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1 Introduction

Econometricians are often interested on measuring the effect that a treatment

has on a group of individuals. In the absence of randomized trials, matching

methods are powerful tools for estimating this effect, under the assumption

that, conditional on observable variables, the treatment assignment is ignor-

able. In general, a matching estimator compares the average outcome of the

treated group and a group of counterfactuals, which is constructed from the

sample of non-treated individuals, meeting some criteria given a priori. This

yields an estimate of the treatment effect on the treated individuals.

The most popular matching method is based on the propensity score, in-

troduced by Rosenbaum & Rubin (1983) and posteriorly developed by several

authors (see Heckman et al. (1997), Heckman et al. (1998) and others.)

In this paper, we propose an alternative matching estimator. In essence, it

pairs individuals whose characteristics are “similar” according to a criteria that

depends exclusively on the vector of individual’s attributes, not by employing

propensity score (or related concepts) as a criteria to match individuals. In

this sense, our estimator belongs to the kind of methods which don’t reduce

the dimensionality of the matching problem, such as Abadie & Imbens (2002).

The counterfactual of a treated individual will arise from the solution of

an optimization problem defined on the convex hull of the characteristics of

the non-treated agent. This leads us to determine a virtual counterfactual of

any treated individual whose characteristics are close to him, but where the

attributes of the extreme points that define the optimal convex combination

are also the nearest possible.

To our mind, this new method has four advantages regarding the standard
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procedures. First, the right election of the best counterfactual rests upon an

objective criteria that seems to be reasonable in the sense that it takes into

account all the individual’s characteristics, not based exclusively on a real

number that summarizes these attributes.

Second, the proposed method overcomes the decision problem regarding

the practical way to calculate propensity score. It does not require an extra

criteria to define a set of neighbors that are employed to determine the weights

used to calculate the resulting counterfactual’s outcome.

Third, the same optimization criteria that chooses the best counterfactual

for each treated individual is used to account for the common support determi-

nation problem that arises when using other matching methods. Contrasting

with propensity score matching, the common support problem is solved en-

dogenously, by an objective and optimization-based criteria.

Finally, alluding to numerical applications (Section 4), we found that the

proposed alternative matching method performs as well as the propensity score

matching Lalonde (1986), and better than most of non-experimental estimators

usually employed in the literature.

As we will show, a weakness in our methodology deals with the right election

of a norm that defines the optimization problem previously mentioned. Indeed,

as well as in standard methods, the resulting estimations here obtained depends

on the norm employed, introducing therefore a non desirable arbitrariness in

the procedure.

For the numerical applications yet mentioned, we will estimate the treat-

ment effect using the Mahalanobis norm and also employing the norm induced

by the diagonal matrix of the t-test (absolute values), arising from a linear
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estimation of outcomes versus covariates. From this experience, the method

employing the t-test matrix gets a better performance.

Section 2 presents matching methods and briefly discuss the popular propen-

sity score matching. In Section 3 we propose our alternative matching proce-

dure and finally Section 5 is devoted to conclusions.

2 The matching approach at estimating a treat-

ment effect

It has long been documented that when a treatment is not assigned randomly to

a particular group, comparing the average outcomes of treated and non-treated

individuals yield a poor (biased) estimate of the treatment effect Heckman et al.

(1997). Under the assumptions that the treatment assignment is correlated

only to observable variables, and that the response of one particular individual

does not depend on the treatment assigned to other(s) (Rosenbaum & Rubin

1983), matching methods become an attractive tool for assessing the treatment

effect.

Let Y1i be the outcome of individual i if it receives treatment and Y0i if

not. A causal effect is a comparison between Y1i and Y0i. Due to the nature

of economic data, it’s very uncommon for the econometrician to observe both

Y1i and Y0i, so a valid estimate of the effect that a treatment has on a group

of individuals requires the finding of a counterfactual individual.

In general, matching methods attempt to build a valid counterfactual con-

trol group, selecting from the non treated sample individuals which are similar

to the treated ones. Each treated individual is matched to a non-treated indi-
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vidual (the latter may not be necessarily in the sample, see Section 3). There

are basically two ways by which this can be achieved: One is to select, for each

treated individual with characteristics X1i, a non-treated one (or group of non-

treated individuals) whose characteristics (X0i) closely resemble X1i. This is a

multi-dimensional problem, therefore characteristics must be weighted through

a norm.

