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RESUMENDE: Tesis para optar al grado de
Magíster en Ciencias de la Ingeniería, Mención
Mecánica y Memoria para optar al título de
Ingeniera Civil Mecánica.
POR: Josefa Fernanda Ibaceta Jaña.
FECHA: 21 de Abril,2017
PROF. GUÍA: Williams Calderón Muñoz.

INESTABILIDADES TÉRMICAS DEL TRANSPORTE DE PORTADORES
DE CARGA EN CELDAS SOLARES BASADAS EN JUNTURAS PN DE

GaAs

Dentro de los factores que afectan negativamente una celda solar fotovoltaica se destaca la
temperatura. Ya sea por imperfecciones del material o a condiciones de operación no uni-
formes, es posible que se concentre calor en una zona debido a la disminución de la resistencia
local y su consecuente aumento de corriente eléctrica. Estas zonas de concentración de calor
pueden estabilizarse, generando gradualmente degradación de la celda, disminución de su
vida útil y eficiencia. En caso contrario, puede ocurrir un fenómeno de descontrol térmico
que resulta catastrófico para la celda, inhabilitando su correcto funcionamiento. Estudios en
módulos de película delgada revelan que esta condición ocurre incluso cuando la radiación
está uniformemente distribuida y con ello, el perfil de temperatura inicial es constante. La
evolución temporal, bajo radiación, induce zonas de calor que incrementan exponencialmente
la temperatura, contrayendo su área; por otra parte, la temperatura de las zonas más alejadas
disminuye simultáneamente mientras disipan pequeñas corrientes. Para evitar este fenómeno
se pueden escalar propiedades del dispositivo, como aumentar la conductividad térmica y
disminuir el espesor. Actualmente, estos análisis se realizan a partir de modelos numéricos
y analíticos basados en el comportamiento de diodos y mediciones experimentales del perfil
de temperatura en la capa superficial de la celda y en la juntura. El propósito de esta Tesis
es determinar criterios de estabilidad electro-térmico que pueden ser utilizados para evitar el
descontrol de temperatura a partir de aplicar un análisis a un modelo hidrodinámico de mayor
complejidad que uno basado en diodos; más aún, considerar un estado fuera del equilibro
entre la temperatura de la red y los portadores de carga. Se determinó que la inestabilidad
ocurre en la juntura PN y depende fuertemente la temperatura de la juntura en los bordes.
Además, aumentar la temperatura de los portadores, disminuir el largo y aumentar el voltaje
aplicado pueden estabilizar el sistema, aumentando el tiempo en que el sistema duplica su
temperatura.
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THERMAL INSTABILITIES OF CHARGE CARRIER TRANSPORT IN
SOLAR CELLS BASED ON GaAS PN JUNCTIONS

Among the factors that negatively affect a solar photovoltaic cell is the temperature. Either
due to imperfections of the material or to non-uniform operating conditions, it is possible
that heat is concentrated in an area due to the decrease in local resistance and its consequent
increase of electric current. These areas of concentration of heat can stabilize, gradually gen-
erating cell degradation, shortening its lifespan and efficiency. Otherwise, a phenomenon of
thermal runaway can occur and it is catastrophic for the cell, disabling its correct operation.
Studies in thin film modules reveal that this condition occurs even when the radiation is uni-
formly distributed and therewith, the initial temperature profile is constant. The temporal
evolution, under radiation, induces zones of heat that increase exponentially the tempera-
ture, contracting its area. On other hand, the temperature of the further zones decreases
simultaneously while dissipating small currents. To avoid this phenomenon properties of the
device, such as increase thermal conductivity and decrease the thickness, can be scaled. At
present, these analysis are carried out from numerical and analytical models based on the
behaviour of diodes and experimental measurements of the temperature profile in the surface
layer of the cell and the junction. The purpose of this thesis is to determine electro-thermal
stability criteria that can be used to avoid thermal runaway by applying an stability anal-
ysis to a hydrodynamic model of greater complexity than one based on diodes; Moreover,
to consider a state outside the equilibrium between lattice and charge carrier temperature.
It is determined that the instability occurs at the PN juncture and it strongly depends on
the temperature of the junction at the edges. In addition, increasing the temperature of the
carriers, decreasing the length and increasing the applied voltage can stabilize the system,
increasing the time in which the system doubles its temperature.
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“It’s our choices that show what we truly are, far more than our abilities”
Albus Dumbledore
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Chapter 1

Introduction

The use of solar energy has raised awareness through the time not only as an alternative
energy generation, but as an important resource that could contribute at the energetic matrix
of the country. Nowadays, government foresees an increase of policies that support the
renewable potential, as is expressed in the following paragraph from the official book of the
Ministry of Energy, Chile [1].

