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FECHA: 2017
PROF. GUÍA: ALEJANDRO HEVIA ANGULO

EFFICIENT NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Non-Interactive Zero-Knowledge (NIZK) proofs, are proofs that yield nothing beyond
their validity. As opposed to the interactive variant, NIZK proofs consist of only one
message and are more suited for high-latency scenarios and for building inherently non-
interactive schemes, like signatures or encryption.

With the advent of pairing-based cryptography many cryptosystems have been built using
bilinear groups, that is, three abelian groups G1, G2, GT of order q together with a bilinear
function e : G1 × G2 → GT . Statements related to pairing-based cryptographic schemes
are naturally expressed as the satisfiability of equations over these groups and integers
modulo q.

The Groth-Sahai proof system, introduced by Groth and Sahai at Eurocrypt 2008, pro-
vides NIZK proofs for the satisfiability of equations over bilinear groups and over the
integers modulo q. Although Groth-Sahai proofs are quite efficient, they easily get expen-
sive unless the statement is very simple. Specifically, proving satisfiability of m equations
in n variables requires sending Θ(n) elements of a bilinear group as commitments to the
solutions, and a proof that the solutions satisfy the equations – which we simply call the
proof – requiring additional Θ(m) group elements.

In this thesis we study how to construct aggregated proofs – i.e. proofs of size independent
of the number of equations – for different types of equations and how to use them to build
more efficient cryptographic schemes.

We show that linear equations admit aggregated proofs of size Θ(1). We then study the
case of quadratic integer equations, more concretely the equation b(b − 1) = 0 which is
the most useful type of quadratic integer equation, and construct an aggregated proof of
size Θ(1). We use these results to build more efficient threshold Groth-Sahai proofs and
more efficient ring signatures.

We also study a natural generalization of quadratic equations which we call set-membership
proofs – i.e. show that a variable belongs to some set. We first construct an aggregated
proof of size Θ(t), where t is the set size, and of size Θ(log t) if the set is of the form
[0, t − 1] ⊂ Zq. Then, we further improve the size of our set-membership proofs and
construct aggregated proofs of size Θ(log t). We note that some cryptographic schemes
can be naturally constructed as set-membership proofs, specifically we study the case of
proofs of correctness of a shuffle and range proofs. Starting from set-membership proofs
as a common building block, we build the shortest proofs for both proof systems, with
respect to the state of the art.

i





RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN CIENCIAS, MENCIÓN COMPUTACIÓN
POR: ALONSO EMILIO GONZÁLEZ ULLOA
FECHA: 2017
PROF. GUÍA: ALEJANDRO HEVIA ANGULO

EFFICIENT NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Las pruebas no interactivas de conocimiento cero (NIZK, por su acrónimo en inglés)
son pruebas que no revelan más información que su propia validez. A diferencia de la
variante interactiva, las pruebas NIZK consisten en un sólo mensaje y son más adecuadas
para escenarios de alta latencia y para la construcción de esquemas inherentemente no
interactivos, como firmas o encriptación.

Con el advenimiento de la criptografía de emparejamiento muchos criptosistemas han
sido construidos utilizando grupos bilineales, es decir, tres grupos abelianos G1, G2, GT

de orden q junto con una función bilineal e : G1 × G2 → GT . Las aserciones relativas a
esquemas criptográficos basados en emparejamientos se expresan naturalmente como la
satisfaciabilidad de ecuaciones sobre estos grupos y los enteros módulo q.

El sistema de desmotración de Groth-Sahai, introducido por Groth y Sahai en Eurocrypt
2008, permite construir pruebas NIZK para la satisfiabilidad de ecuaciones sobre grupos
bilineales y sobre los enteros modulo q. Aunque las pruebas de Groth-Sahai son bastante
eficientes, se vuelven costosas cuando la aserción es lo suficientemente compleja. Específi-
camente, demostrar la satisfacibilidad dem ecuaciones en n variables requiere enviar Θ(n)
elementos de un grupo bilineal, que contienen las soluciones de la ecuacion, y una prueba
de que las soluciones satisfacen las ecuaciones – que simplemente llamamos la prueba –
requiriendo Θ(m) elementos del grupo.

En esta tesis estudiamos cómo construir pruebas agregadas – es decir, pruebas de tamaño
independiente del número de ecuaciones – para diferentes tipos de ecuaciones, y cómo
usar estas pruebas para construir esquemas criptográficos más eficientes. Mostramos
que las ecuaciones lineales admiten pruebas agregadas de tamaño Θ(1). A continuación,
estudiamos el caso de ecuaciones cuadráticas enteras, más concretamente la ecuación
b(b− 1) = 0, que es la ecuación cuadrática más útil, y construimos una prueba agregada
de tamaño Θ(1). Con estos resultados construimos pruebas de Groth-Sahai de umbral
más eficientes y firmas de anillo más eficientes.

También estudiamos una generalización natural de las ecuaciones cuadráticas a las que
llamamos set-membership proofs, donde se muestra que una variable pertenece a algún
conjunto. Inicialmente construimos una prueba agregada de tamaño Θ(t), donde t es el
tamaño de conjunto, y de tamaño Θ(log t) si el conjunto es de la forma [0, t − 1] ⊂ Zq.
Posteriormente mejoramos el tamaño de nuestras set-membership proofs y construimos
pruebas agregadas de tamaño Θ(log t). Adicionalemente, observamos que algunos es-
quemas criptográficos pueden ser construidos naturalmente con set-membership proofs,
específicamente estudiamos el caso de las pruebas de correctitud de un shuffle y las prue-
bas de pertenencia a un rango. Usando set-membership proofs construimos las pruebas
más eficientes para ambos sistemas de prueba, en comparación con el estado del arte.
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Chapter 1

Introduction

With the growth and ubiquity of Internet more and more of our life has been moving from
the “physical world” to the “digital world”. Along with these changes new problems have
raised: we moved from a world where communication was mostly without any intermedi-
ary to a world where communication goes through an uncontrollable set of servers from
which no privacy or secrecy guarantee can be obtained. Modern Cryptography has raised
as an answer to these and many other related problems, providing provable methods for
securing information.

Among the vast variety of cryptographic constructions, this thesis is concerned with the
study of non-interactive zero-knowledge proofs. A zero-knowledge proof, introduced by
Goldwasser, Micali, and Rackoff [GMR89], is a protocol between two parties, the prover
and the verifier, where the prover wants to convince the verifier that some statement is
true. At the onset of the protocol the verifier is completely convinced that the statement
is true without learning any extra information. non-interactive zero-knowledge proofs,
introduced by Blum, Feldman, and Micali [BFM88], restrict the proof to consist of a
single message (in opposition of an interactive protocol) making the protocol more suited
for constructing inherenlty non-interactive primitives, such as encryption and signatures,
or and high-latency scenarios. The importance of non-interactive zero-knowledge proofs
in cryptography was recognized early [NY90, DDN91, BR93], but for many years the
existing constructions were either completely impractical or could only be realized under
very strong assumptions like the random oracle model, via the Fiat-Shamir heuristic
[FS87].

Ideally, a NIZK proof system should be both expressive and efficient, meaning that it
should allow to prove statements which are general enough to be useful in practice using
a small amount of resources. Furthermore, it should be constructed under mild security
assumptions. As it is usually the case for most cryptographic primitives, there is a trade
off between these three design goals. For instance, to prove very general statements,
one can use the NIZK proof system for circuit satisfiability of Groth, Ostrovsky, and
Sahai [GOS06b], which is based on standard assumptions but whose proof size depends
on the number of gates. Alternatively, there exist constant-size proofs for any language
in NP (e.g. [GGPR13]) but based on very strong and controversial assumptions, namely
knowledge-of-exponent type of assumptions (which are non-falsifiable, according to Naor’s
classification [Nao03]) or the random oracle model. 1

Despite the use of non-falsifiable assumptions, the generality of NIZK proofs for NP-
1There is evidence that the use of knowledge-of-exponent type of assumptions may be unavoidable

for constant-size NIZK proofs for NP-complete languages [GW11].
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complete languages hides a subtlety. In order to prove the validity of a statement, it is
necessary to express it as the satisfiability of a circuit. Apart from the cost of expressing
the statement as a circuit (a Cook reduction), many cryptographic statements are more
naturally expressed by other means. In fact, with the advent of pairing-based cryptography
many cryptosystems have been built using bilinear groups, that is, three abelian groups
G1,G2,GT of order q together with a bilinear function e : G1×G2 → GT . As consequence,
statements related to pairing-based cryptographic schemes are more naturally expressed
as the satisfiability of equations over these groups and Zq.

The Groth-Sahai proof system (GS proofs) [GS12] provides a proof system for satisfiability
of this type of equations: pairing product equations. This language suffices to capture al-
most all of the statements which appear in practice when designing cryptographic schemes
over bilinear groups. Although GS proofs are quite efficient, proving satisfiability of m
equations in n variables requires sending the solutions, using an appropriated encryption
or commitment scheme, requiring Θ(n) group elements, and a proof that the encrypted
values are indeed solutions, requiring Θ(m) group elements. Although linear in both m
and n, the constants are on the order of ∼ 10. Consequently, a rough approximation of
the average proof size would be (m + n)10*64 bytes = (m + n)640 bytes, which limits
m+ n to be less than 1600 whenever we want the proof to be less that 1 Megabyte.2 For
this reason, several recent works have focused on further improving the proof efficiency
(e.g. [EG14, EHK+13, Ràf15])

A recent line of work [JR13, JR14, KW15, LPJY14] has succeeded in constructing constant-
size arguments for very specific statements, namely, for membership in subspaces of Gm

1 ,
where G1 is some group equipped with a bilinear map where the discrete logarithm is
hard. The soundness of the schemes is based on standard, falsifiable assumptions and
the proof size is independent of both m and the witness size. These improvements are
in a quasi-adaptive model (QA-NIZK, [JR13]). This means that the common reference
string of these proof systems is specialized to the linear space where one wants to prove
membership.

Interestingly, Jutla and Roy [JR14] also showed that their techniques to construct constant-
size NIZK in linear spaces can be used to aggregate the GS proofs of m equations in n
variables, that is, the proof –without considering the n commitments to variables– is of size
Θ(1). However, aggregation is only possible if the equations are linear and the equation
type is more limited when working with more efficient asymmetric bilinear groups.

The main objective of this thesis is to explore more efficient proofs for linear and other
equations with special focus on asymmetric groups. We put emphasis on constructing
aggregated proofs, that is, a single proof for many statements whose size is independent
from the number of statements. Specifically we consider:

• Linear and quadratic equations over Zq, where the variables are restricted to be
integers modulo q.

• Linear equations over G1 and/or G2 with the additional restriction that the con-
stants are fixed – one proof system for each set of equations – and that they can be
sampled together with their discrete logarithms.

• Set membership proofs, where one shows that a variable is an element from some
set S. This is a natural generalization of high-degree equations of the form p(x) = 0,
where p is a polynomial, that also allows the “roots” to be group elements.

2Using Barreto-Nahering curves with security parameter λ = 128 the base group elements are of size
32 and 64 bytes.
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The second objective is to use these more efficient proofs to develop new and more efficient
cryptographic protocols.

1.1 Our Results

In this thesis we show that all linear equations and all quadratic equations over Zq
admit an aggregated proof of size Θ(1). We also show that all set-membership proofs
over Zq, with set size t, admit aggregated proofs of size Θ(log t). We show that these
results can be extended to linear equations over G1 and/or G2 and to set-membership
proofs over G1 or G2 meeting some restrictions. We use these results to improve the
efficiency of several protocols.

In Chapter 3 we develop new techniques to aggregate linear equations, and we obtain
aggregated proofs for all linear equations (in particular, two-sided linear equations) in
asymmetric bilinear groups. The latter (Type III bilinear groups, according to the clas-
sification of Galbraith et al. [GPS08]), are the most attractive from the perspective of
a performance and security trade off, specially since the recent attacks on discrete log-
arithms in finite fields by Joux [Jou14] and subsequent improvements. As applications
we construct constant size proofs that many commitments – even in different groups –
can be opened to the same values; and one-time linear homomorphic structure preserving
signatures for messages splitted in two groups.

Chapter 4 is devoted to obtain efficient proofs for quadratic equations over the integers.
We construct constant size proofs for the satisfiability of many equations of the form
b(b − 1) = 0. While this is just a particular type of quadratic equation, is the most
representative type of quadratic equation and efficient proofs for other equations can be
build using the same techniques. We distinguish two cases depending on the commitment
scheme used to commit to the solutions: perfectly binding or length-reducing.

In the perfectly binding case we consider Groth-Sahai commitments to b1, . . . , bn ∈ Zq and
show that b1(b1 − 1) = 0, . . . , bn(bn − 1) = 0 with a constant size proof (we also consider
another perfectly binding commitment scheme and obtain similar results). We show how
to apply these results to build more efficient signature schemes, more efficient proofs that
1 out of many equations are satisfied, and more efficient set-membership proofs.

Although in the case of length-reducing commitments a proof that b(b−1) = 0 is in general
useless – since in the extreme case of perfectly hiding commitments there is always an open-
ing that satisfies the equation – we introduce a new length-reducing commitment scheme
that overcomes this problem. We call this commitment scheme extended multi-Pedersen
commitments which is a hybrid between Groth-Sahai and multi-Pedersen commitments.
We construct a constant size proof that the opening (b1, . . . , bn)> ∈ Znq of an extended
multi-Pedersen commitment satisfies equations b1(b1 − 1) = 0, . . . , bn(bn − 1) = 0. Our
proof for the length-reducing case is a key ingredient for the results of the last part of this
thesis.

Chapter 5 focuses on set-membership proofs, that is, show that a variable x is in some set
S of size t. We show that many set-membership proofs – i.e. x1, . . . , xn ∈ S – can be proven
with a single proof of size Θ(t), when S is a set of group elements, and Θ(log t), when
S is a range of integers. We call this primitive aggregated zero-knowledge set-membership
proof, because the proof size is independent of the number of variables. We show that
aggregated zero-knowledge set-membership proofs allow efficiency improvements for two
non-interactive arguments, namely, range proofs and proofs of correctness of a shuffle.
Apart from efficiency improvements, we obtain a unified modular construction for the

3



two aforementioned problems, while state of the art solutions are build from diverse
techniques and assumptions.

In Chapter 6 we construct the first Θ( 3
√
n) ring signature without random oracles, and is

unpublished work. This is the first asymptotic improvement in the standard model since
the Θ(

√
n) ring signature of Chandran et al. [CGS07]. Our construction mixes Chandran

et al.’s techniques, set-membership proofs, and some techniques that Groth and Lu used
to construct NIZK proofs of a correct shuffle [GL07], in a novel way.

In Chapter 7 we further improve aggregated set-membership proofs, and is also work that
has not been published so far. We reduce the size of the proof that x1, . . . , xn ∈ S from
Θ(t) – using the results from Chapter 5 – to Θ(log t), where S is a set of integers of size t.
Further, our improved proof works for non-fixed sets – i.e. while each instance of the proof
system from Chapter 5 works for a fixed set, a single instance of the new proof system
works for any set. Then, we show how to obtain proofs of size Θ(log t) when S ⊂ Gs,
s ∈ {1, 2}, for fixed sets. Our techniques use a natural “binary tree” representation of
S together with a clever usage of QA-NIZK proofs of membership in linear subspaces,
Groth-Sahai proofs, and the proof systems from Chapters 3 and 4.

Our results for set-membership proofs are summarized in Table 1.1.

Section Set Type Fixed set Aggregated Proof Proof Size
4.1.6 (i) ⊂ Gs no no Θ(

√
t)

4.1.6 (ii) ⊂ Gs yes no Θ( 3
√
t)

5.3.3 (a) [0, t− 1] no yes Θ(log t)

5.3.3 (b) ⊂ Gs yes yes Θ(t)

7.2 ⊂ Zq no yes Θ(log t)

7.2.1 ⊂ Gs yes yes Θ(log t)

Table 1.1: Our results for set-membership proofs. We say that the proof system works for a fixed set when
each instantiation of the proof system works for a single fixed set. The proof is aggregated if one can prove
that x1, . . . , xn ∈ S with a proof of size independent of n. We denote by t the size of the set.
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Chapter 2

Preliminaries

2.1 Notation

Let A a polynomial time probabilistic turing machine (PPT). We denote by x := A(y) the
assignment of x to the output of A when run on input y. Given a distribution D we write
x ← D when x is sampled following distribution D, and given a set S we denote x ← S
when x is sampled uniformly from the set S. We denote by x← A(y) the assignment of x
to the output of A when run on input y and random coins r ← {0, 1}`, for ` long enough,
which can be equivalently written as x := A(y; r).

We say that a function f : N → R is negligible if for any c ∈ N there exists an integer
nc ∈ N such that for any n > nc, f(n) < 1/nc. We write f(n) ∈ negl(n) as shorthand for
“f is negligible” and we write f(n) ≈ g(n) when |f(n) − g(n)| ∈ negl(n). We say that a
function f : N → R is polynomial if there exists c ∈ N, nc ∈ N such that for any n ≥ nc,
f(n) ≤ nc. We write f(n) ∈ poly(n) as a shorthand for “f is polynomial”. We say that
two distributions D1,D2 are computationally indistinguishable if for any PPT adversary
A, |Pr[x← D1 : A(x) = 1]− Pr[x← D2 : A(x) = 1]| ≈ 0. We say that a probability p(n)
is overwhelming if 1− p(n) ∈ negl(n)

Vectors are denoted in boldface and lower case, usually elements of Znq , and matrices in
boldface and upper case, usually elements of Zm×nq . We denote by eni the i th canonical
vector of Znq and by In the identity matrix of size n × n. We n can be understood from
the context, we simply write ei and I. Given some matrices A ∈ Zm×tq ,B ∈ Zm′×t′q , we
define the operations

A|B :=
(
A B

)
, A/B :=

(
A
B

)
, diag(A, n) :=

(
A 0
...

0 A

)
∈ Zmn×tnq .

In Chapter 4 we make extensive use of the set [n+ k]× [n+ k] \ {(i, i) : i ∈ [n]} and for
brevity we denote it by In,k.

Cryptographic schemes are constituted by many algorithms and among them there is
usually a key generation algorithm, which receives the security parameter and returns a
set of keys. In all the schemes used in this work the security parameter is used to choose
a (bilinear) group of size polynomially related to the security parameter, and then the
security parameter is never used again. For this reason the key generation algorithms
used in this work receive the group description instead of the security parameter.
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2.2 Public-Key Cryptography

Perhaps the most groundbreaking achievement in modern cryptography was the work
of Diffie and Hellman [DH76] where they introduce public-key cryptography. Diffie and
Hellman conceived systems where each entity publishes a public key X while keeping her
secret key x. The archetypal usage of these ideas is a public-key encryption scheme, where
anybody could encrypt messages using the public key and only the beholder of the secret
key would be able to decrypt.

Diffie and Hellman instantiated these ideas over cyclic abelian groups where the discrete
logarithm problem was conjectured to be computationally infeasible. On the other hand,
Rivest, Shamir, and Adleman used groups of unknown order and the hardness of factoring
large integers in the so called RSA cryptosystems [RSA78]. In this thesis we will always
work in Diffie and Hellman’s setting, also called the discrete logarithm setting.

Next, we introduce the basic definitions used within the discrete logarithm setting. Then
we quickly describe the two most classical primitives used in public-key cryptography:
encryption and signatures, and we also introduce commitment schemes.

2.2.1 The Discrete Logarithm and the Diffie-Hellman Assump-
tions

In public-key cryptosystems it should be computationally infeasible to compute the secret
key from the public key. This is conjectured to be true when x is the discrete logarithm
of X and X is a random element in some cyclic group (e.g the set of quadratic residues
of Zp when p and (p− 1)/2 are prime numbers).

Definition 2.1 (Abelian Group) 1 An abelian group is a set G together with a map
+ : G×G→ G (written in infix notation) and the following properties hold

Associativity For all X ,Y, and Z in G, (X + Y) + Z = X + (Y + Z) holds.

Identity element There exists an element 0 in G, such that for all X in G, 0 + X =
X + 0 = X holds.

Inverse element For each X in G, there exists an element −X in G such that X +
(−X ) = (−X ) + X = 0.

Commutativity For all X ,Y in G, X + Y = Y + X .

We say that G is cyclic if there exists an element P ∈ G, a generator of G, such that
G = {P , 2P , 3P , . . .}. We say that |G| is the order of G.

We denote by Gen(1λ) a randomized algorithm which on input the security parameter λ
outputs gk := (G,P , q), q = |G|, the description of a cyclic group of order q.

Definition 2.2 (Discrete Logarithm Assumption (DL)) We say that the discrete
logarithm assumption holds relative to Gen if for any adversary A

Pr[gk ← Gen(1λ);x← Zq;X := xP : A(gk,X ) = x] ≈ 0.

Diffie and Hellman also introduced a novel key-exchange protocol, which was later known
as the Diffie-Hellman key-exchange, based on the following assumption

1In this work we will be using additive notation (mostly to avoid tangled expressions in the exponent),
while historically the discrete logarithm problem was defined over multiplicative groups (thus using mul-
tiplicative notation). Using multiplicative notation the “logarithm” comes from the fact that we want a
solution to the equation gx = X , where g is a generator of G.
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Definition 2.3 (Computational Diffie-Hellman Assumption (CDH)) We say that
the computational Diffie-Hellman assumption holds relative to Gen if for any adversary A

Pr[gk ← Gen(1λ);x, y ← Zq;X := xP ;Y := yP : A(gk,X ,Y) = xyP ] ≈ 0.

The Diffie-Hellman key-exchange allows two parties A, in possession of random secret
x ∈ Zq and Y = yP , and B, in possession of random secret y ∈ Zq and X = xP , to
compute the shared secret key Z = xY = yX = xyP . The computational Diffie-Hellman
assumption says that the only way to compute the shared secret key is to know one of
the secrets. The decisional Diffie-Hellman assumptions goes a step beyond and says that
the shared key “looks random” to anyone other than A and B

Definition 2.4 (Decisional Diffie-Hellman Assumption (DDH)) We say that the
decisional Diffie-Hellman assumption holds relative to Gen if for any adversary A

Pr

[
gk ← Gen(1λ);x, y, z ← Zq, b← {0, 1};X := xP ;Y := yP ;
Z := (bxy + (1− b)z)P : A(gk,X ,Y ,Z) = b

]
≈ 1/2

2.2.2 Public-Key Encryption

A public-key encryption scheme is a tuple of 3 algorithms (KeyGen,Enc,Dec). KeyGen is
a randomized algorithm which on input a group key gk generates a public/secret key pair.
Enc is a randomized algorithm which on input the public key and a plaintext, which is
an element from the setMgk, returns a ciphertext, which is an element from the set Cgk.
Dec is a deterministic algorithm which on input a ciphertext and the secret key returns
a plaintext. It is required that for every pair (pk, sk) output by Gen and any m ∈ Mgk,
Decsk(Encpk(m)) = m.

ElGamal introduced the first semantically secure encryption scheme based on the DDH
assumption [ElG85]. The idea was simple and clean: encrypt a message M under
public key pk := X picking r ← Zq and computing the ciphertext Encpk(M; r) :=
(C1, C2) = (rP ,M + rX ); and decrypt a ciphertext using the secret key x and com-
puting Decsk(C1, C2) = C2 − xC1. It follows that (C1, C2) hidesM since rX , by the DDH
assumption, looks like fresh random value, independent of C1, makingM + rX indepen-
dent of M. Formally, it can be shown that ElGamal cryptosystem is indistinguishable
under chosen plaintext attacks (also called semantically secure and IND-CPA for short).

Definition 2.5 (IND-CPA [GM84]) We say that (KeyGen,Enc,Dec) is IND-CPA se-
cure if for any A1,A2

Pr

[
gk ← Gen; (pk, sk)← KeyGen(gk); b← {0, 1};
(m0,m1)← A1(gk, pk); cb ← Encpk(mb) : A2(gk, pk, cb) = b

]
≈ 1/2.

2.2.3 Commitment Schemes

Intuitively, a commitment scheme is a “relaxed encryption scheme” where the function
Encpk(·) is not necessarily invertible. Although some ciphertexts – now called commit-
ments – may be obtained from different plaintexts – openings – it is (computationally)
infeasible to compute two openings for the same commitment. In this way, when an ad-
versary computes some commitment it is committing to the unique opening that she is
able to compute.

Syntactically, a commitment scheme is a tuple of three algorithms (K,Com,Vrfy). K is
a randomized algorithm, which on input a group key gk outputs a commitment key ck.
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Com is a randomized algorithm which, on input the commitment key ck and a message
m in the message spaceMck outputs a commitment c in the commitment space Cck and
an opening Op. Vrfy is a deterministic algorithm which, on input the commitment key
ck, a message m in the message space Mck and an opening Op, outputs 1 if Op is a
valid opening of c to the message m and 0 otherwise. Correctness requires that for any
m ∈Mck

Pr [ck ← K(gk); (c, Op)← Comck(m) : Vrfy(ck, c,m,Op) = 1] = 1.

Definition 2.6 A commitment scheme is computationally binding (resp. perfectly bind-
ing) if, for any polynomial-time (resp. unbounded) adversary A,

Pr

[
ck ← K(gk); (c,m,Op,m′, Op′)← A(gk, ck) :
Vrfy(ck, c,m,Op) = 1 ∧ Vrfy(ck, c,m′, Op′) = 1 ∧m 6= m′

]
is negligible (resp. zero). It is computationally hiding (resp. perfectly hiding) if, for any
polynomial-time (resp. unbounded) adversary A,∣∣∣∣Pr

[
ck ← K(gk); (m0,m1, st)← A(gk, ck); b← {0, 1};
(c, Op)← Comck(mb); b

′ ← A(st, c)
: b′ = b

]
− 1

2

∣∣∣∣
is negligible (resp. zero).

In Section 2.6.2 we introduce Groth-Sahai commitments and in Section 4.2.1 we introduce
a new commitment scheme which we call extended multi-Pedersen commitments.

2.2.4 Digital Signatures

A digital signature scheme is a tuple of 3 algorithms (KeyGen, Sign,Ver). KeyGen is a
randomized algorithm which on input a group key gk generates a public/secret key pair.
Sign is a randomized algorithm which on input the secret key and a message, which is an
element from the setMgk, returns a signature, which is an element from the set Sgk. Ver
is a deterministic algorithm which on input the public key, a message, and a signature
returns 0 or 1. It is required that for every pair (pk, sk) output by KeyGen and any
m ∈Mgk, Verpk(m, Signsk(m)) = 1.

Definition 2.7 (Existencial Unforgeability (UF-CMA)) We say that
(KeyGen, Sign,Ver) is UF-CMA secure if for any A

Pr

[
gk ← Gen; (pk, sk)← KeyGen(gk);
(m,σ)← AQ(gk, pk) : Verpk(m,σ) = 1 and m /∈ Q

]
≈ 0,

where Q is an oracle which on input m responds with σ ← Signsk(m) and sets Q ←
Q∪ {m}. If ` is the number of oracle queries made by A, we say that (KeyGen, Sign,Ver)
is a one-time signature scheme if it is UF-CMA whenever ` ≤ 1.

In Section 6.2.4 we introduce a signature scheme known as Boneh-Boyen signatures.

2.3 Bilinear Groups

Groups where the DDH assumption (as well as the discrete logarithm assumption) is
believed to be hard were usually constructed as multiplicative subgroups of a finite field
of order n, Fn – for example the set of quadratic residues of Zp when p is a safe prime
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(i.e. (p − 1)/2 is also a prime number). Koblitz and (independently) Miller proposed
as an alternative the usage of elliptic curves over Fn [Kob87, Mil86], that is the set of
points (x, y) over F2

n which are solutions to the equation E : y2 = x3 + ax + b, where
a, b ∈ Fn, together with an especial point O. The solutions to E together with O form
an abelian group, denoted by E(Fn), where O is the identity element and the group
operation is defined as a geometrical operation between the group elements (called the
cord-and-tangent method). For the appropriate choice of a and b the discrete logarithm
is believed to require exponential time to be computed, while for subgroups of Fn there
are known sub-exponential attacks. As consequence, the size of the elements of E(Fn) is
much smaller than the size of elements of traditional finite fields at an equivalent security
level.

However not all elliptic curves offer the same security. For example in some elliptic curves,
which we will call bilinear groups for short, one can compute the Weil pairing or the Tate
pairing. These pairings are functions of the form e : G1×G2 → GT where G1 and G2 are
cyclic subgroups of E(Fn) and GT is another cyclic group known as the target group. The
function e is bilinear, because e(aX , bY) = ab · e(X ,Y) for any X ∈ G1 and any Y ∈ G2,
and non-degenerate, because e(P1,P2) is a generator of GT when Ps is a generator of
Gs, s ∈ {1, 2}. For simplicity assume that G1 = G2 = G (this is the case of the Weil
pairing) and let P the generator of G. Intuitively, the function e is “solving CDH in G
but giving the answer in GT ”, that is, given X = aP and Y := bP one can compute
t = e(X ,Y) = ab · e(P ,P). Although this does not gives a solution to the CDH problem
in G, it does solve the DDH problem in G. Indeed, e(X ,Y) = e(Z,P) is satisfied by
Z = abP but only with negligible probability by a random element of G. Moreover, the
MOV and the FR reductions compile the DL problem in E(Fn) into the finite field Fnα ,
for some α known as the embedding degree, where known sub-exponential algorithms for
solving the DL exist [MVO91, FR94]. For these reasons elliptic curves where a pairing
function can be efficiently computed were initially considered unsafe for cryptographic
purposes.

But this changed with the work of Joux [Jou00], where he showed that pairings can be
also used to construct cryptographic schemes rather than to destroy them. Joux noted
that pairings can be used to construct a non-interactive three party Diffie-Hellman key
exchange [Jou00]. Given public keys X = xP , Y = yP , and Z = zP and one secret
key from x, y, or z, each party can compute the shared key x · e(Y ,Z) = y · e(X ,Z) =
z ·e(X ,Y) = xyz ·e(P ,P). The critical observation was that, although the DDH might be
easy in bilinear groups, the DL might be made hard if the size of the group is appropriately
increased in order to rule out the sub-exponential attacks implied by the MOV and FR
reductions. Moreover, Joux protocol can be proven secure under the bilinear decisional
Diffie-Hellman assumption, which is believed to be a hard problem in some bilinear groups
[BF01], and also CDH and many other assumptions are believed to hold on some bilinear
groups [Ver13]. Furthermore, from Joux seminal work many open problems have been
solved using bilinear groups, being identity based encryption [BF01] the more outstanding
example, and many new applications have been found (a number of this applications can
be found the survey of Dutta et al. [DBS04]).
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2.3.1 Definition

Definition 2.8 (Bilinear Groups) 2 Let G1 and G2 be cyclic groups of prime order q
and Ps the generator of Gs, s ∈ {1, 2}, and GT be another cyclic group of order q. We
say that G1,G2,GT form a bilinear group if there exists a map e : G1 × G2 → GT such
that:

Bilinearity: For all a, b ∈ Zq, for all X ∈ G1, and all Y ∈ G2

e(aX , bY) = ab · e(X ,Y),

Non-degeneracy: If X ,Y 6= 0, then e(X ,Y) 6= 0,

Computability: e(X ,Y) is efficiently computable.

The first property says that e allows to “homomorphically” compute degree 2 expressions
in the field (Zq,+, ·). Since any X can be written as xP1, where x is some element of Zq
(and the same can be done in G2), e(X ,Y) = xy · e(P1,P2). Non-degeneracy says that
e is does not map everything to 0. While the third property says that computing e is
practical, the reality is that it is still an expensive operation and is one of the critical
performance measures of cryptographic constructions.

Galbraith et al. classify bilinear groups in three types [GPS08]:

Type I: G1 = G2 and also known as symmetric groups.

Type II: G1 6= G2 but there is an efficiently computable homomorphism φ : G1 → G2.

Type III: G1 6= G2 and no efficiently computable homomorphism is known. Also known
as asymmetric groups.

Type III bilinear groups are the most attractive from the perspective of a performance
and security trade-off, specially since the recent attacks on discrete logarithms in finite
fields by Joux [Jou14] and subsequent improvements.

We denote by Gena the probabilistic polynomial time algorithm which on input 1λ, where λ
is the security parameter, returns the group key which is the description of an asymmetric
bilinear group gk := (q,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime
order q, the elements P1,P2 are generators of G1,G2 respectively, and e : G1 ×G2 → GT

is an efficiently computable, non-degenerate bilinear map.

Implicit Representation of Group Elements

Elements in Gs, are denoted implicitly as [a]s := aPs, where s ∈ {1, 2, T} and PT :=
e(P1,P2). The pairing operation will be written as a product ·, that is [a]1 · [b]2 =
[a]1[b]2 = e([a]1, [b]2) = [ab]T . We sometimes abuse of notation and write [b]2[a]1 to denote
e([a]1, [b]2) (note that there is no ambiguity since e([b]2, [a]1) is undefined). Given a matrix
T = (ti,j), [T]s is the natural embedding of T in Gs, that is, the matrix whose (i, j)th
entry is ti,jPs. We denote by |Gs| the bit-size of the elements of Gs.

2.3.2 The Decisional k-Linear Diffie-Hellman Family of Assump-
tions

In type I groups the DDH assumption is easy because, as noted before, using the pairing
operation one can check if [x][y] = [z][1] (implicit representation in type I groups can omit

2While the usual notation for the target group has been multiplicative, we write it in additive notation.
The reason is just to elude cumbersome expressions in the exponent.
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the group sub-index). Boneh, Boyen, and Sacham introduced a “DDH like” assumption
called the decisional linear Diffie-Hellman assumption (DLin) [BBS04], proved that is
secure in the generic group model in type I groups, and that it is implied by DDH in type
III groups.

Definition 2.9 (DLin assumption) We say that the DLin assumption in Gs, s ∈ {1, 2},
holds relative to Gena if for any adversary A

Pr

[
gk ← Gena(1

λ); a1, a2, r1, r2, z ← Zq, b← {0, 1} :
A(gk, [a1]s, [a2]s, [r1a1]s, [r2a2], (1− b)[r1 + r2]s + b[z]s) = b

]
≈ 1/2.

The DLin assumption is a natural counterpart of the DDH assumption, and one can easily
replace DDH by DLin assumption (e.g. ElGamal encryption can be easily turned into the
linear encryption scheme). Moreover, Sacham noted that the DDH and DLin assumptions
are members of an infinite family of progressively weaker assumptions called the k-Linear
family of assumptions (k-Lin) [Sha07].

Definition 2.10 (k-Lin assumption) We say that the k-Lin assumption in Gs, s ∈
{1, 2}, holds relative to Gena if for any adversary A

Pr

[
gk ← Gena(1

λ); a1, . . . , ak, r1, . . . , rk, z ← Zq, b← {0, 1} :

A(gk, [a1]s, . . . , [ak]s, [r1a1]s, . . . , [rkak]s, (1− b)[
∑k

i=1 ri]s + b[z]s) = b

]
≈ 1/2.

Thereby, the DDH assumption is the 1-Lin assumption, DLin is 2-Lin, and it can be proved
that (k + 1)-Lin is weaker than k-Lin.

2.4 Matrix Diffie-Hellman Assumptions

In this section we review Matrix Diffie-Hellman assumptions (MDDH) of Escala et al.
[EHK+13] which are abstractions and generalizations of the k-Lin family of assumptions.
Then, we review Kernel Matrix Diffie-Hellman assumptions (KMDH) of Morillo et al.
[MRV15], which are the natural computational counterpart of Matrix Diffie-Hellman as-
sumptions.

We also put forward a new Kernel assumption which is specific to asymmetric groups,
and we prove its security in the generic group model.

2.4.1 decisional Matrix Diffie-Hellman Assumptions

Definition 2.11 Let `, k ∈ N. We call D`,k a matrix distribution if it outputs (in poly
time, with overwhelming probability) matrices in Z`×kq . We define Dk := Dk+1,k and Dk
the distribution of the first k rows of A when A← Dk.

For the following decisional assumption to hold, it is a necessary condition that ` > k.
However, in other contexts, we might need D`,k distributions where ` ≥ k.

Definition 2.12 (MDDH Assumption in Gγ, γ ∈ {1, 2} [EHK+13]) Let D`,k be a
matrix distribution and gk ← Gena(1

λ). We say that the D`,k-Matrix Diffie-Hellman (D`,k-
MDDHGγ) assumption holds relative to Gena if for all PPT adversaries D,

AdvD`,k,Gena(D) := |Pr[D(gk, [A]γ, [Aw]γ) = 1]− Pr[D(gk, [A]γ, [z]γ) = 1]|

is negligible in k, where the probability is taken over gk ← Gena(1
λ), A ← D`,k,w ←

Zkq , [z]γ ← G`
γ and the coin tosses of adversary D.
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In this work we will refer to the following matrix distributions:

Lk : A =

 a1 0 ... 0
0 a2 ... 0
...

...
. . .

...
0 0 ... ak
1 1 ... 1

 , L`,k : A =

(
B
C

)
, U`,k : A =

( a1,1 ... a1,k

...
. . .

...
a`,1 ... a`,k

)
,

where B← Lk, C← Z`−k,kq , and ai, ai,j ← Zq. The Lk-MDDH assumption is the k-linear
family of decisional assumptions and corresponds to the decisional Diffie-Hellman (DDH)
assumption in Gγ when k = 1. The SXDH assumption states that DDH holds in Gγ for
all γ ∈ {1, 2}. The U`,k assumption is the uniform assumption and is the weakest of all
assumptions of size `× k.

Further, given any matrix distribution Dk, m ∈ N and any i ∈ [m], we introduce the
distribution Dm,ik , which is defined as follows:

Dm,0k : A = ( Bw1 ... Bwm B ) Dm,ik : A = ( Bw1 ... Bwi−1 z Bwi+1 ... Bwm B )

where B ← Dk, wi ← Zkq and z ← Zk+1
q . The following are two trivial properties of the

Dm,ik distribution.

Lemma 2.13 Under the Dk-MDDH assumption in Gγ, for any 0 < i ≤ n, the distribution
of [A]γ when A ← Dm,0k and when A ← Dm,ik are computationally indistinguishable.
Further, if ` > k, for any i > 0, if A ← Dm,ik , then with overwhelming probability its ith
column is linearly independent of the rest.

2.4.2 Computational Matrix Diffie-Hellman Assumptions

Additionally, we will be using the following family computational assumptions:

Definition 2.14 (Kernel Diffie-Hellman Assumption in Gγ [MRV15]) Let gk ←
Gena(1

λ). The Kernel Diffie-Hellman assumption in Gγ (D`,k-KerMDHGγ) says that
every PPT Algorithm has negligible advantage in the following game: given [A]γ, where
A← D`,k, find [x]3−γ ∈ G`

3−γ, x 6= 0, such that [x]>3−γ[A]γ = [0]T .