The other is the popular propensity score matching, which, following Rosen-

baum & Rubin (1983) we now proceed to discuss briefly. The propensity score

is a pseudo-metric, which summarizes in a real number all the (relevant) ob-

servable characteristics of each individual.

We denote u = 1 if the treatment is assigned and u = 0 otherwise. Let

the conditional probability of assignment to the treatment given the covariates

(the propensity score) be

e(X) = Pr(u = 1|X).

If a treated individual shares the same propensity score with a non-treated

one, then we can think of these individuals as if they were randomly assigned

to each group, so the comparison between these individuals’ outcome is an

unbiased estimate of the treatment effect. In practice, the propensity score

is not known but can be estimated, for example using a logistic or probit

regression.

Once the propensity score has been estimated for each individual, the econo-

metrician must choose between some alternatives on the next stage, regarding

the algorithm by which the matching will be carried out. One way is to match

each treated individual with the non-treated one in the sample whose propen-

sity score is the closest one (the so called nearest neighbor matching). Another
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alternative is to match each treated individual to a weighted average of a subset

of non-treated ones, the weight depending on the closeness of the propensity

scores (Kernel Matching). This process involves arbitrary choices (the number

of neighbors to be included in the matching and/or the specification of the

Kernel function).

Apart from the specification problem which arises from the use of propen-

sity score, this method shares with other matching algorithms the common

support problem. In a non-experimental study, there may be a group of treated

individuals whose characteristics are significantly different from each one of the

non-treated. In terms of the propensity score method, some treated individuals

would not have a match in the non-treated sample with a sufficiently similar

propensity score. This observations must be dropped, since their inclusion

would bias the estimates. There is not an objective criteria according to which

this process must be conducted, so it involves some degree of arbitrariness.

3 An alternative matching procedure

Let I = {1, 2, . . . , n} be a set of individuals characterized by a vector

(Yi, Xi, ui) ∈ R × R
k × {0, 1},

where Yi is the outcome of individual i ∈ I, Xi is a vector of observed pre-

treatment characteristics and ui = 1 if individual i ∈ I is assigned to the

experimental treatment (ui = 0 otherwise).

Let X1 = {Xi | ui = 1} and X0 = {Xi | ui = 0} be the sets of characteris-

tics of the treated and not treated individuals respectively (with cardinals n1

and n0). Define also I1 = {i | ui = 1} and I0 = {i | ui = 0}.
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Given a norm ‖ · ‖ in R
k, for a treated individual i ∈ I1 consider the

following optimization problem1:

min
µ

‖Xi −
∑

j∈I0

µjXj‖ + λ ·
∑

j∈I0

µj‖Xi − Xj‖

s.t. µ = (µj) ∈ ∆n0
,

λ ≥ 0,

(1)

that is, look for a point in the convex hull of X0 that approximates Xi as good

as possible, but where the corresponding extreme points of the optimal convex

combination are the nearest possible to Xi according to the weights given by

convex combination factors.

Figure 1: Matching in two variables

x1

x2

1The Simplex in R
n is denoted by ∆n, whereas coZ is the convex hull of a set Z, that is,

coZ =

{

∑

k∈K

µkzk, zk ∈ Z, µk ≥ 0,
∑

k∈K

µk = 1

}

.
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Figure 1 shows how this matching works. Notice that the objective function

(1) consists of two parts. The first part depends on the difference between the

characteristics of the treated individual and those of the convex combination

of non-treated individuals
∑

j∈I0 µjXj . If the minimization problem consisted

only on this expression, it could be the case that a convex combination of non-

treated individuals solved the problem, but consisted on observations whose

characteristics where far distant from those of the treated one (marked as a

square in Figure 1).

The second term in the objective function depends on the distance between

the characteristics of the treated individual and those of the non-treated in-

dividuals included in the convex combination. The minimization of this term

implies a more accurate match. Geometrically, as Figure 1 shows, the inclusion

of this term implies the solution will be one with the extreme points as near

as possible to the red square (treated individual).