"It is an objective of the Energy Policy take up this vocation, implementing the necessary
conditions for renewable energy constituting 60% in 2035, and at least 70% of electricity
generation by 2050 [...] From the achievements 2035, Chile will become an exporter of tech-
nology and services for the solar industry [...] this gives us the opportunity and the privilege
of developing a global leadership in solar generation."

In Chile, participation of renewable energies that vary in electrics systems, such as solar
and wind power, depend on their costs and the flexibility of the system to which these are
incorporated. Hence, the resources from public and private will be allocated to capacity
building of the actors, communities and organizations to create opportunities for local devel-
opment issues such as energy efficiency, implementation of solar thermal systems and various
socio-environmental technologies for the use of small-scale energy. In other hand, global
investigation concerning solar cells lies improving its efficiency, durability and reduction of
manufacturing costs. For this, type of material used is highlighted, promoting the study of
encapsulant materials for the reliability and materials that will increase light trapping, as
suggested publications awarded in [2–4]. Furthermore, the study of operating conditions and
control mechanism of these variables in materials used in the industry is reflected in cooling
systems, among others, [5–7].

The new types of solar cells, such as thin film, dye sensitized, organic and multi-junction are
increasingly being used [8, 9]. The behaviour of these solar cells in dynamic regime differs
from the one of the monocrystalline or polycrystalline solar cells. It led to create methods
to analyze its dynamic response, characterizing the DC parameters cells from the variation
of the capacitance applying reverse and forward bias. It is common to evaluate equivalent
circuits from a proper fitting, generally containing diodes to model the PN junction.
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INTRODUCTION 1.1. OBJECTIVES

Among the studied subject there is thermal runaway, which is a positive energy feedback
that increased a local temperature, diminishing the efficiency due to the different magnitude
currents caused, and the reliability on account of the accelerated material degradation. A
mechanical characterization of the electron-hole pairs in the PN junction would determine
stability criteria to avoid this unwanted effect, leading to control in a lossless way the oper-
ational conditions of the solar cell.

1.1 Objectives

1.1.1 General Objective

Perform an electro-thermal stability analysis of a semiconductor PN junction solar cell.

1.1.2 Specific Objectives

• Determine temporal eigenvalues of a linearized hydrodynamic model applied to a GaAs
PN junction solar cell.
• Perform a convergence analysis of the numerical method used.
• Determine stability operation conditions by applying sensibility analysis, varying de-

vice parameters such as length and doping, as well as boundary conditions and non-
dimensional parameters in the model.
• Determine relations between surface and junction temperature of device.

1.2 Methodology

• Simplify the one-dimensional two temperature hydrodynamic model for the GaAs PN
junction to obtain a differential equation system of a transient state of a zero order
variables.
• Uncouple space and time dimension and reduce the ODE order system, presenting it

in a matrix form.
• Obtain numerically temporal eigenvalues using the steady state of zero order response.
• Study the convergence of the solution fixing operation conditions, changing the numer-

ical method of ODE resolution.
• Select a range of oscillation of non-dimensional parameters to obtain the strictly positive

eigenvalues and determine its behaviour.
• Use realistic lattice boundary conditions and study the incidence in the model, checking

its verisimilitude.
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Chapter 2

Background

In this chapter essential knowledge to understand the physics behind the solar cell behaviour
and device construction criteria is presented. For this, it begins with semiconductor mi-
crostructure that explains and supports the equations used to model the phenomenon; then,
macrostructure of solar cells that briefly explains the purpose of its layers; after that, gallium
arsenide approach is justified; hence and finally, hydrodynamic and thermal stability with its
consequence thermal runaway phenomenon are shown to explain the cause of its development
in this Thesis.