The Simultaneous Pairing assumption in Gγ (SPGγ ) is the U1-KerMDHGγ assumption.
The Kernel Diffie-Hellman assumption is a generalization and abstraction of this assump-
tion to other matrix distributions. The D`,k-KerMDHGγ assumption is weaker than the
D`,k-MDDHGγ assumption, since a solution to the former allows to decide membership in
Im([A]γ).

2.4.3 A new Computational Matrix Diffie-Hellman Assumption in
Type III Groups

In asymmetric bilinear groups, we introduce a natural variant of the D`,k-KerMDH as-
sumption [GHR15a].

Definition 2.15 (Split Kernel Diffie-Hellman Assumption) Let gk←Gena(1
λ). The

Split Kernel Diffie-Hellman assumption in G1,G2 (D`,k-SKerMDH) says that every PPT
Algorithm has negligible advantage in the following game: given ([A]1, [A]2), A ← D`,k,
find a pair of vectors ([r]1, [s]2) ∈ G`

1 ×G`
2, r 6= s, such that [r]>1 [A]2 = [s]>2 [A]1.

While the Kernel Diffie-Hellman assumption says one cannot find a non-zero vector in one
of the groups which is in the co-kernel of A, the split assumption says one cannot find a
pair of vectors in G`

1×G`
2 such that the difference of the vector of their discrete logarithms
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is in the co-kernel of A. As a particular case we consider the Split Simultaneous Double
Pairing assumption in G1,G2 (SSDP) which is the RL2-SKerMDH assumption, where
RL2 is the distribution which results of sampling a matrix from L2 and replacing the last
row by random elements.

To gain confidence in this assumption, we first note that it implies the Kernel MDH
assumption and then we prove that the reciprocal is true in the generic bilinear model.

Lemma 2.16 D`,k-SKerMDH⇒ D`,k-KerMDHG2.

Proof Suppose there exists an adversary B against the D`,k-KerMDHG2 assumption. We
show how to construct an adversary A against the D`,k-SKerMDH assumption. Adversary
A receives as a challenge ([A]1, [A]2) and forwards [A]2 to B, who outputs with non-
negligible probability a vector [r]1 such that [r]>1 [A]2 = [0]T . Then A simply outputs
([r]1, [0]2) as a solution to the D`,k-SKerMDH challenge. �

Security of the D`,k-SKerMDH in the Generic Group Model

The generic group model is an idealized model for analysing the security of cryptographic
assumptions or cryptographic schemes. A proof of security in the generic group model
guarantees that no attacker, that only uses the algebraic structure of the (bilinear) group,
is successful in breaking the assumption/scheme. Conversely, for a generically secure
assumption/scheme, a successful attack must exploit the structure of the (bilinear) group
that is actually used in the protocol (e.g. a Barreto-Naehring curve in the case of bilinear
groups).

We use the natural generalization of Shoup’s generic group model [Sho97] to the (a)symmetric
bilinear setting, as it was used for instance by Boneh et al. [BBG05]. In such a model
an adversary can only access elements of G1,G2 or GT via a query to a group oracle,
which gives him a randomized encoding of the queried element. The group oracle must
be consistent with the group operations (allowing to query for the encoding of constants
in either group, for the encoding of the sum of previously queried elements in the same
group and for the encoding of the product of pairs in G1 ×G2).

Lemma 2.17 If D`,k-KerMDH holds in generic symmetric bilinear groups, then D`,k-SKerMDH
holds in generic asymmetric bilinear groups.

Proof Suppose there is an adversary A in the asymmetric generic bilinear group model
against the D`,k-SKerMDH assumption. We show how to construct an adversary B against
the D`,k-KerMDHG2 assumption in the symmetric generic group model.

Adversary B has oracle access to the randomized encodings σ : Zq → {0, 1}n, and σT :
Zq → {0, 1}n. It receives as a challenge {σ(aij)}1≤i≤`,1≤j≤k.

Adversary B simulates the generic hardness game for A as follows. It defines encodings ξ1 :
Zq → {0, 1}n, ξ2 : Zq → {0, 1}n and ξT : Zq → {0, 1}n as ξ1 = σ, ξT = σT and ξ2 a random
encoding function. B keeps a list LA with the values that have been queried by A to the
group oracle. The list is initialized as LA = {{(Ai,j, ξ1(aij), 1), (Ai,j, ξ2(aij), 2)}1≤i≤`,1≤j≤k},
where ξ2(aij) ∈ {0, 1}n are chosen uniformly at random conditioned on being pairwise
distinct. Adversary B also keeps a list LB with the queries it makes to its own group
oracle. The list LB is initialized as LB = {{(Ai,j, σ(aij), 1)}1≤i≤`,1≤j≤k}

Each element in the list LA is a tuple (Pi, si, xi), where Pi ∈ Zq[A11, . . . , A`k], xi ∈ {1, 2, T}
and si = ξxi(Pi(a11, . . . , a`k)). The polynomial Pi is one of the following: a) Pi = Aij, i.e. it
is one of the initial values in the query list LA or b) a constant polynomial or c) Pi = Pc+Pd
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for some (Pc, sc, x), (Pd, sd, x) ∈ LA or d) Pi = PcPd for some (Pc, sc, 1), (Pd, sd, 2) ∈ LA,
xi = T . For LB the same holds except that xi ∈ {1, T} and except that d) is changed to:
d) Pi = PcPd for some (Pc, sc, 1), (Pd, sd, 1) ∈ LB and xi = T .

Without loss of generality we can identify the queries of A with pairs (Pi, xi) meeting the
restrictions described above. If (Pi, xi) was queried before, it replies with the same answer
si.

Else, when B receives a (valid) query (Pi, xi), if xi ∈ {1, T} it simply forwards the query
to its own group oracle, who replies with si. Then (Pi, si, xi) is appended to LB and to
LA. If xi = 2, then it forwards the query to its own group oracle as (Pi, 1). When it
receives the answer si, B appends (Pi, si, 1) to LB and it looks for the set S of all tuples
(Pj, sj, 1) ∈ LB, Pj 6= Pi, such that sj = si. For every tuple in S, B checks if there is some
s̃ such that (Pj, s̃, 2) is in LA (note that, because of the way LA is constructed, if such s̃
exists it is the same for all Pj).

If such s̃ exists, it appends (Pi, s̃, 2) in LA and it replies with s̃. Else it chooses some s̃
uniformly at random conditioned on being distinct from all other values s such that there
exist some P such that (P, s, 2) is in LA. Finally, it appends (Pi, s̃, 2) in LA.

Finally, A will output as a solution to the challenge a pair sq, sr such that (Q, sq, 1), (R, sr, 2) ∈
LA. Because of the way LA and LB were constructed, there exists some s′r such that
(Q, sq, 1), (R, s′r, 1) ∈ LA. B queries its group oracle for (R−Q, 1) and obtains as a reply
some string sR−Q. Finally, it outputs sR−Q as a solution to its challenge. It easily follows
that A and B have exactly the same probability of success. �

Finally, we note that the L2-SKerMDH assumption is implied by a decisional assumption
introduced by Libert et al. [LPJY15b]. The assumption says that, given ([A]1, [A]2),
where A← L2, the vector ([A]1w, [A]2w), w← Z2

q, is computationally indistinguishable
from ([u]1, [u]2), u ← Z3

q. The proof is analogous to the proof that D`,k-MDDH ⇒
D`,k-KerMDH. Suppose that ([r]1, [s]2) is a solution to the L2-SKerMDH assumption, then
[r]>1 [A]2w − [s]>2 [A]1w = ([r]>1 [A]2 − [s]>2 [A]1)w = [0]T , while [r]>1 [u]2 − [s]>2 [u]1 = [0]T
only with negligible probability whenever r 6= s.

2.5 Non-Interactive Zero-Knowledge Proofs

Zero-Knowledge proofs are proofs that reveal nothing beyond their validity. Since their
introduction by Goldreich et al. [GMR89], zero-knowledge proofs have played a central role
in cryptography and complexity theory from both the theoretical side –they have been the
inspiration of probabilistic checkable proofs and the groundbreaking results on hardness
of approximation [GO05]– and the practical side – applications range from multi-party
computation [GMW87] to electronic voting [JCJ10] and e-commerce [CHL05].

In a zero-knowledge proof a prover P in possession of a secret w wants to convince a
verifier V that some statement x is true, namely that x belongs to some language L. To
do so the prover and the verifier engage on an interactive protocol : the prover starts with
a message a1, the verifier answers with b1, and so on. At the end the verifier outputs a
bit b ∈ {0, 1} indicating whether it rejects or accepts the proofs.

There are two basic requirements for a zero-knowledge proof: completeness, which says
that an honest prover should be successful when convincing the verifier about a true
statement, and soundness, which says that the verifier should rejects false statements
with high probability. The third requirement, which gives the name to zero-knowledge
proofs, requires that the verifier does not learn nothing beyond the fact that x is true.
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This is done by requiring the existence of an efficient algorithm S, the simulator, which,
for any true statement, is able to construct a transcript of the interactive execution of P
and V even without knowing any secret w.

A weaker variant of a zero-knowledge proof is a witness-indistinguishable proof. These
proofs are not necessarily simulatable and only guarantee to reveal the same information
when using two different secrets w,w′.

The focus of this work are non-interactive zero-knowledge proofs (NIZK), where the prover
sends a single message, the proof, to the verifier. Since their introduction by Blum et
al. [BFM88], it was known that a “pre-shared” information, known as the common refer-
ence string (CRS), allows to construct NIZK proof systems (later it was shown a necessary
condition if the statement is not trivial [GO94]). Thereby, the simulator is allowed to sim-
ulate the CRS and thus is able to compute trapdoors associated to it. The knowledge of
such trapdoors enhances the possibilities of S to successfully simulating proofs.

Syntactically, a NIZK proof system consists of three probabilistic polynomial time algo-
rithms: a CRS generation algorithm K, a prover P, and a verifier V. The CRS generation
algorithm takes a group description gk as input and produces a CRS σ (which we assume
includes gk). The prover takes as input (σ, x, w) and produces a proof π. The verifier
takes as input (σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof.

In this work we will consider two particular cases of NIZK: composable NIZK [GS08] and
quasi-adaptive NIZK [JR13]. Both deal with the case of CRS dependent languages, say
the language is parameterized by some values which are (randomly) sampled within the
CRS. For example, the CRS might contain the group key gk defining a bilinear group and
the language might be some set of satisfiable equations over that group. Quasi-adaptive
NIZK goes further and the language might also depend on group constants defined in the
CRS.

2.5.1 Composable Non-Interactive Zero-Knowledge Proofs

The following definitions are from Groth and Sahai [GS12].

Definition 2.18 (Group dependent languages) Let R be an efficiently computable
ternary relation. For triplets (gk, x, w) ∈ R we call gk the group key, x the statement,
and w the witness. Given some gk, we let L be the language consisting of statements x
that have a witness w so (gk, x, w) ∈ R. For a relation that ignores gk this is, of course,
the standard definition of an NP-language. We will be more interested in the case where
gk describes a bilinear group, though.

Definition 2.19 (Composable NIZK proof system) We say that a non-interactive
proof system (K,P,V) is a composable NIZK proof system with respect to Gena if

Perfect Completeness: For any x,w

Pr

[
gk ← Gena(1

λ);σ ← K(gk);π ← P(σ, x, w) :
V (σ, x, π) = 1 if (gk, x, w) ∈ R

]
= 1.

Perfect Soundness: For any adversary A

Pr

[
gk ← Gena(1

λ);σ ← K(gk); (x, π)← A(gk, σ) :
V (σ, x, π) = 0 if x /∈ L

]
= 1.
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Computational Zero-Knowledge: There exist efficient algorithms S1, S2 such that for
any adversaries A1,A2

Pr
[
gk ← Gena(1

λ);σ ← K(gk) : A1(gk, σ) = 1
]
≈

Pr
[
gk ← Gena(1

λ); (σ, τ)← S1(gk) : A1(gk, σ) = 1
]

and

Pr

[
gk ← Gena(1

λ); (σ, τ)← S1(gk); (x,w)← A2(gk, σ, τ);
π ← P(σ, x, w) : A2(π) = 1 if (gk, x, w) ∈ R

]
=

Pr

[
gk ← Gena(1

λ); (σ, τ)← S1(gk); (x,w)← A2(gk, σ, τ);
π ← S2(σ, τ, x) : A2(π) = 1 if (gk, x, w) ∈ R

]
.

Definition 2.20 (Composable NIWI proof system) We say that a non-interactive
proof system (K,P,V) is a composable NIWI proof system with respect to Gena if it have
perfect completeness and soundness as defined above and also

Computational Witness-Indistinguishability: There exists and efficient algorithm
S1 such that for any adversaries A1,A2

Pr
[
gk ← Gena(1

λ);σ ← K(gk) : A1(gk, σ) = 1
]
≈

Pr
[
gk ← Gena(1

λ); (σ, τ)← S1(gk) : A1(gk, σ) = 1
]

and

Pr

[
gk ← Gena(1

λ); (σ, τ)← S1(gk); (x,w,w′)← A2(gk, σ, τ);
π ← P(σ, x, w) : A2(π) = 1 if (gk, x, w), (gk, x, w′) ∈ R

]
≈

Pr

[
gk ← Gena(1

λ); (σ, τ)← S1(gk); (x,w,w′)← A2(gk, σ, τ);
π ← P(σ, x, w′) : A2(π) = 1 if (gk, x, w), (gk, x, w′) ∈ R

]
.

2.5.2 Quasi-Adaptive Non-Interactive Zero-Knowledge Proofs

A quasi-adaptive NIZK proof system [JR13] enables to prove membership in a language
defined by a relation Rρ, which in turn is completely determined by some parameter ρ
sampled from a distribution Dgk.

Definition 2.21 (Witness Samplable Distribution) We say that Dgk is witness sam-
plable if there exists an efficient algorithm that samples (ρ, ω) from a distribution Dpar

gk

such that ρ is distributed according to Dgk, and membership of ρ in the parameter language
Lpar can be efficiently verified with ω.

In a typical scenario, ρ is a matrix of group elements and ω is the matrix of ρ’s discrete
logarithms.

While the common reference string can be set based on ρ, the zero-knowledge simulator is
required to be a single probabilistic polynomial time algorithm that works for the whole
collection of relations Rgk := {Rρ}ρ∈sup(Dgk).

Definition 2.22 (Quasi-Adaptive NIZK (QA-NIZK) proof system) A non-interactive
proof system (K,P,V) is called a QA-NIZK proof system with respect to Gena for witness-
relations Rgk = {Rρ}ρ∈sup(Dgk), with parameters sampled from a distribution Dgk over
associated parameter language Lpar, if there exists a probabilistic polynomial time simula-
tor (S1, S2), such that for all non-uniform PPT adversaries A1, A2, A3 we have:
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Quasi-Adaptive Completeness:

Pr

[
gk ← Gena(1

λ); ρ← Dgk;ψ ← K(gk, ρ); (x,w)← A1(gk, ψ);
π ← P(ψ, x, w) : V(ψ, x, π) = 1 if Rρ(x,w)

]
= 1;

Computational Quasi-Adaptive Soundness:

Pr

[
gk ← Gena(1

λ); ρ← Dgk;ψ ← K(gk, ρ);
(x, π)← A2(gk, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0; and

Perfect Quasi-Adaptive Zero-Knowledge:

Pr[gk ← Gena(1
λ); ρ← Dgk;ψ ← K(gk, ρ) : A

P(ψ,·,·)
3 (gk, ψ) = 1] =

Pr[gk ← Gena(1
λ); ρ← Dgk; (ψ, τ)← S1(gk, ρ) : A

S(ψ,τ,·,·)
3 (gk, ψ) = 1]

where

• P(ψ, ·, ·) emulates the actual prover. It takes input (x,w) and outputs a proof
π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.

• S(ψ, τ, ·, ·) is an oracle that takes input (x,w). It outputs a simulated proof
S2(ψ, τ, x) if (x,w) ∈ Rρ and ⊥ if (x,w) /∈ Rρ.

Note that ψ is the CRS in the above definitions. We assume that ψ contains an encoding
of ρ, which is thus available to V.

For witness samplable distributions, we and independently Libert et al., define a stronger
notion of soundness where the adversary has also access to a witness of the parameter ρ
[GHR15b, LPJY15a].

Computational Quasi-Adaptive Strong Soundness:

Pr

[
gk ← Gena(1

λ); (ρ, ω)← Dpar
gk ;ψ ← K(gk, ρ);

(x, π)← A2(gk, ω, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]
≈ 0.

2.6 Groth-Sahai Proofs

The GS proof system allows to prove satisfiability of a set of quadratic equations in a
bilinear group. In general, the proof is witness-indistinguishable but for most equations
it is also (or can be made) zero-knowledge.

The admissible equation types must be in the following form:
my∑
j=1

f(αj, yj) +
mx∑
i=1

f(xi, βi) +
mx∑
i=1

my∑
j=1

f(xi, γi,jyj) = t, (2.1)

where A1, A2, AT are Zq-vector spaces equipped with some bilinear map f : A1×A2 → AT ,
α ∈ Amy1 , β ∈ Amx2 , Γ = (γi,j) ∈ Zmx×myq , t ∈ AT . The vector spaces and the map f can
be defined in different ways as:

(a) in pairing-product equations (PPEs), A1 = G1, A2 = G2, AT = GT , f([x]1, [y]2) =
[x]1[y]2 ∈ GT ,

(b1) in multi-scalar multiplication equations in G1 (MMEs), A1 = G1, A2 = Zq, AT = G1,
f([x]1, y) = y[x]1 ∈ G1,
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(b2) MMEs in G2 (MMEs), A1 = Zq, A2 = G2, AT = G2, f(x, [y]2) = x[y]2 ∈ G2, and

(c) in quadratic equations in Zq (QEs), A1 = A2 = AT = Zq, f(x, y) = xy ∈ Zq.

An equation is linear if Γ = 0, it is two-sided linear if both α 6= 0 and β 6= 0, and
one-sided otherwise.

When t = f(t1, 1) or t = f(1, t2), for some efficiently computable t1 ∈ A1 or t2 ∈ A2, we
say that the equation allows simulation (see [GS12, Section 11]) and the proof is zero-
knowledge (rather than just witness-indistinguishable). Note that this is always the case
for equations other than PPEs.

2.6.1 Commit-and-Prove Schemes

The GS proof system works as a commit-and-prove scheme: first the prover commits to
all the variables in an equation with the Groth-Sahai commitment scheme, defined in the
next section, and then it “proves” that the committed values satisfy the equation. The
commitment to an element in the vector space Ai lives in another vector space Bi of larger
dimension where interesting decisional assumptions exist. To prove that the equation is
satisfied the verifier checks some equations in these larger fields.

2.6.2 Groth-Sahai Commitments

Definition 2.23 The Groth-Sahai commitment scheme in the group Gγ, γ ∈ {1, 2}, is
specified by the following three algorithms (GS.K,GS.Com,GS.Vrfy) such that:

• GS.K(gk,D2,2) is a randomized algorithm, which on input the group key gk and
the description of some matrix distribution D2,2, outputs a commitment key ck :=
[U]γ = [(u1|u2)]γ ∈ G2×2

γ , where U← D2,2.

• GS.Comck(m; r) is a randomized algorithm which, on input a commitment key ck =
[U]γ, and a message m in the message space Mck = Aγ, it proceeds as follows. If
m = m ∈ Zq, it samples r ← Zq and outputs a commitment [c]γ := m[e2 + u1]γ +

r[u2]γ in the commitment space Cck = G2
γ and an opening Op = r. If m = [m]γ ∈

Gγ, it samples r ← Z2
q and outputs a commitment [c]γ := [m]γe2 + [U]γr in the

commitment space Cck = G2
γ and an opening Op = r.

• GS.Vrfyck([c]γ, Op) is a deterministic algorithm which, on input the commitment key
ck = [U]γ, a commitment [c]γ, a message m ∈ Mck and an opening Op, outputs 1
if [c]γ = GS.Comck(m;Op) and 0 otherwise.

We will instantiate this commitment scheme with two different matrix distributions which
give rise to two different commitment keys: the perfectly binding and the perfectly hiding
commitment keys. The matrix distribution for perfectly binding commitment keys is
defined as

B : U = (u1|u2), where u2 ← L1 and u1 := µu2, µ← Zq,

and the matrix distribution for perfectly hiding commitment keys is defined as

H : U = (u1|u2), where u2 ← L1 and u1 := µu2 − e2, µ← Zq.

Theorem 2.24 ([GS12]) If ck ← K(gk,B) (resp. ck ← K(gk,H)), where gk ← Gena(1
λ)

, the Groth-Sahai commitment scheme is perfectly binding (resp. computationally binding
if the DL assumption relative to Gena holds) and computationally hiding if the SXDH
assumption relative to Gena holds (resp. perfectly hiding).
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2.6.3 The Scheme

Next, we give a description of the Groth-Sahai proof system in the SXDH instantiation.

K(gk): On input the group key gk pick U,V← B and define ck1 := [U]1 and ck2 := [V]2.
The common reference string is: crsGS := (gk, [u1]1, [u2]1, [v1]2, [v2]2) and is known
as the perfectly binding CRS. The CRS defines some associated maps:

ι1 : G1 ∪ Zq → G2
1, ι1([x]1) := ([x]1, [0]1)>, ι1(x) := x[u1]1.

ι2 : G2 ∪ Zq → G2
2, ι2([y]2) := ([y]2, [0]2)>, ι2(y) := y[v1]2.

ιT :
Zq ∪G1∪
G2 ∪GT

→ G2×2
T , ιT (t) :=

(
t 0
0 0

)
, ιT (x) := ι1(x)ι2(1)>,

ιT ([x]1) := ι1([x]1)ι2(1)>, ιT ([y]2) := ι1(1)ι2([y]2)>.

The maps ιXX ∈ {1, 2} can be naturally extended to column vectors of arbitrary
length, and we write ιX(δ>) for (ιX(δ1)| . . . |ιX(δr)).

P(crsGS, eq, (x1, . . . , xmx), (y1, . . . , ymy)): Given some equation eq of the form 2.1 and solu-
tions to the equation x1, . . . , xmx and y1, . . . , ymy , the prover proceeds as follows:

• Commit to all xi ∈ A1 computing ([ci]1, ri) ← GS.Comck1(xi) and commit to
all yi ∈ A2 computing ([di]2, si)← GS.Comck2(yi).

• Let R := (r1| . . . |rmx) and S := (s1| . . . |smy). Compute

[Π]2 := ι2(β>)R> + ι2(y>)Γ>R> + [V]2SΓ>R> − [V]2T
>,

[Θ]1 := ι1(α>)S> + ι1(x>)ΓS> + [U]1T.

V(crsGS, eq, {[ci]1 : i ∈ [mx]}, {[di]2 : i ∈ [my]}, [Θ]1, [Π]2): Check if∑
i∈mx

[ci]1ι2(βi)
> +

∑
j∈my

ι1(αj)[dj]
>
2 +

∑
i∈mx

∑
j∈my

γi,j[ci]1[dj]
>
2 =

ιT (t) + [Θ]1[V]>2 + [U]1[Π]>2 .

S1(gk): On input the group key gk pick U,V← H and define ck1 := [U]1 and ck2 := [V]2.
The common reference string is: crsGS := (gk, [u1]1, [u2]1, [v1]2, [v2]2) and is known
as the perfectly hiding CRS. This algorithm also outputs the trapdoor τ := (U,V).

S2(crsGS, eq, τ): If eq allows simulation, it defines the new equation

eq′ :=

my∑
j=1

f(αj, yj) +
mx∑
i=1

f(xi, βi)− f(x′, t) +
mx∑
i=1

my∑
j=1

f(xi, γi,jyj) = 0, (2.2)

and runs the GS prover for equation eq′ for solutions x1 = x2 = . . . = xmx = y1 =
. . . = ymy = 0 and x′ = 1. The simulated proof is ([Θ]1, [Π]2), the proof of the GS
prover for the modified equation.

The reference string crsGS chosen by algorithm K defines perfectly binding commitments
and the proof system has perfect soundness. Furthermore, there exists some extrac-
tion trapdoor which allows to compute a function of the witness (this is the perfect
F-Knowledge property [EG14]). More specifically, the extraction trapdoor allows to com-
pute maps p1 : G2

1 → G1, p2 : G2
2 → G2, and pT : G2×2

T → GT , such that:
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K(gk, [M]1, n) (S1(gk, [M]1, n))

A← D̃k,∆← Zk̃×nq

[A∆]2 := ∆>[A]2, [M∆]1 := ∆[M]1
Return crs := ([M∆]1, [A∆]2, [A]2)

(τsim := ∆)

P(crs, [x]1,w) \\[x]1 = [M]1w

Return [σ]1 := [M∆]1w.

S2(crs, [x]1, τsim)

Return [σ]1 := ∆[x]1

V(crs, [x]1, [σ]1)

Return ([x]>1 [A∆]2 = [σ]>1 [A]2)

Figure 2.1: The figure describes Ψ(Dk) when D̃k = Dk and k̃ = k + 1 and Ψ(Dk) when D̃k = Dk and
k̃ = k. Both are QA-NIZK arguments for L[M]1 . Ψ(Dk) is the construction of [KW15, Section 3.1], which
is a generalization of Libert et al ’s QA-NIZK [LPJY14] to any Dk-KerMDHG2

assumption. Ψ(Dk) is the
construction of [KW15, Section 3.2.].

(a) for each X ∈ {1, 2, T}, pX ◦ ιX is the identity map,

(b) for all x ∈ A1, y ∈ A2, ι1(x)ι2(y)> = ιT (f(x, y)) and for all [x]1 ∈ G2
1, [y]2 ∈ G2

2,
f(p1([x]1), p2([y]2)) = pT ([x]1[y]>2 ),

(c) for each i ∈ [2], p1([ui]1) = 0 and p2([vi]2) = 0.

Theorem 2.25 ([GS08]) If eq allows simulation then the Groth-Sahai proof system is a
composable zero-knowledge proof system with perfect completeness, perfect soundness, and
computational zero-knowledge based on the SXDH assumption. Otherwise, is a composable
witness-indistinguishable proof system with perfect completeness, perfect soundness, and
computational witness indistinguishability based the SXDH assumption.

2.7 QA-NIZK Arguments of Membership in Subspaces
of G1 or G2

In this section we recall the two constructions of QA-NIZK arguments of membership in
linear spaces given by Kiltz and Wee [KW15], for the language:

L[M]1 := {[x]1 ∈ Gn
1 : ∃w ∈ Ztq, [x]1 = [M]1w}.

The proof system is described in Fig. 2.1.

Theorem 2.26 (Theorem 1 of [KW15]) If D̃k = Dk and k̃ = k+1, Fig. 2.1 describes
a QA-NIZK proof system with perfect completeness, computational adaptive soundness
based on the Dk-KerMDHG2 assumption, perfect zero-knowledge, and proof size k + 1.

Theorem 2.27 (Theorem 2 of [KW15]) If D̃k = Dk and k̃ = k, and Dgk is a witness
samplable distribution, Fig. 2.1 describes a QA-NIZK proof system with perfect complete-
ness, computational adaptive soundness based on the Dk-KerMDHG2 assumption, perfect
zero-knowledge, and proof size k.
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Chapter 3

QA-NIZK Arguments of Membership
in Subspaces of G1 ×G2

In this chapter we construct three QA-NIZK constant-size arguments of membership in
different subspaces of Gm

1 × Gn
2 . Their soundness relies on the split kernel assumption.

We then show that similar techniques allow to give a constant-size proof of satisfiability of
many linear equations (aggregation of Groth-Sahai proofs). Finally, we show that the same
techniques also allow to build structure preserving linearly homomorphic signatures where
messages can be elements of Gm

1 × Gn
2 , an extension of the signature scheme introduced

by Libert et al. [LPJY13].

3.1 Introduction

A recent line of work [JR13, JR14, KW15, LPJY14] has succeeded in constructing constant-
size arguments for very specific statements, namely, for membership in subspaces of Gm

1 ,
where G1 is some group equipped with a bilinear map where the discrete logarithm is
hard. The soundness of the schemes is based on standard, falsifiable assumptions and
the proof size is independent of both m and the witness size. These improvements are
in a quasi-adaptive model (QA-NIZK, [JR13]). This means that the common reference
string of these proof systems is specialized to the linear space where one wants to prove
membership.

Interestingly, Jutla and Roy [JR14] also showed that their techniques to construct constant-
size NIZK in linear spaces can be used to aggregate the GS proofs of m equations in n
variables, that is, the total proof size can be reduced to Θ(n). Aggregation is also quasi-
adaptive, which means that the common reference string depends on the set of equations
one wants to aggregate. Further, it is only possible if the equations meet some restrictions.
The first one is that only linear equations can be aggregated. The second one is that, in
asymmetric bilinear groups, the equations must be one-sided linear, i.e. linear equations
which have variables in only one of the Zq modules G1,G2, or Zq.1

Thus, it is worth to investigate if we can develop new techniques to aggregate other types
of equations (in particular, two-sided linear equations) in asymmetric bilinear groups. The
latter (Type III bilinear groups, according to the classification of Glabraith et al. are the
most attractive from the perspective of a performance and security trade off [GPS08]),

1Jutla and Roy show how to aggregate two-sided linear equations in symmetric bilinear groups. The
asymmetric case is not discussed, yet for one-sided linear equations it can be easily derived from their
results. This is not the case for two-sided ones, see Section 3.5.2.
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specially since the recent attacks on discrete logarithms in finite fields by Joux [Jou14]
and subsequent improvements. Considerable research effort (e.g. [AGOT14, Fre10]) has
been put into translating pairing-based cryptosystems from a setting with more structure
in which design is simpler (e.g. composite-order or symmetric bilinear groups) to a more
efficient setting (e.g. prime order or asymmetric bilinear groups). In this line, we aim
not only at obtaining new results in the asymmetric setting but also to translate known
results and develop new tools specifically designed for it which might be of independent
interest.

3.2 Argument of Membership in Subspace Concate-
nation

Figure 3.1 describes a QA-NIZK argument of membership in the language

L[M]1,[N]2 := {([x]1, [y]2) : ∃w ∈ Ztq, x = Mw,y = Nw} ⊆ Gm
1 ×Gn

2 ,

where ([M]1, [N]2)← Dgk for some matrix distribution Dgk.

We refer to this as the concatenation language, because if we define P as the concatenation
of [M]1, [N]2, that is P :=

(
[M]1
[N]2

)
, then ([x]1, [y]2) ∈ L[M]1,[N]2 iff

(
[x]1
[y]2

)
is in the span of

P.

Soundness Intuition. If we ignore for a moment thatG1,G2 are different groups, Ψspl(Dk)
(resp. Ψspl(Dk)) is almost identical to Ψ(Dk) (resp. to Ψ(Dk)), as defined in Section 2.7,
for the language L[P]1 , and ∆ := (Λ|Ξ), where Λ ∈ Zk̃×mq ,Ξ ∈ Zk̃×nq . Further, the
information that an unbounded adversary can extract from the CRS about ∆ is:

1.
{

P∆ = ΛM + ΞN,A∆ = ∆>A =

(
Λ>A
Ξ>A

)}
from crsΨ(Dk),

2.
{

MΛ = ΛM + Z,NΞ = ΞN− Z,

(
AΛ

AΞ

)
=

(
Λ>A
Ξ>A

)}
from crsΨspl(Dk).

Given that the matrix Z is uniformly random, crsΨ(Dk) and crsΨspl(Dk) reveal the same
information about ∆ to an unbounded adversary. Therefore, as the proof of soundness
is essentially based on the fact that parts of ∆ are information theoretically hidden to
the adversary, the original proof of Kiltz and Wee can be easily adapted for the new
arguments.

Theorem 3.1 If D̃k = Dk and k̃ = k + 1, Fig. 3.1 describes a QA-NIZK proof system
with perfect completeness, computational adaptive soundness based on the Dk-SKerMDH
assumption, and perfect zero-knowledge.

Proof Through this proof we define P :=

(
M
N

)
, ∆ :=

(
Λ Ξ

)
and m̃ := m+ n.

(Completeness.) Follows from the fact that

x>AΛ + y>AΞ = (Pw)>∆>A

=

((
Λ Ξ

)(M
N

)
w

)>
A

= ρ>A + σ>A.
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K(gk, [M]1, [N]2,m, n) (S1(gk, [M]1, [N]1,m, n))

A← D̃k,Λ← Zk̃×mq ,Ξ← Zk̃×nq ,Z← Zk̃×tq

[AΛ]2 := Λ>[A]2, [AΞ]1 := Ξ>[A]1
[MΛ]1 := Λ[M]1 + [Z]1, [NΞ]2 := Ξ[N]2 − [Z]2

Return crs := ([MΛ]1, [AΛ]2, [A]2, [NΞ]2,[AΞ]1, [A]1).
(τsim := (Λ,Ξ).)

P(crs, [x]1, [y]2,w)\\([x]1 = [M]1w, [y]2 = [N]2w)

z← Zk̃q
[ρ]1 := [MΛ]1w + [z]1, [σ]2 := [NΞ]2w − [z]2
Return ([ρ]1, [σ]2).

V(crs, ([x]1, [y]2), ([ρ]1, [σ]2))

Return ([x>]1[AΛ]2 − [ρ>]1[A]2 = [σ>]2[A]1 − [y>]2[AΞ]1).

S2(crs, ([x]1, [y]2), τsim)

z← Zk̃q
[ρ]1 := Λ[x]1 + [z]1, [σ]2 := Ξ[y]2 − [z]2
Return ([ρ]1, [σ]2).

Figure 3.1: Two QA-NIZK arguments for L[M]1,[N]2 . Ψspl(Dk) is defined for D̃k = Dk and k̃ = k+ 1, and is
a generalization of Kiltz and Wee’s construction [KW15, Section 3.1] in two groups. The second construction
Ψspl(Dk) corresponds to D̃k = Dk and k̃ = k, and is a generalization of Kiltz and Wee’s contraction [KW15,
Section 3.2] in two groups. Computational soundness is based on the Dk-SKerMDH assumption. M is matrix
of sizem×t, N is of size n×t, A is of size ×̃k, Λ is of size k̃×m, Ξ is of size k̃×n, MΛ is of size k̃×t, NΞ is of
size k̃×t, AΛ is of sizem×k, and AΞ is of size n×k. The CRS size is (k̃k+k̃t+mk)|G1|+(k̃k+k̃t+nk)|G2|
and the proof size k̃(|G1|+ |G2|). Verification requires 2k̃k + (m+ n)k pairing computations. We denote by
Ψspl the most efficient instantiation of Ψspl(Dk), which happens when Dk = L̄2.

(Soundness.) B receives a challenge ([A]1, [A]2), A ← Dk, and then it chooses Λ ←
Z(k+1)×m
q ,Ξ ← Z(k+1)×n

q , samples ([M]1, [N]2) ← Dgk, [M]1 ∈ Gm×t
1 , [N]2 ∈ Gn×t

2 , and
computes

crs :=([MΛ]1, [AΛ]2, [A]2, [NΞ]2, [AΞ]1, [A]1)

∈ G(k+1)×t
1 ×Gm×k

2 ×G(k+1)×k
2 ×G(k+1)×t

2 ×Gn×k
1 ,G(k+1)×k

1

in the natural way. An adversary F against the soundness property outputs a vector
([x∗]1, [y

∗]2) /∈ L[M]1,[N]2 and a valid proof ([ρ∗]1, [σ
∗]2). At this point, B computes its

own proof ([ρ†]1, [σ
†]2) using Λ and Ξ. The adversary B will output as a response to the

Dk-SKerMDH challenge the pair ([r]1, [s]2) := ([ρ∗]1 − [ρ†]1, [σ
†]2 − [σ∗]2). We now see

that with all but probability 1/q, this is a valid solution. Indeed, if r 6= s, we are done,
because since both are valid proofs, subtraction of the verification equations yields

([ρ∗]1 − [ρ†]1)>[A]2 = ([σ†]2 − [σ∗]2)>[A]1.

By definition r 6= s if and only if ρ∗ + σ∗ 6= ρ† + σ†. Note that

ρ† + σ† = Λx∗ + Ξy∗ = ∆t, where t :=

(
x∗

y∗

)
.

Since Z is a uniform random value, the CRS reveals (information theoretically) only{
∆P := P∆,∆

>A := A∆

}
about ∆. From ∆>A = A∆, an (unbounded) adversary
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might only deduce that
∆1 = (A>1 )−1(A>∆ −A>2 ∆2),

where ∆1 ∈ Zk×m̃q ,∆2 ∈ Z1×m̃
q ,A1 ∈ Zk×kq ,A2 ∈ Zk+1×1

q and ∆ =

(
∆1

∆2

)
,A = (A1A2).

Therefore, ∆2 remains completely hidden given only A∆. Note also that the first k rows
of P∆ (i.e. ∆1P) are completely determined by the last row of P∆ (i.e. ∆2P) and the
CRS, since

∆1P = (A>0 )−1(A>∆P−A>1 ∆2P).

Let P⊥ ∈ Zm̃×(m̃−r)
q , where r = rank(P), a basis of the kernel of P. The row vector

∆2 can be always written as ∆>2 = Pw1 + P⊥w2, where w1 ∈ Ztq,w2 ∈ Zm̃−rq are
uniformly random vectors. It follows that w2 is completely hidden given only the CRS
since ∆2P = w>1 P>P. Since t /∈ span(P), there exists some w′1 ∈ Ztq,w′2 ∈ Zm̃−rq such
that w′2 6= 0 and t = Pw′1 + P⊥w′2. Finally, note that

∆2t = (Pw1 + P⊥w2)>(Pw′2 + P⊥w′2)

= w>1 P>Pw′1 + w>2 (P⊥)>P⊥w′2

where the non-zero component of w′2 is multiplied by a component of (the random vector)
w2 and thus, ∆2t is uniformly distributed over Zq. It follows that Pr[∆t 6= ρ∗ + ρ∗] ≥
1− 1/q.

(Zero-Knowledge.) It is direct from the construction that the simulated proof follows the
same distribution as an honestly computed proof. �

Theorem 3.2 If D̃k = Dk and k̃ = k, and Dgk is a witness samplable distribution, Fig.
3.1 describes a QA-NIZK proof system with perfect completeness, computational adaptive
strong soundness based on the Dk-SKerMDH assumption, and perfect zero-knowledge.

Proof (Completeness and Zero-Knowledge.) Equal as in Theorem 3.1.

(Soundness.) Define m̃ := m + n and P := ( M
N ). An adversary B against Dk-SKerMDH

assumption receives a challenge ([A]1, [A]2), A ← Dk. It samples ([M]1, [N]2,M,N) ∈
Rpar and computes P⊥ ∈ Zm̃×(m̃−r)

q , where r = rank(P), a basis of the kernel of P>.
By definition, P> = (M>|N>) and P>P⊥ = 0, thus we can write P⊥ = ( E

F ), for some
matrices such that M>E = −N>F.

Adversary B samples R ∈ Z(m̃−r−1)×(k+1)
q and defines

[A′]1 :=

(
[A]1

R[A]1

)
∈ G(k+m̃−r)×k

1 , [A′]2 :=

(
[A]2

R[A]2

)
∈ G(k+m̃−r)×k

2 .

