Tabla de contenido

01.	INTRODUCCIÓN	1
01	1.1 Motivación	1
01	1.2 Fotocatálisis	5
01	1.3 Adsorción	. 11
01	1.4 Hidróxidos Bilaminares (LDH)	. 15
	01.4.1 LDH en fotocatálisis	. 19
	01.4.2 LDH en adsorción	. 24
02.	OBJETIVOS	. 30
	01.5.1 Objetivo general	. 30
	01.5.2 Objetivos específicos	. 30
03.	MATERIALES Y METODOLOGÍAS	. 30
03	3.1 Materiales	. 30
03	3.2 Equipos	. 31
03	3.3 Metodologías	. 31
	03.3.1 Síntesis 'A'	. 31
	03.3.2 Síntesis 'B'	. 33
	03.3.3 Compósitos con LDH	. 35
	03.3.4 Calcinación de LDH	. 36
	03.3.5 Ensayos de fotodegradación	. 36
	03.3.6 Ensayos de adsorción	. 37
	03.3.7 Medición de reciclabilidad	. 38
04.	RESULTADOS Y DISCUSIONES	. 39
04	4.1 Optimización de la síntesis	. 39
	04.1.1 LDH Cu/Al	. 40
	04.1.2 LDH [CuCo]/Al	. 45
	04.1.3 LDH Cu/Cr y [CuCo]/Cr	. 48
04	4.2 Compósitos con LDH	. 51
04	4.3 Calcinación de LDH	. 54
04	4.4 Fotocatálisis	. 58
04	4.5 Adsorción	. 63
	04.5.1 LDH sin calcinar	. 63
	04.5.2 LDH calcinados	. 65
	04.5.3 Compósitos de LDH	. 67

04	.6 Reciclabilidad	. 69
05.	CONCLUSIONES Y PROYECCIONES	71
06.	BIBLIOGRAFÍA	. 74
07.	ANEXOS	82
07	.1 Parámetro de red `c'	82
07	.2 Parámetro de red `a'	82
07	.3 Band gap	. 83
07	.4 Reciclabilidad	. 85
07	.5 Constantes de Langmuir	. 87
07	.6 Constantes de Freundlich	. 88

Índice de figuras

Figura 01.1. ¿Cuántas Tierras se necesitan para mantener a la humanidad?[2]
Figura 01.2. Cantidad de fuentes renovables de agua per cápita (en m ³) para 2013 [4]
Figura 01.3. Esquema del mecanismo de la fotocatálisis [11]
Figura 01.4. Rango de absorción del fotocatalizador TiO ₂ [11]
Figura 01.5. Energías para varios semiconductores en electrolitos acuosos a
pH=1 [13]7
Figura 01.6. Gráfico de <i>Efoton vs</i> ($\alpha * Efoton$) ² utilizado para calcular el band
gap de un semiconductor con una transición directa [19]
Figura 01.7. Parámetros isotérmicos obtenidos para la adsorción de methyl
orange y methyl violet en PAAC [36]13
Figura 01.8. Estructura cristalina de la brucita (Mg(OH) ₂)15
Figura 01.9. Estructura en 3D y orientación espacial de los compuestos LDH
[48]
Figura 01.10. Celda unitaria hexagonal compacta y sus parámetros de red.17
Figura 01.11. Patrón XRD para (a) CuMgAI-LDHs (b) CuZnAI-LDHs y (c)
CuNiAl-LDHs [52]
Figura 01.12. Fotodegradación de 2,4,6-TCP bajo irradiación de luz visible
(<i>λ</i> >400nm)[43]
Figura 01.13. Degradación fotocatalítica de MG disuelto sobre cada LDH [57].