According to our procedure, the best solution between the two triangles

in the last picture is given by the extreme points that defines the little trian-

gle around the square dot, that is, by those extreme point closest to the the

characteristics of the treated individual. Thus, there is a trade-off between the

distance of Xi to the convex combination X ∈ coX0, and the fact that the

extreme points we are considering are the nearest as posible to Xi.

We denote by µa
i = (µa

ij) ∈ ∆n0
a solution of problem (1) and define

Y a
i =

∑

j∈I0

µa
ij Yj ∈ R,

and

vi = ‖Xi −
∑

j∈I0

µa
ijXj‖ + λ ·

∑

j∈I0

µa
ij‖Xi − Xj‖
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Let αi = 1/vi. Then, we define

Definition 3.1. The weighted average treatment effect on the untreated is de-

fined by Ea given by

Ea =

(

n1
∑

i=1

αi

)

−1

·
n1
∑

i=1

αi(Yi − Y a
i )

It is easy to check that the solution set of problem (1) is a non-empty and

compact set. Since the objective function is only convex (not strictly), we do

not have guarantee for the uniqueness of the solution. However, we persist in

this formulation for two reasons. First, the uniqueness can be attained if we

slightly modify the objective function, for instance introducing a penalizing

quadratic term in µj . Second, from the numerical experience that we report in

next Section, to our mind the results there obtained are satisfactory with the

adopted specification.

Remark 3.1. The condition of strong ignorable treatment assignment (and

weaker assumptions) introduced by Rosenbaum & Rubin (1983) should imply

that

coX0 ∩ coX1 6= ∅, (2)

since in the contrary case would exist some characteristic that could separate

these sets2

We also remark that under condition (2), it may happen that for some

individuals i ∈ I1 could have several points in coX0 such that the distance

with Xi is zero. In such case, the optimal solution of problem (1) will not

2That is, would exists a non-zero vector p ∈ R
k such that p ·Xi ≤ p ·Xj , ∀i ∈ I0, j ∈ I1.
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necessarily select one of them due to the component in the objective function

involving the distance among characteristics.

Note that the treatment effect estimate we propose is a weighted average

of the differences between the treated individuals outcomes and their coun-

terfactuals. The weights are the inverse of the minimized objective function.

Thus, this matching method provides an optimization-based procedure to solve

the common support determination problem. Observations involving a poor

matching are automatically given little weight compared to those in which

matching has been accurate, instead of dropping them.

Remark 3.2. The objective function in problem (1) involves a specific norm,

which must be chosen according to a criteria given ex ante, introducing there-

fore certain arbitrariness in the procedure. In the following section, we test the

performance of the estimator Ea using two different norms induced by matri-

ces: the usual Mahalanobis norm and the diagonal matrix with the absolute

values of the resulting t-tests from a linear regression between covariates and

the outcome of individuals. We propose this last matrix since, intuitively, those

characteristics which are more tightly linked to the outcome should be given a

higher weight than those that are not.

Remark 3.3. In problem (1), λ determines the relative importance of the

closeness between the extreme points of the convex combination and the treated

individual. If λ → 0, then problem (1) has multiple solutions. In terms of Fig-

ure 1, there are many possible convex combinations of non-treated individuals

that equal a single red square.

On the other hand, if λ → ∞, then the solution to the problem implies the

choice of the nearest neighbor.
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In the following section, we present a test of the estimator’s performance

assuming λ = 1.

4 Testing the matching estimator

4.1 Lalonde’s evaluation

Following Lalonde (1986), we use non experimental data to evaluate the impact

of training on earnings of individuals participating in the National Supported

Work Demonstration project. Instead of the experimental controls included in

the NSW3, we use the same sub-samples developed in Lalonde’s study. These

groups consist on sub-samples drawn from the Panel Study of Income Dynamics

(PSID) and the Current Population Survey - Social Security Administration

File (CPS SSA).

The unbiased estimate of the treatment effect is found comparing the mean

earnings of both treatment and control experimental groups. The need for

homogeneity in the data implies a reduction in the sample, amounting to 297

treated and 425 non-treated individuals. This estimate amounts to $866 with

a standard error of $476 for male participants and $851 with a standard error

of $317 for females.