Then B samples (Λ̃|Ξ̃)← Zk×m̃q . Let A0 be the first k rows of A′ (or A) and A′1 the rest
of the rows, and TA′ = A′1A

−1
0 . Then B implicitly sets (Λ|Ξ) := (Λ̃|Ξ̃) + T>A′(E

>|F>),
and computes:(

[AΛ]2
[AΞ]1

)
=

(
Λ>[A0]2
Ξ>[A0]1

)
:=

(
(Λ̃> + ETA′)[A0]2
(Ξ̃> + FTA′)[A0]1

)
=

(
(Λ̃>|E)[A′]2
(Ξ̃>|F)[A′]1

)
(3.1)

So far the argument is very similar to Kiltz and Wee’s [KW15, Section 3.2], now comes an
important difference. Adversary B also needs to compute Λ[M]1 + [Z]1 and Ξ[N]2− [Z]2.
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Although the adversary B does not know how to compute ΞN or ΛM, it can compute
their sum in Zq as:

ΞN + ΛM =
(

(Λ̃|Ξ̃) + T>A′(E
>|F>)

)(M
N

)
= Λ̃M + Ξ̃N =: T.

Thus, B picks Z← Zk×tq and outputs [NΞ]2 := [T]2 − [Z]2 and [MΞ]1 := [Z]1. Now, when
F outputs a valid proof for some ([x]1, [y]2) /∈ L[M]1,[N]2 , it holds that:

[x>]1[AΛ]2 − [ρ>]1[A0]2 = [σ>]2[A0]1 − [y>]2[AΞ]1 ⇐⇒
[x>]1(Λ̃>|E)[A′]2 − ([ρ>]1|[01×(m̃−r)]1)>[A′]2 =

([σ>]2|[01×(m̃−r)]2)[A′]1 − [y>]2(Ξ̃>|F)[A′]1 ⇐⇒
[c>]1[A′]2 = [d>]2[A′]1,

where [c>]1 := ([x>]1Λ̃− [ρ>]1|[x>]1E) and [d>]2 := ([σ>]2 − [y>]2Ξ̃| − [y>]2F).

Obviously

c− d ∈ ker((A′)>)⇐⇒ (c− d)>A′ = 0⇐⇒ (c>1 + c>2 R)− (d>1 + d>2 R) ∈ ker(A>).

while, by assumption, ([x]1, [y]2) /∈ L[M]1,[N]2 and thus [x>]1E 6= −[y>]2F. We conclude
with an information-theoretic argument. Because R is only revealed to B through AR :=
RA it holds that

R0 := A−1
0 (AR − r1A1),

where R0 ∈ Z(m̃−r−1)×k
q , r1 ∈ Zm̃−r−1

q , R = (R0|r1), A =

(
A0

A1

)
, and r1 remains com-

pletely hidden to the adversary. Therefore,

Pr[c>1 + c>2 R = d>1 + d>2 R] = Pr[(c>2 − d>2 )R = d>1 − c>1 ]

= Pr[(c>2 − d>2 )R0, (c
>
2 − d>2 )r1) = (α>, β)]

≤ Pr[(c>2 − d>2 )r1 = β]

= 1/q

where α ∈ Zkq , β ∈ Zq, and (α>, β) := c>2 − d>2 .

We conclude that, with high probability, ([c>1 ]1 + [c>2 ]1R), ([d>1 ]2 + [d>2 ]2R) solves Dk-
SKerMDH.

This proves standard soundness. Strong soundness follows from the fact that the argument
is essentially information theoretic. In particular, the knowledge of (M,N) does not reveal
additional information about R. �

3.3 Argument of Sum in Subspace

We can adapt the previous construction to the sum in subspace language,

L[M]1,[N]2,+ := {([x]1, [y]2) ∈ Gm
1 ×Gm

2 : ∃w ∈ Ztq, x + y = (M + N)w}.

We define two proof systems Ψsum(Dk), Ψsum(Dk) as in Fig. 3.1, but now with Λ = Ξ.
Also, we define Ψsum := Ψsum(Dk) when Dk = L2.
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Completeness and zero-knowledge are straightforward. Soundness follows from the same
argument as before with the following differences. First, note that in the subspace con-
catenation case the information revealed to the adversary in the CRS was ΛM + ΞN,
Λ>A, and Ξ>A, and the information revealed now is Λ(M + N),Λ>A. In the sound-

ness proof for Dk the key point was that if ([x∗]1, [y
∗]2) /∈ L[M]1,[N]2,+, then ∆

(
x∗

y∗

)
,

where ∆ = (Λ|Ξ), was information theoretically hidden to the adversary. In this case
x∗ + y∗ /∈ Span(M + N) and thus x∗ + y∗ = (M + N)w + P⊥w′, where P⊥ is a basis of

the kernel of M + N and w′ 6= 0. Then, ∆

(
x∗

y∗

)
= Λ(x∗ + y∗) is information theoret-

ically hidden because ΛP⊥ is information theoretically hidden. In the soundness proof
for Dk, one needs to compute P⊥, a basis for the kernel of M + N, and defines E := P⊥

and F := P⊥. From these definitions it follows that Λ(M + N) = Λ̃(M + N) and that
([x]1, [y]2) /∈ L[M]1,[N]2,+ implies that x>E = −y>F. Given that the same information is
revealed in the CRS, the proof of soundness follows as in Theorem 3.2.

3.4 Argument of Equal Opening in Different Groups

Given Ψspl(Dk) or Ψspl(Dk), it is direct to construct constant-size NIZK arguments of
membership in:

Lcom,[U]1,[V]2,ν :=

([c]1, [d]2) ∈ Gm
1 ×Gn

2 :

∃(w, r, s) s.t.

[c]1 = [U]1

(
w
r

)
and

[d]2 = [V]2

(
w
s

)
 ,

where [U]1 ∈ Gm×m̃
1 , [V]2 ∈ Gn×ñ

2 and w ∈ Zνq . The witness is (w, r, s) ∈ Zνq × Zm̃−νq ×
Zñ−νq . This language is interesting because it can express the fact that ([c]1, [d]2) are
commitments to the same vector w ∈ Zνq in different groups.

The construction is an immediate consequence of the observation that Lcom,[U]1,[V]2,ν can
be rewritten as some concatenation language L[M]1,[N]2 . Denote by U1 the first ν columns
of U and U2 the remaining ones, and V1 the first ν columns of V and V2 the remaining
ones. If we define:

M := (U1|U2|0m×(ñ−ν)) N := (V1|0n×(m̃−ν)|V2).

then it is immediate to verify that Lcom,[U]1,[V]2,ν = L[M]1,[N]2 .

We denote as Ψcom(Dk) the proof system for Lcom,Û,V̌,ν which corresponds to Ψspl(Dk) for
L[M]1,[N]2 , where [M]1, [N]2 are the matrices defined above. Also, we denote the proof
system as Ψcom when we use Ψspl. Note that for commitment schemes we can generally
assume [U]1, [V]2 to be drawn from some witness samplable distribution. Therefore, it
follows from Theorem 3.2 that Ψcom(Dk) satisfies the notion of strong soundness.

3.5 Aggregation of Groth-Sahai Proofs

In this section we discuss two different ways to aggregate GS equations. The first is a
direct application of the proof of equal commitment opening and is only valid for two-
sided linear equations in Zq, the second is an extension of the results of Jutla and Roy for
all other types of linear equations.
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3.5.1 Aggregating Two-Sided Linear Equations in Zq
We note that proving that n pairs of GS commitments open (pairwise) to the same
elements in Zq is simply a special case of the proof of equal commitment opening in
Section 3.4. Indeed, the concatenation of n GS commitments is just a commitment to a
vector of scalars. In particular, given crsGS = (gk, [u1]1, [u2]1, [v1]2, [v2]2), it is easy to see
that n commitments to xi ∈ Zq, which are of the form: [ci]1 = xi[u1]1 + ri[u2]1 for some
ri ∈ Zq (recall that ι1(xi) = xi[u1]1), can be written as[c1]1

...
[cn]1

 =

[u1]1 . . . [0]1
... . . . ...

[0]1 . . . [u1]1


x1

...
xn

+

[u2]1 . . . [0]1
... . . . ...

[0]1 . . . [u2]1


r1

...
rn

 ,

and similarly the concatenation of n commitments [di]2, i ∈ [`] can be written as [V1]2y+
[V2]2s, where [Vi]2 is the block-wise concatenation of n copies of [vi]2.

In particular, proving that n GS commitments open to the same value can be also seen as
the aggregation of the proof of n GS equations of the form x` − y` = 0. The aggregation
of any other set of two-sided linear equations in Zq easily reduces to this case using the
homomorphic properties of GS commitments. Indeed, given n equations of the form:

α>` y + x>β` = t`, ` ∈ [n],

and the commitments to a satisfying assignment (where the commitments to every coordi-
nate of x (resp. y) are in G1 (resp. G2), it is easy to derive a commitment to x>β`− t` in
G1 and a commitment to α>` y in G2 for all ` ∈ [n]. Obviously, the equations are satisfied
if for each `, these commitments open to the same value.

3.5.2 QA Aggregation of Other Equation Types

Jutla and Roy [JR14] show how to aggregate GS proofs linear equations in symmetric
bilinear groups. In the original construction of Jutla and Roy soundness is based on a de-
cisional assumption (a weaker variant of the 2-Lin assumption). Its natural generalization
in asymmetric groups (where soundness is based on the SXDH assumption) only enables
to aggregate the proofs of one-sided linear equations.

In this section, we revisit their construction. We give an alternative, simpler, proof
of soundness under a computational assumption which avoids altogether the “switching
lemma" of Jutla and Roy. Further, we extend it to two-sided equations in the asym-
metric setting. For one-sided linear equations we can prove soundness under any kernel
assumption and for two-sided linear equations, under any split kernel assumption.2

Let A1, A2, AT be Zq-vector spaces compatible with some Groth-Sahai equation as detailed
in Section 2.6. Let Dgk be a witness samplable distribution which outputs n pairs of
vectors (α`,β`) ∈ A

my
1 × Amx2 , ` ∈ [n], for some mx,my ∈ N. Given some fixed pairs

(α`,β`), we define, for each t̃ ∈ AnT , the set of equations St̃ as:

St̃ =
{
E`(x, y) = t̃` : ` ∈ [n]

}
, E`(x, y) :=

∑
j∈[my ]

f(α`,j, yj) +
∑
i∈[mx]

f(xi, β`,i).

2The results of Jutla and Roy are based on what they call the “switching lemma". As noted Morillo
et al. [MRV15], it is implicit in the proof of this lemma that the same results can be obtained under
computational assumptions.
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We note that, as in Jutla and Roy’s work, we only achieve quasi-adaptive aggregation,
that is, the common reference string is specific to a particular set of equations. More
specifically, it depends on the constants α`,β` (but not on t̃`, which can be chosen by the
prover) and it can be used to aggregate the proofs of St̃, for any t̃.

Given the equation types for which we can construct NIZK GS proofs (and not only NIWI
proofs), there always exists (1) t` ∈ A1, such that t̃` = f(t`, base2) or (2) t` ∈ A2, such
that t̃` = f(base1, t`), where basei = 1 if Ai = Zq and basei = Pi if Ai = Gi, i ∈ {1, 2}
[GS12]. For simplicity, in the construction we assume that (1) is the case, otherwise
change ι2(a`,i), ι1(t`) for ι1(a`,i), ι2(t`) in the construction below.

K(gk,St̃): Let A = (ai,j)← Dn,k. Define

crs :=

crsGS,

∑
`∈[n]

ι1(a`,iα`),
∑
`∈[n]

ι2(a`,iβ`),
{
ι2(a`,i) : ` ∈ [n]

}
: i ∈ [k]




P(gk,St̃,x,y): Given a solution x = x, y = y to St̃, the prover proceeds as follows:

• Commit to all xj ∈ A1 as [cj]1 ← GS.Com(xj), and to all yj ∈ A2 as [dj]2 ←
GS.Com(yj).

• For each i ∈ [k], run the GS prover for the equation
∑

`∈[n] a`,iE`(x, y) =∑
`∈[n] f(t`, a`,i) to obtain the proof, which is a pair ([Θi]1, [Πi]2).

Output ({[cj]1 : j ∈ [mx]}, {[dj]2 : j ∈ [my]}, {([Πi]2, [Θi]1) : i ∈ [k]}).

V(crs,St̃, {[cj]1 : j ∈ [mx]}, {[dj]2 : j ∈ [my]}, {[Θi]1, [Πi]2 : i ∈ [k]}): For each i ∈ [k], run
the GS verifier for equation∑

`∈[n]

a`,iE`(x, y) =
∑
`∈[n]

f(t`, a`,i).

Theorem 3.3 The above protocol is a QA-NIZK proof system for two-sided linear equa-
tions.

Proof (Completeness.) Observe that for each i ∈ [k]∑
`∈[n]

a`,iE`(x, y) =
∑
`∈[n]

a`,it̃` =
∑
`∈[n]

f(t`, a`,i). (3.2)

Completeness follows from the observation that to efficiently compute the proof, the GS
prover only needs, apart from a satisfying assignment to the equation, the randomness
used in the commitments plus a way to compute the inclusion map of all involved constants,
in this case ι1(a`,iα`,j), ι2(a`,iβ`,j), and the latter is part of the CRS.

(Soundness.) We change to a game Game1 where we know the discrete logarithm of the
GS commitment key, as well as the discrete logarithms of (α`,β`), ` ∈ [n]. This is possible
because they are both chosen from a witness samplable distribution.

We now prove that an adversary against the soundness in Game1 can be used to con-
struct an adversary B against the Dn,k-SKerMDH assumption, where Dn,k is the matrix
distribution used in the CRS generation.

B receives a challenge ([A]1, [A]2) ∈ Gn×k
1 × Gn×k

2 . Given all the discrete logarithms
that B knows, it can compute a properly distributed CRS even without knowledge of the
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discrete logarithm of [A]1. The soundness adversary outputs commitments {[cj]1 : j ∈
[mx]}, {[dj]2 : j ∈ [my]} together with proofs {[Θi]1, [Πi]2 : i ∈ [k]}, which are accepted
by the verifier.

The adversary B can use the discrete logarithm of the commitment keys to compute
openings of {[cj]1 : j ∈ [mx]}, {[dj]2 : j ∈ [my]} (or the corresponding translation to Gs

when As = Zq, s ∈ {1, 2}). Let [x]1 and [y]2 the vectors of these commitments. We claim
that the pair ([ρ]1, [σ]2) ∈ Gn

1 × Gn
2 , [ρ]1 := (β>1 [x]1 − [t1]1, . . . ,β

>
n [x]1 − [tn]1), [σ]2 :=

(α>1 [y]2, . . . ,α
>
n [y]2), solves the Dn,k-SKerMDH challenge and can be efficiently computed

by B.

First, observe that if the adversary is successful in breaking the soundness property, then
ρ 6= σ. Indeed, if this is the case there is some index ` ∈ [n] such that E`(x,y) 6= t̃`,
which means that

∑
j∈[my ] f(α`,j, yj) 6=

∑
j∈[mx] f(xj, β`,j)−f(t`, base2). If we take discrete

logarithms in each side of the equation, this inequality is exactly equivalent to ρ 6= σ.

Further, because GS proofs have perfect soundness, x and y satisfy the equation
∑

`∈[n] a`,iE`(x, y) =∑
`∈[n] f(t`, a`,i), for all i ∈ [k]. Thus, for all i ∈ [k],∑

`∈[n]

[a`,i]2
(
β>` [x]1 − [t`]1

)
=
∑
`∈[n]

[a`,i]1
(
α>` [y]2

)
, (3.3)

which implies that [ρ]1[A]2 = [σ]2[A]1.

(Zero-Knowledge.) The same simulator of GS proofs can be used. Specifically the simu-
lated proof corresponds to k simulated GS proofs. �

One-Sided Equations.

In the case when α` = 0 and t̃` = f(t`, base2) for some t` ∈ A1, for all ` ∈ [n], proofs can be
aggregated under a standard kernel assumption (and thus, in asymmetric bilinear groups
we can choose k = 1). Indeed, in this case, in the soundness proof, the adversary B receives
[A]2 ∈ Gn×k

2 , an instance of theDn,k-KerMDHG2 problem. The adversary B outputs [ρ]1 :=
(β>1 [x]1−[t1]1, . . . ,β

>
n [x]1−[tn]1) as a solution to the challenge. To see why this works, note

that, when α` = 0 for all ` ∈ [n], equation (3.3) reads
∑

`∈[n][a`,i]2
(
β>` [x]1 − [t`]1

)
= [0]T

and thus [ρ]1[A]2 = [0]T . The case when β` = 0 and t̃` = f(base1, t`) for some t` ∈ A2,
for all ` ∈ [n], is analogous.

Public Parameters.

The size of the CRS of the construction above depends on the number of elements needed
to represent [A]2. In this sense, it is interesting to sample [A]2 from some family of matrix
assumptions with good representation size. As we assume that n > k, it is interesting to
instantiate this scheme with the circulant matrix distribution of Morillo et al. [MRV15],
which has a representation size of n — independent of k.

3.6 Structure Preserving Linearly Homomorphic Sig-
natures

Linearly-homomorphic structure preserving signatures [AFG+10, BFKW09] enable to sign
group elements in G, where G is a group and to publicly derive signatures of new elements
which are a linear combination of other signed messages. We take Libert et al.’s definition
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[LPJY13], except that we do not identify the elements of G with vectors in Gn
1 , for some

group G1. The reason is that G might be some space of the form Gm
1 ×Gn

2 .

Definition 3.4 (SPLHS scheme) A linearly homomorphic structure-preserving signa-
ture scheme over the group G consists of a tuple of efficient algorithms Φ=(SignGen, Sign,
SignDerive,Verify) for which the message space is M := G, with the following specifica-
tions.

SignGen(gk, n) : is a randomized algorithm that takes as input a group key gk and an
integer n and outputs a key pair (pk , sk). The public key pk specifies a Zq vector
space G of dimension n.

Sign(sk ,m): is a possibly probabilistic algorithm that takes as input a private key sk and
m ∈ G. It outputs a signature σ ∈ G.

SignDerive(pk , {ωi,σi,mi}i∈[`]): is a possibly probabilistic signature derivation algorithm.
It takes as input a public key pk as well as ` pairs (ωi,σi), each of which consists
of a weight ωi ∈ Zq and a signature σi ∈ G. The output is a signature σ ∈ G on
the vector m =

∑
i∈[`] ωimi.

Verify(pk ,m,σ): is a deterministic algorithm that takes in a public key pk , a signature
σ, and a vector m. It outputs 1 if σ is deemed valid and 0 otherwise.

Correctness is expressed by imposing that, for all security parameters λ ∈ N, all integers
n ∈ poly(λ) and all pairs (pk , sk)← SignGen(gk, n), the following holds:

1. For all m ∈ G, if σ = Sign(sk ,m), then we have Verify(pk ,m,σ) = 1.

2. For any ` > 0 and any set of triples {(ωi,σi,mi)}i∈[`], if Verify(pk ,mi,σi) = 1 for
each i ∈ [`], then Verify(pk ,

∑
i∈[`] ωimi, SignDerive(pk , {(ωi,σi)})) = 1

In order to get a uniform definition for different types of forgery, we will say that a pair
(m∗,σ∗) is a forgery if P (m∗, Q) = 1, where P is a predicate on (m∗, Q) and Q is the
set of reveal queries made by the adversary. We stress that the predicate P is not always
efficiently computable. For instance, for the scheme of Libert et al. ([LPJY13]), this
predicate is 1 iff m∗ is outside the linear span of previous queries, and this is, in general,
hard to decide in the group G (although it might be easy for some set Q).

Definition 3.5 A SPLHS scheme Φ = (SignGen, Sign,Verify, SignDerive) is secure against
type P adversaries if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger who runs
SignGen(gk, n) and obtains (pk , sk) before sending pk to A.

2. On polynomially-many occasions, A can interleave the following kinds of queries.

Signing queries: A chooses a vector m ∈ Gn. The challenger picks a handle h
and computes σ ← Sign(sk ,m). It stores (h,m,σ) in a table T and returns h.

Derivation queries: A chooses a vector of handles h = (h1, . . . , h`) and a set
of coefficients {ωi}i∈[`]. The challenger retrieves the tuples {(hi,mi,σi)}i∈[`]

from T and returns ⊥ if one of these does not exist. Otherwise, it computes
m =

∑
i∈[`] ωimi and runs σ ← SignDerive(pk , {(ωi,σi)}i∈[`]). It also chooses

a handle h, stores (h,m,σ) in T and returns h to A.

Reveal queries: A chooses a handle h. If no tuple of the form (h,m,σ) exists in
T , the challenger returns ⊥. Otherwise, it returns σ to A and adds (m,σ) to
the set Q.

30



3. A outputs a signature σ∗ and a vector m∗. The adversary A wins if P (m∗, Q) = 1.

A’s advantage is its probability of success taken over all coin tosses.

Libert et al. also used a set T of tags in order to add up many instances of their signature
scheme in only one. For simplicity, we omit this parameter.

3.6.1 One-Time LHSPS Signatures in Different Groups

The one-time linearly homomorphic signature of Libert, Peters and Yung [LPJY14] implies
a QA-NIZK argument for linear spaces. Similarly, our constructions of QA-NIZK proofs
for membership in concatenated subspace and for sum in subspace (in the case where the
space is not from a witness samplable distribution) is implied by a one-time structure
preserving signature scheme with different security properties.

In particular, for subspace concatenation, “one-time" means that the adversary is unable
to sign vectors which are not in the span of previously signed vectors, namely, the ad-
versary cannot output a signature for a pair ([x]∗1, [y]∗2) ∈ Gm

1 × Gn
2 if ((x∗)>|(y∗)>) is

linearly independent from the vectors (x>i |y>i ), i ∈ [qs], (the concatenation of two vec-
tors), where ([xi]1, [yi]2) are the signing queries of the adversary. The discussion for the
scheme which results from our Sum-in-Subspace QA-NIZK proof, results in a different
notion of “one-time" — this is captured in the security definition by a different predicate
P —, see discussion below.

In either case, the size of the resulting signatures is (k+1)(|G1|+|G2|) under the SKerMDH
assumption, but if security against random message attacks is sufficient (meaning that
the signatures in the set Q which are seen by the adversary are sampled uniformly at
random), the signature size can be reduced to k(|G1| + |G2|) (essentially, in this case
one can sample A from Dk). This is inspired by the one-time constructions of structure-
preserving signatures of Kiltz et al. secure against random message attacks[KPW15]. We
omit any further discussion of this case, as it is a straightforward generalization of our
QA-NIZK proofs in the witness samplable setting using the ideas of Kiltz et al.

Our construction is based on the SKerMDH assumption introduced in Section 2.4. Fol-
lowing the syntactic definition of Section 2.4, our scheme assumes G = Gm

1 ×Gn
2 and the

length of the messages is n+m.

• SignGen(gk,m, n): Choose A ← Dk, Λ,Ξ ← Z(k+1)×m
q , AΛ := Λ>A, AΞ := Ξ>A

The secret key is sk = (Λ,Ξ), while the public key is defined to be

pk = ([A]1, [AΞ]1, [A]2, [AΛ]2) ∈ G(k+1)×k
1 ×Gm×k

1 ×G(k+1)×k
2 ×Gm×k

2 .

• Sign(sk, ([x]1, [y]2)): To sign a vector ([x]1, [y]2) ∈ Gm
1 × Gm

2 , pick z ← Z(k+1)
q and

output the pair ([ρ]1, [σ]2) ∈ G(k+1)
1 ×G(k+1)

2 , defined as:

[ρ]1 := Λ[x]1 + [z]1, [σ]2 := Ξ[y]2 − [z]2.

• SignDerive(pk, {(ωi, [ρi]1, [σi]2)}`i=1): given the public key pk, and ` tuples (ωi, [ρi]1,

[σi]2), output the pair (
∑`

i=1 ωi[ρi]1,
∑`

i=1 ωi[σi]2) ∈ G(k+1)
1 ×G(k+1)

2 .

• Verify(pk, ([x]1, [y]2), ([ρ]1, [σ]2)) is a deterministic algorithm, that takes as input a
public key pk, a signature ([ρ]1, [σ]2) and returns 1 if and only if ([ρ]1, [σ]2) satisfies

[ρ>]1[A]2 + [σ>]2[A]1 = [x>]1[AΛ]2 + [y>]2[AΞ]1.
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Correctness. If a signature is correctly generated then

[ρ>]1[A]2 − [x>]1[AΛ]2 = [z>]1[A]2 [σ>]2[A]1 − [y>]2[AΞ]1 = −[z>]2[A]1.

Therefore the verification algorithm outputs 1 on a correctly generated signature. The
proof of correctness of the signature derivation algorithm follows a similar argument.

Let Q = {([xi]1, [yi]2)}i∈[qs] be some set of elements of Gm
1 ×Gn

2 . We define the predicate
P as P (([x]1, [y]2), Q) = 1 iff (x>|y>) ∈ Z2m

q is not in the space spanned by {(x>i |y>i ) :
i ∈ [qs]}.

Theorem 3.6 The signature scheme is type P unforgeable if the SKerMDH assumption
holds in G1,G2.

The argument is almost identical to Libert et al.’s [LPJY13].

Proof We show how to construct an algorithm B which takes as input an instance
([A]1, [A]2) of the SKerMDH assumption and outputs a pair of vectors ([r]1, [s]2) ∈ G3

1×G3
2,

r 6= s, such that [r>]1[A]2 = [s>]2[A]1 given oracle access to a forger F against the signa-
ture scheme (see Section 3.6).

Algorithm B starts by honestly running the key generation algorithm using a randomly
chosen sk = (Λ,Ξ). Any signature query of F on a vector ([x]1, [y]2) is honestly answered
by B, by running the signing algorithm. The game ends with F outputting a vector
([x]∗1, [y]∗2) with a valid signature ([ρ∗]1, [σ

∗]2). At this point, B computes its own signature
([ρ†]1, [σ

†]2) using the secret key sk := (Λ,Ξ). The adversary B will output as a response
to the SKerMDH challenge the pair ([ρ∗]1 − [ρ†]1, [σ

†]2 − [σ∗]2).

We now see that, with overwhelming probability, this is a valid answer to the SKerMDH
challenge. Indeed, since both signatures satisfy the verification equation, we can subtract
the verification equation of each pair, obtaining:

([ρ∗]1 − [ρ†]1)>[A]2 = ([σ†]2 − [σ∗]2)>[A]1

Therefore, all we need to argue is that ρ∗ − ρ† 6= σ† −σ∗ with overwhelming probability.
This is equivalent to show that the probability that ρ∗ + σ∗ = ρ† + σ† is negligible. The
key point of the argument is that

ρ† + σ† = Λx∗ + Ξy∗ =
(
Λ Ξ

)(x∗

y∗

)
is information theoretically hidden to F.

The rest of the argument is identical to Libert et al.’s. The argument goes as follows:

since, by assumption,
(

x∗

y∗

)
is independent of all previous queries, then there is some

information about
(
Λ Ξ

)
which is information theoretically hidden. Thus, ρ† + σ† is

information theoretically hidden and from the adversary’s point of view it is equally likely
that it has any out of q potential values. �

Signing the Sum of Two Linear Spaces. When m = n, we can adapt the previous
construction to a different forgery condition namely, we can prove security against a
different type of adversary. Namely, Libert et al.’s scheme is secure against an adversary
whose goal is to output a forgery for a message which is linearly independent from all of
its signing queries. In our case, we require that the adversary cannot output a signature
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for a pair ([x]∗1, [y]∗2) ∈ Gm
1 ×Gm

2 if x∗+y∗ is linearly independent from the vectors xi+yi,
i ∈ [qs], where ([xi]1, [yi]2) are the signing queries of the adversary.

Our construction is like the previous one taking Ξ = Λ. Indeed, in this case the adversary
only learns Λx∗ + Ξy∗ = Λ(x∗ + y∗), and identically the same argument follows.
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Chapter 4

QA-NIZK Arguments for Bit-Strings

In this chapter construct a constant-size proof that a set of n commitments to elements
in some field Zq open to 0 or 1. Equivalently, we construct a constant size proof for the
satisfiability of the equations b1(b1 − 1) = 0, . . . , bn(bn − 1) = 0. Although solutions for
this problem can be easily derived from general results of constant-size NIZK for any
NP language [GGPR13, DFGK14, Gro16], they would rely on strong and controversial
assumptions, namely non-falsifiable assumptions. Therefore, it is an open question how to
build constant-size proofs for this statement using only standard falsifiable assumptions.

A set of n commitments c1, . . . , cn to elements of Zq, each commitment of size s, defines
a single commitment c = (c1, . . . , cn) to an element of Znq , of size n · s. Alternatively, one
can define the commitment c so that its size may be < n · s and, depending on the size
of c, there may or not be a unique opening. Thereby, we distinguish two different cases:

Perfectly Binding Commitment: The commitment defines a unique vector x ∈ Znq .
It must hold that |c| ≥ n log q = Ω(n).

Computationally Binding Commitment: In this case c can be opened to many val-
ues and it is possible that |c| = o(n).

In the second case it is not clear what a proof that the openings are in {0, 1} means.
For example, in the case of perfectly hiding commitments such as multi-Pedersen commit-
ments – where a commitment to x ∈ Znq is [c]1 =

∑
i∈[n] xi[gi]1 + r[gn+1]1 ∈ G1 – each [c]1

can be opened to any x′ ∈ Znq since

[c]1 =
∑
i∈[n]

x′i[gi]1 +

c−∑
i∈[n]

x′igi

 g−1
n+1

 [gn+1]1

(in particular to 0 or 1) and thus the proof is trivial. Although it does makes sense to
do a proof of knowledge, where one can extract a witness, we do not know how construct
such proof system using only falsifiable assumptions.

For this reason, in [GHR15a] we first concentrated in the perfectly binding case, specif-
ically Groth-Sahai commitments (and also other related perfectly-binding commitment
scheme). We find two interesting applications of this proof system: more efficient signa-
ture schemes, with emphasis on the case of ring signatures, and more efficient threshold
Groth-Sahai proofs.

Later, in [GR16], we tackle the computationally binding case for a commitment scheme
which is an “hybrid” between multi-Pedersen commitments and Groth-Sahai commitments.

34



We call this commitment scheme extended multi-Pedersen commitments. What is inter-
esting about extended multi-Pedersen commitments is that they can be perfectly hiding
but they can also be perfectly binding at one (and only one) coordinate, depending on
the the commitment key distribution. Furthermore, the different commitment key distri-
butions are computationally indistinguishable and, thereby, one can randomly choose an
index which remains hidden to the adversary such that bi, the opening at coordinate i, is
uniquely defined. Unlike the NIZK proof for multi-Pedersen commitment, our NIZK proof
for extended multi-Pedersen commitments implies that bi ∈ {0, 1} which is not trivially
true.

Extended multi-Pedersen commitments bears some similarities with somewhere statisti-
cally binding hashing [HW15] and vector commitments [CF13]. See Section 4.2.1 for a
more detailed comparison.

To exemplify the usefulness of extended multi-Pedersen commitments, we build a proof
for the perfectly binding case. Given a perfectly binding commitment [c]1 to b ∈ Znq
compute a proof that b ∈ {0, 1}n as follows:

1. Compute and extended multi-Pedersen commitment [c′]1 to (b1, . . . , bn).

2. Show that [c]1 and [c′]1 can be opened to the same value.

3. Show that [c′]1 can be opened to and element from {0, 1}n.

Soundness follows from soundness of the proof from step 3 as follows. Suppose that
b /∈ {0, 1}n, i.e. there is some i∗ such that bi∗ /∈ {0, 1}. By choosing a random index
i from [n] and picking the commitments keys such that the extended multi-Pedersen
commitments are perfectly binding at coordinate i, we have that with probability 1/n,
i∗ = i. Given that [c]1 and [c′]1 can be opened to the same value and the opening of [c′]1
at coordinate i is uniquely defined, such opening must be equal to bi∗ /∈ {0, 1} and we can
break soundness of the proof from step 3 with probability at least 1/n.

While we use essentially the same techniques from the perfectly binding case to build the
proof system for the computationally binding case (step 3), this new approach can be
applied to more diverse scenarios. Indeed, it is a key ingredient in Chapter 5 where we
construct aggregated set-membership proofs and more efficient range proofs and proofs
of correctness of a shuffle.

In Section 4.1 we describe our results for the perfectly binding case and the applications,
and in Section 4.2 we describe our results for the computationally binding case.

4.1 The Perfectly Binding case

In this section we construct a constant-size proof that a perfectly binding commitment in
G1 opens to an element of {0, 1}n. Such a construction was unknown even in symmetric
bilinear groups (yet, it can be easily generalized to this setting [GHR15b, Appendix C]).
More specifically, we prove membership in

Lck,bits := {[c]1 ∈ Gn+m
1 : ∃b ∈ {0, 1}n,w ∈ Zmq s.t. [c]1 := Comck(b; w)},

where ck := ([U1]1, [U2]1) ∈ G(n+m)×n
1 ×G(n+m)×m

1 define a perfectly binding and compu-
tationally hiding commitment to b which is computed as Comck(b; w) := [U1]1b + [U2]w.
Specifically, we give instantiations for m = 1 (when [c]1 is a single commitment to b), and
m = n (when [c]1 is the concatenation of n Groth-Sahai commitments).
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We stress that although our proof is constant-size, we need the commitment to be per-
fectly binding, thus the size of the commitment is linear in n. The common reference
string which we need for this construction is quadratic in the size of the bit-string. Our
proof is compatible with proving linear statements about the bit-string, for instance, that∑

i∈[n] bi = t by adding a linear number (in n) of elements to the CRS (see Section 4.1.5).
We observe that in the special case where t = 1 the common reference string can be linear
in n. The costs of our constructions and the cost of GS proofs are summarized in Table
4.1.

Our results rely solely on falsifiable assumptions. More specifically, in the asymmetric case
we need some assumptions which are weaker than the symmetric external DH assump-
tion plus the SSDP assumption. Interestingly, the translation of our construction to the
symmetric setting relies on assumptions which are all weaker than the 2-Lin assumption
[GHR15b, Appendix C].

We combine the QA-NIZK argument for L[M]1,[N]2,+ from Section 3.3 with decisional
assumptions inG1 andG2. We do this with the purpose of using QA-NIZK arguments even
when M+N has full rank. In this case, strictly speaking “proving membership in the space”
looses all meaning, as every vector in Gm

1 ×Gm
2 is in the space. However, using decisional

assumptions, we can argue that the generating matrix of the space is indistinguishable
from a lower rank matrix which spans a subspace in which it is meaningful to prove
membership.

Finally, in Section 4.1.6 we discuss some applications of our results. In particular, our re-
sults provide shorter signature size of several schemes, more efficient ring signatures, more
efficient set membership proofs, and improved threshold GS proofs for pairing product
equations.

Comms Proof CK CRS(ρ) #Pairings

GS [GS08] (2n, 2n) (4n, 4n) (4, 4) 0 28n

GS + Ψcom(Dk) (2n, 2n) (2n+ 2, 2n+ 2) (4, 4)
(10n+ 4,
10n+ 4)

20n+ 8

Πbit m = 1 (n+ 1, 0) (10, 10) (n+ 1, 0)
(6n2 + 11n+ 34,
6n2 + 11n+ 34)

n+ 55

Πbit m = n (i) (2n, 0) (10, 10) (4, 0)
(12n2 + 14n+ 22,
12n2 + 13n+ 24)

2n+ 52

Πbit m = n (ii) (2n, 0) (10, 10) (4, 0)
(6n2 + 16n+ 32,
6n2 + 12n+ 32)

4n+ 52

Πbit weight 1, m = 1 (n+ 1, 0) (10, 10) (n+ 1, 0)
(18n+ 32,
19n+ 34)

n+ 55

Πbit weight 1, m = n (2n, 0) (10, 10) (4, 0)
(20n+ 32,
18n+ 32)

4n+ 52

Table 4.1: Comparison for proofs of membership in Lck,bits between GS proofs and our different constructions.
Our NIZK construction for bit-strings is denoted by Πbit and the construction for proving that two sets of
commitments open to the same value Ψcom(Dk). Row “Πbit m = 1” is for our construction for a single
commitment of size n + 1 to a bit-string of size n. Rows “Πbit m = n (i)” and “Πbit m = n (ii)” are for
our construction for n concatenated GS commitments, using the two different CRS distributions described in
Section 4.1.2. Rows “Πbit weight 1, m = 1” and “Πbit weight 1, m = n” are for our constructions for bit-strings
of weight 1 with m = 1 and m = n, respectively. Column “Comms” contains the size of the commitments,
“CK” the size of the commitment keys in the CRS, and “CRS(ρ)” the size of the language dependent part of
the CRS. Notation (a, b) means a elements of G1 and b elements of G2. The table is computed for Dk = L2,
the 2-Linear matrix distribution.

4.1.1 Intuition

To prove that a commitment in G1 opens to a vector of bits b, the usual strategy is to
compute another commitment [d]2 ∈ Gn̄

2 to a vector b̄ ∈ Znq and prove (1) bi(bi − 1) = 0,
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for all i ∈ [n], and (2) bi − bi = 0, for all i ∈ [n]. For statement (2), since [U]1 is witness
samplable, we can use our most efficient QA-NIZK from Section 3.4 for equal opening
in different groups. Under the SSDP assumption, which is the SKerMDH assumption of
minimal size conjectured to hold in asymmetric groups, the proof is of size 2(|G1|+ |G2|).
Thus, the challenge is to aggregate n equations of the form bi(bi − 1) = 0. We note that
this is a particular case of the problem of aggregating proofs of quadratic equations, which
was left open in [JR14].

We finally remark that the proof must include [d]2 and thus it may be not of size indepen-
dent of n. However, it turns out that [d]2 needs not be perfectly binding, in fact n̄ = 2
suffices.

Our Approach

A prover wanting to show satisfiability of the equation x(y− 1) = 0 using GS proofs, will
commit to a solution x = b and y = b as [c]1 = b[u1]1 + r[u2]1 and [d]2 = b[v1]2 + s[v2]2,
for r, s ← Zq, and then give a pair ([θ]1, [π]2) ∈ G2

1 × G2
2 which satisfies the following

verification equation1:

[c]1 ([d]2 − [v1]2)> = [u2]1[π>]2 + [θ]1[v>2 ]2. (4.1)

The reason why this works is that, if we express both sides of the equation in the basis of
G2×2
T given by {[u1]1[v>1 ]2, [u2]1[v>1 ]2, [u1]1[v>2 ]2, [u2]1[v>2 ]2}, the coefficient of [u1]1[v>1 ]2 is

b(b−1) on the left side and 0 on the right side (regardless of ([θ]1, [π]2)). Our observation
is that the verification equation can be abstracted as saying:

[c]1 ([d]2 − [v1]2)> ∈ Span([u2]1[v>1 ]2, [u1]1[v>2 ]2, [u2]1[v>2 ]2) ⊂ G2×2
T . (4.2)

Now consider commitments to (b1, . . . , bn) and (b1, . . . , bn) constructed with some commit-
ment key {([gi]1, [hi]2) : i ∈ [n + 1]} ⊂ Gn

1 ×Gn
2 , for some n ∈ N, to be determined later,

and defined as [c]1 :=
∑

i∈[n] bi[gi]1 + r[gn+1]1, [d]2 :=
∑

i∈[n] bi[hi]2 + s[hn+1]2, r, s ← Zq.
Suppose for a moment that {[gi]1[h>j ]2 : i, j ∈ [n + 1]} is a set of linearly independent
vectors. Then,

[c]1

[d>]2 −
∑
j∈[n]

[h>j ]2

 ∈ Span{[gi]1[h>j ]2 : i 6= j when i, j 6= n+ 1} (4.3)

if and only if bi(bi− 1) = 0 for all i ∈ [n], because bi(bi− 1) is the coordinate of [gi]1[h>i ]2
in the left side of the equation.