2.1 Semiconductor Physics

2.1.1 Semiconductor Microstructure

Semiconductor materials used in solid state devices are crystalline materials composed by ele-
ments in group IV, combinations of groups III and V or II and VI of the Periodic Table. Most
commonly used materials are Silicon (Si) or Germanium (Ge) from group IV, Gallium Ar-
senide (GaAs) or Indium Arsenide (InAs) from groups III-V and Cadmium Telluride (CdTe)
from groups II-VI. Silicon (Si) is one of the most studied elements due to its abundance on
the Earth’s crust, production cost and behaviour at room temperature(300[K]); hence Silicon
technology is far the most advanced among all semiconductors technology. However, com-
pound semiconductors have different properties that can be suitable in specific applications,
such as solar cells. The combinations of elements that can be used imply a variety of elec-
trical and mechanical properties such as conductivity, light absorption or generation. Table
2.1 shows the portion of the Periodic Table related to semiconductors. Material proprieties
are influenced by crystalline cell orientation and defects like impurities, doping or free bonds,
and lattice mismatch. The amount of unlinked bounds changes the way that light is absorbed
and charge carriers are generated; selecting the type and quantity of certain impurity allows
the tuning of the amount of charge carriers in the device, and lattice mismatches limit the
compatibility between materials. That implies there is a limit in the construction of optimal
designs.

3



BACKGROUND 2.1. SEMICONDUCTOR PHYSICS

Table 2.1: Portion of periodic table related to semiconductors [10].

Period Column II III IV V VI

2 B
Boron

C
Carbon

N
Nitrogen

O
Oxygen

3 Mg
Magnesium

Al
Aluminium

Si
Silicon

P
Phosphorus

S
Sulfur

4 Zn
Zinc

Ga
Galium

Ge
Germanium

As
Arsenic

Se
Selenium

5 Cd
Cadmium

In
Indium

Sn
Tin

Sb
Antimony

Te
Tellurium

6 Hg
Mercury

Pb
Lead

The studied semiconductor materials are single crystals; that is, the atoms are arranged in a
three dimensional periodic arrangement called lattice. Thermal vibrations associated with the
atom are centered about a single and fixed position where it lies. For a given semiconductor,
there is a unit cell that is representative of the entire lattice; it can be generated by repeating
the unit cell throughout the crystal. This primitive unit cell is called as Bravais lattice
and it is defined taking in account that any lattice point can be obtained by traslation and
represents every crystalline material. There are 14 basic lattices, as can be seen in Figure
2.1.

All semiconductor materials have only cubic and hexagonal structures. These crystalline
cubic forms can be composed by a single specie of atoms or a combination of different
elements, classifying the semiconductors in elemental or compound, respectively. First case
contains elements from the fourth column of the periodic table, such as Si, Ge or C and is
also called a diamond structure. Second case contains elements from III and V or II and VI
and each one of atoms has it own lattices, such as GaAs, AlAs and CdS; it is also called Zinc
Blende structure. Others semiconductors have hexagonal closed pack like BN, AlN, GaN
and SiC. In the particular case of GaAs, crystal is composed of two sublattices, each face
centered cubic (fcc) and offset with respect to each other by half diagonal of the fcc cube, as
can be seen in Figure 2.2.

Band Structure

To explain the Band Theory, a single atom whit its set of discrete energy levels for theirs
electrons is considered. Electrons occupy quantum states with quantum numbers n, l, m and
s, denoting the energy level, orbital and s, sublevel and spin of the electrons, respectively. If
there are N identical atoms brought together in a very close proximity as in a crystal, the
outer electron could do a spatial overlap in their orbitals, which means two of these electrons
could trade place occupying a new spatial extended energy states. Since the Pauli Exclusion
Principle can only be satisfied if these electrons occupy a set of distinct, spatially extended
energy levels, the atomic orbital splits into an energy band containing a set of electron states
having a set of closely spaced energy levels.
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BACKGROUND 2.1. SEMICONDUCTOR PHYSICS

Figure 2.1: Bravais lattices [11].

Figure 2.2: Conventional unit cube for GaAs [12].
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BACKGROUND 2.1. SEMICONDUCTOR PHYSICS

These discrete energy levels are found by resolving Schrödinger equation for bounded elec-
trons, which describes the temporal evolution of a particle. Considering a periodic potential
from the periodic structure implies a difference in the allowed energies for electrons. These
energy levels depend strongly on the distance between particles, known as dilatation, which
is affected by lattice temperature.

As there are available energy levels, the prohibited ones generate a band of an energy gap
and energy states are located above and below it. Over it, conduction band is found; on the
contrary, there is the valence band.