Lalonde also estimates the treatment effect for a further subsample of data,

which contains one more year of pre-intervention data (earnings in 1974). This

data includes 185 treated and 260 non-treated observations, all male partici-

3The NSW program assigned individuals to training positions randomly. One group

received all the benefits of this program, while those assigned to the control group received

nothing.
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pants. The unbiased estimated treatment effect for this observations is $1794,

with a standard error of $633. As in Dehejia & Wahba (1998), we restrict our

analysis to this subset of data.

Other matching estimators have been tested using the NSW program. For

instance, Dehejia & Wahba (1998) evaluate propensity score methods (PSM)

with a subset of Lalonde’s data, and show that PSM result in accurate estimates

of the treatment impact; Abadie & Imbens (2002) propose a bias-corrected

matching estimator and test it against the experimental results. They find

that their bias-correction improves the estimates of the training program once

it’s applied to the non-experimental control groups.

Lalonde constructs different subsamples from PSID and CPS SSA databases,

in order to resemble the experimental control group from NSW. The sub-

samples, denoted respectively by PSID-2, PSID-3, CPS SSA-2 and CPS SSA-3.

All of them are built drawing from the original sample individuals that meet

some eligibility criteria for the NSW program.

11



Table 1: Characteristics of different groups (standard deviations)

Variable NSW T NWS C PSID-1 PSID-2 PSID-3 CPS-1 CPS-2 CPS-3

Age 25,681 25,05 34,85 36,09 38,26 33,23 28,25 28,03

(6,69) (6,59) (10,44) (12,08) (12,89) (11,05) (11,7) (10,79)

Years of School 10,35 10,09 12,12 10,77 10,3 12,03 11,24 10,24

(1,82) (1,62) (3,08) (3,18) (3,18) (2,87) (2,58) (2,86)

Black 0,84 0,83 0,25 0,39 0,45 0,07 0,11 0,2

(0,4) (0,4) (0,43) (0,49) (0,5) (0,26) (0,32) (0,4)

Hispanic 0,059 0,1 0,03 0,07 0,12 0,07 0,08 0,14

(0,29) (0,32) (0,18) (0,25) (0,32) (0,26) (0,28) (0,35)

Married 0,19 0,15 0,87 0,74 0,7 0,71 0,46 0,51

(0,37) (0,36) (0,34) (0,44) (0,46) (0,45) (0,5) (0,5)

Dropout 0,71 0,83 0,31 0,49 0,51 0,3 0,45 0,6

(0,44) (0,39) (0,46) (0,5) (0,5) (0,46) (0,5) (0,49)

Real Earnings 1974 2096 2107 19429 11027 5566 14016 8728 5619

(4964) (5011) (14263) (8921) (5353) (9176) (8032) (3341)

Real Earnings 1975 3066 3027 19063 7569 2610 13651 7397 2467

(4875) (5201) (13597) (9041) (5573) (9270) (8112) (3292)

No of obs 185 260 2940 253 128 15992 2369 429

Table 1 shows the averages and standard deviations of each characteris-

tic across different groups. We see that the subsamples of different control

groups are quite different from the experimental control group. However, the

subsample that most closely resembles a valid comparison group is PSID-3.

Lalonde (1986) shows that the results from other non-experimental estimates,

(not including any matching method, see Smith & Todd (2003)) yield very poor

estimates, even when the PSID-3 subsample is used for comparison, although

the accuracy of these estimates improves relative to the other subsamples.
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4.2 Estimation with non-experimental data

We calculate two estimates of the treatment effect for each comparison group

identified in Lalonde (1986) and compare them to both the mean difference

between groups and a propensity score matching estimator.

Our first matching estimator requires a weighting matrix when calculating

the norm inside the objective function to be minimized. We calculate our

estimate using two possible weighting matrices, the Mahalanobis distance and

a rather simple but intuitive one: diagonal matrix which contains the absolute

value of simple t-tests resulting from an OLS regression of the outcome on

pre-treatment variables.

Our point estimates of the treatment effect vary between 1355 and 2064.