Figura 01.14. Fotodegradación del pigmento aniónico X-3B para los distintos Figura 01.15. Degradación fotocatalítica de verde de metilo (MG) por los distintos LDH sintetizados [44]..... 24 Figura 01.16. Esquema de la síntesis de microesferas porosas de Fe₃O₄@MgAl-Figura 01.17. DRX para (a) CuAl-LDH intercalado por CO32-, y CuAl-LDH intercalados por 1-N-3,8-DS preparados de soluciones a (b) pH 8,0 (c) pH 9,0 Figura 01.18. Mecanismo propuesto para la adsorción de As(V) y Cr(VI) sobre LDH calcinados [63]..... 27 Figura 01.19. Pérdida de la eficiencia en la remoción de color luego de cada ciclo de adsorción-regeneración para LDH sobre efluentes tratados previamente (a) y sin tratar (B) [64]. 28 Figura 01.20. Efecto del pH en la adsorción de MO en G-LDH y G-LDO [41]. Figura 03.1. Esquema de la síntesis 'A' para la coprecipitación de LDH 32 Figura 03.2. Esquema de la síntesis 'B' para la coprecipitación de LDH 33 Figura 03.5. Izquierda: [CuCo]Al-LDH post-centrifugado. Derecha: [CuCo]Al-Figura 04.1. DRX de Cu/Al(31)-LDH sintetizado mediante metodología A1. 40 Figura 04.2. DRX de CuAl-LDH sintetizados mediante metodología A2...... 41 Figura 04.3. DRX de Cu/Al(21)-LDH sintetizado mediante metodología A3. 41 Figura 04.4. DRX de Cu/Al(52)-LDH sintetizado mediante metodología B1. 42 Figura 04.5. Imágenes SEM de Cu/Al(52)-LDH. Figura 04.6. A) DRX de CuAl-LDH a distintas razones sintetizadas mediante la Figura 04.7. DRX de [CuCo](31)/Al(52)-LDH sintetizado mediante metodología Figura 04.8. DRX de [CuCo](31)/Al(52)-LDH sintetizado mediante metodología Figura 04.9. Comparación de DRX para dos [CuCo]Al-LDH sintetizados mediante B2 y B3...... 47

Figura 04.10. Imágenes SEM de [CuCo](31)/Al(52)-LDH sintetizado mediante Figura 04.11. DRX de CuCr-LDH sintetizados mediante metodología B2..... 49 Figura 04.12. Imágenes SEM de Cu/Cr(52)-LDH sintetizado mediante B2..50 Figura 04.13. DRX de Cu/Cr(21)-LDH y [CuCo](13)/Cr(21)-LDH sintetizados mediante metodología B3. 50 Figura 04.14. Comparación de DRX para dos [CuCo]Al-LDH + GO sintetizados mediante B2 y B3...... 52 Figura 04.15. Imagen SEM de [CuCo]Al-LDH +GO sintetizado mediante Figura 04.16. Comparación de DRX para [CuCo]Al-LDH y [CuCo]Al-LDH + TiO₂ sintetizados mediante B3...... 53 Figura 04.17. DRX de CuAl-LDH y [CuCo]Al-LDH calcinados a 500°C por 4 Figura 04.18. (Izquierda): Imagen SEM de [CuCo]Al-LDH. (Derecha): Imagen SEM de [CuCo]/Al-LDH calcinado a 500°C durante 4 horas. 55 Figura 04.19. DRX de CuCr-LDH y [CuCo]Cr-LDH calcinados a 500°C por 4 Figura 04.20. Imagen SEM de CuCr-LDH calcinado a 500°C por 4 horas.... 57 Figura 04.21. DRX de [CuCo]Al-LDH+TiO₂ calcinado a 500°C por 4 horas. 58 Figura 04.27. (Arriba): DRX de Cu/Al(52). (Abajo): DRX de Cu/Al(52) luego Figura 04.28. (Izquierda): CuAl-LDH saturado con MO. (Derecha): CuAl-LDH Figura 04.29. (Arriba): DRX de Cu/Al(52) calcinado. (Abajo): DRX de Cu/Al(52) calcinado luego de ser sometido a una saturación de naranjo de Figura 04.30. (Izquierda): CuAl-LDH calcinado y saturado con MO. (Derecha): Figura 04.31. Porcentaje de remoción de MO para el [CuCo](31)/Al(52)-LDH Figura 04.32. DRX de [CuCo]Al-LDH calcinado a 500°C por 4 horas luego de

Figura 07.1. UV-DRS de LDH utilizados para ensayos de fotodegradación. . 84 Figura 07.2. Tauc plot de los LDH utilizados en los ensayos de fotodegradación.