Figure 2.3: Energy bands in Silicon crystal with a diamond lattice structure [10].

In theory, at 0[K], valence band is complete and conduction band is empty; hence the material
behaves as a perfect insulator. As temperature heightens, energy is introduced in the system
so electrons in valence band can break bonds and carry charge to the conduction band. The
space left by the moving electron induces others to move in the opposite direction if an
electric field is applied, which equivalent to a positively charged pseudo-particle named as
hole. Carriers representation is shown in Figure 2.4.

Figure 2.4: Representation of electron and holes [10].
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Effective Mass

The energy diagram of a free electron in function of its momentum has a parabolic form. In
a semiconductor crystal, an electron in the conduction band is similar to a free electron in
being relatively free to move about in the crystal; however, because of the periodic potential
of the nuclei, the basic equation of energy can no longer be valid. It is necessary to adjust
the mass of the electron to match the basic expression, defining the effective mass. It is
analogue to holes. Eq. (2.1) defines the effective mass of a conduction electron, in which mn

represents electron effective mass; E, energy; and ρ, momentum.

mn = (∂
2E

∂ρ2 )−1 (2.1)

Figure 2.5 shows a simplified energy-momentum relationship of a two basic types semicon-
ductor. It is indirect if there is the necessity of changing the momentum of the electron
to do a transition from the valence band to the conduction band, as Si (Figure 2.5a); case
contrary it is direct semiconductor, as GaAs (Figure 2.5b). The upper parabola represents
the conduction band, while the lower one is the valence band. The spacing at p = 0 between
these two parabolas is the bandgap Eg, shown previously in Figure 2.3.

(a) Si (b) GaAs

Figure 2.5: Schematic energy-momentum diagram for Si and GaAs [13].

The actual energy-momentum relationships for a semiconductor such as GaAs and Si are
much more complex and they are three dimensional, as is presented in the two-dimensional
diagram of Figure 2.6. For diamond or zinc blende lattice, the maximum in the valence band
and minimum in the conduction band occur at p = 0 or along one of these two directions; the
first case is the most common, and it means that effective mass is constant and the electron
motion is independent of crystal direction. Second case is the contrary.

7



BACKGROUND 2.1. SEMICONDUCTOR PHYSICS

Figure 2.6: Actual bidimensional energy-momentum diagram for GaAs and Si [12]

Intrinsic Carrier Concentration

An intrinsic semiconductor is one that contains relatively small amounts of impurities com-
pared with the thermally generated electrons and holes. In a steady-state condition at a given
temperature without any external excitations, electron density (i.e, number of electrons per
unit volume) is given by the product of the density of states, that is, the density of allowed
energy states per energy range and unit volume, and by the probability of occupying that
energy range. This last is given by the Fermi-Dirac distribution function, and depends on the
Fermi level that is the energy at which the occupation probability by an electron is exactly
one-half. The Fermi distribution for different temperatures is illustrated in Figure 2.7.

Figure 2.7: Fermi distribution function for various temperatures [10].
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For an intrinsic semiconductor, the density of electrons n in the conduction band is equal to
the density of holes p in the valence band, that is, n = p = ηi where ηi is the intrinsic carrier
density. More general, matching Fermi levels for carriers, the Law of Mass Action n · p = η2

i
is obtained.

Donors and Acceptors

When a semiconductor is doped with impurities, the semiconductor becomes extrinsic and
impurity energy levels are introduced. It can be achieved by replacing an atom whit a
different number of valence electrons. If there is an extra electron, is said that it is donated
to the conduction band and semiconductor becomes n-type because of the addition of the
negative charge carrier (ND). By the contrary, if an additional electron is accepted, holes
are created in the valence band, making a p-type semiconductor, with positive concentration
(NA).

By doping, semiconductors have different quantities of each carrier. The more abundant
charge carriers are the majority carriers; the less abundant are the minority carriers.Under
most conditions, the doping of the semiconductor is several orders of magnitude greater than
the intrinsic carrier concentration, such that the number of majority carriers is approximately
equal to the doping. Hence, applying the approximation and the Law of Mass Action, carriers
concentration in p-type and n-type can be expressed as in Eqs. (2.2b) :

n− type : n0 = ND, p0 = η2
i /ND, (2.2a)

p− type : p0 = NA, n0 = η2
i /NA (2.2b)

2.1.2 Carrier Transport Phenomena

There are many transport processes, including drift, diffusion, recombination, generation,
thermionic emission, tunneling, among others. It is considered the motion of charge carri-
ers under the influence of an electric field and a carrier concentration gradient, which are
predominant.

