Contents

1	Intr	$\operatorname{roduction}$
	1.1	Objectives
		1.1.1 General Objective
		1.1.2 Specific Objectives
	1.2	Methodology
2	Bac	kground \ldots \ldots \ldots \ldots 3
	2.1	Semiconductor Physics
		2.1.1 Semiconductor Microstructure
		2.1.2 Carrier Transport Phenomena
	2.2	PN junction
	2.3	Photovoltaic Solar Cell
		2.3.1 Design
	2.4	Properties of Gallium Arsenide
	2.5	Hydrodynamic Stability
	2.6	Hot Spot in PV Solar Cells
3	Mo	
	3.1	Physical parameters
	3.2	Assumptions
	3.3	Boundary Conditions
	3.4	Non-dimensional Form
4	Res	olution Method
	4.1	Perturbation Theory
	4.2	Disturbed System
		4.2.1 Zero order system
		4.2.2 First Order System
	4.3	Linear stability analysis
		4.3.1 Steady-State System
		4.3.2 Transient-state System
		4.3.3 Boundary Conditions
		4.3.4 Integration Methods
		4.3.5 Temporal Eigenvalues
5	Res	ults
0	5.1	Validity of Results 41
		5.1.1 Main Code Tolerance

		5.1.2 Transient-state Code Conditions	3
	5.2	Data Processing	6
		5.2.1 Range of Allowed Eigenvalues	17
	5.3	Sensitivity Analysis	9
		5.3.1 Solution at Thermal Equilibrium	9
		5.3.2 Variation in Temperature	51
		5.3.3 Variation in Longitude	57
		5.3.4 Variation in applied voltage 5	59
	5.4	Surface Temperature	51
6	Con	clusions and Future Work	4
	6.1	Conclusions	54
	6.2	Future Work 6	55
	Bib	oliography	6

List of Tables

2.1	Portion of periodic table related to semiconductors [10]	4
3.1	Physical properties for GaAs [34]	25

List of Figures

2.1	Bravais lattices [11]
2.2	Conventional unit cube for GaAs [12]
2.3	Energy bands in Silicon crystal with a diamond lattice structure [10] 6
2.4	Representation of electron and holes [10]
2.5	Schematic energy-momentum diagram for Si and GaAs [13]
2.6	Actual bidimensional energy-momentum diagram for GaAs and Si [12] 8
2.7	Fermi distribution function for various temperatures [10]
2.8	a)Uniformly doped p-type and n-type semiconductors.b)Electric field in the
	depletion region and the energy band diagram of a PN junction in thermal
	equilibrium [10]
2.9	Band diagram of solar cell.Generated electron-hole pairs drift across the de-
	pletion region $[14]$
2.10	I-V Characteristic of solar cell [14]
2.11	Schematic diagram of solar cell layers [15]
2.12	Hot spot temperature profile, TCO layer [23]
2.13	Equivalent circuit of PN junction
2.14	IR mapping triple junction a-Si:H [25] 20
2.15	Temperature distribution over sample at $2[suns]$ [25]
2.16	Simulated temporal temperature as a function of thermal conductivity χ [25]. 22
3.1	Device scheme with boundary conditions [33]
4.1	Steady-state variables distribution in space
5.1	Significant digits in steady state code
5.2	Positive eigenvalues from Runge Kutta 2nd order
5.3	Relative error from Runge Kutta 2nd order
5.4	Positive eigenvalues from Runge Kutta 4th order
5.5	Relative error from Runge Kutta 4th order
5.6	General transient response representation in time
5.7	Reference time t_0
5.8	Allowed range of characteristic time
5.9	Allowed range of characteristic time-zoom
5.10	Eigenvalues at thermal equilibrium, $q_L = 0. \ldots $
5.11	Eigenvalues at thermal equilibrium, $q_L > 0$
5.12	Positive eigenvalues at $T_C = 650[K], V_{app} = 0.4[V], L = 4[\mu m].$
5.13	Characteristic time at $T_C = 650[K], V_{app} = 0.4[V], L = 4[\mu m]$ 52
5.14	Allowed range at $T_C = 650[K], V_{app} = 0.4[V], L = 4[\mu m].$
5.15	Positive eigenvalues at $T_L = 300[K], V_{app} = 0.4[V], L = 4[\mu m], \ldots 54$

5.16	Characteristic times at $T_L = 300[K], V_{app} = 0.4[V], L = 4[\mu m].$	54
5.17	Allowed range at $T_L = 300[K], V_{app} = 0.4[V], L = 4[\mu m].$	55
5.18	Positive eigenvalues at $T_C - T_L = 150[K], V_{app} = 0.4[V], L = 4[\mu m].$	56
5.19	Characteristic time at $T_C - T_L = 150[K], V_{app} = 0.4[V], L = 4[\mu m]$	56
5.20	Allowed range at $T_C - T_L = 150[K], V_{app} = 0.4[V], L = 4[\mu m].$	57
5.21	Positive eigenvalues at $T_L = 300[K], T_C = 450[K], V_{app} = 0.4[V].$	58
5.22	Characteristic time at $T_L = 300[K], T_C = 450[K], V_{app} = 0.4[V].$	58
5.23	Allowed range at $T_L = 300[K], T_C = 450[K], V_{app} = 0.4[V].$	59
5.24	Positive eigenvalues at $T_L = 300[K], T_C = 450[K], L = 4[\mu m], \ldots, \ldots$	60
5.25	Characteristic time at $T_L = 300[K], T_C = 450[K], L = 4[\mu m]$.	60
5.26	Allowed range at $T_L = 300[K], T_C = 450[K], L = 4[\mu m]$	61
5.27	Thermal resistance at varying irradiation [42]	62
5.28	Temperature and efficiency varying irradiations [43]	62
5.29	Global horizontal irradiation [44]	63