11 Power requisite to keep the EV at cruise control reference speed 39
3.12 EV current consumption: Simulated current and voltage profiles 41
4.1 Battery pack internal resistance as a function of SOC (DoE’s Advanced Vehicles Testing Program) ... 44
4.2 Procedure to derive the battery pack internal resistance as a function of current ... 45
4.3 Metamodel A: graphical representation of the pack internal resistance as a function of SOC and current ... 45
4.4 OCV curve fitting process ... 48
4.5 Detail of the OCV third zone fitting process 49
4.6 Results for the regularized PF estimation stage: Internal resistance and voltage profiles ... 51
4.7 Results for the regularized PF estimation stage: SOC curve 51
4.8 Upper probability bounds given by Hoeffding and Chebyshev inequalities for four valid states ... 55
4.9 Probabilistic model for the EV usage profile 56
4.10 Long-term prognosis for the internal impedance module and voltage of the battery pack ... 59
4.11 SOC long-term prognosis and EOD characterization

5.1 Schematics of the interplay between cycle operational conditions and SOH evolution

5.2 Metamodel B for medium dependency of η_C on DoD and discharged current intensity

5.3 Metamodel B for strong dependency of η_C on DoD and discharged current intensity

5.4 Metamodel B for weak dependency of η_C on DoD and discharged current intensity

5.5 Evolution of the DoD and current intensity in a degradation simulation

5.6 SOH long-term prognosis and EOL characterization (η_C medium dependence on I and DoD)

5.7 Kernel smoothed pdfs for the DoD and current intensity in a given discharge cycle

5.8 SOH long-term prognosis and EOL characterization (η_C strong dependence on I and DoD)

5.9 GUI for the simulation engine

6.1 Laboratory equipment for discharge tests of individual lithium-ion cells

6.2 Schematics of the proposed experimental design

6.3 A typical calibration discharge: Deriving internal resistance from voltage and current data

6.4 Internal resistance preliminary results for three lithium-ion cells

6.5 EB2 preliminary results: Capacity, OCV, discharge duration, end-condition and temperatures for ~ 100 cycles

6.6 EB3 preliminary results: Capacity, OCV, discharge duration, end-condition and temperatures for ~ 100 cycles

6.7 EB4 preliminary results: Capacity, OCV, discharge duration, end-condition and temperatures for ~ 100 cycles

7.1 General schematics for the EV simulation engine
List of Tables

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>EV battery pack characterization: input example for the 2015 Nissan Leaf</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>EV required parameters: input example for 2015 Nissan Leaf</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Environmental (fixed) parameters</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>EPA vehicle chassis dynamometer driving schedules</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters of the SOC SS model measurement equation</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimation stage: PF parameters in a single discharge process</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Probabilistic characterization of the usage profile: Parameters of the algorithm</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Long-term SOC prognosis parameters</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Statistical characterization of the EOD for different realizations of the long-term SOC prognosis algorithm</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameters of the SOH SS model</td>
<td>68</td>
</tr>
<tr>
<td>6.1</td>
<td>Data-sheet values for the ICR26650-type lithium-ion cylindrical cell</td>
<td>79</td>
</tr>
</tbody>
</table>