Equation 4.3 suggests to use one of the constant-size QA-NIZK arguments for linear
spaces to get a constant-size proof that bi(bi−1) = 0 for all i ∈ [n]. 2Unfortunately, these
arguments are only defined for membership in subspaces in Gm

1 or Gm
2 but not in Gm

T . Our
solution is to include information in the CRS to “bring back” this statement from GT to
G1, i.e. the matrices [Ci,j]1 := [gi]1h

>
j , where i 6= j when i, j 6= n+ 1. We denote this set

of matrices as C := {[Ci,j]1 : i 6= j when i, j 6= n+ 1}. Then, to prove that bi(bi − 1) = 0
for all i ∈ [n], the prover computes [Θ]1 as a linear combination (with coefficients which

1For readers familiar with the Groth-Sahai notation, equation (4.1) corresponds to c • (d− ι2(1)) =
u2 • π + θ • v2.

2We identify matrices in Ga×b1 (resp. in Ga×b2 ) with vectors in Gab1 (resp. in Gab2 ).
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depend on b,b, r, s) of the matrices in C. Then the verifier checks that

[c]1

[d]2 −
∑
j∈[n]

[hj]2

> = [Θ]1[In]2, (4.4)

and finally the prover gives a QA-NIZK proof of [Θ]1 ∈ Span(C).

This reasoning assumes that {[gi]1h>j } (or equivalently, {[Ci,j]1}) are linearly independent,
which can only happen if n ≥ n + 1. If that is the case, the proof size cannot be
constant because [Θ]1 ∈ Gn×n

1 and this matrix is part of the proof. Instead, we choose
g1, . . . ,gn+1 ∈ G2

1 and h1, . . . ,hn+1 ∈ G2
2, so that {[Ci,j]1} ⊆ G2×2

1 . Intuitively, this
should still work because the prover receives these vectors as part of the CRS and he
does not know their discrete logarithms, so to him, they behave as linearly independent
vectors.

Nevertheless, the statement [Θ]1 ∈ Span(C) seems no longer meaningful, as Span(C) is
all of G2×2

1 with overwhelming probability. But this is not the case, because by means of
decisional assumptions in G1 and in G2, we switch to a game where the matrices [Ci,j]1
span a non-trivial space of G2×2

1 . Specifically, to a game where [Ci∗,i∗ ]1 /∈ Span(C), were
i∗ is a random integer in [n] which remains hidden to the adversary. Once we are in
such a game, perfect soundness is guaranteed for equation bi∗(b̄i∗ − 1) = 0 and a cheating
adversary is caught with probability at least 1/n. We think this technique might be of
independent interest.

The last obstacle is that, using decisional assumptions on the set of vectors {[hj]2}j∈[n+1] is
incompatible with using the discrete logarithms of [hj]2 to compute the matrices [C]1i,j :=

[gi]1h
>
j given in the CRS. To account for the fact that, in some games, we only know

gi ∈ Zq and, in some others, only hj ∈ Zq, we replace each matrix [Ci,j]1 by a pair
([Ci,j]1, [Di,j]2) which is uniformly distributed conditioned on Ci,j + Di,j = gih

>
j . This

randomization completely hides the group in which we can compute gih
>
j . Finally, we

use our QA-NIZK argument for sum in a subspace (Section 3.3) to prove membership in
this space.

4.1.2 Instantiations

We discuss in detail two particular cases of languages Lck,bits. First, in Section 4.1.3 we
discuss the case when

(a) [c]1 is a vector in Gn+1
1 , un+1 ← Ln+1,1 and U1 :=

(
In×n
01×n

)
∈ Z(n+1)×n

q ,U2 := un+1 ∈

Zn+1
q , U := (U1|U2).

In this case, the vectors [gi]1 in the intuition are defined as [gi]1 = ∆[ui]1, where ∆ ←
Z2×(n+1)
q , and the commitment to b is computed as [c]1 :=

∑
i∈[n] bi[ui]1 +w[un+1]1. Then

in Section 4.1.5 we discuss how to generalize the construction for a) to

(b) [c]1 is the concatenation of n GS commitments. That is, given the GS CRS crsGS =
(gk, [u1]1, [u2]1, [v1]2, [v2]2), we define,

U1 :=

u1 . . . 0
... . . . ...
0 . . . u1

 ∈ Z2n×n
q ,U2 :=

u2 . . . 0
... . . . ...
0 . . . u2

 ∈ Z2n×n
q .

Although the proof size is constant, in both of our instantiations the commitment size is
Θ(n). Specifically, (n+ 1)|G1| for case a) and 2n|G1| for case b).
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4.1.3 The Scheme

K(gk, [U]1): Let hn+1 ← Z2
q and for all i ∈ [n], hi := εihn+1, where εi ← Zq. Define

[H]2 := ([h1]2| . . . |[hn+1]2). Choose ∆ ← Z2×(n+1)
q , define [G]1 := ∆[U]1 and

[gi]1 := ∆[ui]1 ∈ G2
1, for all i ∈ [n + 1]. Let a ← L1 and define [a∆]2 := ∆>[a]2 ∈

Gn+1
2 . For any pair (i, j) ∈ In,1 (as defined in Section 2.1), let Ti,j ← Z2×2

q and set:

[Ci,j]1 := [gi]1h
>
j − [Ti,j]1 ∈ G2×2

1 , [Di,j]2 := [Ti,j]2 ∈ G2×2
2 .

Note that [Ci,j]1 can be efficiently computed as hj ∈ Z2
q is the vector of discrete

logarithms of [hj]1.

Let Ψsum be the proof system for sum in subspace (Section 3.3) and Ψcom be an
instance of the proof system for equal opening (Section 3.4).

Let crsΨsum ← K1(gk, {[Ci,j]1, [Di,j]2 : (i, j) ∈ In,1}) and crsΨcom ← K1(gk, [G]1, [H]2, n).
The common reference string is given by:

crsP := ([U]1, [G]1, [H]1, {[Ci,j]1, [Di,j]2 : (i, j) ∈ In,1}, crsΨsum , crsΨcom) ,

crsV := ([a]2, [a∆]2, crsΨsum , crsΨcom) .

P(crsP , [c]1, 〈b, wg〉): Pick wh ← Zq, R← Z2×2
q and then:

1. Define
[c∆]1 := [G]1

(
b
wg

)
, [d]2 := [H]2

(
b
wh

)
.

2. Compute ([Θ]1, [Π]2) :=∑
i∈[n]

(biwh([Ci,n+1]1, [Di,n+1]2) + wg(bi − 1)([Cn+1,i]1, [Dn+1,i]2))

+
∑
i∈[n]

∑
j∈[n]
j 6=i

bi(bj − 1)([Ci,j]1, [Di,j]2)

+wgwh([Cn+1,n+1]1, [Dn+1,n+1]2) + ([R]1,−[R]2). (4.5)

3. Compute a proof πsum that Θ+Π belongs to the space spanned by {Ci,j+Di,j :
(i, j) ∈ In,1}, and a proof πcom that ([c∆]1, [d]2) open to the same value, using
b, wg, and wh.

V(crsV , [c]1, [c∆]1, [d]2, ([Θ]1, [Π]2), πsum, πcom):

1. Check if [c]>1 [a∆]2 = [c∆]>1 [a]2.

2. Check if

[c∆]1

[d]2 −
∑
j∈[n]

[hj]2

> = [Θ]1[I2×2]2 + [I2×2]1[Π]2. (4.6)

3. Verify that πsum, πcom are valid proofs for ([Θ]1, [Π]2) and ([c∆]1, [d]2) using
Ψsum and Ψcom respectively.

If any of these checks fails, the verifier outputs 0, else it outputs 1.

39



S1(gk, [U]1): The simulator receives as input a description of an asymmetric bilinear
group gk and a matrix [U]1 ∈ G(n+1)×(n+1)

1 sampled according to distribution Dgk.
It generates and outputs the CRS in the same way as K1, but additionally it also
outputs the simulation trapdoor

τ = (H,∆, τΨsum , τΨcom) ,

where τΨsum and τΨcom are, respectively, Ψsum’s and Ψcom’s simulation trapdoors.

S2(crsP , [c]1, τ): Compute [c∆]1 := ∆[c]1. Then pick random wh ← Zq, R ← Z2×2
q and

define d := whhn+1. Then set:

[Θ]1 := [c∆]1

d−
∑
i∈[n]

hi

> + [R]1, [Π]2 := −[R]2.

Finally, simulate proofs πsum, πcom using τΨsum and τΨcom .

4.1.4 Proof of Security

Theorem 4.1 The proof system from Section 4.1.3 is QA-NIZK proof system for the
language Lck,bits with perfect completeness, computational soundness, and perfect zero-
knowledge

Proof (Completeness.) It is obvious by definition that for any [c]1 ∈ Lck,bits the vector
[c∆]1 generated by an honest prover passes the verification test described in 1).

Note that, by definition of [Ci,j]1 and [Di,j]2, [Ci,j]1[I2×2]2 + [I2×2]1[Di,j]2 = [gi]1[h>j ]2.
Since bi(bi − 1) = 0 for each i ∈ [n],

[c∆]1

[d]2 −
∑
i∈[n]

[hi]2

>

=
∑
i∈[n]

biwh[gi]1[h>n+1]2 + wg(bi − 1)[gn+1]1[h>i ]2 +
∑
j∈[n]

bi(bj − 1)[gi]1[h>j ]2

+

wgwh[gn+1][h>n+1]2

=
∑
i∈[n]

biwh[gi]1[h>n+1]2 + wg(bi − 1)[gn+1]1[h>i ]2 +
∑
j∈[n]
j 6=i

bi(bj − 1)[gi]1[h>j ]2


+ wgwh[gn+1]1[h>n+1]2 + [R]1[I2×2]2 − [I2×2]1[R]2

=[Θ]1[I2×2]2 + [I2×2]1[Π]2.

Finally, the rest of the proof follows from completeness of Ψcom and Ψsum.

(Soundness.) Soundness is proven in Theorem 4.2.

(Zero-Knowledge.) First, note that the vector [d]2 ∈ G2
2 output by the prover and the

vector output by S2 follow exactly the same distribution. This is because the rank of [H]2
is 1. In particular, although the simulator S2 does not know the opening of [c]1, which
is some b ∈ {0, 1}n, there exists wh ∈ Zq such that [d]2 = [H]2

(
b
wh

)
. Since R is chosen

40



uniformly at random in Z2×2
q , the proof ([Θ]1, [Π]2) is uniformly distributed conditioned

on satisfying check 2) of algorithm V. Therefore, these elements of the simulated proof
have the same distribution as in a real proof. This fact combined with the perfect zero-
knowledge property of Ψsum and Ψcom concludes the proof. �

Theorem 4.2 Let AdvPS(A) be the advantage of an adversary A against the soundness
of the proof system described above. There exist PPT adversaries B1,B2,B3,P

∗
1,P

∗
2 such

that

AdvPS(A) ≤ n
(
6/q + AdvU1,G1(B1) + AdvU1,G2(B2) + AdvSPG2

(B3)

+ AdvΨsum(P∗1) + AdvΨcom(P∗2)) .

The proof follows from the indistinguishability of the following games:

Real This is the real soundness game. The output is 1 if the adversary breaks the sound-
ness, i.e. the adversary submits some [c]1 = [U]1

(
b
wg

)
, for some b /∈ {0, 1}n and

w ∈ Zq, and the corresponding proof which is accepted by the verifier.

Game0 This game is identical to Real except that algorithm K does not receive [U]1 as a
input but it samples ([U]1,U) ∈ Rpar itself according to Dgk.

Game1 This game is identical to Game0 except that the simulator picks a random i∗ ∈ [n],
and uses U to check if the output of the adversary A is such that bi∗ ∈ {0, 1}. It
aborts if bi∗ ∈ {0, 1}.

Game2 This game is identical to Game1 except that now the vectors [gi]1, i ∈ [n] and i 6= i∗,
are uniform vectors in the space spanned by [gn+1]1.

Game3 This game is identical to Game2 except that now the vector [hi∗ ]2 is a uniform vector
in G2

2, sampled independently of [hn+1]2.

It is obvious that the first two games are indistinguishable. The rest of the argument goes
as follows.

Lemma 4.3 Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Proof The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and
b) bi∗ /∈ {0, 1}. The view of adversary A is independent of i∗, while, if Game0(A) = 1, then
there is at least one index ` ∈ [n] such that such that b` /∈ {0, 1}. Thus, the probability
that the event described in b) occurs conditioned on Game0(A) = 1, is greater than or
equal to 1/n and the lemma follows. �

Lemma 4.4 There exists a U1-MDDHG1 adversary B such that |Pr [Game1(A) = 1] −
Pr [Game2(A) = 1] | ≤ AdvU1,G1(B) + 2/q.

Proof The adversary B receives ([s]1, [t]1) an instance of the U1-MDDHG1 problem. B
defines all the parameters honestly except that it embeds the U1-MDDHG1 challenge in
the matrix [G]1.

Let [E]1 := ([s]1|[t]1). B picks i∗ ← [n], W0 ← Z2×(i∗−1)
q , W1 ← Z2×(n−i∗)

q , [gi∗ ]1 ← G2
1,

and defines [G]1 := ([E]1W0|[gi∗ ]1|[E]1W1|[s]1). In the real algorithm K, the generator
picks the matrix ∆ ∈ Z2×(n+1)

q . Although B does not know ∆, it can compute [∆]1 as
[∆]1 = [G]1U

−1, given that U is full rank and was sampled by B, so it can compute the
rest of the elements of the common reference string using the discrete logarithms of [U]1,
[H]2 and [a]2.
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In case [t]1 is uniform over G2
1, by the Schwartz-Zippel lemma det([E]1) = 0 with prob-

ability at most 2/q. Thus, with probability at least 1 − 2/q, the matrix [E]1 is full-rank
and [G]1 is uniform over G2×(n+1)

1 as in Game1. On the other hand, in case [t]1 = γ[s]1,
all of [gi]1, i 6= i∗, are in the space spanned by [gn+1]1 as in Game2. �

Lemma 4.5 There exists a U1-MDDHG2 adversary B such that |Pr [Game2(A) = 1] −
Pr [Game3(A) = 1] | ≤ AdvU1,G2(B).

Proof The adversary B receives an instance of the U1-MDDHG2 problem, which is a pair
([s]2, [t]2), where [s]2 is a uniform vector of G2

2 and [t]2 is either a uniform vector in G2
2

or [t]2 = γ[s]2, for random γ ∈ Zq.

Adversary B samples µi ← Zq,gi∗ ,gn+1 ← Z2
q and defines gi = µign+1, i 6= i∗. Then,

defines [hn+1]2 := [s]2 and honestly samples the rest of the columns of [H]2 with the sole
exception of [hi∗ ]2, which is set to [t]2.

Given that adversary B can only compute gi[h
>
j ]2 ∈ G2×2

2 , it defines [Di,j]2 := gi[h
>
j ]2 −

[Ti,j]2 and [Ci,j]1 := [Ti,j]1, for Ti,j ← Z2×2
q and (i, j) ∈ In,1. Note that this does

not change the distribution of ([Di,j]2, [Ci,j]1), which is the uniform one conditioned on
Ci,j + Di,j = gih

>
j .

The rest of the parameters are computed using a← L1, the matrix ∆ ∈ Z2×(n+1)
q and the

discrete logarithms of [G]1. It is immediate to see that adversary B perfectly simulates
Game2 when [t]2 = γ[s]2 and Game3 when [t]2 is uniform. �

Lemma 4.6 There exists a SPG2 adversary B, a soundness adversary P∗1 for Ψsum and a
strong soundness adversary P∗2 for Ψcom such that

Pr [Game3(A) = 1] ≤ 4/q + AdvSPG2
(B) + AdvΨsum(P∗1) + AdvΨcom(P∗2).

Proof Pr[det((gi∗|gn+1)) = 0] = Pr[det((hi∗ |hn+1)) = 0] ≤ 2/q, by the Schwartz-Zippel
lemma. Then, with probability at least 1 − 4/q, gi∗h

>
i∗ is linearly independent from

{gih>j : (i, j) ∈ [n+1]2 \{(i∗, i∗)}} which implies that gi∗h
>
i∗ /∈ Span({Ci,j +Di,j : (i, j) ∈

In,1}). Additionally Game3(A) = 1 implies that bi∗ /∈ {0, 1} while the verifier accepts the
proof produced by A, which is ([c∆]1, [d]2, ([Θ]1, [Π]2), πsum, πcom). Since {[hi∗ ]2, [hn+1]2}
is a basis of G2

2, we can define wh, bi∗ as the unique coefficients in Zq such that [d]2 =
bi∗ [hi∗ ]2 + wh[hn+1]2. We distinguish three cases:

1) If [c∆]1 6= ∆[c]1, we can construct an adversary B against the SPG2 assumption that
outputs [c∆]1 −∆[c]1 ∈ ker([a]>2 ).

2) If [c∆]1 = ∆[c]1 but bi∗ 6= bi∗ . Given that [c]1 is perfectly binding and that bi∗ 6= bi∗
is the unique opening of [c∆]1 at coordinate i∗, both commitments can not be opened
to the same value. Therefore, the adversary P∗2 against the strong soundness of Ψcom

outputs πcom which is a fake proof for ([c∆]1, [d]2). Note that strong soundness is
required since, in order to compute {[Ci,j]1, [Di,j]2 : (i, j) ∈ In,1}, P∗2 requires the
discrete logs of either [G]1 or [D]2.

3) If [c∆]1 = ∆[c]1 and bi∗ = bi∗ , then bi∗(bi∗ − 1) 6= 0. If we express Θ + Π as a
linear combination of gih

>
j , the coordinate of gi∗h

>
i∗ is bi∗(bi∗ − 1) 6= 0 and thus
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Θ + Π /∈ Span({Ci,j + Di,j : (i, j) ∈ In,1}). The adversary P∗1 against Ψsum outputs
πsum which is a fake proof for ([Θ]1, [Π]2). 3 �

4.1.5 Extensions

CRS Generation for Individual Commitments.

A natural way to extend our construction to individual commitments (distribution (b)
from Section 4.1.2) is the following. The only change is that the matrix ∆ is sampled
uniformly from Z2×2n

q (the distribution of [H]2 is not changed). Thus, the matrix [G]1 :=

∆[U]1 has 2n columns instead of n+ 1 and [c∆]1 := [G]1
(

b
wg

)
for some wg ∈ Znq . In the

soundness proof, the only change is that in Game2, the extra columns are also changed to
span a one-dimensional space, i.e. in this game [gi]1, i ∈ [2n− 1] and i 6= i∗, are uniform
vectors in the space spanned by [g2n]1. With this approach, the proof size is still constant
and the changes to the original construction are minimal but the CRS is considerably
larger. Further, we do not know how to make the CRS linear for bit-strings of weight 1.

Therefore, we propose an alternative way to extend our result to individual commitments.
In this new construction, the matrix [G]1 is independent from [U]1 and for all i ∈ [n],
[gi]1 = µi[gn+1]1, µi ← Zq and [gn+1]1 ← Z2

q.

The proof is defined in a slightly different way. Now one computes [c∆]1 := [G]1

(
b
w′g

)
,

w′g ← Zq, and one proves that the three commitments, [c]1, [c∆]1, [d]2 open to the same
value. Intuitively, this replaces in the original construction the proofs that ∆[c]1 = [c∆]1
and that ∆[c]1 and [d]2 open to the same value. More specifically, this is proven by
showing that (

(
[c]1

[c∆]1

)
, [d]2) ∈ L[M]1,[N]2 , where.

M :=

(
U1 U2 02n×1 02n×1

G1 02×n gn+1 02×1

)
and N :=

(
H1 02×n 02×1 hn+1

)
.

The advantage of this alternative approach is that the matrix [G]1 has now n+1 columns
as in the original construction as opposed to 2n in the first extension to individual com-
mitments.

The proof of soundness must be modified in the following way. In the proof of Lemma 7.7
one sets [gn+1]1 := [s]1 and [gi∗ ]1 := [t]1, similarly as done in Lemma 4.5. This guarantees
that, as in the original construction, in the last game [gi∗ ]1 (resp. [hi∗ ]2) is linearly
independent of the rest of columns of [G]1 (resp. [H]2). In the last game we need to show
that [c∆]1 = bi∗ [gi∗ ]1 + w̃g[gn+1]1 and [d]2 = bi∗ [hi∗ ]2 + w̃h[hn+1]2, for some w̃g, w̃h ∈ Zq
and that bi∗ ∈ {0, 1}. Note that the fact that (

(
[c]1

[c∆]1

)
, [d]2) ∈ L[M]1,[N]2 implies that

there is some γ ∈ Z2n+2
q such that

(
[c]1

[c∆]1
[d]2

)
=
(

[M]1
[N]2

)
γ, and the fact that [c]1 is perfectly

binding together with the form of [M]1, [N]2 implies that γ =
(

b
γ′
)
. In particular, [c∆]1 =

[G]1
(

b
γ2n+1

)
= bi∗ + w̃g[gn+1]1 and [d]2 = [H]2

(
b

γ2n+2

)
= bi∗ [hi∗ ]2 + w̃h[hn+1]2 for some

3The proof system Ψsum is constructed for matrices {(Ci,j ,Di,j) : (i, j) ∈ In,1} sampled from some
distribution Dgk, which in this case depends on the distribution of G and H. We assume that the
adversary P∗2 against Ψsum receives the common reference string of Ψsum as described in Section 3.3 and
additionally the matrices [G]1 and [H]2 which defines the language, i.e. the distribution of Ci,j , Di,j

(this is necessary so that P∗2 can simulate the crs for adversary A). We stress this additional information
to describe the language does not affect the soundness proof for Theorem 3.1 (in particular, [G]1 and
[H]2 are independent of (Λ,Ξ)).
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unique bi∗ . To conclude the proof of soundness we just need to argue that bi∗ 6= {0, 1},
leads to a contradiction. This follows from the same argument as the original proof.

For zero-knowledge, observe that [c∆]1 is just a uniform vector in Span([gn+1]1). The sim-
ulator just picks a random [c∆]1 and simulates the proof that

((
[c]1

[c∆]1

)
, [d]2) ∈ L[M]1,[N]2

with the appropriate trapdoor. The rest of the proof is identical to the simulated proof
in the original construction.

Linear Equations Satisfied by Bit-Strings

Because of the homomorphic properties of the commitments, we can easily extend it to
prove that the bit-string b satisfies

∑
i∈[n] βibi = t, for some β ∈ Znq , t ∈ Zq. If the

commitment [c]1 is a concatenation of GS commitments to bi, this can be done in the
usual way with GS proofs. But if U is drawn from distribution (a) (see Section 4.1.2) this
can also be done as follows. Define B :=

(
β1 ... βn 0
0 ... 0 1

)
∈ Z2×(n+1)

q . We claim the following:

B[c]1 − t[e2
1] ∈ Span (B[un+1]1)⇔

∑
i∈[n]

βibi = t.

This is justified because Bui = Ben+1
i = βie

2
1, and then Bc−te2

1 = wBun+1+
∑

i∈[n] biBui−
te2

1 = wBun+1 +
(∑

i∈[n] βibi − t
)

e2
1. So to be able to prove that

∑
i∈[n] βibi = t, we just

need to add to the CRS the necessary elements to prove membership in LB[un+1]1 :=
{[x]1 ∈ G2

1 : ∃w ∈ Zq,x = wBun+1} using one of the constructions of Section 2.7.

Bit-Strings of Weight 1

In the special case when the bit-string has only one 1 (this case is useful in some applica-
tions, see Section 4.1.6), the size of the CRS can be made linear in n, instead of quadratic.
To prove this statement we would combine our proof system for bit-strings of Section 4.1.3
and a proof that

∑
i∈[n] bi = 1 as described above when m = 1 or using GS-proofs when

m = n. In the definition of (Θ,Π) in Eq. 4.5, one sees that for all pairs (i, j) ∈ [n]× [n],
the coefficient of (Ci,j,Di,j) is bi(bj − 1). If i∗ is the only index such that bi∗ = 1, then we
have: ∑

i∈[n]

∑
j∈[n]

bi(bj − 1)(Ci,j,Di,j) =
∑
j 6=i∗

(Ci∗,j,Di∗,j) =: (Ci∗,6=,Di∗,6=).

Therefore, one can replace in the CRS the pairs of matrices (Ci,j,Di,j) by (Ci, 6=,Di, 6=),
i ∈ [n]. The resulting CRS is linear in n.

4.1.6 Applications

Many protocols use proofs that a commitment opens to a bit-string as a building block.
Since our commitments are still of size Θ(n), our results may not apply to some of these
protocols. Yet, there are several applications where bits need to be used independently
and our results provide significant improvements. Table 4.2 summarizes them.

Signatures

There are many signature schemes where a proof that some vector of integers is a bit-string
is useful [BFPV11, BPV12, Cam13, EHM11]. For example, in the revocable attribute-
based signature scheme of Escala et. al [EHM11], every signature includes a proof that a
set of GS commitments, whose size is the number of attributes, opens to a bit-string.
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Further, the set membership proof discussed below can also be used to reduce the size
of the ring signature scheme of Chandran et al. [CGS07], which is the most efficient ring
signature in the standard model. Indeed, to sign a message m, among other things, the
signer picks a one-time signature key and certifies the one-time verification key by signing
it with a Boneh-Boyen signature under vkα. Then, the signer commits to vkα and shows
that vkα belongs to the set of Boneh-Boyen verification keys (vk1, . . . , vkn) of the parties
in the ring R.

Proof System Author Proof Size

Threshold GS
Ràfols [Ràf15] (1) (mx + 3(n− t) + 2n̄, 0)
Ràfols [Ràf15] (2) 2(n− t+ 1, n)
This work (2n+ 12, 10)

Set-Membership proof
(Ring Signature)

Chandran et al. [CGS07] (16
√
n+ 4, 16

√
n+ 4)

Ràfols [Ràf15] (8
√
n+ 6, 12

√
n)

This work (4
√
n+ 14, 8

√
n+ 14)

Set-Membership proof
(fixed set)

This work (first scheme) (4
√
n+ 16, 2

√
n+ 22)

This work (second scheme) (6 3
√
n+ 36, 6 3

√
n+ 60)

Table 4.2: Comparison of the application of our techniques and results from the literature. Notation (a, b)
means a elements of G1 and b elements of G2. In rows labeled as “Threshold GS” we give the size of the
proof of satisfiability of t-out-of-n sets Si, where mx is the sum of the number of variables in G1 in each set
Si, and n̄ is the total number of two-sided and quadratic equations in

⋃
i∈[n] Si. For all rows, we must add

to the proof size the cost of a GS proof of each equation in one of the sets Si. In the other rows n is the size
of the set.

Threshold GS Proofs for PPEs

There are two approaches to construct threshold GS proofs for PPEs, i.e. proofs of
satisfiability of t-out-of-n equations. One is due to Groth [Gro06] and consists in compiling
the n equations into a single equation which is satisfied only if t of the original equations
are satisfied. For the case of PPEs, this method adds new variables and proves that each
of them opens to a bit. Our result reduces the cost of this approach, but we omit any
further discussion as it is quite inefficient because the number of additional variables is
Θ(mvar + n), where mvar is the total number of variables in the original n equations.

The second approach is due to Ràfols [Ràf15]. The basic idea behind Ràfols’s work,
which extends Groth et al.’s work [GOS06a], follows from the observation that for each
GS equation type tp, the CRS space K is partitioned into a perfectly sound CRS space
Kbtp and a perfectly witness indistinguishable CRS space Khtp.

In particular, to prove satisfiability of t-out-of-n sets of equations from {Si : i ∈ [n]} of
type tp, it suffices to construct an algorithm Kcorr which on input crsGS and some set of
indexes A ⊂ [n], |A| = t, generates n GS common reference strings {crsi, i ∈ [n]} and
simulation trapdoors τi,sim, i ∈ Ac, in a such a way that4:

a) it can be publicly verified the set of perfectly sound keys, {crsi : crsi ∈ Kbtp} is of
size at least t,

b) there exists a simulator Scorr who outputs (crsi, τi,sim) for all i ∈ [n], and the distri-
bution of {crsi : i ∈ [n]} is the same as the one of the keys output by Kcorr when
crsGS is the perfectly witness-indistinguishable CRS.

4More technically, this is the notion of simulatable verifiable correlated key generation of Ràfols, which
extends the definition of verifiable correlated key generation of Groth et al. [GOS06a].
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The prover of t-out-of-n satisfiability can run Kcorr and, for all i ∈ [n], compute a real
(resp. simulated) proof for Si with respect to crsi when i ∈ A (resp. when i ∈ Ac).

Ràfols gives two constructions for PPEs, the first one can be found in Appendix C and
the other follows from Section 75. Our algorithm Kcorr for PPEs6 goes as follows:

• Define (b1, . . . , bn) as bi = 1 if i ∈ A and bi = 0 if i ∈ Ac. For all i ∈ [n], let
[zi]1 := GS.Commck(bi) = bi[u1]1 + ri[u2]1, ri ∈ Zq, and define τsim,i = ri, for all
i ∈ Ac. Define crsi := (Γ, [zi]1, [u2]1, [v1]2, [v2]2).

• Prove that ([c1]1, . . . , [cn]1) opens to b ∈ {0, 1}n and that
∑

i∈[n] bi = t.

The simulator just defines b = 0. The reason why this works is that when bi = 1,
([zi]1 − [u1]1) ∈ Span([u2]1), therefore crsi ∈ KbPPE and when bi = 0, ([zi]1 − [u1]1) /∈
Span([u2]1) so crsi ∈ KhPPE.

More Efficient Set-Membership Proofs

Chandran et al. construct a ring signature of size Θ(
√
n) [CGS07], which is the most

efficient ring signature in the standard model. Their construction uses as a subroutine
a non-interactive proof of membership in some set S = ([s1]1, . . . , [sn]1) which is of size
Θ(
√
n). The trick of Chandran et al. to achieve this asymptotic complexity is to view S as

a matrix [S]1 ∈ Gm×m
1 , form =

√
n, where the i, j th element of [S]1 is [si,j]1 := [s(i,j)]1 and

(i, j) := (i− 1)m+ j. Given a commitment [c]1 to some element [sα]1, where α = (iα, jα),
their construction in asymmetric bilinear groups works as follows :

1. Compute GS commitments in G2 to b1 . . . , bm and b′1, . . . , b′m, where bi = 1 if i = iα
and 0 otherwise, and b′j = 1 if j = jα, and 0 otherwise.

2. Compute a GS proof that bi ∈ {0, 1} and b′j ∈ {0, 1} for all i, j ∈ [m], and that∑
i∈[m] bi = 1, and

∑
j∈[m] b

′
j = 1.

3. Compute GS commitments to [x1]1 := [s(iα,1)]1, . . . , [xm]1 := [s(iα,m)]1.

4. Compute a GS proof that [xj]1 =
∑

i∈[m] bi[s(i,j)]1, for all j ∈ [m], is satisfied.

5. Compute a GS proof that [sα]1 =
∑

j∈[m] b
′
j[xj]1 is satisfied.

With respect to the naive use of GS proofs, Step 2 was improved by Ràfols [Ràf15]. Using
our proofs for bit-strings of weight 1 from Section 4.1.5, we can further reduce the size of
the proof in step 2, see table.

We note that although in step 4 the equations are all two-sided linear equations, proofs can
only be aggregated if the set comes from a witness samplable distribution and the CRS is
set to depend on that specific set. This is not useful for the application to ring signatures,
since the CRS should be independent of the ring R (which defines the set). If aggregation
is possible then the size of the proof in step 4 is reduced from (2|G1| + 4|G2|)

√
n to

4|G1|+ 8|G2|.

Next we describe the construction generalized to vectors (which will be useful in the next
construction) and then we show that, when the CRS depends on the set and the set is
witness samplable, the proof can be further reduced to Θ( 3

√
n).

5The construction in [Ràf15, Section 7] is for other equation types but can be used to prove that
t-out-of-n of crs1, . . . , crsn are perfectly binding for PPEs.

6Properly speaking the construction is for PPEs which are left-simulatable in Ràfols’s terminology.
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More Efficient Set-Membership proof for a Set of Vectors

Here we describe a more efficient version of Chandran’s et al. set-membership proof, which
is also extended to vectors –i.e. to the case where S = ([s1]1, . . . , [sn]1) is a set of vectors
of length `. In such a proof, we show that some commitment [c]1 opens to a vector [sα]1,
where α = (iα, jα) (recall that (i, j) =

√
n(i− 1) + j).

1. Compute GS commitments in G2 to b1 . . . , bm and b′1, . . . , b′m, where bi = 1 if i = iα
and 0 otherwise, and b′j = 1 if j = jα, and 0 otherwise.

2. Compute a proof that bi ∈ {0, 1} and b′j ∈ {0, 1} for all i, j ∈ [m], using the proof
system of Section 4.1.3.

3. Compute GS proofs that
∑

i∈[m] bi = 1 and
∑

j∈[m] b
′
j = 1.

4. Compute GS commitments to each coordinate of [x1]1 := [s(iα,1)]1, . . . , [xm]1 :=
[s(iα,m)]1.

5. Compute an aggregated GS proof that the equations [xj]1 =
∑

i∈[m] bi[s(i,j)]1, for all
j ∈ [m], are satisfied, as detailed in Section 3.4.

6. Compute a GS proof that [sα]1 =
∑

j∈[m] b
′
j[xj]1 is satisfied.

We emphasize that the CRS depends on the set S. This is necessary to aggregate the
proofs as in step 5. More specifically, to aggregate the proof of the equations [xj]1 =∑

i∈[m] bi[s(i,j)]1 , j ∈ [m] (that is, a total of `k equations), we need to include in the CRS
some information which depends on the coordinates of [s(i,j)]1.

In Section 6 we require a CRS independent of the set and thus step 5 is proven using GS
proofs without aggregation. While this require Θ(

√
n) additional elements, the proof size

is still Θ(
√
n).

Theorem 4.7 If S is witness samplable, the above protocol is a perfectly complete, com-
putationally sound, and computationally zero-knowledge proof system for the language of
commitments to elements from the set S.

Proof Completeness follows directly from the completeness of the building blocks. Sound-
ness follows directly from the perfect soundness of GS proofs together with the compu-
tational soundness of aggregation of GS proofs. For computational zero-knowledge, if
crsGS := (Γ, [u1]1, [u2]1, [v1]2, [v2]2) is the GS common reference string in the soundness
setting as defined in Section 2.6, switch to a game where [v1]2 = ε[v2]2. Under the DDH
assumption in G2, the new CRS is computationally indistinguishable from the original
CRS. In a simulated proof, commit to bi = 0, b′j = 0 for all i, j ∈ [m]. In step 2, simply
compute a real proof. In step 3, use the GS simulation algorithm (with trapdoor ε) to
simulate the proof. In Step 4, set [xj]1 = [0]1. Finally, in step 6, simulate a proof using
ε. It is not hard to see that such a proof can be simulated even without knowledge of an
opening of [c]1. �

A Θ( 3
√
n) Set-Membership proof for Witness Samplable Fixed Sets

We give set-membership proof with improved asymptotic proof size when the set is drawn
from a witness samplable distribution and the CRS depends on the set (two different sets
require two different CRS).

The main idea is to combine the previous set-membership proof with a split kernel assump-
tion. Specifically, the CRS includes a matrix [A]2, A ← Dm,2, whose rows are denoted
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[a1]2, . . . , [am]2 and a set

S ′ :=

∑
i∈[m]

ai[s(i,1,1)]1,
∑
i∈[m]

ai[s(i,1,2)]1, . . . ,
∑
i∈[m]

ai[s(i,m,m)]1

 ∈ G2×m2

1 ,

where m := 3
√
n, (i, j, k) = m2(i − 1) + m(j − 1) + k ∈ [n]. As before, the goal to prove

is that a commitment [c]1 opens to some [sα]1 ∈ S = {[s1]1, . . . , [sn]1} and (iα, jα, kα) are
such that α = (iα, jα, kα).

1. Commit to [y]1 :=
∑

i∈[m] ai[s(i,jα,kα)]1 such that α = (iα, jα, kα).

2. Using the set-membership proof for vectors to show that [y]1 is an element of S ′.

3. Compute commitments to [zi]1 := [s(i,jα,kα)]1, for each i ∈ [m].

4. Compute a GS proof for the equations [y]1[h]2 =
∑

i∈[n][ai]2[zi]1.

5. Compute GS commitments in G2 to b1 . . . , bm ∈ {0, 1}, where bi = 1 if i = iα and 0
otherwise.

6. Using our proof system from Section 4.1.3 prove that bi ∈ {0, 1} for all i ∈ [m].

7. Compute GS proofs for the satisfiability of equations
∑

i∈[m] bi = 1 and [sα]1 =∑
i∈[m] bi[zi]1.

The first step is to commit to [y]1 :=
∑

i∈[m] ai[s(i,jα,kα)]1 and use the previous proof
system to prove [y]1 ∈ S ′. The next step is to commit to [zi]1 := [s(i,jα,kα)]1 and prove
that

∑
i∈[m][ai]2[zi]1 = [h]2[y]1 holds. Finally, steps 5 and 6 prove that [sα]1 is an element

of the set ([z1]1, . . . , [zm]1). For the last statement, compute GS commitments to bi, i ∈ [m],
and prove that

∑
i∈[m] bi[zi]1 = [sα]1,

∑
i∈[m] bi = 1 and bi ∈ {0, 1}.7

Theorem 4.8 If S is witness samplable, the above protocol is a perfectly complete, com-
putationally sound, and computationally zero-knowledge proof system for the language of
commitments to elements from the set S.