The performance of our estimator is comparable to the propensity score match-

ing one. Results from both methods are very similar in terms of standard er-

rors. Remarkably, the propensity score estimate for the CPS-3 subsample is far

below the unbiased estimate, being significantly improved by outçr proposed

method. Table 2 shows the estimated treatment effect for each one of the

comparison groups proposed by Lalonde (1986). The last two columns show

the estimates obtained by our method, using both the Mahalanobis weighting

matrix and the diagonal with the t-tests. 4

4Propensity score matching replicates the results by Dehejia & Wahba (1998). Standard

errors calculated by bootstrap method.
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Table 2: Matching treatment effect estimate. (Numbers in parentheses are the standard

errors)

Control group NWS less comparison group P. Score Mahalanobis t-test adjusted

NSW 1794

(633)

PSID-1 -15205 1691 1803 1752

(1154) (2209) (1933) (2003)

PSID-2 -3647 1455 1487 1676

(959) (2303) (2366) (2152)

PSID-3 1069 2120 2064 1997

(899) (2335) (1431) (1254)

CPS-1 -8498 1582 1321 1455

(712) (1069) (1154) (996)

CPS-2 -3822 1788 1966 2012

(670) (1205) (1421) (1246)

CPS-3 -635 587 1355 1416

(657) (1496) (1677) (1596)

Table 3: Sample means of (Mahalanobis) matched comparison groups characteristics.

Variable NWS T PSID-1 PSID-2 PSID-3 CPS-1 CPS-2 CPS-3

Age 25,81 26,05 27,12 27,26 25,23 28,25 25,03

Years of School 10,35 11,12 10,77 10,3 11,03 11,24 10,24

Black 0,84 0,75 0,89 0,75 0,74 0,81 0,8

Hispanic 0,06 0,03 0,04 0,02 0,07 0,08 0,04

Married 0,19 0,17 0,24 0,15 0,21 0,26 0,2

Dropout 0,71 0,61 0,49 0,51 0,49 0,65 0,61

Real Earnings 1974 2096 2458 1972 2586 2020 1745 2633

Real Earnings 1975 1532 1340 1938 1773 1291 1392 1661
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Table 4: Sample means of (t-test adjusted) matched comparison groups characteristics.

Variable NWS T PSID-1 PSID-2 PSID-3 CPS-1 CPS-2 CPS-3

Age 25,81 26,46 27,91 26,36 24,67 28,95 26,21

Years of School 10,35 10,55 11,1 10,15 10,96 11,74 10,19

Black 0,84 0,81 0,79 0,71 0,8 0,89 0,77

Hispanic 0,06 0,04 0,04 0,03 0,06 0,08 0,05

Married 0,19 0,2 0,21 0,13 0,24 0,26 0,22

Dropout 0,71 0,63 0,55 0,52 0,42 0,7 0,64

Real Earnings 1974 2096 1167 1521 1782 1813 1694 1993

Real Earnings 1975 1532 1340 1938 1773 1291 1392 1661

Tables 3 and 4 show that the characteristics of the matched comparison

groups are very close to those of the treatment group. This suggests that

the method is indeed succeeding in “creating” a valid non-experimental con-

trol group, despite the big differences between the comparison and treatment

groups, as Table 1 shows. This indicates that our matching method successfully

replicates a valid counterfactual comparison group.

Table 5: Square roots of mean squared errors of estimates.

Control group NWS less comparison group P. Score Mahalanobis t-test adjusted

PSID1 17038 2211 1933 2003

PSID2 5525 2328 2386 2155

PSID3 1155 2358 1456 1270

CPS1 10317 1090 1247 1052

CPS2 5656 1205 1431 1265

CPS3 2516 1922 1734 1640

Table 5, presents the square roots of the mean squared errors of the dif-

ferent estimates, assuming the experimental estimate as the true treatment
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effect. The table shows that our estimator has lower MSE than propensity

score matching with both norm specifications for 3 out of 6 subsamples, and

only for the CPS-2 subsample, displays a higher MSE in both norm specifica-

tions.

5 Conclusions

We propose an intuitive alternative matching method for estimating the effect

of a treatment, which relies on the minimization of the distance between the

characteristics of the treatment and control groups. This method is appealing

since it avoids some of the arbitrariness of propensity score matching method,

such as the choice of a Kernel specification, the nearest neighbor criterion, the

specification issues involving the estimation of the propensity in practice and

the procedure according to which a common support region is determined. In

turn, our method needs the choice of a norm according to which the charac-

teristics are weighted, introducing thus certain non desirable arbitrariness.