Drift Process

The thermal motion of an individual electron can be visualized as a succession of random
scattering from collisions with lattice atoms, impurity atoms, and other scattering centers.
Net displacement of an electron is zero over a sufficiently long period of time. The aver-
age distance between collisions is called the mean free path, and the average time between
collisions is called the mean free time, τc.

When a small electric field is applied, an additional velocity component will be superimposed
upon the thermal motion of electrons; it is called drift velocity. This is proportional to electric
field by a factor which depends on the mean free time and effective mass, named mobility
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µn, in units of [cm2 · V −1 · s−1]. Most important scattering mechanisms are about lattice
and impurity. Lattice scattering results from thermal vibrations (also called phonons), so it
increases with temperature; those movements disturb the periodic potential and allow energy
to be transferred between the carriers and the lattice. The probability of impurity scattering
depends on the total concentration of ionized impurities and becomes less significant at higher
temperatures.

Diffusion Process

If there is a spatial variation of carrier concentration, these tend to move in an opposite
direction of concentration gradient, generating a random thermal motion. This is called the
diffusion current and it is proportional to the spatial derivative of the electron density. The
current is positive and flows in the opposite direction of the electrons.

Generation and Recombination Processes

Carrier generation is a break-up of covalent bond to form electron and hole pairs, by releasing
an electron from the valence band to the conduction band. Otherwise, recombination is the
opposite process that restores the equilibrium condition. The most common processes for
solar cells are light absorption for generation and Shockley-Read-Hall for recombination.

Light Absorption Photons incident on the surface of a semiconductor will be either re-
flected from the top surface, will be absorbed in the material or, failing either of the above
two processes, will be transmitted through the material. For photovoltaic devices, reflec-
tion and transmission are typically considered loss mechanisms as photons which are not
absorbed do not generate power. If the photon is absorbed it has the possibility of exciting
an electron from the valence band to the conduction band. A key factor in determining if a
photon is absorbed or transmitted is the energy of the photon. Therefore, only if the photon
has enough energy the electron will be excited into the conduction band from the valence
band. In many photovoltaic applications, the number of majority carriers in an illuminated
semiconductor does not alter significantly; otherwise, minority carriers can be approximate
by the light generated carriers.

There are three basic types of recombination in the bulk of a single-crystal semiconductor de-
pending what involves the change of momentum and energy; for example, photons, electrons
or phonons. These are radiative recombination, Auger recombination and Shockley-Read-
Hall recombination.

Radiative Recombination It is also called band-to-band or direct recombination, usually
dominates in direct-bandgap semiconductors, such as GaAs. In this, an electron from the
conduction band directly combines with a hole in the valence band and releases a photon.
The probability of electrons and holes will recombine directly is high, because the bottom
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of the conduction band and the top of the valence band have the same momentum and
no additional one is required for the transition across the bandgap. The rate of the direct
recombination, Rth, is expected to be proportional to the number of electrons available in
the conduction band and the number of holes available in the valence band.

Most commonly, when the semiconductor is indirect as in Silicon solar cells, indirect recombi-
nation predominates. In this, transition is via localized energy states in the forbidden energy
gap called recombination centers.

Auger Recombination An electron and a hole recombine, but rather than emitting the
energy as heat or as a photon, the energy and momentum is transferred to a third carrier, an
electron in the conduction band. This electron then thermalizes back down to the conduction
band edge. Auger recombination is most important at high carrier concentrations caused by
heavy doping or high level injection under concentrated sunlight. In silicon-based solar cells,
Auger recombination limits the lifetime and ultimate efficiency. The more heavily doped the
material is, shorter the Auger recombination lifetime is.