Proof Completeness follows directly from the completeness of the building blocks. Sound-
ness can be argued as follows. If the set is witness samplable, the CRS can be gener-
ated given an instance of the Dm,2-SKerMDH assumption, ([A]1, [A]2). By the sound-
ness of the extension to vectors of the proof of Chandran et al., it holds that [y]1 =∑

i∈[m] ai[s(i,j,k)]1 for some j, k ∈ [m]. Because of the perfect soundness of GS proofs it
must hold that

∑
i∈[m][ai]2[zi]1 = [y]1[h]2 =

∑
i∈[m][ai]2[s(i,j,k)]1. It must also be the case

that [z1]1 = [s(1,j,k)]1, . . . , [zm]1 = [s(m,j,k)]1, because otherwise the pair ([ρ]1, [0]2), where
[ρ]1 := ([z1]1−[s(1,j,k)]1, . . . , [zm]1−[s(m,j,k)]1) is a solution to the Dm,2-SKerMDH challenge,
as [ρ]1[A]2 = [0]2[A]1. Soundness of the last step implies that bi ∈ {0, 1}, for all i ∈ [m],
and that

∑
i∈[m] bi = 1. Therefore, there exists a unique i ∈ [m] such that bi = 1. Finally,

[sα]1 =
∑

i∈[m] bi[zi]1 implies that [c]1 opens to [sα]1 = [zi]1 = [s(i,j,k)]1. Zero-knowledge
follows from the same argument as in the proof of Theorem 4.7. �

7Such statement can also be proven using again the set-membership proof, and the proof will be of
size Θ( 6

√
n). Note this is not exactly a set-membership proof, since only the commitments to the elements

in the set are public. However, it is not hard to construct a proof system for that statement using the
same ideas as Chandran et al.
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4.2 The Computationally Binding Case

In this section we construct a constant-size proof that a computationally binding commit-
ment to a vector from Znq opens to an element from {0, 1}n. In this case the size of the
commitment is independent of n.

In Section 4.2.1 we introduce a new commitment scheme, extended multi-Pedersen com-
mitments, which is an “hybrid” between Groth-Sahai commitments and multi-Pedersen
commitments. Then, in Section 4.2.2, we construct a QA-NIZK argument that an ex-
tended multi-Pedersen commitment opens to an element from {0, 1}n. Finally, in Sec-
tion 4.2.3 we show how to give a constant-size proof that many multi-Pedersen commit-
ments open to bit-strings. Using this last proof system one can derive our construction
for the perfectly-binding case as a simple corollary and, further, it helps to construct the
efficient constructions from Chapter 5.

4.2.1 Extended Multi-Pedersen Commitments

In this section we introduce a new commitment scheme which is a generalization of multi-
Pedersen commitments and which was implicitly used in Section 4.1.3.

Given a vector m ∈ Zmq , the multi-Pedersen commitment in Gγ is a single group element
[c]γ :=

∑
i∈[m] mi[gi]γ + r[gm+1]γ ∈ Gγ, where [gi]γ ∈ Gγ, i ∈ [m+ 1], and r ← Zq. 8 The

(k + 1)-dimensional multi-Pedersen commitments differs only in that the keys and the
resulting commitments are in Gk+1

γ , for k ≥ 1.

While the original MP commitments are perfectly hiding, the interest of the new commit-
ments is that, if the keys come from the distribution Dm,ik defined in Section 2.4, they are
perfectly binding at coordinate i. Intuitively, the new commitment is defined in a larger
space so that not all the information about the witness is destroyed (in an information-
theoretic sense).

Definition 4.9 The (k+1)-dimensional multi-Pedersen commitment scheme in the group
Gγ is specified by the following three algorithms MP = (MP.K,MP.Com,MP.Vrfy):

• MP.K is a randomized algorithm, which on input the group key gk, a natural num-
ber m ∈ N, and the description of some matrix distribution Dk+1,m+k, outputs a
commitment key ck := [G]γ, where G← Dk+1,m+k.

• MP.Com is a randomized algorithm which, om input a commitment key ck = [G]γ,
and a message m in the message space Mck = Zmq , samples r ← Zkq and outputs a
commitment [c]γ := [G]γ ( m

r ) in the commitment space Cck = Gk+1
γ and an opening

Op = r,

• MP.Vrfy is a deterministic algorithm which, on input the commitment key ck = [G]γ,
a commitment [c]γ, a message m ∈ Zmq and an opening Op = r ∈ Zkq , outputs 1 if
[c]γ = [G]γ ( m

r ) and 0 otherwise.

Theorem 4.10 The MP scheme is computationally binding if the discrete logarithm as-
sumption holds in Gγ. Further, if Dk+1,m+k = Dm,ik , it holds that:

• If i = 0, then MP is perfectly hiding,

• If i ∈ [m], then MP is statistically binding at coordinate i, which means that for
each [c]γ ∈ Gk+1

γ , there exists a unique m̃i ∈ Zq such that for all m ∈ Zmq , r ∈ Zkq
8Written in the usual multiplicative notation c =

∏
i∈[m] g

mi
i · grm+1.
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such that [c]γ = [G]γ ( m
r ), mi = m̃i. Further, the scheme is perfectly hiding at the

rest of coordinates.

Proof (Computationally binding.) (This follows a proof due to Jorge Villar). Let [a]γ ∈
Gγ be the discrete logarithm challenge. To sample the commitment key according to
Dm,ik , choose G2 ← Dk, and define the last k columns of [G]γ as [G2]γ. For the rest of
the columns of [G]γ, independently for each j ∈ [m], i 6= j, sample a pair αj, βj and
define [gj]γ = [G2(aαj + βj)]γ, which can be computed as [a]γG2αj + [G2βj]γ. If i 6= 0,
set gi ← Zk+1

q . In this case, with overwhelming probability, gi is linearly independent of
the rest of the columns and we will assume so in the following. The commitment key is
then given to the adversary against the binding property of the scheme, and it outputs
a commitment [c]γ, together with two valid openings (m, r), (m′, r′) such that m 6= m′.
It follows that [c]γ = [G]γ ( m

r ) = [G]γ
(

m′

r′

)
, which implies that [0]γ = [G]γ

(
m−m′

r−r′

)
.

Further, because gi is linearly independent of the rest of the columns, it holds that:

a

(
G2(

∑
j 6=i

(m′j −mj)αj)

)
=

(
G2(r− r′ +

∑
j 6=i

βj(mj −m′j))

)
. (4.7)

W.l.o.g we can assume that G2 has full rank (it can be shown that if Dk-MDDH is a
generically hard assumption in k-linear groups, then matrices sampled from Dk have full
rank with overwhelming probability). Then, we can recover a ∈ Zq from equation 4.7
except if

∑
j 6=i(m

′
j − mj)αj = 0. But since, for all j, αj is information theoretically

hidden from the adversary, the probability of this event is at most 1/qk.

(Perfectly binding at coordinate i.) With overwhelming probability, gi is linearly indepen-
dent of the rest of the columns of G. Therefore, given any [c]γ ∈ Gk+1

γ , if m ∈ Zmq , r ∈ Zkq
are such that c = G ( m

r ), there exists a unique m̃i ∈ Zq such that mi = m̃i.

(Perfectly hiding at coordinate j, j 6= i.) This follows immediately from the fact that gj
is in the image of G2. �

Comparison with other Primitives

Somewhere Statistically Hashing. The idea of primitives being binding at only one coordi-
nate have been used before in the context of somewhere statistically binding hash functions
(SSB hashing) [HW15, OPWW15]. SSB hashing formalize the notion of being binding at
only one coordinate and of indistinguishability of the different keys (called index hiding).
In addition, SSB hashing should have a local opening property which means that there
is a short proof that certifies the i th opening. Unlike multi-Pedersen commitments, SSB
lacks of a (computational) “everywhere binding” property nor a hiding property. While
the former property can be easily shown to hold from the somewhere statistically binding
and index hiding properties (with a security loss of 1/n), they totally lack of a hiding
property.

Okamoto et al. constructed a “two-to-one” SSB hash function under the DDH assumption –
i.e. a vector of size 2n is hashed into a digest which uniquely defines one of the halves of the
original vector – which bears some similarities with extended multi-Pedersen commitments
[OPWW15]. Using our notation, Okamoto et al. compute the hash of (x,y) ∈ Z2n

q
9,10

Hhk(x,y) = [A]1x + [B]1y ∈ Gn+1
1 ,

9In fact, Okamoto et al. considered that x ∈ {0, 1}s and then they “parsed” x as a vector in Znq , for
n = s/t, where each coordinate is the integer in [0, 2t − 1] corresponding to the respective block of size t
of x.

10Okamoto et al. considered a transposed version of what is written here.
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where hk = ([A]1 ∈ G(n+1)×n
1 , [B]1 ∈ G(n+1)×n

1 ). A and B can be sampled in such a
way that either A or B is full rank and their columns are linearly independent from the
columns of the other matrix (B and A respectively). The size of the digest is Θ(n) group
elements.

Okamoto et al.’s construction can be viewed as variant of extended multi-Pedersen com-
mitment where the commitment key is a matrix of size (n + 1) × 2n and the first (or
last) columns are linearly independent from the other columns. However, with stan-
dard extended multi-Pedersen commitments, one can construct a SSB hash function
Hhk(x) := MP.Comck(x; 0), hk := ck, where digests consist of only 2 group elements.
Further, one can have the local opening property by attaching a QA-NIZK proof that

MP.Comck(x; 0)− xi[gi]1 ∈ Span({[gj]1 : j 6= i}),

while Okamoto et al.’s “two-to-one” construction lacks of this property.

Vector Commitments. Extended multi-Pedersen commitments bear some similarities with
vector commitments, introduced by Catalano and Fiore [CF13]. Using extended multi-
Pedersen commitments, one can commit to a vector m ∈ Znq and show the so called
position binding property, that is, show that it opens to mi at coordinate i. Indeed, we
can compute a proof that (MP.Comck(xi; 0)−mi[gi]1) ∈ Span({[gj]1 : j 6= i}). However,
we do not elaborate more on this application since Catalano and Fiore’s construction is
(by a constant factor) more efficient in terms of CRS size and commitment size, and also
relies on weaker assumptions.

4.2.2 The Scheme

We construct a QA-NIZK argument of membership in the language

Lck,bits := {[c]1 ∈ Gk+1
1 : ∃b ∈ {0, 1}m, r ∈ Zkq s.t. [c]1 = MP.Comck(b; r)},

where ck := [G]1 and G is a matrix sampled from some distribution Dm,ik (as defined on
Section 2.4). For simplicity, in the exposition we restrict ourselves to the case Dk = L1

so G is sampled from Lm,i1 , for some 0 ≤ i ≤ m.

It is important to note that, as an extended MP commitment is at best only binding at
one coordinate, a priori showing that it opens to b ∈ {0, 1}m is not very meaningful, as
it does open to other values as well. However, when combined with external protocols
that unequivocally define b, it becomes a key building block to obtain the the results of
Chapter 5.

The argument is implicit in Section 4.1, where we construct a QA-NIZK argument for
proving that a perfectly binding commitment opens to a bit-string. More technically, to
prove that a perfectly binding commitment [c′]1 opens to a bit-string b, the argument in
Section 4.1 takes the following steps:

1. Construct two MP commitments [c]1, [d]2 to b.

2. Prove that [c]1 and [c′]1 open to the same value.

3. Prove that the two MP commitments [c]1 and [d]2 open to the same value.

4. Prove that c(d −
∑

j∈[m] hj)
> ∈ Span({gih>j : i, j ∈ [m + 1]} \ {gih>i : i ∈ [m]}),

where ck := [(g1, . . . ,gm+1)]1 and ck′ := [(h1, . . . ,hm+1)]2.
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The argument we need for our results eliminates the perfectly binding commitment, which
of course also means that step 2 disappears. Additionally, in the original scheme from
Section 4.1, the distribution of ck = [G]1 is uniform over G2×(n+1)

1 , while in our argument
of membership in Lck,bits, G can follow any distribution Lm,i1 for some 0 ≤ i ≤ m. However,
it is not hard to adapt the original proof to these distributions (in fact, in the soundness
proof of Lemma 4.3, there is a game where the distribution of G is changed to Lm,i1 ,
for some i ← [m]). The proof that Lck,bits admits a constant-size QA-NIZK argument
essentially reuses parts of the proof of Theorem 7.3. For completeness, we give a full
description of the scheme for the computationally binding case below.

Detailed Description

K(gk, [G]1): Pick H ← Lm,01 , and denote by hj the j th column of H. Pick T ← Z2×2
q

and for each (i, j) ∈ Im,1 define matrices

([Ci,j]1, [Di,j]2) := ([gih
>
j + T]1, [−T]2).

Let Πsum be the proof system for sum in subspace (Section 3.3) and Πcom be an in-
stance of the proof system for equal commitment opening (Section 3.4). Let crssum ←
Πsum.K(gk, {([Ci,j]1, [Di,j]2) : (i, j) ∈ Im,1}) and let crscom ← Πcom.K(gk, [G]1 , [H]2 ,m).

The common reference string is given by:

crs := (gk, [G]1 , [H]2, {([Ci,j]1, [Di,j]2) : (i, j) ∈ Im,1}, crssum, crscom) .

P(crs, [c]1 , 〈b, r〉): The proof ([d]1, ([Θ]1, [Π]2), πcom, πsum) is computed as follows:

1. [d]2 := MP.Com[H]2(b; s), s← Zq.

2. Pick R← Z2×2
q and compute:

([Θ]1, [Π]2) := ([R]1, [−R]2) +
∑
i∈[m]

∑
j∈[m]

bi(bj − 1)([Ci,j]1, [Di,j]2) +

rs([Cm+1,m+1]1, [Dm+1,m+1]2) +∑
i∈[m]

(bis([Ci,m+1]1, [Di,m+1]2) +

r(bi − 1)([Cm+1,i]1, [Dm+1,i]2)) .

3. Compute a proof πsum that Θ + Π is in the span of {Ci,j + Di,j}(i,j)∈Im,1 and
a proof πcom that ([c]1, [d]2) open to the same value, using b, r, and s.

V(crs, [c]1, [d]2, ([Θ]1, [Π]2), πcom, πsum): If any of the following checks fails, the verifier
outputs 0, else it outputs 1:

1. [c]1

(
[d]>2 −

∑
j∈[m][hj]

>
2

)
= [Θ]1[I]2 + [I]1[Π]2.

2. Πsum.V(crssum, ([Θ]1, [Π]2), πsum)) = 1 and Πcom.V(crscom, ([c]1, [d]2), πcom) = 1.

S1(gk, [G]1): It generates and outputs the CRS in the same way as K and additionally
outputs the simulation trapdoor τ = (H, τsum, τcom), where τsum and τcom are, respec-
tively, Πsum’s and Πcom’s simulation trapdoors.
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S2(crs, [c]1, (H, τsum, τcom)): The proof ([d]1, ([Θ]1, [Π]2), πcom, πsum) is simulated as follows:

1. d := MP.Com[H]2(0n×1, wh), wh ← Zq.

2. Pick R← Z2×2
q and define:

[Θ]1 := [c]1

d−
∑
i∈[m]

hi

> + [R]1, [Π]2 := −[R]2.

3. πsum ← Πsum.S2(crssum, ([Θ]1, [Π]2), τsum) and πcom ← Πcom.S2(crscom, ([c]1, [d]2), τcom).

Security Proof

Theorem 4.11 The proof system described above is a QA-NIZK proof system with perfect
completeness, computational soundness, and perfect zero-knowledge.

Proof We remark that proof of completeness and zero-knowledge is the same for any
distribution Lm,i1 .

Perfect Completeness: Note that, by definition of Ci,j and Di,j, [Ci,j]1[I]2+[I]1[Di,j]2 =
[gi]1[hj]

>
2 . Since bi(bi − 1) = 0 for each i ∈ [m],

[c]1

[d]2 −
∑
i∈[m]

[hi]2

>

=
∑
i∈[m]

bis[gi]1[hm+1]>2 + r(bi − 1)[gm+1]1[hi]
>
2 +

∑
j∈[m]

bi(bj − 1)[gi]1[hj]
>
2


+ rs[gm+1]1[hm+1]>2

=

∑
i∈[m]

bis[gi]1h
>
m+1 + r(bi − 1)[gm+1]1h

>
i +

∑
j∈[m]
j 6=i

bi(bj − 1)[gi]1h
>
j

 [I]2

+ rs[gm+1]1h
>
m+1[I]2 + [R]1[I]2 + [I]1[−R]2

= [Θ]1[I]2 + [I]1[Π]2.

Finally, the rest of the proof follows from completeness of Πsum and Πcom.

Soundness: When G is sampled from Lm,01 it suffices to prove that the commitment [c]1
output by the adversary is in Span([G]1) since, by the perfect hiding property, [c]1
can be opened to any b ∈ {0, 1}m thus [c]1 ∈ Lck,bits. If [c]1 /∈ Span([G]1), then
we can break the (strong) soundness of the proof that [c]1 and [d]2 open to the
same value, since that proof implies that there exist x, r, s such that [c]1 = [G]1 ( x

r )
and [d]2 = [H]2 ( x

s ). Therefore, we construct an adversary B against the strong
soundness of Πcom that simulates A until it halts and outputs ([c]1, [d]2, πcom). Note
that, in order to simulate the CRS B requires H, but this is not a problem since it
is part of the input in the strong soundness game.

When G is sampled from Lm,i
∗

1 , i∗ > 0, the proof follows from the indistinguishability
of the following three games:
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Real: This is the real soundness game. The output is 1 if the adversary submits some
[c]1 /∈ Lck,bits and the corresponding proof which is accepted by the verifier.

Game0: This identical to Real, except that K does not receive [G]1 as a input but it
samples G itself according to Lm,i

∗

1 .

Game1: This game is identical to Game0 except that now H← Lm,i
∗

1 .

It is obvious that the first two games are indistinguishable. The rest of the argument
goes as follows.

Lemma 4.12 There exists a L1-MDDHG2 adversary D such that |Pr [Game0(A) = 1]
− Pr [Game1(A) = 1] | ≤ AdvL1,Gena(D).

Proof We construct an adversary D that receives a challenge ([A]2, [u]2) of the
L1-MDDHG2 assumption. From this challenge, D just defines the matrix [H]2 ∈
G2×(m+1)

2 as the matrix whose last column consists of [A]2, the ith column consists of
[u]2 and the rest of the columns are random vectors in the image of [A]2. Obviously,
when [u]2 is sampled from the image of [A]2,H follows the distribution Lm,01 , while
if [u]2 is a uniform element of G2, H follows the distribution Lm,i

∗

1 .

Adversary D samples G ← Lm,i
∗

1 . Given that D does not know the discrete loga-
rithms of [H]2, it cannot compute the pairs (Ci,j,Di,j) exactly as in Game0. Never-
theless, for each (i, j) ∈ Im,1 it can compute identically distributed pairs by picking
T← Z2×2

q and defining

([Ci,j]1, [Di,j]2) := ([T]1,gi[hj]
>
2 − [T]2).

The rest of the elements of the CRS, namely crscom and crssum, are honestly computed.
When H ← Lm,01 , D perfectly simulates Game0, and when H ← Lm,i

∗

1 , D perfectly
simulates Game1, which concludes the proof. �

Lemma 4.13 There exist adversaries B1, against the strong soundness of Πcom,
and B2, against the soundness of Πsum, such that Pr[Game1(A) = 1] ≤ 4/q +
AdvΠcom(B1) + AdvΠsum(B2).

Proof With probability 1 − 4/q, {gi∗ ,gm+1} and {hi∗ ,hm+1} are both bases of
Z2
q, we can define bi∗ , wg, wh, bi∗ as the unique coefficients in Zq such that c =

bi∗gi∗ + wggm+1 and d = bi∗hi∗ + whhm+1.

In particular, if A breaks soundness, this implies that bi∗ /∈ {0, 1} (since for i 6= i∗,
c can always be opened to choose bi = 0). Further, the verifier accepts the proof
proof: ([d]2, ([Θ]1, [Π]2), πcom, πsum) produced by A. We distinguish two cases:

bi∗ 6= bi∗: Given that [c]1 and [d]2 are perfectly binding at coordinate i∗, if bi∗ 6= bi∗
it is not possible that [c]1 and [d]2 open to the same value. We construct an
adversary B1 against the strong soundness of Πcom that simulates game Game1

with A (using H to simulate the CRS) until it halts and outputs ([c]1, [d]2, πcom).
If bi∗ 6= bi∗ , πcom is a fake proof for ([c]1, [d]2) opening to the same value and
then B1 breaks the strong soundness of Πcom.

bi∗ = bi∗, bi∗(bi∗ − 1) 6= 0: If we express Θ + Π as a linear combination of {gih>j :

i, j ∈ [n + 1]}, the coordinate of gi∗h
>
i∗ is bi∗(bi∗ − 1) 6= 0 and thus Θ + Π /∈

Span({Ci,j + Di,j : (i, j) ∈ Im,1}). We construct an adversary B2 against
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the soundness of Πsum that simulates game Game1 with A until it halts and
outputs ([Θ]1, [Π]2, πsum). If bi∗ = bi∗ but bi∗(bi∗ − 1) 6= 0, πsum is a fake proof
for ([Θ]1, [Π]2) and then B2 breaks the soundness of Πsum. �

Perfect Zero-Knowledge: First, note that the vector [d]2 ∈ G2
2 output by the prover

and the vector output by S2 follow exactly the same distribution. This is because
H ← Lm,01 defines perfectly hiding commitments. In particular, although the simu-
lator S2 does not know b ∈ {0, 1}m such that [c]1 = [G]1 ( b

r ), for some r ∈ Zq, there
exists s ∈ Zq such that [d]2 = [H]2 ( b

s ).

Since R is chosen uniformly at random in Z2×2
q , the proof ([Θ]1, [Π]2) is uniformly

distributed conditioned on satisfying check 1) of algorithm V. Finally, the rest of
the proof follows from zero-knowledge of Πsum and Πcom. �

4.2.3 Constant-Size Argument for Lnck,bits
We give a QA-NIZK argument of membership in the language Lnck,bits = Lck,bits × . . . ×
Lck,bits with a proof size which is independent of n (but with a loss factor of n in the proof
of soundness). The result will be crucial to get improved proof sizes for more complex
statements. For example, note that the language for the perfectly binding case with GS
commitments is Lnck,bits, where ck := [U]1 and U← L1,1

1 . 11

Intuition

We would like to prove that some tuple ([c1]1, . . . , [cn]1) ∈ Lnck,bits, where [cj]1 = MP.Comck(

bj; rj), j ∈ [n], ck := [G]1, and G ← Dm,ik , for some 0 ≤ i ≤ n. Denote c = c1/ . . . /cn,
b = b1/ . . . /bn and r = r1/ . . . /rn (concatenation of column vectors as defined in Sec-
tion 2.1). The proof system works as follows:

1. It defines ck := [G]1 ← MP.K(gk,mn,Lmn,01 ) for computing multi-Pedersen commit-
ments to vectors of size mn

2. it computes [c]1 ← MP.Comck(b; s) for some randomness s, and proves that [c]1 ∈
Lck,bits with the proof system Πbits,

3. it proves that there exists an equal opening of [c]1 and [c]1 with Πcom.

First, note that in step 3, we can use the proof system Πcom, as both [c]1 and [c]1 are
commitments of the required form, as if G2 denotes the last k columns of G and G1

the rest, c = diag(G1, n)b + diag(G2, n)r. We give some intuition on why is the above
scheme sound. For the case G ← Dm,0k it suffices to note that the proof that [c]1 and
[c]1 share an opening implies in particular that they are both valid commitments. But
if [c]1 is a valid commitment then ([c1]1, . . . , [cn]1) ∈ Lnck,bits because for this distribution
the commitments are perfectly hiding.

For the case where G ← Dm,ik , i > 0, recall that the MP commitment with this key is
perfectly binding at coordinate i. In particular, this implies that if some [cj]1 /∈ Lck,bits, the
ith coordinate of bj, denoted bi,j, satisfies that bi,j /∈ {0, 1}. Therefore, given some j∗ ←
[n], if the adversary breaks soundness, then, with probability at least 1/n, bi,j∗ /∈ {0, 1}.
In the soundness proof, we switch to a game where the distribution of G is changed so that
now MP.Comck is perfectly binding for bi,j∗ . Now it is easy to prove that if bi,j∗ /∈ {0, 1},
the soundness of Πbits or of Πcom is broken, because this is incompatible with [c]1 and [c]1
sharing an opening and [c]1 ∈ Lck,bits.

11Note that L1,1
1 ≡ B, where B is the perfectly binding distribution defined in Section 2.6.2. The

perfectly hiding case corresponds to U← L1,0
1 ≡ H.
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K(gk, [G]1, n) (S1(gk, [G]1, n))

[G]1 ← MP.K(gk,mn,Lmn,01 )
crscom ← Πcom.K(gk, [diag(G1, n)|diag(gn+1, n)]1, [G]1,mn)
crsbits ← Πbits.K(gk, [G]1)
Return crs := (crscom, crsbits).
(τcom ← Πcom.S1(gk, [diag(G, n)]1, [G]1,mn)
τbits ← Πbits.S1(gk, [G]1).
τ := (a, τlin, τbits)).

P(crs, ([c]1, . . . , [cn]1), 〈(b1, . . . ,bn),w〉)
[c]1 := MP.Com[G]1

(b;w), w ← Zq
πcom ← Πcom.P(crscom, [c]1, [c]1,〈b,w, w〉)
πbits ← Πbits.P(crsbits, [c]1, 〈b, w〉)
Return ([c]1, πcom, πbits).

V(crs, ([c1]1, . . . , [cn]1), ([c]1, πcom, πbits))
ans1 ← Πcom.V(crscom, [c]1, [c]1, πcom)
ans2 ← Πbits.V(crsbits, [c]1, πbits)
Return ans1 ∧ ans2.

S2(crs, ([c1]1, . . . , [cn]1), [D]1, τ)
[c]1 ← MP.Com[G]1

(0mn×1)

πcom ← Πcom.S2(crscom, [c]1, [c]1, τcom)
πbits ← Πbits.S2(crsbits, [c]1, τbits)
Return ([c]1, πcom, πbits).

Figure 4.1: The proof system for the language Ln[G]1,bits. Πbits is the proof system from Section 4.1.3. The
matrix G is parsed as G = (G1|gn+1), and c := c1/ . . . /cn and b := b1/ . . . /b. The size of [c̄1] is 2
elements of G1, the size of πcom is 1 element of G1, and πbits requires 10 elements of G1 and 10 elements of
G2, respectively. The total proof size is 13 elements of G1 and 10 elements of G2.

The scheme

The description of the protocol is in Fig. 4.1 and we prove that:

Theorem 4.14 The proof system from Fig. 4.1 is a QA-NIZK proof system for the lan-
guage Lnck,bits with proof size 10|G1|+ 10|G2|, perfect completeness, perfect-zero knowledge,
and computational soundness.

Proof (Completeness.) Follows from the fact that ([c]1, [c]1) ∈ Lcom,[diag(G,n)]1,[G]1,mn
and

that [c]1 ∈ L[G]1,bits.

(Soundness.) When G← Lm,01 the proof follows from the proof that [c]1 and [c]1 open to
the same value. When G ← Lm,i

∗

1 , the proof follows from the indistinguishability of the
following games.

Real: This is the real soundness game. The adversary wins if it outputs ([c1]1, . . . , [cn]1) /∈
Lnck,bits and the corresponding proof which is accepted by the verifier.

Game0: This game is exactly as Real except that K1 does not receive [G]1 as a input but
it samples G itself according to Lm,i

∗

1 .
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Game1: This game is exactly as Game0 except that the simulator picks a random j∗ ∈ [n]
and uses G to check whether cj∗ = bi∗,j∗gi∗ + w̃gn+1 such that bi∗,j∗ /∈ {0, 1}. It
aborts if this is not the case.

Game2: This game is exactly as Game1 except that G← Lmn,m(i∗−1)+j∗

1 .

It is obvious that the first two games are indistinguishable. The rest of the argument goes
as follows.

Lemma 4.15 Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Proof The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and
b) bi∗,j∗ /∈ {0, 1}. The view of adversary A is independent of j∗, while, if Game0(A) = 1,
then there is at least one index ` ∈ [n] such that [c`]1 /∈ L[G]1,bits =⇒ bi∗,` /∈ {0, 1}. Thus,
the probability that the event described in b) occurs conditioned on Game0(A) = 1, is
greater than or equal to 1/n and the lemma follows. �

Lemma 4.16 There exists a D1-MDDHG1 adversary D such that |Pr [Game1(A) = 1] −
Pr [Game2(A) = 1] | ≤ AdvL1,Gena(D).

Proof We construct an adversary D that receives a challenge ([A]1, [u]1) of the L1-
MDDHG1 assumption. From this challenge, D just defines the matrix [G]1 ∈ G2×(mn+1)

1

as the matrix whose last column consists of [A]1, the ith column consists of [u]1 and the
rest of the columns are random vectors in the image of [A]1. Then D honestly simulates
the rest of the CRS, gives it as input to A, and outputs whatever A outputs.

Obviously, when [u]1 is sampled from the image of [A]1,G follows the distribution Lm,01

and D perfectly simulates Game1, while if [u]1 is a uniform element of G2
1, G follows the

distribution Lm,i
∗

1 and D perfectly simulates Game2. �

Lemma 4.17 There exists adversaries B1,B2 such that Pr[Game2(A) = 1] ≤ AdvΠcom(B1)+
AdvΠbits

(B2).

Proof If Game(A) = 1, then bi∗,j∗ /∈ {0, 1} while all the verification equations are ac-
cepted. Given that gm(i∗−1)+j∗ is linearly independent from {gj : j 6= m(i∗ − 1) + j∗}, it
holds that {gm(i∗−1)+j∗ ,gmn+1} is a basis for Z2

q and thus we can define bi∗,j∗ , wh,i as the
unique coefficients in Zq such that c = bi∗,j∗gm(i∗−1)+j∗ +wh,igmn+1. If bi∗,j∗ 6= bi∗,j∗ , then
([c]1, [c]1) can not open to the same value and we can construct an adversary B1 against
Πcom. Else, it must be the case that bi∗,j∗ = bi∗,j∗ /∈ {0, 1}. Therefore, if an adversary B2

simulates Game2 until A halts and outputs ([c]1, πbits), then B2 breaks soundness of Πbits.�

(Zero-Knowledge.) Given that G defines perfectly hiding commitments, [c]1 can be opened
to any value. Therefore [c]1 and [c]1 share a common opening and [c]1 ∈ Lck,bits, and thus
πcom and πbits are correctly distributed. �
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Chapter 5

New Techniques for Non-Interactive
Shuffle and Range Arguments

This chapter focuses on obtaining efficiency improvements for two non-interactive argu-
ments, namely range proofs and proof of correctness of a shuffle, based only on falsifiable
assumptions. To derive efficiency improvements for these arguments we develop a new
cryptographic primitive which we call aggregated zero-knowledge set-membership proof
(aZKSMP). A zero-knowledge set-membership proof allows to show, in zero-knowledge,
that the openings of many commitments belong to a public set. We say that the proof is
aggregated when the size of the proof does not depend on the number of commitments.

Our resulting proofs are more efficient in terms of proof size and are based on more stan-
dard assumptions, but they have a rather large common reference string. They build on
the recent arguments for membership in linear spaces [LPJY14, JR14, KW15], arguments
of membership in linear spaces of Chapter 3, and the argument for proving that some
commitment to a vector of integers in Znq opens to {0, 1}n from Section 4.2.

5.1 Related Work

Zero Knowledge Set Membership Arguments.

Camenisch et al. constructed Θ(1) interactive zero-knowledge set membership arguments
using Boneh-Boyen Signatures, and they prove them secure under the q-SDH assumption
[CCs08]. Bayer and Groth constructed Θ(log |S|) interactive zero-knowledge arguments
for polynomial evaluation, which can be used to construct set membership arguments,
relying only on the discrete logarithm assumption [BG13]. However, none of the previous
constructions has addressed the problem of aggregating many proofs, and a direct use of
them will end up with a proof of size Ω(n).

NIZK Shuffle and Range Arguments.

The most efficient NIZK shuffle argument under falsifiable assumptions is the one from
Groth and Lu [GL07], which works for BBS ciphertexts. The proof size is linear in the
number of ciphertexts, specifically 15n+120 group elements in type I groups. The security
of their construction relies on two assumptions: the pairing product assumption and the
permutation pairing assumption. The first assumption is a Dn,2-KerMDH assumption,

when M ← Dn,2 is of the form M> :=

(
x1, . . . , xn
x2

1, . . . , x
2
n

)
for xi ← Zq, i ∈ [n]. The second
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assumption is proven generically secure by Groth and Lu, but it seems to be unrelated
with any other assumption.

Using non-falsifiable assumptions (i.e. knowledge of exponent type of assumptions), Lip-
maa and Zhang [LZ12] constructed a shuffle argument with communication 6n|G1|+11|G2|,
and recently Fauzi and Lipmaa [FL15] constructed a shuffle argument with communication
(5n+ 2)|G1|+ 2n|G2|.

Rial, Kohlweiss, and Preneel constructed a range argument in [0, 2n − 1] with communi-
cation Θ( n

logn−log logn
) and prove it secure under the q-HSDH assumption [RKP09]. One

might get rid of the q-HSDH assumption replacing the P-signature with any structure
preserving signature, but, since the proof requires n

logn−log logn
Groth-Sahai proofs of sat-

isfiability of the signature’s verification equation and the signature’s size is at least 6
group elements [JR17], the resulting protocol is far less efficient. Using non-falsifiable as-
sumptions, Chaabouni, Lipmaa, and Zhang constructed a range argument with constant
communication [CLZ12].

A detailed comparison of our shuffle and range arguments with the most efficient construc-
tions under falsifiable assumptions is depicted in Table 5.1.

Shuffle Argument Range Argument
[GL07] Πshuffle [RKP09] Πrange-proof

CRS size 2n + 8 (n2 + 24n + 36, 23n + 37) Θ( n
logn−log logn

) (6n2, 6n2)

Proof size 15n + 120 (4n + 17, 14) Θ( n
logn−log logn

) ( 2n
k logn

, 10)

P’s comp. 51n + 246 11n + 17 Θ( n
logn−log logn

) 2n

V’s comp. 75n + 282 13n + 55 Θ( n
logn−log logn

) 4n
k logn

Assumption PP SXDH+SSDP q-HSDH SXDH+SSDP

Table 5.1: Comparison of our shuffle, Πshuffle, and range, Πrange-proof , arguments with the literature. To
increase readability, for Πrange-proof we include only the leading part of the sizes, that is, we write f(n) and
we mean f(n) + o(f(n)). Notation (x, y) means x elements of G1 and y elements of G2. “PP” stands for
the permutation pairing assumption. The prover’s computation is measured by the number of exponentiations
(i.e. z[x]i) and the verifier’s computation is measured by the number of pairings.

5.2 Overview

Our starting point is the observation that range and shuffle proofs can be constructed using
an aZKSMP as a common building block by slightly modifying some previous strategies
used for shuffle and range proofs. Before moving to shuffles and range proofs, we need to
define in more detail what an aZKSMP is.

Given some publicly known set S, an aZKSMP allows to prove that n commitments
c1, . . . , cn open to values x1, . . . , xn ∈ S. The set S is of polynomial size and is either
[0, d−1] ⊂ Zq or a subset of Gγ, γ ∈ {1, 2}. In other words, an aggregated set membership
argument proves that each c1, . . . , cn is in the language

Lck,S := {c : ∃x ∈ S,w ∈ Zrq s.t. c = Comck(x; w)}, where ck ← K,

and c = Comck(x; w) is a Groth-Sahai commitment to x with randomness w.

The proof that we construct in Section 5.3 is quasi-adaptive, in the sense that the language
and the common reference string depends on ck and S. Further, the marginal distribution
of ck is witness samplable, that is, it can be sampled along with its discrete logarithms.
The argument is aggregated because the size of the proof is independent of n (Θ(log d)
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when S = [0, d − 1] and Θ(|S|) when S ⊂ Gγ). However, in the soundness proof we will
loose a factor of n in the reduction.

5.2.1 Range Argument

A range argument is a tool often required in e-voting and e-cash scenarios, with the
purpose of showing that the opening y of some commitment c is an integer in some
interval [A,B]. For simplicity, the range considered is usually [0, 2n − 1] since a proof in
any interval can be reduced to a proof in this interval.

Let n, d ∈ N, m := log d, and ` := n/m. A commitment c opens to a integer x in the
range [0, 2n−1] if ∃x1, . . . , x` ∈ [0, d−1] and x =

∑
i∈[`] xid

i−1. Indeed, since xi ∈ [0, d−1]

x =
∑
i∈[`]

xid
i−1 ∈ [0, d` − 1] = [0, (d1/ log d)n − 1] = [0, 2n − 1].

The statement ∃x1, . . . , x` ∈ [0, d − 1] can be proven by showing that (c1, . . . , cn) ∈
L`ck,[0,d−1], where ci = Comck(xi), with an aggregated set membership proof, and the
statement x =

∑
i∈[`] d

i−1xi can be proven using standard techniques.

While this way of constructing range arguments has been widely used in the literature
[CCs08, RKP09], with the addition of our techniques we get a smaller proof size. Indeed,
the total cost of the range proof is Θ(` + m) (` is due to the size of the commitments
c1, . . . , c` and m to the size of an aggregated proof of membership in L`ck,[0,d−1]). Setting
d = nk for arbitrary k leads to a proof size of Θ( n

k logn
). Compared to previous approaches,

the novelty of ours is that the cost of proving that x1, . . . , x` ∈ [0, d − 1] is significantly
reduced.

5.2.2 Shuffle Argument

An argument of correctness of a shuffle is an essential tool in the construction of mix-nets
[Cha81]. A mix-net, in turn, is a distributed protocol between many mixers, where each
mixer receives as input a set of n ciphertexts and outputs a shuffle of the input ciphertexts.
That is, a re-randomization of the set of ciphertexts obtained after applying a random
permutation to the input set of ciphertexts. To enforce the honest behavior of mixers
they are required to produce a zero-knowledge argument that the shuffle was correctly
computed.

Our proof is partially inspired by the non-interactive shuffle of Groth and Lu [GL07]. The
statement we want to prove in a correctness of a shuffle argument is : “Given two vectors
of ciphertexts which open, respectively, to vectors of plaintexts [m1]2, [m2]2, prove that
[m2]2 is a permutation of [m1]2”. Roughly, our strategy is the following:

1) Publish some vector of group elements [s]1 = ([s1]1, . . . , [sn]1)> (which we identify
with the set S of its components) in the common reference string, where s is sampled
from some distribution Dn,1.

2) The prover commits to [x]1 = ([x1]1, . . . , [xn]1)>, a permutation of the set S and
proves that the commitments to [x]1 are in Lnck,S.

3) The prover proves that
∑

i∈[n][xi]1 =
∑

i∈[n][si]1.
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4) Finally, the prover outputs a proof that:1

[s>]1[m1]2 = [x>]1[m2]2. (5.1)

The underlying computational assumption is that it is infeasible to find a non-trivial
combination of elements of S which adds to 0, that is, given [s]1 it is infeasible to find
[k]2 6= [0]2 such that s>k = 0 (this is the Dn,1-KerMDH assumption from Section 2.4).