The propensity score matching method requires that the estimated prob-

ability of treatment assignment between both the treatment and comparison

groups overlap sufficiently. Likewise, the proposed estimator relies on the ex-

istence of a common support between the comparison and treatment groups,

which is precisely a condition we assume to our method. However, propensity

score matching relies on the choice of a common support region, and this choice

involves an arbitrary decision by the econometrician. Our method solves this

problem with an objective and optimization-based criterion.

Our results show that the proposed alternative matching method succeeds
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in estimating the treatment effect for the benchmark database of Lalonde’s

(1986) study. We choose to test this method with two alternative weighting

matrices: the Mahalanobis distance and a diagonal matrix containing the t-

tests of a simple regression between outcomes and characteristics. The estima-

tor performs comparably to the popular Propensity Score Matching. In terms

of mean squared error, our method appears to behave better than Propensity

Score
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A Matlab codes

function match=matching(Xt,Xc,Yc,Yt)

global Xtim Xcm I0 I1 testt;

I0=length(Yc); % number of non-treated individuales

I1=length(Yt); % number of treated individuals

Y=[Yt;Yc];

X=[Xt;Xc];

I0=length(Yc);

I1=length(Yt);

Xc=Xc(1:I0,:);

Xt=Xt(1:I1,:);

Yt=(Yt(1:I1));

Yc=(Yc(1:I0));

% Scaling of variables.

Xtm=escal(Xt);

Xcm=escal(Xc);

Ym=escal(Y);

Ycm=escal(Yc);

Ytm=escal(Yt);

Xm=escal(X);

% Xtm=Xt*inv(diag(mean(Xt)));

% Xcm=Xc*inv(diag(mean(Xc)));

% Ym=Y/(mean(Y));

% Ycm=Yc/(mean(Yc));

% Ytm=Yt/(mean(Yt));

% Xm=X*inv(diag(mean(X)));

% OLS regression: t tests will be used in weighting matrix

R=ols(X,Y);

testt=R.t;

% Restrictions at optimization

Aeq=ones(1,I0);

19



beq=1;

lb=zeros(I0,1);

ub=ones(I0,1);

u0=ones(I0,1)/I0;

options=optimset(’MaxFunEvals’,100000);

u=[];

time=0;

for i=1:I1;

tic;

Xtim=Xtm(i,:);

[mui,wi]=fmincon(@gener1,u0,[],[],Aeq,beq,lb, ub,[],options);

u=[u mui];

toc;

t=toc;

fprintf(1,’Completing matching for i=%g .\n’,i)

time=time+toc;

falta=(I1/i-1)*time;

if falta>120*2*60

fprintf(1,’Time left: %g hours.\n’,round(falta/360)/10)

elseif falta>=120 & falta<=120*3600*2

fprintf(1,’Time left: %g minutes.\n’,round(falta/60))

elseif falta<120

fprintf(1,’Time left: %g seconds.\n’,falta)

end

end

% COUNTERFACTUALS

counterf=u’*Yc; %

effect=round(sum(Yt-counterf)/I1); % Estimated treatment effect

dif=round(mean(Yt)-mean(Yc)); % Difference estimator

match.testt=testt;

match.u=u;

match.counterf=counterf;

match.Yt=Yt;

match.Yc=Yc;
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match.effect=effect;

match.dif=dif;

match.I0=I0;

match.I1=I1;

match.time=time

now=datestr(fix(clock),30);

save(now,’match’,’match’);

function norma1=norma1(z)

global testt

norma1=sqrt(z’*abs(diag(testt(3:end,:)))*z);

function gener1=gener1(ui)

global Y Yc Yt X Xt Xti Xc Xtm Xtim Xcm I0 I1;

p1=norma1((Xtim(:,2:end)-ui’*Xcm(:,2,end))’);

p2=0;

for j=1:I0;

p2j=ui(j)*norma1((Xtim(:,2:end)-Xcm(j,2:end))’);

p2=p2j+p2;

end

gener1=p1+p2;
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