Shockley-Read-Hall Recombination Recombination through defects levels, also called
Shockley-Read-Hall or SRH recombination, does not occur in perfectly pure, undefected
material. SRH recombination is a two-step process. An electron (or hole) is trapped by
an energy state in the forbidden region which is introduced through defects in the crystal
lattice. These defects can either be unintentionally introduced or deliberately added to the
material, for example in doping the material; and if a hole (or an electron) moves up to the
same energy state before the electron is thermally re-emitted into the conduction band, then
it recombines. The rate at which a carrier moves into the energy level in the forbidden gap
depends on the distance of the introduced energy level from either of the band edges.
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2.2 PN junction

Joining n-type material with p-type material causes excess electrons in the n-type material
to diffuse to the p-type side and excess holes from the p-type material to diffuse to the n-type
side [10]. Movement of electrons to the p-type side exposes positive ion cores in the n-type
side while movement of holes to the n-type side exposes negative ion cores in the p-type side,
resulting in an electron field at the junction and forming the depletion region (See Figure
2.8). An electric field E forms between the positive ion cores in the n-type material and
negative ion cores in the p-type material. This region is called the "depletion region" since
the electric field quickly sweeps free carriers out, hence the region is depleted of free carriers.
A "built in" potential Vbi due to electric field that is formed at the junction.

A PN junction can operate under forward and reverse bias. Forward bias occurs when a
voltage is applied across the device such that the electric field formed by the PN junction
is decreased. It eases carrier diffusion across the depletion region, and leads to increased
diffusion current. In the presence of an external circuit that continually provides majority
carriers, recombination increases which constantly depletes the influx of carriers into the solar
cell. This increases diffusion and ultimately increases current across the depletion region.
Reverse bias occurs when a voltage is applied across the solar cell such that the electric field
formed by the PN junction is increased and consequently, diffusion current decreases.

Semiconductor devices have three modes of operation:

• Thermal Equilibrium: There are not external inputs such as light or applied voltage.
The currents balance each other out so there is no net current within the device.
• Steady State: There are external inputs such as light or applied voltage, but the condi-

tions do not change with time. Devices typically operate in steady state and are either
in forward or reverse bias.
• Transient: Usually present in solar cells, it occurs if the applied voltage changes rapidly.

There will be a short delay before the solar cell responds.

Figure 2.8: a)Uniformly doped p-type and n-type semiconductors.b)Electric field
in the depletion region and the energy band diagram of a PN junction in thermal
equilibrium [10].
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2.3 Photovoltaic Solar Cell

A solar cell is a dispositive that produces photovoltaic (PV) electricity [10] [14]. Radiation of
the Sun enters the semiconductor PN junction reaches the depletion region of the solar cell
generates electron-hole pairs, which are able to flow through an external circuit and provide
electrical power. The solar cell functions as a forward biased PN junction; however, current
flow occurs in the opposite direction to that shown in Figure 2.9.

Figure 2.9: Band diagram of solar cell.Generated electron-hole pairs drift across
the depletion region [14].

The generated minority carriers will drift across the depletion region and enter the n- and p-
regions as majority carries as shown. It is also possible for electron-hole pairs to be generated
within about one diffusion length or either side of depletion regions and through diffusion to
reach the depletion region, where drift will again allow these carriers to cross to the opposite
side. It is import to avoid recombination because it produces heat generation and doesn’t
contribute the electron flow.

If the PN junction is illuminated in the junction region then the reverse current increases
substantially due to the electron-hole pairs that are optically generated. Without optical
generation, the available electrons and holes that comprise reverse saturation current are
thermally generated minority carries, which are low in concentration.

The optically generated current is larger than diffusion current and it continues to dominate
current flow until stronger forward bias conditions are present. The current-voltage (I-V)
characteristic of solar cells is shown in Figure 2.10, where there is the appropriate operating
point for a solar cell in which current flows out the positive terminal (p-side), though the
external circuit and then, into the negative terminal(n-side).
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Figure 2.10: I-V Characteristic of solar cell [14].

From the I-V curve in Figure above, the following parameters can be identified: Short-circuit
current (ISC), open-circuit voltage (VOC) and the ones that form the fill factor (FF ).

ISC is the current through the solar cell when the voltage across the solar cell is zero, i.e, when
the solar cell is short circuited. VOC is the maximum voltage available from a solar cell and
this occurs at zero current and corresponds to the amount of forward bias on the solar cell
due to the bias of the solar cell junction with the light-generated current. The short-circuit
current and the open-circuit voltage are the maximum current and voltage respectively from
a solar cell; however, at these points solar cell power is zero. FF contribute to determine
the maximum power from a solar cell and is defined as the ratio of the maximum power
(ponderation of maximum power points Imp and Vmp) to the product of ISC and VOC .
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2.3.1 Design

Solar cell structure is composed generally by six layers, including the semiconductor, as it is
shown in Figure 2.11.