Soundness goes as follows. First, by the soundness of the aggregated set membership
proof, [x]1 ∈ Sn and from the fact that

∑
i∈[n] xi =

∑
i∈[n] si, it holds that if x is not a

permutation of s, then one can extract in the soundness game (assuming the extractor
knows ck) a non-trivial linear combination of elements of S which adds to 0, which
contradicts the security assumption. Finally, if x is a permutation of s, then equation
(5.1) implies that the shuffle is correct, or, again, one can extract from [m1]2, [m2]2 the
coefficients of some non-trivial combination of elements of S which is equal to 0 (breaking
the Dn,1-KerMDH assumption).

This soundness argument is an augmentation and translation into asymmetric groups of
the argument of Groth and Lu [GL07]. Essentially, the argument there also consists of two
parts: one devoted to proving that some GS commitments open to a permutation of some
set in the CRS (Groth and Lu prove this using the (non-standard) pairing permutation
assumption), while the second part (Step 4) is proven very similarly (in particular, its
soundness also follows from some kernel assumption secure in symmetric bilinear groups).

We note that it is crucial for our soundness argument that it is possible to decrypt the ci-
phertexts (otherwise we cannot extract solutions to the kernel problems). This is possible
in our case because public key for encryption is assumed to be witness-samplable and the
argument is quasi-adaptive. This explains why we do not refer to the notion of culpable
soundness, as done by Groth and Lu [GL07] and by Fauzi and Lipmaa [FL15].

5.3 Aggregated NIZK Set Membership Arguments

In this section we construct a QA-NIZK argument that many commitments open to
elements in a set [0, d − 1] ⊂ Zq or S ⊂ Gγ. We say that the argument is aggregated
because the size of the proof does not depend on the number of commitments.

Before we move to the aggregated case, we study the case of a single set membership
proof.

5.3.1 Set Membership Proofs

We want to show that a single commitment belongs to the language

Lck,S := {c : ∃x ∈ S,w ∈ Zrq s.t. c = Comck(x; w)}, where ck ← K,

and c = Comck(x; w) is a Groth-Sahai commitment to x with randomness w.

We observe that membership in S can be written as:

• If S ⊂ Gγ, and we identify S with [s]γ = ([s1]γ, . . . , [sm]γ)
> then, c ∈ Lck,S if and

only if ∃b,∈ Zmq and w ∈ Z2
q such that:

1This is a slightly oversimplified explanation. Actually, a prover (a mixer) does not know the random-
ness nor the decryptions of the ciphertexts but only the randomness of the re-encryptions, so it cannot
prove exactly this statement.
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1. b ∈ {0, 1}m,

2. c = GS.Comck(x; w),

3. x = s>b,

4.
∑

i∈[m] bi = 1.

• If S = [0, d− 1] and m := log d, then c ∈ Lck,S if and only if ∃b ∈ Zmq and w ∈ Zq
such that:

1. b ∈ {0, 1}m,

2. c = GS.Comck(x;w),

3. x = (1, 2, . . . , 2m−1)b.

That is, both languages can be written in a similar way, except that when S ⊂ Gγ there
is an additional linear constraint that b must satisfy (condition 4)).

To avoid distinguishing all the time between both types of subsets, we note that both
languages can be seen as special case of the language L[M]1,[N]1,Λ,α ⊆ G`1

1 , as defined
below.

Definition 5.1 Denote by L[M]1,[N]1,Λ,α ⊆ G`1
1 the language parameterized by [M]1 ∈

G`1×m
1 ,N ∈ G`1×`2

1 ,Λ ∈ Z`3×mq , and α ∈ Z`3q such that

[c]1 ∈ L[M]1,[N]1,Λ,α ⇐⇒ ∃b ∈ {0, 1}m,w ∈ Z`2q s.t.
(

c
α

)
=

(
M N
Λ 0`3×`2

)(
b
w

)
. (5.2)

Additionally, we require (N, [N]1) to be efficiently samplable and that membership in
L[M]1,[N]1,Λ,α is efficiently testable with the trapdoor N, that is, that there exists an ef-
ficient algorithm F such that F([M]1,N, [c]1) = 1⇐⇒ [c]1 ∈ LM,N,Λ,α.

The additional condition is key in the proof of soundness and allows telling apart fake
from honest proofs.

Example 5.2 The language of GS commitments to group elements in the set S :=
{[s1]1, . . . , [sm]1} ⊂ G1, Lck,S, where ck := ([u1]1|[u2]1), is equal to L[M]1,[N]1,Λ,α, where
M := ( s1 ··· sm0 ··· 0 ), N := (u1 − e1|u2), α = 1, and Λ = (1, . . . , 1). Membership in S is
efficiently testable given u1,u2 ∈ Z2

q and assuming |S| ∈ poly(λ).

Example 5.3 The language of GS commitments to integers in the range [0, d−1], Lck,[0,d−1],
where ck := ([u1]1|[u2]1), is equal to L[M]1,[N]1,Λ,α, where M := u1(20, 21, . . . , 2log d−1) ∈
Z2×log d
q , N := u2 ∈ Z2

q, and `3 := 0. Membership in Lck,[0,d−1] is easily testable given
u2 ∈ Z2

q and assuming d ∈ poly(λ).

Proof Strategy

The most efficient strategy we are aware of for proving membership in L[M]1,N,Λ,α fol-
lows a commit-and-prove approach. Namely, to prove that b,w exist, one computes GS
commitments [di]1, i ∈ [m], to all coordinates of b and then it proves two independent
statements, namely that:

1. ∃b ∈ Zmq , r ∈ Zmq such that

a) b ∈ {0, 1}m and
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b) ∀i ∈ [m],di =
(
u1 u2

) (
bi
ri

)
.

2. ∃b̃ ∈ Zmq , r̃ ∈ Zmq ,w ∈ Z`2q such that

a) ( c
α ) =

(
M N
Λ 0`3×`2

) (
b̃
w

)
and

b) ∀i ∈ [m],di =
(
u1 u2

) (
b̃i
ri

)
.

For the first statement, one can use the QA-NIZK argument for bit-strings of Section 4.2,
and for the second, the QA-NIZK argument for linear spaces of [JR14, KW15] (for the
latter, note that conditions 2.a) and 2.b) can be written down as a single system of
equations with a large matrix M̃ and then satisfiability of 2.a) and 2.b) is equivalent to
(c>,α>,d>1 , . . . ,d

>
m)> being in the span of this matrix M̃).

Since both proofs are constant-size, the resulting proof size is dominated by the cost of
the commitments to bi, which is Θ(m). For soundness, the important point here is that
we never prove that b = b̃, but, since GS commitments are perfectly binding (or, said
otherwise, because

(
u1 u2

)
has full rank), equality holds. This immediately proves that

the statement is in the language.

5.3.2 Aggregated set membership proofs

An aggregated set membership proof amounts to proving membership in Ln[M]1,[N]1,Λ,α
.

By definition, ([c1]1, . . . , [cn]1) ∈ Ln[M]1,[N]1,Λ,α
if and only if ∀j ∈ [n],∃bj ∈ Zmq ,wj ∈ Z`2q

such that
1)bj ∈ {0, 1}m ∧ 2) ( cj

α ) =
(

M N
Λ 0`3×`2

) (
bj
wj

)
.

Recall that we want a proof size independent of n. This rules out the naive approach of
computing GS commitments to all the coordinates of bj, for all j ∈ [n], as the cost is
Θ(nm). Therefore, to improve on the asymptotic size of the proof, we are forced to use
shrinking commitments to bi,j. We stress that it is far from clear how to do this, as it
might break down the soundness argument completely (e.g. in the single proof, we used
in a fundamental way the uniqueness of the commitment openings). In fact, overcoming
this problem is one of the main technical contributions of this chapter.

Our idea is to use as a shrinking commitment a two-dimensional multi-Pedersen commit-
ment, as defined on Section 4.2.1, to commit to b∗1, . . . ,b

∗
m, where b∗i = (bi,1, . . . , bi,n)>

is the vector of the i th bits of all witness b1, . . . ,bn. Thereby, we use only 2m group
elements and, carefully using the QA-NIZK proof systems from Sections 3 and 4, we
construct a proof whose total proof size is linear in m and independent of n.

Given some matrix G ∈ Z2×(n+1)
q sampled from some distribution D2,n+1, recall that

the multi-Pedersen commitment to y ∈ Znq using randomness r ∈ Zq is computed as
MP.Com(y; r) := [G]1 ( y

r ). The special thing about these commitments is that one can
set a “hidden” linearly independent column of G, and thus commitments are perfectly
binding at some coordinate j∗ ∈ [n] which is computationally hidden to the adversary.

Define the matrix B = (b1| . . . |bn) ∈ {0, 1}m×n and let b∗i be the ith row of B. To prove
([c1]1, . . . , [cn]1) ∈ Ln[M]1,[N]1,Λ,α

, we first compute MP commitments [di]1, i ∈ [m], to b∗i .
As before, the proof actually consists of two independent statements:

1. ∃r ∈ Zmq ,B ∈ Zm×nq such that

a) B ∈ {0, 1}m×n and

b) ∀i ∈ [m],di = G
(

b∗i
ri

)
,
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2. ∃r̃ ∈ Zmq ,w1, . . . ,wn ∈ Z`2q , B̃ ∈ Zm×nq , (whose rows are denoted as b̃∗i , i ∈ [m], and
the columns b̃j, j ∈ [n]), such that

a) ∀i ∈ [n], ( cj
α ) =

(
M N
Λ 0`3×`2

) (
bj
wj

)
and

b) ∀i ∈ [m],di = G
(

b̃∗i
r̃i

)
.

For the first statement we use our aggregated proof that many commitments opens to bit-
strings from Section 4.2.3 and for the second, (after rewriting the equations) a QA-NIZK
argument for linear spaces. With this approach, the proof remains of size Θ(m), the size
of the commitments, while the rest of the proof is constant.

The interesting part is the soundness argument. The previous reasoning for the non-
aggregated case (when n = 1) fails here because now there is no guarantee that B = B̃
(as the openings of [di]1 are not unique). However, as we said, the distribution of the MP
commitment key can be chosen so that it is binding at some coordinate j∗. This implies
that for all i, the j∗th coordinate of b∗i and b̃∗i is equal, i.e. the j∗th column of B and B̃
must be equal.

Thus, we have that for the coordinate j∗, the proof is sound (because b∗j is uniquely
determined, which was the uniqueness of openings which was necessary to prove soundness
for n = 1). That is, the adversary cannot break soundness for any tuple ([c1]1, . . . , [cn]1)
such that [cj∗ ]1 /∈ L[M]1,[N]1,Λ,α. But since j∗ is computationally hidden from the adversary,
we can prove soundness with a loss in the reduction of 1/n.

5.3.3 QA-NIZK Argument of Membership in Ln[M]1,[N]1,Λ,α

As announced in the previous section, our construction proves two different statements.
For the second statement, conditions 2.a), 2.b) are written as a single system of equations
with a single matrix Ξ and use Πlin to prove that certain vector of G1 is in the span of Ξ.

This matrix is defined as:

Ξ(M,N,Λ,G) :=


Σ · · · 0 0
... . . . ...

...
0 · · · Σ 0

G1 · · · Gn Gn+1

 ,

where Σ :=

(
M N
Λ 0

)
, Gi = diag(gi,m)|0, i ∈ [n], Gn+1 := diag(gn+1,m), and gi is the

i th column of G.

Define y := c1/α/ . . . /cn/α/d1/ . . . /dm and v := b1/w1/ . . . /bn/wn/r1/ . . . /rn. The
statement we want to prove is that [y]1 ∈ Im([Ξ]1), and the witness is v. The upper
left block of the matrix guarantees condition 2.a), while the two lower blocks guarantee
condition 2.b). Note that Ξ has n(`1 + `3) + 2m rows and n(m+ `2) +m, the vector v is
of size n(`1 + `3) + 2m, and that v is of size n(m+ `2) +m.

The full description of the proof system is in Fig. 5.1 and security follows from Theorem
5.4.

Theorem 5.4 There exists a QA-NIZK argument Πset for membership in the language
Ln[M]1,[N]1,Λ,α

with proof size (2m + 11)|G1| + 10|G2|, perfect completeness, perfect-zero
knowledge and computational soundness.
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K(gk, [M]1, [N]1, n) (S1(gk, [M]1, [N]1, n))
[G]1 ← MP.K(1λ, n)
[Ξ]1 := [Ξ(M,N,Λ,G)]1
crslin ← Πlin.K(gk, [Ξ]1)
crsbits ← Πbits.K(gk, [G]1,m)
Return crs := (crslin, crsbits).
(τlin ← Πlin.S1(gk, [Ξ]1)
τbits ← Πbits.S1(gk, [G]1,m).
τ := (τlin, τbits)).

P(crs, {[cj]1, 〈bj,wj〉 : j ∈ [n]})
[di]1 := MP.Com[G]1(b∗i ; ri),
ri ← Zq,∀i ∈ [m]
πlin ← Πlin.P(crslin, [y]1,v)
πbits ← Πbits.P(crsbits, {[di]1, 〈b∗i , ri〉 : i ∈ [m]})
Return ([d]1, πlin, πbits).

V(crs, {[cj]1 : j ∈ [n]}, ([d]1, πlin, πbits))
ans1 ← Πlin.V(crslin, [y]1, πlin)
ans2 ← Πbits.V(crsbits, {[di]1 : i ∈ [m]}, πbits)
Return ans1 ∧ ans2.

S2(crs, [c]1, τ)
[di]1 := MP.Com[G]1(0n×1; r̃i)
r̃i ← Zq,∀i ∈ [m]
πlin ← Πlin.S(crslin, [y]1, τlin)
πbits ← Πbits.S(crsbits, {[di]1 : i ∈ [m]}, τbits)
Return ([d]1, πlin, πbits).

Figure 5.1: Proof system for the language LnM,N,Λ,α, where Πbits is the proof system for Lmck,bits from
Section 4.2.3, d := d1/ . . . /dm, and c := c1/ . . . /cn. The proof size is (2m+ 11)|G1|+ 10|G2|.

Completeness. If ([c1]1, . . . , [cn]1) ∈ Ln[M]1,[N]1,Λ,α
, then for every j ∈ [m] there exists

bj ∈ {0, 1}m,wj ∈ Z`2q such that(
cj
α

)
=

(
M N
Λ 0`3×`2

)(
bj
wj

)
.

Given that [di]1 = MP.Com[G]1(b∗i ; ri) =
∑

j∈[n] bi,j[gj]1 + ri[gn+1]1,

d1/ . . . /dm =
∑
j∈[n]

(
gj ··· 0

... ... ...
0 ... gj

)(
b1,j

...
bm,j

)
+

(
gn+1 ··· 0

... ... ...
0 ... gn+1

)( r1
...
rm

)
= (G1| · · · |Gn|Gn+1)(b1/w1/ . . . /bn/wn/r).

Combining these two facts we conclude that [y]1 = [Ξ]1v, which implies that ans1 = 1.
On the other hand, b∗1, . . . ,b

∗
m ∈ {0, 1}n implies that ans2 = 1.

Soundness.

Theorem 5.5 Let AdvPS(A) be the advantage of an adversary A against the soundness of
the proof system described in Fig. 5.1. There exist PPT adversaries D, against L1-MDDH
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in G1, B1 against the soundness of Πlin, and B2, against the soundness of Πbits, such that

AdvPS(A) ≤ n (2/q + AdvL1,G1(D) + AdvΠlin
(B1) + AdvΠbits

(B2)) .

The proof follows from the indistinguishability of the following games:

Real This is the real soundness game. The output is 1 if the adversary breaks soundness,
that is, if the adversary submits ([c1]1, . . . , [cn]1) /∈ Ln[M]1,[N]1,Λ,α

and the correspond-
ing proof which is accepted by the verifier.

Game0 This is identical as Real except that algorithm K1 does not receive [N]1 as input but
it samples N itself.

Game1 This game is identical to Game0 except that the simulator picks a random j∗ ∈ [n],
and aborts if F([M]1,N, [cj∗ ]1) = 1 (that is to say if [cj∗ ]1 ∈ L[M]1,[N]1,Λ,α.)

Game2 This game is identical to Game1 but now G← Ln,j
∗

1 .

It is obvious that the first two games are indistinguishable. The rest of the argument goes
as follows.

Lemma 5.6 Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Proof The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and
b) [cj∗ ]1 /∈ LM,N,Λ,α. The view of adversary A is independent of j∗, while, if Game0(A) =
1, then there is at least one index j ∈ [n] such that [cj]1 /∈ L[M]1,[N]1,Λ,α. Thus, the
probability that the event described in b) occurs conditioned on Game0(A) = 1, is greater
than or equal to 1/n and the lemma follows. �

Lemma 5.7 There exists a L1-MDDHG1 adversary D′ such that |Pr [Game1(A) = 1] −
Pr [Game2(A) = 1] | ≤ AdvL1,Gena(D

′).

The proof is obvious in the light of lemma 2.13.

Lemma 5.8 There exist adversaries B1,B2 such that Pr[Game2(A) = 1] ≤ Advlin(B1) +
Advbits(B2).

Proof Let E the event where y /∈ Im(Ξ), and let B1 the adversary against Πlin that
outputs [x̃]1/[d]1 and πlin. Obviously, Pr[Game2(A) = 1] ≤ AdvΠlin

(B1) + Pr[Game2(A) =
1|¬E], because if E occurs the adversary breaks the soundness of Πlin. To prove the
lemma, there is only left to bound this last probability.

If Game(A) = 1, then [cj∗ ]1 /∈ L[M]1,[N]1,Λ,α while all the verification equations are accepted.
¬E implies that there exists v, which uniquely defines some (b̃j∗ ,wj∗) and some b̃∗i such
that:

y = Ξv =⇒
(

cj∗
α

)
=

(
M N
Λ 0

)(
b̃j∗
wj∗

)
and [di]1 = MP.Com[G]1(b̃∗i ; r),∀i ∈ [m]. Since in this game [cj∗ ]1 /∈ LM,N,Λ,α (otherwise
the game aborts), then b̃j∗ /∈ {0, 1}m.

Since the MP commitment is perfectly binding at coordinate j∗, this implies that ([d1]1,
. . . , [dm]1) /∈ Lm[G]1,bits. Therefore, an adversary B2 that simulates A and outputs (([d1]1 . . . ,

[dm]1), πbits) violates soundness of Πbits with probability at least Pr[Game2(A) = 1|¬E].�
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Zero-Knowledge.

Theorem 5.9 The proof system is perfect quasi-adaptive zero-knowledge.

Proof Recall that ([c1]1, . . . , [cn]1) ∈ Ln[M]1,[N]1,Λ,α
implies that x̃ = diag(Σ, n)b̃ and,

given that Ln,01 defines perfectly hiding commitments, for all i ∈ [m] there is some ri ∈ Zq
such that [di]1 = MP.Com(0n×1; r̃i) = MP.Com(b∗i ; ri). Then y ∈ Im(Ξ) and thus perfect
zero-knowledge of Πlin and Πbits implies that πlin and πbits are correctly distributed. �

5.4 Proof of Correctness of a Shuffle

In a NIZK shuffle argument one wants to prove that two lists of ciphertexts open to
the same values when second list is permuted under some hidden permutation. We
represent each list of ciphertexts as a matrix in G2×n

2 where each column is an El-
Gamal ciphertext under public key pk := [v]2 ∈ G2

2 and we write Encpk([m
>]2; r>) :=

(Encpk([m1]2; r1)| · · · |Encpk([mn]2; rn)), where [m]2 ∈ Gn
2 , r ∈ Znq , and Encpk([m]2; r) :=

[m]2e2 + r[v]2. Similarly, through this section we will sometimes write GS.Comck([x
>]γ;

R) := (GS.Comck([x1]γ; r1)| · · · |GS.Comck([xn]γ;rn)), where R = (r1| · · · |rn) ∈ Z2×n
q .

The language of correct shuffles under public key pk := [v]2 ∈ G2
2 can be defined as

Lpk,n,shuffle := {([C]2,[D]2) ∈ G2×n
2 ×G2×n

2 :

∃P ∈ Sn, δ ∈ Znq s.t. [C]2P− [D]2 = Encpk([01×n]2; δ>)},

where Sn is the set of permutation matrices of size n×n. This definition can be generalized
for any “El-Gamal like” encryption scheme as, for example, the BBS encryption scheme
[BBS04].

5.4.1 Our construction

Our proof system builds on a proof that a set of GS commitments open to elements in
the set S = {[s1]1, . . . , [sn]1}, where s := (s1, . . . , sn)> ← Dn,1 and the Dn,1-KerMDH as-
sumption holds in G1. Given [F]1 ∈ G2×n

1 , where the i th column is [fi]1 ← GS.Com([xi]1),
let x := (x1, . . . , xn)> = Ps, for some permutation matrix P, and given a commitment to
[y]1 := [s>]1δ, we prove that ([C]2, [D]2) ∈ Lpk,n,shuffle as follows:

a) Show that [F]1 ∈ Lnck,S, where ck ← GS.K(gk).

b) Give a GS proof for the satisfiability of
∑

i∈[n][si]1 −
∑

j∈[n][xj]1 = [0]1.

c) Give a GS proof for the satisfiability of [x>]1[C>]2 − [s>]1[D>]2 = [y]1[v>]2.

Soundness Intuition.

Conditions a) and b) implies that x is a permutation of s or equivalently, x = Ps and P
is a permutation matrix. Note that P is a permutation matrix iff P is a binary matrix
and for each row and column there is at most one 1. Let’s see in more detail why x is a
permutation of s. Condition a) implies that each xi is an element from {s1, . . . , sn}, which
can be written as x = Ps, P ∈ {0, 1}n×n, where each row of P has at most one 1. But,
given that there might be repeated elements, there might be also more than one 1 in some
column of P. For example, if S = {s1, s2, s3}, it may be that x =

(
s2
s3
s1

)
=
(

0 1 0
0 0 1
1 0 0

)(
s1
s2
s3

)
but also x =

(
s2
s3
s3

)
=
(

0 1 0
0 0 1
0 0 1

)(
s1
s2
s3

)
. Condition b) implies that there are no repeated xis
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unless one can break the Dn,1-KerMDH assumption. Indeed, there are repeated xis iff
(1, . . . , 1)P (the row vector of “frequencies" of x, which in the first example is (1, 1, 1)
and in the second (0, 1, 2)) is not equal to (1, . . . , 1). Given that b) is equivalent to
((1, . . . , 1) − (1, . . . , 1)P)[s]1 = [0]1, then ((1, . . . , 1) − (1, . . . , 1)P)> is solution to the
Dn,1-KerMDH problem. We conclude that P is a permutation matrix and thus x is a
permutation of s.

The remainder of the proof follows essentially Groth and Lu’s proof. Suppose that [C]2 =
Enc[v]2([m>]2) and [C]2 = Enc[v]2([n>]2). Let k = (−v2/v1, 1)> the “decryption key” (i.e.
v>k = 0 and (0, 1)k = 1)2, we multiply by k, on the right, the equation from condition
c) to “decrypt” [C]2 and [D]2. We get that [s>]1P

>[m]2 − [s>]1[n]2 = [0]T , which implies
that P>[m]2 = [n]2 unless P>[m]2 − [n]2 is a solution to the Dn,1-KerMDH. Finally this
implies that [C]2P− [D]2 is an encryption of [0n×1]2 and thus ([C]2, [D]2) ∈ Lpk,n,shuffle.

A detailed description of our construction is in Fig. 5.2 and the proof of security follows
from Theorem 5.10

Theorem 5.10 The proof system from Fig. 5.2 is a QA-NIZK proof system for the lan-
guage Lpk,n,shuffle with perfect completeness, computational soundness, and computational
zero-knowledge.

Proof (Completeness.) If P is a permutation matrix and x = Ps, then GS.Com(x>) ∈
LnS,u1,u2

and
∑

i∈[n][si]1 −
∑

j∈[n][xj]1 = [0]1. If [y]1 = [s>]1δ then

[x>]1[C>]2 − [s>]1[D>]2 = [s>]1([C]2P− [D]2)> = [s>]1([v]2δ
>)> = [y]1[v>]2.

(Soundness.) We will show that for any adversary A against the soundness of the proof
system from Figure 5.2, there exist an adversary B1 against soundness of Πset and an
adversary B2 against the Dn,1-KerMDH assumption such that

Adv(A) ≤ AdvΠset(B1) + AdvDn,1-KerMDH(B2).

The adversary B1 receives as input crsset and honestly samples the rest of the CRS. Then
B1 runs A until it halts and outputs [F]1 with the proof πset.

The adversary B2 receives as input [s]1 ∈ Gn
1 , samples u1,u2,v← Z2

q, honestly simulates
the rest of the CRS, and runs A until it halts. It extracts [x>]1, the opening of [F]1,
using u1,u2, and aborts if [F]1 /∈ Lnu1,u2,S

. Else [x]1 = B[s]1, where B ∈ {0, 1}n×n and
B1n×1 = 1n×1. If there are repeated xis, B outputs (11×n − 11×nB)>. Else, using v,
B2 decrypts [C]2 and [D]2 obtaining [m>]2 ∈ G1×n

2 and [n>]2 ∈ G1×n
2 , respectively, and

returns B>[m]2 − [n]2.

Let E1 the event where ([C]2, [D]2) ∈ Lpk,n,shuffle, E2 the event where [F]1 ∈ Lnu1,u2,S
, and

E3 the event where 11×n = 11×nB ∧ B>[m]2 − [n]2 = 0. Note that E2 ∧ E3 =⇒ E1

since E2 implies that x = Bs, where B ∈ {0, 1}n×n and B1n×1 = 1n×1, and together
with E3 implies that B is a permutation. Note also that eq1 ∧ eq2 ∧ ¬E3 implies that

2The availability of the decryption key k in the soundness reduction is possible since the reduction
samples by itself the language parameter v. Correspondingly Groth and Lu [GL07] proved culpable
soundness (also called co-soundness), which essentially requires the soundness adversary to produce the
decryption key.
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K(gk, [v]2, n) (S1(gk, [v]2, n))
S := {[s1]1, . . . , [sn]1}, s> ← L1,n

crsGS ← GS.K(gk)
crsset ← Πset.K(gk, [M]1, [N]1, [Λ]1, n)
Return crs := ([v]2, crsGS, crsset).
(τGS ← GS.S1(gk)
τset ← Πset.S1(gk, L, [M]1, [N]1, [Λ]1, n).
τ := (s, τGS, τset)).

P(crs, [C]2, [D]2, 〈P, δ〉)
[x]1 := P[s]1, [y]1 := [s>]1δ
πGS ← GS.P(crsGS, {eq1, eq2}, 〈[x]1, [y]1〉)
πset ← Πset.P(crsset, [F]1, 〈P>,R〉)
//[F]1 = GS.ComcrsGS

([x>]1; R)
Return (πGS, πset).

V(crs, [C]2, [D]2, (πGS, πset))
ans1 ← GS.V(crsGS, {eq1, eq2}, πGS)
ans2 ← Πset.V(crsset, [F]1, πset)
Return ans1 ∧ ans2.

S2(crs, [C]1, [D]1, τ)
πGS ← GS.S2(crsGS, {eq1, eq

′
2}, τGS)

πset ← Πset.S2(crsset, [F]1, τset)
Return (πGS, πset).

Figure 5.2: The proof system Πshuffle for the language L[v]2,n,shuffle. Πset is the proof system from Section 5.3.3.

The matrices M,N,Λ are defined as M :=
(

s>

01×n

)
, N := (u1|u2),Λ := (1, . . . , 1), where u1,u2 are the

GS commitment keys from crsGS, and the equations are defined as eq1 :=
∑
i∈[n][si]1 −

∑
j∈[n][xi]1 = [0]1,

eq2 := [x>]1[C>]2− [s>]1[D>]2 = [y]1[v>]2, and eq′2 := [x>]1[C>]2− [1]1[s>D>]2 = [y]1[v>]2 . The proof
size is (4n+ 17)|G1|+ 14|G2|+ 1|Zq|

(11×n −B11×n)> or B>[m]1 − [n]2 are solutions to the D1,n-KerMDH. Then it holds that

Adv(A) = Pr[¬E1 ∧ V(crs, ([C]2, [D]2), π) = 1]

= Pr[¬E1 ∧ V(crs, ([C]2, [D]2), π) = 1 ∧ ¬E2] +

Pr[¬E1 ∧ V(crs, ([C]2, [D]2), π) = 1 ∧ E2]

≤ Pr[¬E2 ∧ Πset.V(crsset, [F]2, πset) = 1] + Pr[¬E1 ∧ eq1 ∧ eq2 ∧ E2]

≤ AdvΠset(B1) + Pr[¬E1 ∧ eq1 ∧ eq2 ∧ E2 ∧ E3] +

Pr[¬E1 ∧ eq1 ∧ eq2 ∧ E2 ∧ ¬E3]

≤ AdvΠset(B1) + Pr[¬E1 ∧ E2 ∧ E3] + Pr[eq1 ∧ eq2 ∧ ¬E3]

= AdvΠset(B1) + 0 + AdvD1,n-KerMDH(B2).

(Zero-Knowledge.) We need to check that the inputs to the simulators are true statements
and, for the GS simulator, that the equations allow simulation. This is certainly true for
eq1 and, if ([C]1, [D]1) ∈ Lpk,n,shuffle, then is also true for eq′2. Furthermore, it is guaranteed
that πGS is computationally indistinguishable from a real proof for {eq1, eq

′
2}, which is

identically distributed to a real proof for {eq1, eq2} since eq′2 and eq2 accepts the same set
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of solutions. Finally, since the perfectly hiding crsGS is such that rank(u1|u2) = 2, then
Lnu1,u2,S

= G2×n
1 and thus [F]1 ∈ Lnu1,u2,S

is always true. �

5.5 Range Argument

We want to prove that a GS commitment [c]1 opens to some integer y in the range
[0, 2n − 1]. That is, construct a NIZK proof system for the language

Lck,[0,2n−1] := {[c]1 ∈ G2
1 : ∃y, r ∈ Zq s.t. [c]1 = GS.Com(y; r) ∧ y ∈ [0, 2n − 1]},

where ck := ([u1]1, [u2]1)← GS.K(1λ). Our proof is as follows:

a) Commit to y1, . . . y`.

b) Show that yi ∈ [0, d− 1], for each i ∈ [`].

c) Show that y =
∑

i∈[`] yid
i−1.

Given that it must hold that ` = n/ log d, the total size of the proof is S[0,d−1](`) + Θ(`),
where S[0,d−1](`) is the size of ` range proofs in the interval [0, d− 1].

5.5.1 Our Construction

Note that b) is equivalent to show that (GS.Com(y1)| · · · |GS.Com(y`)) ∈ L`ck,[0,d−1]. Thus,
using the proof system from Section 5.3 we are able to aggregate ` range proofs in the
interval [0, d − 1] into a single proof of size Θ(log d). Choosing d = nk we get that
S[0,d−1](`) = Θ(k log n) and ` = n/ log nk = n

k logn
, and thus the size of our range proof

is Θ( n
k logn

) for an arbitrarily chosen k ∈ N. One would be tempted to choose d = 2
√
n

to obtain a proof of size Θ(
√
n). However, the proof system from Section 5.3 requires

membership in Lck,[0,d−1] to be efficiently testable, which seems to be infeasible as when
d = 2

√
n.

A detailed description of our proof system is in Fig. 5.3 and security follows from Theorem
5.11

Theorem 5.11 The proof system from Fig. 5.3 is a QA-NIZK proof system for the lan-
guage Lck,[0,2n−1] with perfect completeness, computational soundness, and computational
zero-knowledge.

Proof (Completeness.) If [c]1 = GS.Com(y; r) and y ∈ [0, 2n − 1], then there exists
y1, . . . , y` ∈ [0, d − 1] such that y =

∑
i∈[`] yid

i−1. Therefore y = (y1, . . . , y`)
> and r are

solutions to eq and [X]1 = GS.Com(y>) ∈ L`u′1,u′2,d.

(Soundness.) Given an adversary A against the soundness of the proof system from Fig.
5.3, we construct an adversary B against the soundness of Πbin. If y /∈ [0, 2n − 1], then
the perfect soundness of GS proofs implies that there is some yi /∈ [0, d − 1]. Therefore
[X]1 = GS.Com(y>) /∈ L`u′1,u′2,d and AdvΠrange-proof

(A) ≤ AdvΠbin
(B).

(Zero-Knowledge.) Follows directly from zero-knowledge of GS proofs, the fact that eq
allows simulation, and the fact that [X]1 = GS.Com(01×n) ∈ L`d,u′1,u′2 . �
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K1(gk, [u]1, [u2]1, n) (S1(gk, [u1]1, [u2]1, n))
d := nk,m := log d, ` := n/m
crsGS ← GS.K1(gk)
crsset ← Πset.K1(gk, [M]1, [N]1, n)
Return crs := ([u1]1, [u2]1, crsGS, crsset).
(τGS ← GS.S1(gk)
τset ← Πset.S1(gk, [M]1, [N]1, n).
τ := (τGS, τset)).

P(crs, [c]1, 〈y, r〉)
y ∈ Z`q is s.t. y =

∑
i∈[`] yid

i−1

B ∈ {0, 1}m×` is s.t.
y> = (20, . . . , 2m−1)B

πGS ← GS.P(crsGS, eq, 〈y, r〉)
πset ← Πset.P(crsset, [X]1, 〈B,R〉)
//[X]1 = GS.ComcrsGS

(y>; R)
Return (πGS, πset).

V(crs, [c]1, (πGS, πset))
ans1 ← GS.V(crsGS, eq, πGS)
ans2 ← Πset.V(crsset, [X]1, πset)
Return ans1 ∧ ans2.

S2(crs, [c]1, τ)
πGS ← GS.S2(crsGS, eq, τGS)
πset ← Πset.S2(crsset, [X]1, τset)
//[X]1 = GS.ComcrsGS

(Y; R)
Return (πGS, πset).

Figure 5.3: The proof system Πrange-proof for the language Lck,[0,2n−1]. Πset is the proof system from
Section 5.3.3. The matrices M,N are defined as M := u′1(20, 21, . . . , 2m−1),N := u′2, where u′1,u

′
2 are the

GS commitment keys from crsGS. The equation eq is defined as [c]1 −
∑
i∈[`] yid

i−1[u1]1 = r[u2]1.
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Chapter 6

Ring Signature of Size Θ( 3
√
n)

without Random Oracles

Ring signatures, introduced by Rivest, Shamir and Tauman, [RST01], allow to anony-
mously sign a message on behalf of a ring of users P1, . . . , Pn, only if the signer belongs to
the ring. Although there are other cryptographic schemes that provides similar guarantees
(e.g. group signatures [Cv91]), ring signatures are not coordinated: each user generates
secret/public keys on his own – i.e. no central authorities – and might sign on behalf of
a ring without the approval or assistance of the other members.

The literature on ring signatures is vast, and, while there exist even logarithmic size so-
lutions [GK15, LLNW16], most of them rely on the random oracle model (ROM). The
ROM idealizes the behavior of hash functions and proofs of security in the ROM model
are considered only heuristic arguments, since there are protocols secure in the ROM but
insecure using any real hash functions [CGH98]. Without random oracles all the construc-
tions have signatures of size linear in the size of the ring, being the the sole exception
the Θ(

√
n) ring signature of Chandran et al. [CGS07] (already discussed, and optimized,

in Section 4.1.6). We remark that no asymptotic improvements to Chandran et al.’s con-
struction have been made since their introduction (only improvements in the constants
by Ràfols [Ràf15] and the improvements from Section 4.1.6). We note that although
some previous works claim to construct signatures of constant [BDR15] or logarithmic
[GSP16] size, they are either in a weaker security model or we can identify a flaw in the
construction (see Section 6.2.2).

In this section we present the first ring signature whose signature size is asymptotically
smaller than Chandran et al.’s. Specifically, our ring signature is of size Θ( 3

√
n). Interest-

ingly, the security of our construction relies on a security assumption – the permutation
pairing assumption – introduced by Groth and Lu [GL07] in an unrelated setting: proofs
of correctness of a shuffle. While the assumption is “non-standard”, in the sense that is not
a “DDH like” assumption, it is a falsifiable assumption and it was proven to be generically
hard by Groth and Lu. For simplicity, we work on symmetric groups (G1 = G2), but
our techniques should be easily extended to asymmetric groups if a natural translation to
asymmetric groups of the Groth and Lu’s assumption is given.

6.1 High Level Description

Our scheme follows the ring signature of Chandran et al. Given a Boneh-Boyen signature
scheme (Section 6.2.4), where the secret/verification keys are of the form (sk, [vk]) and
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sk = vk ∈ Zq, and given a one-time signature scheme (Section 2.2.4), the signature of the
message m for a ring R = {[vk1], . . . , [vkn]} is computed as follows:1

a) pick a one-time signature key (skot, vkot), sign m with the one-time signature, and
sign the one-time verification key with sk,

b) commit to the signature of the one-time verification key and to [vk] and show that
it is a valid signature key using GS proofs,

c) show that [vk] ∈ R.

The most costly part is c) and our contribution is a proof of size Θ( 3
√
n) of c).

Our construction is similar to the proof system for set membership with proof size Θ( 3
√
n)

from Section 4.1.6. However, note that the proof system from Section 4.1.6 does not
suffice for constructing a ring signature because the CRS is fixed to a specific set and
thus, the resulting ring signature will be fixed to a specific ring.

In our scheme the secret/verification keys of party P are (sk,vk), where vk = ([vk], [a],
a[vk]), (sk, [vk]) are secret/verification keys of the Boneh-Boyen signature scheme, and
a ∈ Z2

q is chosen independently for each key from some distribution Q to be specified
later. Suppose that vk is the α th element in the ring R = {vk(1,1,1), . . . ,vk(m,m,m)},
where α = (iα, jα, kα) := (iα − 1)m2 + (jα − 1)m + kα for iα, jα, kα ∈ [m],m := 3

√
n. The

prover commits to [x] = [sµ] and [y] = [s′µ′ ], for µ = µ′ = (jα − 1)m + kα, and shows,
using the set-membership proof from Section 4.1.6 (which is the proof from Chandran et
al. adapted to work with vectors), that [x] ∈ S and that [y] ∈ S ′, where

S := {[s1], . . . , [sn2/3 ]} :=

∑
i∈[m]

[a(i,1,1)], . . . ,
∑
i∈[m]

[a(i,m,m)]

 and

S ′ := {[s′1], . . . , [s′n2/3 ]} :=

∑
i∈[m]

a(i,1,1)[vk(i,1,1)], . . . ,
∑
i∈[m]

a(i,m,m)[vk(i,m,m)]

 .

The prover also needs to assure that µ = µ′, which can be done reutilizing the commitment
to µ (in fact to its m-ary representation ) used in the proof that [x] ∈ S in the proof
that [y] ∈ S ′. Since both sets are of size n2/3, the two set membership proofs are of size
Θ( 3
√
n).

Now that the prover has commited to elements

[x] =
∑
i∈[m]

[a(i,jα,kα)] and [y] =
∑
i∈[m]

a(i,jα,kα)[vk(i,jα,kα)],

it additionally commits to [κ1] := [vk(1,jα,kα)], . . . , [κm] := [vk(m,jα,kα)] and [z1] := [a(1,jα,kα)],
. . . , [zm] := [a(m,jα,kα)]. The prover now gives a proof that∑

i∈[m]

[zi][κi] = [y][1]. (6.1)

Provided that z1, . . . , zm is a permutation of a(1,jα,kα), . . . , a(m,jα,kα), we can show that
if [κ1], . . . , [κm] is not a permutation of [vk(1,jα,kα)], . . . , [vk(m,jα,kα)], then we can extract

1We could replace the Boneh-Boyen signature scheme with any structure preserving signature scheme
secure under milder assumptions (e.g. [JR17]). We rather keep it simple and stick to Boneh-Boyen
signature which, since the verification key is just one group element, simplifies the notation and reduces
the size of the final signature.
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an element from the kernel of the matrix ([a1,jα,kα ] · · · [am,jα,kα ]). Thereby, provided the
corresponding kernel assumption holds, the prover can simply select the iα th element
from [κ1], . . . , [κm] which is guaranteed to be an element from the ring.

Therefore, it is only left the to show that z1, . . . , zm is a permutation of a(1,jα,kα), . . . , a(m,jα,kα).
To do so we will use the following assumption introduced by Groth and Lu [GL07].

Definition 6.1 (Permutation Pairing Assumption) Let Qm = Q| . . . |Q︸ ︷︷ ︸
m times

, where con-

catenation of matrix distributions is defined in the natural way and

Q : a =

(
x
x2

)
, x← Zq.

We say that the m-permutation pairing assumption holds relative to Gens if for any adver-
sary A

Pr

 gk ← Gens(1
k); A← Qm; [Z]← A(gk, [A]) :

(i)
∑

i∈[m][zi] =
∑

i∈[m][ai], (ii) ∀i ∈ [m] [z2,i][1] = [z1,i][z1,i],

and Z is not a permutation of the columns of A

 ,
where [Z] = [(z1, . . . , zm)], [A] = [(a1, . . . , am)] ∈ G2×m, is negligible in k.

If the prover additionally proves that equations (i) and (ii) are satisfied for A := (a(1,jα,kα),
. . . , a(m,jα,kα)), which can be done with Θ(m) group elements using Groth-Sahai proofs,
the assumption is guaranteeing that the columns of Z are a permutation of the columns
of A, for some permutation π ∈ Sm. Therefore, equation (6.1) implies that∑

i∈[m]

[zi][κi] =
∑
i∈[m]

[a(π(i),jα,kα)][κi] =
∑
i∈[m]

[a(i,jα,kα)][κπ−1(i)]

=
∑
i∈[m]

[a(i,jα,kα)][vk(i,jα,kα)].

Then κ1, . . . , κm is a permutation of a(1,jα,kα), . . . , a(m,jα,kα) (the same defined by z1, . . . , zm),
unless (κπ−1(1) − vk(1,jα,kα)), . . . , κπ−1(m) − vk(m,jα,kα)))

> is in the kernel of A. Groth and
Lu showed the hardness of finding an element from ker(A), when A is sampled from
Qm, in the generic group model. They called this assumption the simultaneous pairing
assumption and it corresponds to the Q>m-KerMDH assumption.

Remark. A natural question is if this technique can be applied once again. That is, to
compute a Θ( 4

√
n) proof, compute commitments to an element from

S =

∑
i∈[m]

a(i,1,1,1)[vk(i,1,1,1)], . . . ,
∑
i∈[m]

a(i,m,m,m)[vk(i,m,m,m)]

 and

S ′ =

∑
i∈[m]

[a(i,1,1,1)], . . . ,
∑
i∈[m]

[a(i,m,m,m)]

 ,

and then prove that they belong to the respective sets with the proof of size Θ( 3
√
n). Since

|S| = |S ′| = n3/4, proof will be of size Θ(
3
√
n3/4) = Θ( 4

√
n). However, this is not possible

since the Θ( 3
√
n) proof is not a set membership proof for arbitrary sets, but only for sets

where each element is of the form ([vk], a[vk], [a]).
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6.2 Preliminaries

6.2.1 Groth-Sahai Proofs in the 2-Lin Instantiation

In our ring signature we use as primitive Groth-Sahai proofs, which we have only instan-
tiated in the SXDH setting. Since the SXDH (and DDH) is false in symmetric groups, in
order to use Groth-Sahai proofs in symmetric groups one usually instantiates them using
the 2-Lin assumption. Following Groth and Sahai’s work [GS08], in symmetric groups
and using the 2-Lin assumption, GS commitments are vectors in G3 of the form

GS.Comck([x]; r) =

[0]
[0]
[x]

+ r1[u1] + r2[u2] + r3[u3]

where ck := ([u1]|[u2][u3]), (u2|u3)← L2 and u1 := w1u2 +w2u3 in the perfectly binding
setting, and u1 := w1u2 +w2u3−e3 in the perfectly hiding setting, for w1, w2 ← Zq. Secu-
rity of GS commitments follows from the hardness of the 2-Lin assumption in symmetric
groups.

As consequence of the enlargement of commitments, proofs are also larger (for example,
9 group elements for pairing product equations). The form of the proofs is similar to the
asymmetric case (see Section 2.6.3), but we do not give the full detail since it does not
help for understanding our ring signature nor for proving its security.

6.2.2 Flawed or Weaker Ring Signatures

Bose et al. claim to construct a constant-size ring signature in the standard model [BDR15].
However, they construct a weak ring signature where: a) the public keys are generated
all at once in a correlated way; b) the set of parties which are able to participate in a ring
is fixed as well as the maximum ring size; and c) the key size is linear in the maximum
ring size. In the work of Chandran et al. and also in our setting: a) the key generation is
independently run by the user using only the CRS as input; b) any party can be member
of the ring as long as she has a verification key, and the maximum ring size is unbounded;
and c) the key size is constant. These stronger requirements are in line with the original
spirit of non-coordination of Rivest et al. [RST01].

Gritti et al. claim to construct a logarithmic ring signature in the standard model [GSP16].
However, their construction is completely flawed as explained below. In page 12, Gritti
et al. define vbi := vb1···bi∗, where b1 · · · bi∗ is the set of all bit-strings of size d := log n
whose prefix is b1 · · · bi. From this, one has to conclude that vbi is a set (or vector) of
group elements of size 2d−i. In the same page they define the commitment Dbi := vbih

sbi ,
for random sbi ∈ Zq, which, according to the previous observation, is the multiplication
of a set (or vector) of group elements with a group element. Given that length reducing
group to group commitments are known to not exist [AHO12], its representation requires
at least 2d−i group elements . Since commitments Db0 , . . . , Dbd are part of the signature,
the actual signature size is Θ(2d) = Θ(n), rather than Θ(d) = Θ(log n) as claimed by
Gritti et al.2

6.2.3 Definition

We follow Chandran et al.’s definitions [CGS07] described below, which extends the origi-
nal definition of Bender et al. [BKM06] in order to include a CRS and perfect anonymity.

2We used multiplicative notation for the group operations to keep the expressions as they appear in
the original work.
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Definition 6.2 (Ring Signature) A ring signature scheme consists of a quadruple of
PPT algorithms (CRSGen,KeyGen, Sign,Verify) that respectively, generate the common ref-
erence string, generate keys for a user, sign a message, and verify the signature of a
message. More formally:

• CRSGen(gk), where gk is the group key, outputs the common reference string ρ.

• KeyGen(ρ) is run by the user. It outputs a public verification key vk and a private
signing key sk.

• Signρ,sk(m,R) outputs a signature σ on the message m with respect to the ring
R = {vk1, . . . , vkn}. We require that (vk, sk) is a valid key-pair output by KeyGen
and that vk ∈ R.

• Verifyρ,R(m,σ) verifies a purported signature σ on a message m with respect to the
ring of public keys R.

The quadruple (CRSGen,KeyGen, Sign,Verify) is a ring signature with perfect anonymity if
it has perfect correctness, computational unforgeability and perfect anonymity as defined
below.

Definition 6.3 (Perfect Correctness) We require that a user can sign any message on
behalf of a ring where she is a member. A ring signature (CRSGen,KeyGen, Sign,Verify)
has perfect correctness if for all adversaries A we have:

Pr

 gk ← Gen(1λ); ρ← CRSGen(gk); (vk, sk)← KeyGen(ρ);
(m,R)← A(ρ, vk, sk);σ ← Signρ,sk(m;R) :
Verifyρ,R(m,σ) or vk /∈ R

 = 1

Definition 6.4 (Computational Unforgeability) A ring signature scheme (CRSGen,
KeyGen, Sign,Verify) is unforgeable if it is infeasible to forge a ring signature on a message
without controlling one of the members in the ring. Formally, it is unforgeable when for
any non-uniform polynomial time adversaries A we have that

Pr

[
gk ← Gen(1λ); ρ← CRSGen(gk); (m,R, σ)← AVKGen,Sign,Corrupt(ρ) :
Verifyρ,R(m,σ) = 1

]
is negligible in th security parameter, where

• VKGen on query number i selects randomness wi, computes (vki, ski) := KeyGen(ρ;wi)
and returns vki.

• Sign(i,m,R) returns σ ← Signρ,ski(m,R), provided (vki, ski) has been generated by
VKGen and vki ∈ R.

• Corrupt(i) returns wi (from which ski can be computed) provided (vki, ski) has been
generated by VKGen.

• A outputs (m,R, σ) such that Sign has not been queried with (∗,m,R) and R only
contains keys vki generated by VKGen where i has not been corrupted.

Definition 6.5 (Perfect Anonymity) A ring signature scheme (CRSGen,KeyGen, Sign,
Verify) has perfect anonymity, if a signature on a message m under a ring R and key vki0
looks exactly the same as a signature on the message m under the ring R and key vki1,
where vki0 , vki1 ∈ R. This means that the signer’s key is hidden among all the honestly
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generated keys in the ring. Formally, we require that for any unbounded adversary A:

Pr

 gk ← Gen(1λ); ρ← CRSGen(gk);
(m, i0, i1, R)← AKeyGen(ρ)(ρ);σ ← Signρ,ski0 (m,R) :

A(σ) = 1

 =

Pr

 gk ← Gen(1λ); ρ← CRSGen(gk);
(m, i0, i1, R)← AKeyGen(ρ)(ρ);σ ← Signρ,ski1 (m,R) :

A(σ) = 1


where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by the oracle
KeyGen(ρ).

6.2.4 Boneh-Boyen Signatures

Boneh and Boyen described a short signature – each signature consists of only one group
element – which is UF-CMA without random oracles [BB04]. Interestingly, the verifi-
cation of the validity of any signature-message pair can be written as a set of pairing
product equations. Thereby, using Groth-Sahai proofs one can show the possession of a
valid signature without revealing the actual signature (as done in Chandran et al.’s ring
signature and our ring signature).

The Boneh-Boyen signature is proven UF-CMA secure under the m-strong Diffie-Hellman
assumption, which is described below.

Definition 6.6 (m-SDH assumption) For any adversary A

Pr

[
gk ← Gens(1

λ), x← Zq : A(gk, [x], [x2], . . . , [xm]) = (c,

[
1

x+ c

]
)

]
is negligible in λ.

The Boneh-Boyen signature scheme is described below.

BB.KeyGen: Given a group key gk, pick vk ← Zq. The secret/public key pair is defined
as (sk, [vk]) := (vk, [vk]).

BB.Sign: Given a secret key sk ∈ Zq and a message m ∈ Zq, output the signature
[σ] :=

[
1

sk+m

]
. In the unlikely case that sk +m = 0 we let [σ] := [0].

BB.Ver: On input the verification key [vk], a message m ∈ Zq, and a signature [σ], verify
that [m+ vk][σ] = [1]T .

6.3 Our Construction

CRSGen(gk): Pick a perfectly hiding CRS for the Groth-Sahai proof system crsGS, and a
CRS for the proof of the Θ(

√
n) proof of membership in a set crsset (Section 4.1.6),

and output ρ := (gk, crsGS, crsset).

KeyGen(ρ): Pick a ← Q and (sk, [vk]) ← BB.KeyGen(gk), compute [a] and then erase a.
The secret key is sk and the verification key is vk := ([vk], [a], a[vk]).

Signρ,sk(m,R): 1. Compute (skot, vkot)← OT.KeyGen(gk) and σot ← OT.Signskot
(m,R).

2. Compute [c] := GS.Comck([vk]; r), r ← Zq, [σ] ← BB.Signsk(vkot), [d] :=
GS.Comck([σ]; s), s ← Zq, and a GS proof πGS that BB.Ver[vk]([σ], [vkot]) = 1
(which can be expressed as a set of pairing product equations).
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3. Parse R as {vk(1,1,1), . . . ,vk(m,m,m)}, where m := 3
√
n, n := |R|, and let

α = (iα, jα, kα) the index of vk in R. Define the sets S = {
∑

i∈[m][a(i,1,1)],

. . . ,
∑

i∈[m][a(i,m,m)]} and
S ′ = {

∑
i∈[m] a(i,1,1)[vk(i,1,1)], . . . ,

∑
i∈[m] a(i,m,m)[vk(i,m,m)]}.

4. Let [x] :=
∑

i∈[m][a(i,jα,kα)] and [y] =
∑

i∈[m] a(i,jα,kα)[vk(i,jα,kα)]. Compute GS
commitments to [x] and [y], and compute proofs π1 and π2 that they belong
to S and S ′, respectively. It is also proven that they appear in the same
positions reusing the commitments to b1, . . . , bm and b′1, . . . , b

′
m, used in the

set-membership proof from Section 4.1.6), which define [x]’s and [y]’s position
in S and S ′ respectively.

5. Let [κ1] := [vk(1,jα,kα)], . . . , [κm] := [vk(m,jα,kα)] and [z1] := [a(1,jα,kα)], . . . , [zm] :=
[a(m,jα,kα)]. Compute GS commitments to [κ1], . . . , [κm] and [z1], . . . , [zm], and
GS proof πκ that

∑
i∈[m][κi][zi] = [y][1] and a GS proof πz that

∑
i∈[m][zi] = [x]

and [z2,i][1] = [z1,i][z1,i] for each i ∈ [m].

6. Compute a proof π3 that [vk] belongs to S3 = {[κ1], . . . , [κm]}.

7. Return the signature σ := (vkot, σot, [c], [d], π1, π2, π3, πκ, πz). (GS proofs in-
clude commitments to variables).

Verifyρ,R(m,σ): Verify the validity of the one-time signature and of all the proofs. Return
0 if any of these checks fails and 1 otherwise.

Theorem 6.7 The scheme presented in this section is a ring signature scheme with per-
fect correctness, perfect anonymity and computational unforgeability under the m-permuta-
tion pairing assumption, the Q>m-KerMDH assumption, the 2-Lin assumption, and the
assumption that the one-time signature and the Boneh-Boyen signature are unforgeable.
Concretely, for any adversary A against the unforgeability of the scheme, there exist ad-
versaries B1,B2,B3,B4,B5 such that

Adv(A) ≤AdvL2-MDDH(B1) + Advqgen-PPA(B2) + AdvQ>qgen-KerMDH(B3)+

qgen(qsigAdvOT(B4) + AdvBB(B5)),

where qgen and qsign are, respectively, upper bounds for the number of queries that A makes
to its VKGen and Sign oracles.

Proof Perfect correctness follows directly from the definitions. Perfect anonymity follows
from the fact that the perfectly hiding Groth-Sahai CRS defines perfectly hiding and
perfect zero-knowledge proofs, information theoretically hiding any information about
vk.

We say that an unforgeability adversary is “eager” if makes all its queries to the VKGen
oracle at the beginning. Note that any non-eager adversary A′ can be perfectly simulated
by an eager adversary that makes qgen queries to VKGen and answers A′ queries to VKGen
“on demand”.

W.l.o.g. we assume that A is an eager adversary. Computational unforgeability follows
from the indistinguishability of the following games

Game0: This is the real unforgeability experiment. Game0 returns 1 if the adversary A
produces a valid forgery and 0 if not.
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Game1: This is game exactly as Game0 with the following differences:

– The Groth-Sahai CRS is sampled together with its discrete logarithms from
the perfectly binding distribution.

– At the beginning, variables err2 and err3 are initialized to 0, and a random
index i∗ is chosen from [qgen].

– On a query to Corrupt with argument i, if i = i∗ set err3 ← 1 and proceed as
in Game2.

– Let (m,R, σ) the purported forgery output by A. If [vk], the opening of com-
mitment [c] from σ, is not equal to [vki∗ ], set err3 ← 1. If [vk] /∈ R, then set
err2 = 1.

Game2: This is game exactly as Game1 except that, if err2 is set to 1, Game2 aborts.

Game3: This is game exactly as Game2 except that, if err3 is set to 1, Game3 aborts.

Since variables err2 and err3 are just dummy variables, the only difference between Game0

and Game1 comes from the Groth-Sahai CRS distribution. It follows that there is an ad-
versary B1 against DLin such that |Pr[Game0 = 1]− Pr[Game1 = 1]| ≤ AdvL2-MDDH(B1).

Lemma 6.8 There exist adversaries B2 and B3 against the qgen-permutation pairing as-
sumption and against the Q>qgen

-KerMDH assumption, respectively, such that

|Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ Advqgen-PPA(B2) + AdvQ>qgen-KerMDH(B3).

Proof Note that

Pr[Game1 = 1] = Pr[Game1 = 1|err2 = 0] Pr[err2 = 0]+

Pr[Game1 = 1|err2 = 1] Pr[err2 = 1]

≤Pr[Game2 = 1] + Pr[Game1 = 1]err2 = 0]

=⇒|Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ Pr[Game1 = 1|err2 = 1].

We proceed to bound this last probability.

We construct an adversary B2 against the qgen-permutation pairing assumption as follows.
B2 receives as challenge [A′] ∈ G2×qgen and honestly simulates Game2 with the following
exception. On the i th query of A to VKGen sets [ai] as the i th column of [A′]. When A
outputs GS.ComckGS

([z1]), . . . ,GS.ComckGS
([zm]), as part of πz, B2 extract [z1], . . . , [zm]. Let

jα, kα ∈ [m] the indices defined by π1 and π2, B returns ([z1], . . . , [zm], [ã1], . . . , [ãqgen−m]),
where [ã1], . . . , [ãqgen−m] are the columns of [A′] which are different from [a′(1,jα,kα)], . . . ,

[a′(m,jα,kα)].

We construct an adversary B3 against the Q>qgen
-KerMDH assumption as follows. B receives

as challenge [A′] ∈ G2×qgen and honestly simulates Game2 embedding [A′] in the user keys
(in the same way as B2). When A outputs GS.ComckGS

([κ1]), . . . ,GS.ComckGS
([κm]), as

part of πκ, B3 extract [κ1], . . . , [κm]. B3 attempts to extract a permutation π such that
[zi] = [a′(π(i),jα,kα)] for each i ∈ [m]. If there is no such permutation, B3 aborts. Finally,
B3 returns ([0], . . . , [0], [κπ−1(1)]− [vk(1,jα,kα)], . . . , [κπ−1(m)]− [vk(m,jα,kα)], [0], . . .)> ∈ Gqgen .

Let E the event where [z1], . . . , [zm] is a permutation of [a′(1,jα,kα)], . . . , [a
′
(m,jα,kα)], and

assume that we are in the case ¬E. Soundness of proof πκ implies that∑
i∈[m]

[κi][zi] = [y].
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Soundness of proof πz implies that∑
i∈[m]

[zi] = [x] and

[zi,2][1] = [zi,1][zi,1] for all i ∈ [m]. (6.2)

Soundness of proofs π1, π2, π3 implies, respectively, that there exist jα, kα ∈ [m] such that∑
i∈[m]

[κi][zi] =
∑
i∈[m]

a′(i,jα,kα)[vk(i,jα,kα)], (6.3)

∑
i∈[m]

[zi] =
∑
i∈[m]

[a′(i,jα,kα)], , (6.4)

and that [vk] = [κi∗ ], for some i∗ ∈ [m].

Equation (6.4) and imply that∑
i∈[qgen−m]

[ãi] +
∑
i∈[m]

[zi] =
∑
i∈[qgen]

[a′i]

and together with equation (6.2), the fact that [ãi,2][1] = [ãi,1][ãi,1], and that we assume
¬E, implies that B2 breaks the qgen-permutation pairing assumption. Therefore

Pr[Game2 = 1|err2 = 1 ∧ ¬E] ≤ Advqgen-PPA(B2).

Assume now that we are in the case E. Therefore, equation (6.3) implies that∑
i∈[m]

(κi − vk(π(i),jα,kα))a(π(i),jα,kα) = 0.

Since [vk] = [κi∗ ] /∈ R, then [κi∗ ] 6= vk(i,jα,kα) for all i ∈ [m]. Therefore ([0], . . . , [0], [κπ−1(1)]−
[vk(1,jα,kα)], . . . , [κπ−1(m)]− [vk(m,jα,kα)]) 6= [0] and B3 breaks the Q>qgen

-KerMDH assumption.
We conclude that

Pr[Game2 = 1|err2 = 1 ∧ E] ≤ AdvQ>qgen-KerMDH(B3)

The lemma follows from the fact that

Pr[Game1 = 1|err2 = 1] = Pr[Game1 = 1|err2 = 1 ∧ ¬E] Pr[¬E]+

Pr[Game1 = 1|err2 = 1 ∧ E1] Pr[E1]

≤Pr[Game1 = 1|err2 = 1 ∧ ¬E]+

Pr[Game1 = 1|err2 = 1 ∧ E1]

≤Advqgen-PPA(B2) + AdvQ>qgen-KerMDH(B3) �

Lemma 6.9
Pr[Game3 = 1] ≥ 1

qgen
Pr[Game2 = 1].

Proof It holds that

Pr[Game3 = 1] = Pr[Game3 = 1|err3 = 0] Pr[err3 = 0]

= Pr[Game2 = 1|err3 = 0] Pr[err3 = 0]

= Pr[err3 = 0|Game2 = 1] Pr[Game2 = 1]. �
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The probability that err2 = 0 given Game2 = 1 is the probability that the qcor calls to
Corrupt do not abort and that [vk] = [vki∗ ]. Since A is an eager adversary, at the i th call
to Corrupt the index i∗ is uniformly distributed over the qgen− i+1 indices of uncorrupted
users. Similarly, when A outputs its purported forgery, the probability that [vk] = [vki∗ ]
is 1/(qgen − qcor), since [vk] ∈ R (or otherwise Game2 would have aborted). Therefore

Pr[err2 = 1|Game2 = 1] =
qgen − 1

qgen

qgen − 2

qgen − 1
. . .

qgen − qcor

qgen − qcor + 1

1

qgen − qcor
=

1

qgen
.

Lemma 6.10 There exist adversaries B4 and B5 against the unforgeability of the one-
time signature scheme and the weak unforgeability of the Boneh-Boyen signature scheme
such that

Pr[Game3 = 1] ≤ qsigAdvOT(B4) + AdvBB(B5)

Proof We construct adversaries B4 and B5 as follows.

B4 receives vk†ot and simulates Game3 honestly but with the following differences. It
chooses a random j∗ ∈ [qsig] and answer the j∗ th query to Sign(i,m†, R†) honestly but
computing σ†ot querying on (m†, R†) its oracle and setting vk†ot as the corresponding one-
time signature. Finally, when A outputs its purported forgery (m,R, (σot, vkot, . . .)), B4

it outputs the corresponding one-time signature.

B5 receives [vk] and simulates Game3 honestly but with the following differences. Let
i := 0. B5 computes (skiot, vk

i
ot) ← OT.KeyGen(gk), for each i ∈ [qsig] and queries its

signing oracle on (vk1
ot, . . . , vk

qsig

ot ) obtaining [σ1], . . . , [σqsig
]. When A queries the signing

oracle on input (i∗,m,R), B5 computes an honest signature but replaces vkot with vkiot

and [σ] with [σi], and then adds 1 to i. Finally, when A outputs its purported forgery
(m,R, (σot, vkot, [c], [d], . . .)), it extracts [σ] from [d] as its forgery for vkot.

Let E be the event where vkot, from the purported forgery of A, has been previously
output by Sign. We have that

Pr[Game3 = 1] ≤ Pr[Game3 = 1|E] + Pr[Game3 = 1|¬E].

Since (m,R) has never been signed by a one-time signatures and that, conditioned on E,
the probability of vkot = vk†ot is 1/qsig, then

qsigAdvOT(B4) ≥ Pr[Game3 = 1|E] �

Finally, if ¬E holds, then [σ] is a forgery for vkot and thus

AdvBB(B5) ≥ Pr[Game3 = 1|¬E]
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Chapter 7

Improved Aggregated
Zero-Knowledge Set-Membership

Proofs

In this chapter we construct a QA-NIZK proof system for the language

Lnck,set :=

{
([ζ1]1, . . . , [ζn]1, S) : ∃w1, . . . , wn ∈ Zq s.t. S ⊂ Zq
and ∀i ∈ [n] [ζi]1 = GS.Comck(xi;wi) ∧ xi ∈ S

}
,

with proof size Θ(log |S|). In Section 7.2.1 we show how to extend these ideas to show
membership in the language

Lnck,S :=

{
([ζ1]1, . . . , [ζn]1) : ∃w1, . . . , wn ∈ Zq s.t. S ⊂ G1

and ∀i ∈ [n] [ζi]1 = GS.Comck([xi]1;wi) ∧ [xi]1 ∈ S

}
,

with proof size Θ(log |S|), for any S ⊂ G1.

The first case is the more general form of a set-membership proof where the set is dynami-
cally chosen. In the second case each instance of the proof system is fixed to a specific set
(encoded in the CRS) and is the same notion of the proofs for “fixed sets” from Section
4.1.6. We note that the aggregated set-membership proofs for S ⊂ Gs from Chapter 5
are proofs of membership in Lnck,S.

In Section 7.1, we start with an intuitive description for the case S ⊂ Zq without aggre-
gation. We note that even in this simpler case, to the best of our knowledge, the shortest
non-interactive proof, under falsifiable assumptions and without assuming anything about
S,1 that exists in the literature is the one of Chandran et al. of size Θ(

√
|S|). Our ap-

proach is to commit to the binary representation (b1, . . . , blog t) ∈ {0, 1}log t of the index
of the purported x ∈ S, for S = {s1, . . . , st} and where b1 is the least significant bit, to
select the the leaves under the paths (blog t), (blog t, blog t−1), . . . , (blog t, . . . , b1) in the binary
tree whose leaves are (from left to right) s1, . . . , st. In order to keep a logarithmic proof,
we commit to the selected leaves using MP commitments from Section 4.2.1 and show, for
each ` ∈ [log t], that the leaves under the path (bm, · · · , b`) are equal the leftmost or right-
most, depending of b`, leaves under the path (blog t, · · · , b`−1). We use these ideas together
with a clever usage of QA-NIZK proofs of membership in linear subspaces, Groth-Sahai
proofs, and the proof systems from Chapters 3 and 4.

In Section 7.2 we give a full description of the non-aggregated case and then we show how
to extend this result to the case S ⊂ Gs. We use the ideas from Section 7.1 and aggregate

1If S = [a, b] ⊂ Zq and a < b we can use range proofs.
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many instances using similar techniques to those from Chapter 4. We note that, to the
best of our knowledge, there is no aggregated proof in the literature (i.e. all proofs are of
size Ω(n)) with the sole exception of our proof from Section 5 which is of size Θ(|S|). Our
proof bears some similarities with the work of Groth and Kohlweiss [GK15] – both allow
to construct proofs of membership in a set of logarithmic size using the binary encoding of
the element index – but they are in general incomparable. Indeed, Groth and Kohlweiss’s
construction is on a different setting (interactive, without pairings) and does not support
aggregation of many proofs.

There is a straightforward application of the improved aZKSMP. In the proof of a shuffle
from Section 5.4, the size of the proof that [F] ∈ Lnck,S can be reduced from 2n+ Θ(1) to
Θ(log n) and thus the total proof size is reduced from 4n+ o(n) to 2n+ o(n).

7.1 Intuition

For simplicity, we will restrict to the case S = {s1, . . . , st} ⊂ Zq without aggregation, that
is, there is a single commitment [c]1 = GS.ComckGS

(x; r) and we want to show that x = sα,
for some α ∈ [t]. In Section 7.2 we will show how to aggregate many proofs.

The (non-aggregated) proof from Section 5.3 essentially codifies the position α as a weight
1 binary vector b of size t such that x =

∑
i∈[t] bisi and bi = 1 if i = α and 0 if not.2

A step further in efficiency was given by Chandran et al. [CGS07] (already discussed in
Section 4.1.6). There the position α is codified as two weight 1 binary vectors b and b′

of size
√
t such that  x1

...
x√t

 =

√
t∑

i=1

bi

 s(i−1)
√
t+1

...
s(i−1)

√
t+
√
t

 , x =

√
t∑

i=1

b′ixi,

and bi = 1 iff i = iα and b′j = 1 iff j = jα, where α = (iα − 1)
√
t + jα. Since

√
t new

variables are added (variables x1, . . . , x√t), the proof must contain
√
t new commitments

to these variables. However, this does not not affect the asymptotic size of the proof,
which is Θ(

√
t) anyway.

Let m := log t.3 The natural next step is to codify α as m weight 1 binary vectors of
size 2 (note that a weight 1 binary vector of size 2 can be always written as (1 − b, b),
b ∈ {0, 1} ) such that x`,1

...
x`,2`−1

 = (1− b`)

 x`+1,1
...

x`+1,2`−1

+ b`

x`+1,2`−1+1
...

x`+1,2`

 if ` ∈ [m], (7.1)

x = x1,1, (7.2)

where xm+1,i := si, i ∈ [t], and α =
∑m

i=1 bi2
i−1 + 1. Note that we have added the

additional variables x`,i, ` ∈ [m] and i ∈ [2`].

Consider the binary tree whose leaves are xm+1,1 = s1, . . . , xm+1,t = st, where the leftmost
leaf is s1 and the rightmost leaf is s2m = st. Intuitively, equation (7.1) for ` = m says that

2The case S ⊂ Zq is not really discussed in Section 5.3, but it is straightforward that the same
techniques from the case S ⊂ Gs apply.

3 W.l.o.g. we assume that log t ∈ N, because we can always prove membership in the (multi-)set
S′ = S

⊎2dlog te−t
i=1 {st} and it holds that |S′| = 2dlog te and that x ∈ S ⇐⇒ x ∈ S′.
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variables xm,1, . . . , xm,2m−1 are the leaves of the subtree under the path (bm). For example,
if bm = 1, the variables xm,1, . . . , xm,2m−1 are equal to s2m−1+1, . . . , st, which are the leaves
of the subtree under the path (1) as depicted below.

s2m−1+1 · · · sts1 · · · s2m−1

0 1

Similarly, equation (7.1) for ` = m − 1 says that variables xm−1,1, . . . , xm−1,2m−2 are the
leaves of the subtree under the path (bm, bm−1). For example, if (bm, bm−1) = (1, 0), the
variables xm−1,1, . . . , xm−1,2m−2 are equal to xm,1 = s2m−1+1, . . . , xm,2m−2 = s2m−1+2m−2 ,
which are the leaves of the subtree under the path (1,0) as depicted below.

s2m−1+2m−2+1 · · · s2ms2m−1+1 · · · s2m−1+2m−2

0 1

s2m−2+1 · · · s2m−1s1 · · · s2m−2

0 1

0 1

In general, the variables x`,1, . . . , x`,2`−1 are equal to the leaves sleft, . . . , sright under the
path (bm, . . . , b`), where left =

∑m
i=` bi2

i−1 + 1 and right = left + 2`−1 − 1. Therefore, for
` = 1 equation (7.1) says that the variable x1,1 is equal to the leaf sleft = sright = sα, since
left = right =

∑m
i=1 bi2

i−1 + 1 = α, which is the unique leaf (and the unique node) in the
subtree under the path (bm, . . . , b1).

Similarly as in Chandran et al.’s proof, for each new variable a new commitment must
be added to the proof. But, in contrast with Chandran et al.’s proof, in this case the
additional commitments do increase the asymptotic size of the proof. Indeed, the total
number of new variables is 2m−1 + 2m−2 + . . . + 1 = 2m − 1 = t − 1, and thus t − 1 new
commitments must be added.

One can reduce the total size of the commitments using the length reducing multi-Pedersen
commitments from Section 4.2.1. However, this must be done carefully in order to be
able to express equation (7.1) with a Groth-Sahai proof of an equation that involves the
MP commitments and the variables b1, . . . , bm. For example, if one computes a single
commitment to all variables MP.Comck((x1,1, . . . , xm,2m−1)>; r) it is not clear how to use
it to express equation (7.1), because not all the variables appear at once in this equation
(but all the variables appear in the previous commitment). Our solution is to compute
a single MP commitment to each vector that appears in equation (7.1) in order to show
with Groth-Sahai proofs that

MP.Comck`


 x`,1

...
x`,2`−1

 ; r`

 = (1− b`)MP.Comck`


 x`+1,1

...
x`+1,2`−1

 ; r`,1

+

b`MP.Comck`


x`+1,2`−1+1

...
x`+1,2`

 ; r`,2

+

MP.Comck`(0; y`),
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⇐⇒

MP.Comck`


 x`,1

...
x`,2`−1

− (1− b`)

 x`+1,1
...

x`+1,2`−1

− b`
x`+1,2`−1+1

...
x`+1,2`

 ;

r` − (1− b`)r`,1 − b`r`,2


= MP.Comck`(0; y`)

for each ` ∈ [m] and some y` ∈ Zq. In this way, we only need 3m = 3 log t additional
commitments. The reason for using different commitment keys for each ` ∈ [m] will be
clear when we explain soundness.

Concretely, the prover computes

[c`]1 = MP.Comck`((x`,1, . . . , x`,2`−1)>; r`),

for random r` ∈ Zq and ` ∈ [m], and

[c`,1]1 = MP.Comck`((x`+1,1, . . . , x`+1,2`−1)>; r`,1),

[c`,2]1 = MP.Comck`((x`+1,2m−1+1, . . . , x`+1,2`)
>; r`,2),

for random r`,1, r`,2 ∈ Zq and ` ∈ [m− 1]. Note that the prover does not need to compute
commitments to (xm+1,1, . . . , xm+1,t)

> since xm+1,i = si, i ∈ [t], and thus they can be
computed by the verifier.

Then, the prover shows that equation (7.1) holds with a GS proof of the satisfiability of

[c`]1 − (1− b`)[c`,1]1 − b`[c`,2]1 = MP.Comck`(0; y`), for ` ∈ [m], (7.3)

where [cm,1] := MP.Comckm((s1, . . . , s2m−1)>; 0) and [cm,2] := MP.Comckm((s2m−1+1, . . . ,
st)
>; 0) can be directly computed by the verifier, and y` := r`− (1− b`)r`,1− b`r`,2. It also

computes Groth-Sahai proofs that

b`(b` − 1) = 0 (7.4)

for each ` ∈ [m] (or equivalently a proof that b` ∈ {0, 1}).

The prover also shows that equation (7.2) is satisfied with a QA-NIZK proof that

[c]1 and [c1]1 open to the same value, (7.5)

using the proof system from Section 3.4.

Note that variables x`+1,1, . . . , x`+1,2`−1 appear in both [c`,1]1 and [c`+1]1, as well as
x`+1,2`−1+1, . . . , x`+1,2` appear in both [c`,2]1 and [c`+1]1. To get a sound proof, the prover
needs to show that this redundancy is consistent. That is, the prover needs to show that
[c`,1]1 and [c`,2]1 are commitments to the first and last halves of the opening of [c`+1]1.

For ` ∈ [m], let ck` := ([G`]1, [g`,2`−1+1]1) ∈ G2×2`−1+1
1 the commitment key of a MP

commitment scheme and let

G`,1 :=
(
g`,1 · · · g`,2`−2

)
, G`,2 :=

(
g`,2`−2+1 · · · g`,2`−1

)
G` := G`,1|G`,2
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To prove consistency the prover will show that, for each ` ∈ [m− 1], the following linear
system is satisfiedc`+1

c`,1
c`,2

 =

 G`+1,1 G`+1,2 g`+1,2`+1 0 0
G` 02×2`−1 0 g`,2`−1+1 0

02×2`−1 G` 0 0 g`,2`−1+1

w, (7.6)

for some w ∈ Z2`+3
q , which can be proven using the proof system from Section 3.2.

Intuitively, w should be equal to (x`+1,1, . . . , x`+1,2` , r`+1, r`,1, r`,2) and thus

[c`,1]1 = MP.Comck`((x`+1,1, . . . , x`+1,2`−1)>; r`,1) and
[c`,2]1 = MP.Comck`((x`+1,2`−1+1, . . . , x`+1,2`)

>; r`,2).

However, since multi-Pedersen commitments have multiple openings it might be the case
that the satisfying witness of the proof is different from (x`+1,1, . . . , x`+1,2` , r`+1, r`,1, r`,2)
and thus the intuitive reasoning is invalid.

Despite this flawed reasoning, we will show that the proof system is still sound.

Soundness Intuition

Suppose that an adversary against soundness outputs GS commitments to b1, . . . , bm ∈
Zq, outputs commitments [c`]1, ` ∈ [m], and [c`,1]1, [c`,2], ` ∈ [m − 1], a GS proofs
of the satisfiability of equation (7.3), and QA-NIZK proofs of (7.5) and (7.6) for each
` ∈ [m − 1]. Note that perfect soundness of Groth-Sahai proofs for equation (7.4) imply
that b1, . . . , bm ∈ {0, 1}.

For ` ∈ [m], define α` as the position of sα respective to the leaves under the path
(bm, . . . , b`), that is α` := α− left + 1. Note that α` ∈ [1, 2`−1] since

1 ≤ α` =
m∑
i=1

bi2
i−1 −

m∑
i=`

bi2
i−1 + 1 =

`−1∑
i=1

bi2
i−1 + 1 ≤ 2`−1.

The key observation is that, for a fixed α ∈ [m], even if in equation (7.1) x`,j is not
correctly computed for j 6= α`, it holds that xm,1 = sα anyway. We will take advantage of
this observation and the fact that the adversary commits to a fixed α =

∑n
i=1 bi2

i−1 +1 to
guarantee perfect soundness of equation (7.1) at least for coordinate α` for each ` ∈ [m].
We do so by picking the commitment key ck` in such a way that its α` th column is
linearly independent from the other columns. Although we will not be able to guarantee
that x`,j is correctly computed if j 6= α`, at least we will be able to do so for x`,α` .

In the reduction we will guess the (sub-)path (bm−1, . . . , b1) (it will be not necessary
to guess first the edge of the path) chosen by the adversary. While in the real scheme
rank(G`) = 1, for each ` ∈ [m], we jump to a game where g`,α` is linearly independent from
the other 2`−1 vectors in ck`. This can be done choosing random b′m−1, . . . , b

′
1 ∈ {0, 1}

and aborting if (b′m−1, . . . , b
′
1) 6= (bm−1, · · · , b1). Therefore, our security reduction will

have a security loss factor of 1/2m−1 = 2/t. We sample ck` ← L2`−1,α`
1 , as defined on

Section 2.4, which implies that for every ` ∈ [m] there exists unique x̃`, r̃` ∈ Zq such that
c` := x̃`g`,α` + r̃`g`,2`−1+1.