• Encapsulate: it is made of glass or other clear material, such clear plastic, and seals
the cell from the external environment.
• Contact Grid: It is made of a good conductor, such as a metal, and it serves as a

collector of electrons, decreasing the number of photons reaching the semiconductor
surface, allowing more photons to penetrate.
• Antireflective Coating (AR Coating): Through a combination of a favorable refractive

index and thickness, this layer serves to guide light into the solar cell.
• N-Type Semiconductor or Negative doping layer of semiconductor: Photon’s energy

transfers to the valence electron, allowing it to escape its orbit, leaving a hole. In other
words, photoelectric effect happens.
• P-Type Semiconductor or Positive doping layer: In there, freed electrons attempt to

unite with holes providing current.
• Back Contact: usually made out of a metal, covers the entire back surface of the solar

cell and acts as a conductor.

Figure 2.11: Schematic diagram of solar cell layers [15].

In order for light to reach the junction area of the PN junction, it should be close to the surface
of semiconductor and be large enough to capture the desired radiation. Highly doped thin
region simultaneously serves as a front electrode with high lateral conductivity and one side
of PN junction, normally, n-side due to its electron mobility that allows higher conductivity.
A metal grid is deposited on this layer and forms an ohmic contact to n+ material that blocks
sunlight. Areas exposed to sunlight are coated with an anti reflection layer.
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2.4 Properties of Gallium Arsenide

Gallium arsenide (GaAs) is a III-V compound semiconductor composed of the element gal-
lium (Ga) from column III and the element arsenic (As) from column V of the periodic table
of the elements [12]. GaAs was first created by Goldschmidt and reported in 1929, but the
first reported electronic properties of III-V compounds as semiconductors did not appear
until 1952. In 1970, the first GaAs heterostructure solar cells were created by the team led
by Zhores Alferov in the USSR. In the early 1980s, the efficiency of the best GaAs solar cells
surpassed that of conventional, crystalline silicon-based solar cells. In the 1990s GaAs solar
cells took over from silicon as the cell type most commonly used for photovoltaic arrays for
satellite applications. Later, dual- and triple-junction solar cells based on GaAs with germa-
nium and indium gallium phosphide layers were developed as the basis of a triple-junction
solar cell, which held a record efficiency of over 32% and can operate also with light as con-
centrated as 2.000[suns]. GaAs-based devices hold the world record for the highest-efficiency
single-junction solar cell at 28.8%. This high efficiency is attributed to the extreme high
quality GaAs epitaxial growth, surface passivation by the AlGaAs, and the promotion of
photon recycling by the thin film design.

As a solar cell, it presents many benefits in compare to Silicon cells.

• For undoped GaAs, the energy bandgap is 1.42[eV ] at room temperature,allowing
higher operating temperatures.
• GaAs devices requires only a few microns thick to absorb sunlight, due to its high

absorptivity. Commonly used crystalline silicon requires a layer 100 microns or more
thick to accomplish the same effect.
• GaAs is highly resistant to radiation damage and it has high efficiency.
• GaAs has a thermal conductivity of 0.55[W · cm−1◦C−1], which is about one-third that

of silicon and one-tenth that of copper. As a consequence, the power handling capacity
and therefore the packing density of a GaAs integrated circuit is limited by the thermal
resistance of the substrate.
• The mobility of GaAs is about double than Si at typical field strengths. Devices can

work at significantly higher frequencies than Si.

A cell with a GaAs base can have several layers of slightly different compositions, allowing
more precision in controlling generation and collection of electrons and holes. In other hand,
silicon cells have been limited to variations in the level of doping. For example, one of the
most common GaAs cell structures has a very thin window layer made of aluminum gallium
arsenide, which allows electrons and holes to be created close to the electric field at the
junction.

Never the less, it has a high cost that limits its application to concentrator systems, meanly.