We prove by induction on ` that c` = sαg`,α` + r̃`g`,2`−1+1, for some r̃` ∈ Zq. If this is
the case c1 = sαg1,1 + r̃1g1,2. Soundness of proof for equation (7.5) together with the fact
that ck1 is perfectly binding implies that x = x̃1 = sα ∈ S which proves soundness.

First, it will be useful to prove the next lemma about α`.
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Lemma 7.1 Let bm, . . . , b1 ∈ {0, 1}. For all ` ∈ [m− 1], α`+1 = α` + b`2
`−1.

Proof To avoid confusion, define here left` :=
∑m

i=` bi2
i−1 + 1 (previously simply defined

as left, the index of the leftmost leaf under the path (bm, · · · , b`)). It holds that

α`+1 = α− left`+1 + 1

=
m∑
i=1

bi2
i−1 −

m∑
i=`+1

bi2
i−1 + 1

=
m∑
i=1

bi2
i−1 −

m∑
i=`

bi2
i−1 + 1 + b`2

`−1

= α− left` + 1 + b`2
`−1

= α` + b`2
`−1 �

Now we prove that, for all ` ∈ [m], c` = sαg`,α` + r̃`g`,2`−1+1. In the base case (` = m)
the fact that gm,i ∈ Span(gm,2m−1+1) if i 6= αm together with Lemma 7.1 implies that

cm = (1− bm)
2m−1∑
i=1

sigm,i + bm

2m−1∑
i=1

si+2m−1gm,i

= (1− bm)sαmgm,αm + bmsαm+2m−1gm,αm + r̃1gm,2m−1+1

= (1− bm)sα−left+1gm,αm + bmsα−left+1+2m−1gm,αm + r̃1gm,2m−1+1

=

{
sα−1+1gm,αm + r̃1gm,t/2 if bm = 0 (and thus left = 1)

sα−(2m−1+1)+1+2m−1gm,αm + r̃1gm,t/2 if bm = 1 (and thus left = 2m−1 + 1)

for some r̃1 ∈ Zq. In both cases cm = sαg1,αm + r̃1gm,t/2.

In the inductive case we assume that c`+1 = sαg`+1,α`+1
+ r̃`+1g`+1,2`+1 and we want to

show that c` = sαg`,α` + r̃`g`,2`−1+1. Since g`+1,α`+1
is linearly independent from the rest of

vectors in ck`+1, any solution to equation (7.6) is equal to sα at position α`+1 = α`+b`2
`−1

as depicted below.

c`+1

c`,1
c`,2

 =

· · · g`+1,α` · · · g`+1,α`+2`−1 · · ·
· · · g`,α` · · · 0 · · ·
· · · 0 · · · g`,α` · · ·




...
sα
...


If b` = 0, by Lemma 7.1, α`+1 = α`. Therefore, any solution to equation (7.6) is equal to
sα at position α` and thus c`,1 = sαg`,α` + r̃`,1g`,2`−1+1. Equation (7.3) implies that

c` =(1− b`)(sαg`,α` + r̃`,1g`,2`−1+1) + b`c`,2 + y`g`,2`−1+1

=sαg`,α` + (r̃`,1 + y`)g`,2`−1+1.

If b` = 1, then α`+1 = α` + 2`−1 and similarly, c` = sαg`,α` + (r̃`,2 + y`)g`,2`−1+1.

7.2 The Aggregated Case

Let t := |S| and m := log t. The statement is now [ζ1] = GS.ComckGS
(x1; r1), . . . , [ζn]1 =

GS.ComckGS
(xn; rn), for some n ∈ N, and the prover wants to show that xi = sαi , for all
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i ∈ [n] and αi =
∑m

j=1 bi,j2
j−1 + 1, for some bi,1, . . . , bi,m ∈ {0, 1}. We need to reformulate

equations (7.1) and (7.2) to take in count new variables. For ` ∈ [m], i ∈ [n], define

xi` :=

(
xi`,1
xi`,2

)
:=



xi`,1
...

xi
`,2`−2

xi
`,2`−2+1

...
xi
`,2`−1


, xim+1,1 :=

 s1
...
st/2

 , and xim+1,2 :=

st/2+1
...
st

 ,

and define new equations for each ` ∈ [m], i ∈ [n]

xi` = (1− bi,`)xi`+1,1 + bi,`x
i
`+1,2, (7.7)

xi = xi1 (7.8)

Next, we construct an aZKSMP for S ⊂ Zq and in Section 7.2.1 we show how to extend
these ideas for the case of fixed S ⊂ G1. The construction follows the intuition outlined
before but it “aggregates” many instances on a single Θ(log t) proof. From a high level
this is done as follows.

We will rewrite equation (7.7), which is a system of mn equations, as m equations of the
form

xy> =


0 x1y2 · · · x1yn

x2y1 0 · · · x2yn
...

... . . . ...
xmy1 xmy2 · · · 0

 , (7.9)

where x ∈ Zmq ,y ∈ Znq (i.e. the diagonal of the matrix xy> is 0). We will use similar
techniques to those of Chapter 4 to give a constant size proof for the satisfiability of each of
these equations. Therefore, to prove m of these equations we will require Θ(m) = Θ(log t)
group elements.

We can compute xy> in the “commitment space” by means of [c]1[d>]2, where [c]1 :=
MP.Comck1(x; r1) and [d]2 := MP.Comck2(y; r2). Indeed, by the definition of MP commit-
ments it holds that

[c]1[d>]2 =

(
m∑
i=1

xi[gi]1 + r1[gm+1]1

)(
n∑
j=1

yj[h
>
j ]2 + r2[h>n+1]2

)

=
m∑
i=1

n∑
j=1

xiyj[gih
>
j ]T +

m∑
i=1

xir2[gih
>
n+1]T +

n+1∑
j=1

r1yj[gm+1h
>
j ]T

Therefore, if the diagonal of xy> is 0, then [c]1[d>]2 is in the space spanned by {[gih>j ]T :
i 6= j or i = m + 1 or j = n + 1}. Similarly as done in Section 4.1.1, equation (7.9)
can be proven computing two matrices [Θ]1 ∈ G2×2

1 and [Π]2 ∈ G2×2
2 and showing that

[c]1[d>]2 = [Θ]1[I]2 + [I]1[Π]2 and Θ + Π ∈ Span({gih>j : i = m+ 1 or j = n+ 1}).
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For each ` ∈ [m], to rewrite the right side of equation (7.7) in the xy> form, we observe
that x1

`+1,1
...

xn`+1,1



b1,`

...
bn,`

−
1

...
1



>

+

x1
`+1,1
...

xn`+1,2


b1,`

...
bn,`


>

=

(1− b1,`)x
1
`+1,1 + b1,`x

1
`+1,2 · · · (1− bn,`)x1

`+1,1 + bn,`x
1
`+1,2

... . . . ...
(1− b1,`)x

n
`+1,1 + b1,`x

n
`+1,2 · · · (1− bn,`)xn`+1,1 + bn,`x

n
`+1,2

 .

If we view the previous matrix as one of size n × n where each entry is a vector from
Z2`−1

q , then the diagonal forms the right side of equation (7.7). We rewrite the left side of
equation (7.7) as x1

`
...

xn`


1

...
1


>

=

x1
` · · · x1

`
...

...
xn` · · · xn`

 .

and, again, the diagonal forms the left side of equation (7.7).

Now we prove that equation (7.7) holds by replacing variables with MP commitments and
showing that

[c`]1

(
n∑
j=1

[hj]2

)>
− [c`,1]1

(
[d`]2 −

n∑
j=1

[hj]2

)>
− [c`,2]1[d]>2 =

[Θ]1[I]2 + [I]1[Π]2,

where

[c`]1 := MP.Comck`


x1

`
...

xn`

 ; r`

 [d`]1 := MP.Comck


b1,`

...
bn,`

 ; t`


[c`,1]1 := MP.Comck`


x1

`+1,1
...

xn`+1,1

 ; r`,1

 [c`,2]1 := MP.Comck`


x1

`+1,2
...

xn`+1,2




ck` := [
(
G1
` · · · Gn

` g`,n2`−1+1

)
]1 Gi

` :=
(
g`,(i−1)2`−1+1 · · · g`,i2`−1

)
ck := [H]2 H :=

(
h1 · · · hn hn+1

)
.

We need to show that Θ + Π is in the appropriate space, which is the one without
components “in the diagonal” or with components in g`,n2`−1+1hj or gihn+1 for any i ∈
[n2`−1], j ∈ [n+1]. However, since we are working with matrices whose entries are vectors
in Z2`−1

q , we in fact need to show that

Θ + Π ∈ Span({g`,ih>j : j ∈ [n+ 1], i /∈ [(j − 1)2`−1 + 1, j2`−1] \ [n2`−1 + 1]}),

since the indices i and j where i ∈ [(j − 1)2`−1 + 1, j2`−1] are those which range over the
elements in the diagonal of a matrix whose entries are elements from Z2`−1

q .

It is only left to prove the “aggregated version” of equation (7.6) from the non-aggregated
case, and to prove equation (7.8). Equation (7.6) is proven in the same way as in the
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non-aggregated case, but enlarging the matrix as consequence of the enlargement of com-
mitment keys. Additionally, we prove equation (7.8) with a proof that

[ζ1]1, . . . , [ζn]1 and [c1]1 open to the same values,

using the proof system from Section 3.4.

The Scheme

K1(gk, ckGS): Parse ckGS as [u1|u2]1. For each ` ∈ [m] let G` := G1
` | · · · |Gn

` |g`,n2`−1+1 ←
Ln2`−1+1,0

1 , where

Gi
` = (Gi

`,1|Gi
`,2) =

(g`,(i−1)2`−1+1 · · ·g`,(i−1)2`−1+2`−2|g`,(i−1)2`−1+2`−2+1 · · ·g`,i2`−1) ∈ Z2×2`−1

q ,

i ∈ [n], and define ck` := [G`]1. Let H =
(
h1 · · · hn hn+1

)
← Ln,01 and define

ck := [H]2.

For each ` ∈ [m], i ∈ [n2`−1 + 1], j ∈ [n + 1], such that i /∈ [(j − 1)2`−1 + 1, j2`−1]
define matrices

M`
i,j := ([C`

i,j]1, [D
`
i,j]2) := ([g`,ih

>
j + T]1, [−T]2),

For ` ∈ [m], pick T← Z2×2
q and let

M` := {M`
i,j : j ∈ [n+ 1], i /∈ [(j − 1)2`−1 + 1, j2`−1] \ [n2`−1 + 1]}

and let

C` := {C`
i,j : j ∈ [n+ 1], i /∈ [(j − 1)2`−1 + 1, j2`−1] \ [n2`−1 + 1]}.

Let Πsum be the proof system for sum in subspace (Section 3.3), Πlin the proof
system for membership in linear subspaces from Section 2.7, Πbits the proof system
for proving that many commitments open to bit-strings from section 4.2.3, and Πcom

be an instance of the proof system for equal commitment opening (Section 3.4).

For each ` ∈ [m], let crssum,` ← Πsum.K1(gk,M`).4, let crslin,` ← Πlin.K1(gk; [G`,split]1,
n2`−1+3), let crsbits ← Πbits.K1(gk, [H]2,m), and let crscom ← Πcom.K1(gk, ck1, CKGS,
m), where

G`,split :=G1
`+1,1 G1

`+1,2 · · · Gn
`+1,1 Gn

`+1,2 g`+1,n2`+1 0 0
G1
`,1 0 · · · Gn

`,n 0 0 g`,n2`−1+1 0
0 G1

`,1 · · · 0 Gn
`,n 0 0 g`,n2`−1+1

 ,

CKGS :=

[u1]1 [0]1 [u2]1 [0]1
. . . . . .

[0]1 [u1]1 [0]1 [u2]1

 ∈ G2n×2n
1 .

The common reference string is given by:

crs := (gk, [G]1, [H]2, {M`, crssum,`, crslin,` : ` ∈ [m]}, crsbits, crscom) .

4We identify matrices in G2×2
1 (respectively in G2×2

2 ) with vectors in G4
1 (resp. in G4

2).
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P(crs, ([ζ1]1, . . . , [ζn]1, S), 〈(x1, . . . , xn), (w1, . . . , wn)〉): The prover compute commitments

[c`]1 := MP.Comck`(x
1
`
>
, . . . ,xn`

>; r`), for ` ∈ [m],

[c`,1]1 := MP.Comck`(x
1
`+1,1

>
, . . . ,xn`+1,1

>; r`,1),

[c`,2]1 := MP.Comck`(x
1
`+1,2

>
, . . . ,xn`+1,2

>; r`,2), for ` ∈ [m− 1]

[d`]2 := MP.Comck(b`; t`), for ` ∈ [m]

where r`, r`,1, r`,2, tj ← Zq and the variables xi`,x
i
`,j,b` are the ones defined in equa-

tion (7.7). The prover computes a proof πbits that [d1]2, . . . , [dm]2 open to bit-strings.
Then, for ` ∈ [m], the prover pick matrices R` ← Z2×2

q , computes

([Θ`]1, [Π`]2) :=

n∑
i=1

∑
j 6=i

2`−1∑
k=1

(xi`,k − xi`+1,k(1− bj,`)− xi`+1,2`−1+kbj,`)M
`
(i−1)2`−1+k,j

+
n∑
i=1

2`−1∑
k=1

t`(x
i
`+1,k − xi`+1,2`−1+k)M

`
(i−1)2`−1+k,n+1

+
n∑
j=1

(r` − r`,1(1− bj,`)− r`,2bj,`)M`
n2`−1+1,j

+ (r`,1 − r`,2)t`M
`
n2`−1+1,n+1 + ([R`]1, [−R`]2),

where r1,1 = r1,2 = 0, and computes proofs πlin,`, πsum,` that, respectively,c`+1

c`,1
c`,2

 ∈ Span(G`,split) ( if ` < m), Θ` + Π` ∈ Span(C`).

Finally, it computes a proof πcom that ([ζ1]1, . . . , [ζn]1) and [c1]1 open to the same
value.

The proof is π := ({([c`]1, [c`,1]1, [c`,2]1, [d`]2, [Θ`]1, [Π`]2, πlin,`, πsum,`) : ` ∈ [m]}, πbits,
πcom).

V(crs, ([ζ1]1, . . . , [ζn]1, S), π): Let [cm,1]1 := MP.Comckm(s1, . . . , st/2; 0), [cm,2] := MP.Comckm(
st/2+1, . . . , st; 0). The verifier checks the validity of πbits, πcom and, for each ` ∈ [m],
checks the validity of πlin,`, πsum,` and of equations

[c`]1

(
n∑
j=1

[hj]2

)>
− [c`,1]1

(
n∑
j=1

[hj]2 − [d`]2

)>
− [c`,2]1[d`]

>
2 =

[Θ`]1[I]2 + [I]1[Π`]2. (7.10)

If any of these checks fails, it rejects the proof.

S1(gk, ckGS): The simulator receives as input a description of an asymmetric bilinear
group gk and a GS commitment key ckGS. It generates and outputs the CRS
in the same way as K1, but additionally outputs the simulation trapdoor τ :=
(H, τcom, τbits, {τsum,`, τlin,` : ` ∈ [m]}), where τsum, τbits, τsum,`, τlin,` are, respectively,
Πsum,Πcom,Πsum,Πlin simulation trapdoors.
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S2(crs, ([ζ1]1, . . . , [ζn]1, S), τ): Define xi` := 0 and b` := 0 for all ` ∈ [m], i ∈ [n], and
computes [c`]1, [c`,1]1, [c`,2]1, [d`]2 and [Θ`]1, [Π`]2, as an honest prover would do
(that is, with all variables set to 0). Finally, simulate proofs πcom, πbits, πsum,`, πlin,`

using the respective trapdoors.

We prove the following Theorem.

Theorem 7.2 The proof system described above is a QA-NIZK proof system for the
language LnckGS,set with perfect completeness, computational soundness, and perfect zero-
knowledge.

Completeness

Completeness follows from completeness of Πsum,Πlin,Πbits,Πcom, and from the fact that
equation (7.10) is satisfied for each ` ∈ [m]:

c`

(
n∑
j=1

hj

)>
− c`,1

(
n∑
j=1

hj − d`

)>
− c`,2d

>
` =

n∑
i=1

n∑
j=1

Gi
`x
i
`h
>
j +

n∑
j=1

r`g`,n2`−1+1h
>
j −

n∑
i=1

n∑
j=1

Gi
`x
i
`+1,1(1− bj,`)h>j

+
n∑
i=1

Gi
`x
i
`+1,1t`h

>
n+1 −

n∑
j=1

r`,1(1− bj,`)g`,n2`−1+1h
>
j + r`,1t`g`,n2`−1+1h

>
n+1

−
n∑
i=1

n∑
j=1

Gi
`x
i
`+1,2bj,`h

>
j −

n∑
i=1

Gi
`x
i
`+1,2t`h

>
n+1 −

n∑
j=1

r`,2bj,`g`,n2`−1+1h
>
j

− r`,2t`g`,n2`−1+1h
>
n+1 =

n∑
i=1

∑
j 6=i

Gi
`(x

i
` − xi`+1,1(1− bj,`)− xi`+1,2bj,`)h

>
j +

n∑
i=1

Gi
`(x

i
`+1,1 − xi`+1,2)t`h

>
n+1 +

n∑
j=1

(r` − r`,1(1− bj,`)− r`,2bj,`)g`,n2`−1+1h
>
j

+ (r`,1 − r`,2)t`g`,n2`−1+1h
>
n+1 =

n∑
i=1

∑
j 6=i

2`−1∑
k=1

(xi`,k − xi`+1,k(1− bj,`)− xi`+1,2`−1+kbj,`))g`,(i−1)2`−1+kh
>
j

+
n∑
i=1

2`−1∑
k=1

t`(x
i
`+1,k − xi`+1,2`−1+kg`,(i−1)2`−1+kh

>
n+1

n∑
j=1

(r` − r`,1(1− bj,`)− r`,2bj,`)g`,n2`−1+1h
>
j + (r`,1 − r`,2)t`g`,n2`−1+1h

>
n+1 =

ΘI + IΠ.

Soundness

The following theorem guarantees soundness.

Theorem 7.3 Let AdvΠset(A) be the advantage of an adversary A against the soundness of
the proof system described above. There exist PPT adversaries D1,D2,Bbits,Bcom,Bsum,Blin
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such that

AdvΠset(A) ≤ n (AdvL1,G1(D1) + t/2 (4/q + AdvΠbits
(Bbits) + AdvL1,G2(B2)

+ AdvΠcom(Bcom) +mAdvΠsum(Bsum) +mAdvΠlin
(Blin))) .

Recall that, given b1, . . . , bm ∈ {0, 1}, we defined α :=
∑m

i=1 bi2
i−1 + 1. Recall also that,

given a path (bm, . . . , b`) in the binary tree whose leaves are labeled from left to right
by s1, . . . , st, we defined left :=

∑m
i=` bi2

i−1 + 1, right := left + 2`−1 − 1, and we defined
α` := α− left + 1 the position of sα relative to the leaves under sleft, . . . , sright.

The proof follows from the indistinguishability of the following games:

Real: This is the real soundness game. The output is 1 if the adversary submits some
([ζ1]1, . . . , [ζn]1, S) /∈ LnckGS,set and the corresponding proof which is accepted by the
verifier.

Game0: This identical to Real, except that K1 does not receive ckGS as a input but it samples
ckGS itself together with its discrete logarithms.

Game1: This game is identical to Game0 except that now it chooses random j∗ ∈ [n] and it
aborts if xj∗ /∈ S.

Game2: This game is identical to Game1 except that now H← Ln,j
∗

1 .

Game3: This game is identical to Game2 except that now it defines bm := bj∗,m and chooses a
random (sub-)path (bm−1, · · · , b1)← {0, 1}m−1 (which ignores the first edge) in the
tree whose leaves are s1, . . . , st. This game aborts if (bj∗,1, . . . , bj∗,m) /∈ {0, 1}m
or (b1, . . . , bm−1) 6= (bj∗,1, . . . , bj∗,m−1), where bj∗,1, . . . , bj∗,m are the openings of
[d2]2, . . . , [dm]2 at coordinate j∗, respectively.

Game4: This game is identical to Game3 except that now G` ← Ln2`−1,∆+α`
1 , for ` ∈ [m] and

∆ := (j∗ − 1)2`−1.

It is obvious that the first two games are indistinguishable. The rest of the argument goes
as follows.

Lemma 7.4 Pr [Game1(A) = 1] ≥ 1

n
Pr [Game0(A) = 1] .

Proof The probability that Game1(A) = 1 is the probability that a) Game0(A) = 1 and
b) xj∗ /∈ S. The view of adversary A is independent of j∗, while, if Game0(A) = 1, then
there is at least one index j ∈ [n] such that such that xj /∈ S. Thus, the probability that
the event described in b) occurs conditioned on Game0(A) = 1, is greater than or equal
to 1/n and the lemma follows. �

Lemma 7.5 There exists a L1-MDDHG2 adversary D2 such that |Pr [Game1(A) = 1]
− Pr [Game2(A) = 1] | ≤ AdvL1,Gena(D2).

Proof We construct an adversary D2 that receives a challenge ([a]2, [u]2) of the L1-
MDDHG2 assumption. From this challenge, D2 just defines the matrix [H]2 ∈ G2×(n+1)

2 as
the matrix whose last column is [a]2, the ith column is [u]2, and the rest of the columns
are random vectors in the image of [a]2. Obviously, when [u]2 is sampled from the image
of [a]2, H follows the distribution Lm,01 , while if [u]2 is a uniform element of G2

2, H follows
the distribution Ln,j

∗

1 .
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Adversary D2 samples G` ← Ln2`−1,0
1 . Given that D2 does not know the discrete logarithms

of [H]2, it cannot compute the pairs (C`
i,j,D

`
i,j) exactly as in Game0. Nevertheless, for

each ` ∈ [m], i ∈ [n2`−1 + 1], j ∈ [n + 1] such that i /∈ [(j − 1)2`−1 + 1, j2`−1], it can
compute identically distributed pairs by picking T← Z2×2

q and defining

([C`
i,j]1, [D

`
i,j]2) := ([T]1,g`,i[hj]

>
2 − [T]2).

The rest of the elements of the CRS are honestly computed. When H← Ln,01 , D2 perfectly
simulates Game0, and when H ← Ln,j

∗

1 , D2 perfectly simulates Game1, which concludes
the proof. �

Lemma 7.6 There exists an adversary Bbits against Πbits such that Pr [Game2(A) = 1] ≥
2

t
(Pr [Game3(A) = 1] + AdvΠbits

(Bbits)).

Proof The probability that Game3(A) = 1 is the probability that a) Game2(A) = 1
and b) (bj∗,1, . . . , bj∗,m) /∈ {0, 1}m or (b1, . . . , bm−1) 6= (bj∗,1, . . . , bj∗,m−1). If (bj∗,1, . . . ,
bj∗,m) /∈ {0, 1}m we can build an adversary Bbits against Πbits and thus, the probability
that (bj∗,1, . . . , bj∗,m) ∈ {0, 1}m is less than AdvΠbits

(B1). The view of adversary A is
independent of (b1, . . . , bm−1), while, if Game2(A) = 1 and (bj∗,1, . . . , bj∗,m) ∈ {0, 1}m,
then (bj∗,1 · · · bj∗,m−1) ∈ {0, 1}m−1. Thus, the probability that the event described in b)
occurs conditioned on Game2(A) = 1 and (bj∗,1, . . . , bj∗,m) ∈ {0, 1}m, is greater than or
equal to 2/t and the lemma follows. �

Lemma 7.7 There exists a L1-MDDHG1 adversary D1 such that |Pr [Game3(A) = 1] −
Pr [Game4(A) = 1] | ≤ AdvL1,G1(D1).

Proof We construct an adversary D1 that receives a challenge ([a]1, [u]1) of the L1-
MDDHG1 assumption. From this challenge, D1 defines for each ` ∈ [m] the matrix [G`]1
as the matrix whose ∆ + α` th column is [u]1, and the rest of the columns are random
vectors in the image of [a]1. Obviously, when [u]1 is sampled from the image of [a]1, [G`]1
follows the distribution Ln2`−1,0

1 , while if [u]1 is a uniform element of G2
1, [G`]1 follows the

distribution Ln2`−1,∆+α`
1 .

The rest of the elements of the CRS are honestly computed. When [u]1 is sampled from
the image of [a]1, D1 perfectly simulates Game3, and when [u]1 is uniform, D1 perfectly
simulates Game4, which concludes the proof. �

Lemma 7.8 There exist adversaries Bcom, against the strong soundness of Πcom, Bsum,
against the soundness of Πsum, and an adversary Blin against the soundness of Πlin, such
that Pr[Game4(A) = 1] ≤ 4/q + AdvΠcom(Bcom) +mAdvΠsum(Bsum) +mAdvΠlin

(Blin).

Proof With probability 1− 4/q, {g`,∆+α` ,g`,n2`−1+1}, ` ∈ [m], and {hj∗ ,hm+1} are bases
of Z2

q, and, for each ` ∈ [m], µ ∈ {1, 2}, we can define s̃`, s̃`,µ, r̃`, r̃`,µ, bj∗,`, t̃` as the unique
coefficients in Zq such that c` = s̃`g`,∆+α` + r̃`g`,n2`−1+1, c`,µ = s̃`,µg`,∆+α` + r̃`,µg`,n2`−1+1,
and d` = bj∗,`hj∗ + t̃`hn+1.

Recall that if Game4(A) = 1 then xj∗ /∈ S. The adversary can win in Game4 if one of the
following events happen:

E1: the adversary breaks soundness of Πcom and xj∗ 6= s̃1,

E2: the adversary breaks one of the m instances of Πsum and Θ` + Π` /∈ Span(C`),

E3: the adversary breaks one of them instances of Πlin and (c`+1, c`,1, c`,2) /∈ Span(G`,split),
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E4: neither of E1,E2, or E3 happens, but xj∗ /∈ S anyway.

By the law of total probabilities, Pr[Game4(A) = 1] ≤ 4/q + Pr[E1] + Pr[E2] + Pr[E3] +
Pr[E4], and is not hard to see that there exist adversaries Bcom,Bsum,Blin such that
Pr[E1] = AdvΠcom(Bcom),Pr[E2] = mAdvΠsum(Bsum), and Pr[E3] = mAdvΠlin

(Blin). Be-
low we will show that Pr[E4] = 0 (using the same argument used in the non-aggregated
case).

We prove by induction on ` that s̃` = sα. If this is the case, the fact that ¬E1 implies
that xj∗ = s̃1 = sα ∈ S, which finish the proof.

But first note that given a vector k ∈ Z2
q, such that h>j k = 1 if j = j∗ and 0 if not (which

exists since {hj∗ ,hn+1} is a basis of Z2
q), if we multiply equation (7.10) on the right by k

we get
[c`]T − (1− bj∗,`)[c`,1]T − bj∗,`[c`,2]T = [(Θ` + Π`)k]T .

The fact that Θ` + Π` ∈ Span(C`), g`,i ∈ Span(g`,n2`−1+1) if i 6= ∆ + α`, and ∆ + α` ∈
[∆ + 1,∆ + 2`−1], implies that

(Θ` + Π`)k =
∑

i∈[n2`−1+1]\[∆+1,∆+2`−1]

βig`,i = βg`,n2`−1+1

for some βi, β ∈ Zq, i ∈ [n2`−1 + 1] \ [∆ + 1,∆ + 2`−1].

Therefore, given that we are in the case b` = bj∗,`, equation (7.10) implies that

[c`]T = (1− b`)[c`,1]T + b`[c`,2]T + βg`,n2`−1+1.

In the base case (` = m), the fact that gm,i ∈ Span(gm,n2m−1+1), if i 6= ∆ + αm, implies
that

cm = (1− bm)
2m−1∑
i=1

sigm,∆+i + bm

2m−1∑
i=1

si+2m−1gm,∆+i

= (1− bm)sαmgm,∆+αm + bmsαm+2m−1gm,∆+αm + r̃1gm,n2m−1+1

= (1− bm)sα−left+1gm,∆+αm + bmsα−left+1+2m−1gm,∆+αm + r̃1gm,n2m−1+1

=

{
sα−1+1gm,∆+αm + r̃1gm,n2m−1+1 if bm = 0 (left = 1)

sα−(2m−1+1)+1+2m−1gm,∆+αm + r̃1gm,n2m−1+1 if bm = 1 (left = 2m−1 + 1)

for some r̃1 ∈ Zq. In both cases c1 = sαgm,∆+αm + r̃1gm,n2m−1 .

In the inductive case we assume that c`+1 = sαg`+1,2∆+α`+1
+ r̃`+1g`+1,n2`+1 and we want

to show that c` = sαg`,∆+α` + r̃`g`,n2`−1+1.5 Since g`+1,α`+1
is linearly independent from

the rest of vectors in ck`+1, any solution toc`+1

c`,1
c`,2

 = G`,splitw (7.11)

is equal to sα at position 2∆ + α`+1 = 2∆ + α` + b`2
`−1 as depicted below.c`+1

c`,1
c`,2

 =

· · · g`+1,2∆+α` · · · g`+1,2∆+α`+2`−1 · · ·
· · · g`,∆+α` · · · 0 · · ·
· · · 0 · · · g`,∆+α` · · ·




...
sα
...


5Note that G`+1 ← L

n2`,(j∗−1)2`+α`+1

1 and thus, the (j∗ − 1)2` + α`+1 = 2∆ + α`+1 th column of
G`+1 is l.i. from the rest.
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If b` = 0, by Lemma 7.1, α`+1 = α`. Therefore, any solution to equation (7.11) is equal
to sα at position 2∆ +α` and thus c`,1 = sαg`,∆+α` + r̃`,1g`,n2`−1+1. Equation 7.10 implies
that

c` =(1− b`)(sαg`,∆+α` + r̃`,1g`,n2`−1+1) + b`c`,2 + y`g`,n2`−1+1

=sαg`,∆+α` + (r̃`,1 + y`)g`,n2`−1+1. �

If b` = 1, then α`+1 = α` + 2`−1 and similarly, c` = sαg`,∆+α` + (r̃`,2 + y`)g`,n2`−1+1.

Perfect Zero-Knowledge

Note that the vectors [c`], [c`,1]1, [c`,2]1, [d`]2 and matrices [Θ`]1, [Π`]2, 1 ≤ ` ≤ m, output
by the prover and the simulator are, respectively, uniform vectors and uniform matrices
conditioned on satisfying equation 7.10. This follows from the fact that ck, ck1, . . . , ck`
are all perfectly hiding commitment keys and that [Θ`]1, [Π`]1 are the unique solutions
of equation (7.10) modulo the random choice of R`. Finally, the rest of the proof follows
from zero-knowledge of Πcom,Πbits,Πsum, and Πlin.

7.2.1 The case S ⊂ G1

We briefly justify that the case S ⊂ G1 follows directly from the case S ⊂ Zq when S is a
fixed witness samplable set. That is, there is a fixed set S for each CRS, and there is an
efficient algorithm that samples s1, . . . , st ∈ Zq such that S = {[s1]1, . . . , [st]1}.

The reason why is not clear how to compute proofs in this setting is that it requires to
compute values of the type [siγ]1, where [γ]µ, µ ∈ {1, 2}, is a group element included in
the CRS. The solution is straightforward: use s1, . . . , st to compute these values and add
them to the CRS (with the consequent CRS growth). Therefore, the new CRS contains
also, for each α ∈ [n], ` ∈ [m], i ∈ [n2`−1], j ∈ [n], such that i 6= (j − 1)2`−1 + α`:

sα[g`,(i−1)2`−1+α` ]1 and sα([C`
(i−1)2`−1+α`,j

]1, [D
`
(j−1)2`−1,j]2).
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Chapter 8

Conclusions

In this thesis we constructed many new and more efficient non-interactive zero-knowledge
proofs. We showed that any set of quadratic equations of the type b(b − 1) = 0 and
any set of linear equations with variables in Zq have a proof whose size is independent
of the number of equations. In the case of equations where variables are group elements,
we showed that any set of linear equations has a proof whose size is independent of the
number of equations, with the drawback that the CRS must be fixed to the specific set
of equations.

Then we moved to the case of set-membership proofs, which can be equivalently seen as
higher degree equations – a proof of membership in the set of roots of a polynomial p
is a proof that p(x) = 0 in the case where the variables are Zq elements – and has the
advantage that can also be applied to the case where the variables are group elements
(since it is not clear how to define higher degree equations where variables are group
elements). First, we showed that for any fixed set S, the statement x1, . . . , xn ∈ S can
be proven with a proof whose size is linear in the size of the set and but independent
of the number of proofs. Finally, we considered the cases of non-fixed subsets of Zq and
(again) the case of fixed subset of Gs. For both cases we obtained even more efficient
proofs. Specifically, we constructed proofs of size logarithmic in the size of the set and
independent of the number of proofs.

With these results we constructed more efficient proofs of equal commitment opening,
threshold Groth-Sahai proofs, ring signatures, proofs of correctness of a shuffle, and range
proofs.

At the heart of most of our results was a new variant of Pedersen commitments and
Groth-Sahai commitments, which we call extended multi-Pedersen commitments (MP
commitments). MP commitments are length-reducing –they require less than n group
elements to commit to a vector in Znq – which imply that they can not be perfectly binding.
However, they can be perfectly binding at one coordinate (encoded in the commitment
key) and behave as Groth-Sahai commitments at that coordinate (in fact, when n = 1
MP commitments become Groth-Sahai commitments).

The major drawback of our results is its limited generality: (essentially) they only allow
more efficient proofs for integer equations modulo q. When variables and constants are
group elements, the results are much more limited. Indeed, they only work in the case of
“fixed equations” or “fixed sets”, and they do not apply at all for quadratic pairing product
equations. The reason for this limitation is our dependency on MP commitments. Our
extensions to group equations (or set-membership in S ⊂ Gs) essentially precomputes MP
commitments for a fixed set of witness samplable group elements, that is, it is possible to
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sample the discrete logarithms and thus to compute MP commitments when setting up
the CRS. This is of course not enough for general equations where group elements may be
adversarially chosen and thus, there is no hope to compute its discrete logarithms. In fact,
it can be shown that there does not exist an analogous of MP commitments for group
elements. Indeed, Abe et al. showed that is impossible to construct length-reducing group
to group commitments [AHO12] – i.e. commitment schemes that take n group elements
as arguments and return a commitment whose size is o(n) group elements.1

This is in fact a practical limitation. Consider the case of ring signatures, where the
central problem is to show that some secret verification key vk ∈ R, and R is the set of
all verification keys in the ring. This is just a (non-aggregated) set-membership proof, for
which we constructed logarithmic proofs whenever the set is fixed. However, using our
set-membership proofs the result is unsatisfactory: there is a single ring R (or a constant
number of rings) for which one can construct a logarithmic size ring signatures. This is
not a ring signature.

On the other hand, (quadratic) integer equations are general enough to encode any NP
problem (quadratic integer equations can be shown NP-complete). In fact, any circuit
C : {0, 1}m → {0, 1} can be encoded into a set of quadratic equations which is satisfiable
iff C is satisfiable. One may thus hope that our techniques could help on improving
NIZK proofs for Circuit-Sat under falsifiable assumptions. The shortest proofs remains
those of Groth et al. [GOS06b].2 Essentially, Groth et al.’s proof computes a perfectly
binding commitment to a satisfying assignment, requiring Θ(m) group elements, and
computes perfectly binding commitments to the outputs of each gate and NIZK proofs
that the output of each gate is correctly computed. The correctness of the output of
each gate is expressed as the satisfiability of an integer equation, so essentially Groth
et al.’s proof is Θ(m) + Θ(#equations), where Θ(#equations) = Θ(#gates) = Θ(|C|).
With our techniques we get a proof of size Θ(m) + Θ(|π|), where the Θ(m) term comes
from commitments to variables and the Θ(|π|) term comes from the proof that those
variables satisfy the equations. In this thesis we basically show that for many equations
|π| ∈ o(#equations), so this could be a good indication that we can beat Groth at al’s
proof.

We discuss a little more about the generality/non-generality of integer equations. Indeed,
we have said that our techniques are limited because they only work for integer equations,
but then we pointed out that integer equations are general enough (in fact NP-complete).
Can we encode general pairing product equations as integer equations? The answer is
affirmative: group operations, pairings, exponentiations, etc. can be written in terms
of quadratic integer equations and thus, any pairing product equation can be written
as a polynomial number of quadratic integer equations. Thus we may hope to encode
pairing product equations into integer equations and use our results to improve proofs
for pairing product equations. We can even use constant-size NIZK proofs for NP from
Gennaro et al. [GGPR13] to construct constant-size proofs of the satisfiability of any set
of pairing-product equation.

However, we think that in this way the question is not properly answered. In fact, pairing
product equations and Groth-Sahai proofs are usually used in the context of structure

1Abe et al. constructed group to group length-reducing structure preserving commitments relaxing
the binding property [AKOT15]. However, since their commitment scheme is not homomorphic, it is far
from clear how to use them to construct NIZK proofs.

2In another work, Groth et al. showed how to use fully homomorphic encryption to obtain a more
efficient proof [GGI+15]. However, fully homomorphic encryption is still a developing primitive and
finding alternative solutions is an interesting open problem.
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preserving cryptography, which essentially means that everything is done through the
operations provided by the bilinear groups (essentially in the generic group model). If
we reduce pairing product equations from an NP-complete problem, we are transforming
group operations and all the group structure to operations over Zq. Furthermore, even
from a practical point of view, the reduction from an NP-complete problem involves an
overhead (at least in the prover’s complexity) of reducing the instance to the satisfiability
of a circuit which may be prohibitive. Therefore, we believe that it is worth to search
more efficient proofs for pairing product equations (or impossibility results) in the generic
group model.

Finally we comment that there is also much room for optimization in our results. Maybe
the worst part of our NIZK proofs that b1, . . . bn ∈ {0, 1} and set-membership proofs is
the quadratic sizes of the CRS. This usually implies that the prover’s time complexity
is also quadratic, since the CRS defines the set of generators of a vector space and the
proof is a linear combination of of the generators. This in general requires to compute a
quadratic number of exponentiations (x[g]) and additions ([g] + [h]).3 We showed that for
weight 1 this problem can be avoided, but in general it is an open question if one can do
better than this.

Proof sizes are also a good candidate for optimization. Starting from our proofs for linear
subspaces of G1 × G2, it is interesting to know if there is, even in the generic group
model, a shorter proof or a lower bound on the proof size. The same applies for quadratic
equations and set-membership proofs.

3Except when the coefficients that define the witness are in {0, 1} (as in the proof that b1 . . . bn ∈
{0, 1}), where it only requires a linear number of exponentiations and a quadratic number of additions.
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