Researchers are exploring several approaches to reduce the cost of GaAs devices. These in-
clude placing GaAs cells on cheaper substrates; growing GaAs cells on a removable, reusable
GaAs substrate; and making GaAs thin films, similar to those made of copper indium dise-
lenide and cadmium telluride.
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2.5 Hydrodynamic Stability

Hydrodynamic stability concerns the stability and instability of motions of fluids [16]. The
concept of stability of a state is "when... a small variation of present state will alter only
by an infinitely small quantity the state at some future time, the condition of the system,
whether at rest or in motion, is said to be stable; but when an infinitely small variation in
the present state may bring about a finite difference in the state of the system in a finite
time, the condition of the system is said unstable" − Maxwell.

In case of fluids, instability refers at the state where exists a chaotic three-dimensional vortic-
ity field with a broad spectrum of small temporal and spatial scales. This is called turbulence.
Reynolds demonstrated that when velocity is slow, the flow describes a straight line through
the tube, generating the laminar flow. Whether the Reynolds number is over a critic value,
the phenomenon becomes unstable, letting be the turbulence state, with the appearance of
flashes succeeded each other rapidly.

Stability in mechanical or electrical systems can be studied by using mathematical tools
due to their few degrees of freedom. In other hand, continuous media in which the basic
equations take the form of nonlinear partial differential equations, the number of degrees of
freedom is infinite. That implies the use of simplifications as linearization approximations
and extensions of the theory developed with discrete systems.

The major contributions to the study of hydrodynamic stability can be found in the theoret-
ical papers of Helmholtz (1821-1894), combined with efforts of Reynolds (1842-1912), Kelvin
(1824-1907) and Rayleigh (1842-1919), among others. This last is considered the founder of
the theory of hydrodynamic stability, who between 1878 and 1917 published a great number
of papers on this subject. Around 1907 there were the first intuitions about the existence of
a critical Reynolds number to explain the problem of turbulence. In addition to the works
of Prandtl (1875-1953), the first confirmation of linear theory by experiments was done by
Taylor (1886-1975) in his work on vortices between concentric rotating cylinders. Lin (1916-)
improved the mathematical procedures and laid the foundations for a general expansion of
stability analysis. At that time the stability of Poiseuille flows had become a particularly
controversial issue and Lin put it in order by his newer and more general analysis. The
results of Lin were found to be correct by using a digital computer. Experimental results
of Schubauer and Skramstad helped clarify that the critical Reynolds number marked only
the threshold of sinuous motion and not that of turbulence. At that point, experimental
results and theory agreed as far as eigenfunctions and eigenvalues were concerned. Around
1955, three main categories of manifestations of instability in a continuous medium were
formulated: first, oscillations in parallel flows, channel flows and boundary layers; second,
boundary layers along curved walls and third, Benard cells and convective instabilities, cases
where the mean flow is zero. Basic flow is defined by the set of fields that need to be specified
at each point and time, for instance velocity and temperature. From the physical point of
view, we want to know if the basic flow can be observed or not. If a small disturbance is
introduced, this may either die away, persists as a disturbance of similar magnitude or grows
so much that the basic flow becomes a different flow pattern. Stability problems can be found
in many fields such as mechanics, electronics, aeronautical engineering, economics. [17]

17



BACKGROUND 2.6. HOT SPOT IN PV SOLAR CELLS

2.6 Hot Spot in PV Solar Cells

Solar cell stability is an important factor in determining device lifespan, return of invest-
ment, pricing and warranty policies. Stability is often studied under harsher conditions than
working cells are exposed into the field, so that 30 years of field stress can be inferred with
20 days of laboratory study, through increased concentrations of light, higher temperatures
or greater humidity (accelerated life testing, ALT). Established experimental work on device
degradation has found that temperature is an important parameter, accelerating it exponen-
tially [18]. Moreover, without cell degradation by temperature, solar cells may have a lifetime
greater than 100 years [19].

Increase of solar cell junction temperature can negatively affect output power and energy
conversion efficiency due to a decrease of the open circuit voltage. This temperature depends
on the packaging of solar cells and the environmental factors such as ambient temperature
and wind characteristics [20–22].

Any temperature fluctuation in a local area of the film structure can increase the electrical
conduction and cause a shutting pathway or hot spot [23]. Hot spot profile depends on where
it is located and current densities, as can bee seen in Figure 2.12. Temperature is higher
at the center of the device and reduces lower values at the edges. Also, the difference in
temperature of hotter point and its surroundings is in the order of 10[K].

Figure 2.12: Hot spot temperature profile, TCO layer [23].

The temperature variation in the structure is usually reversible before physically impacting
the atomic structure. This non-uniform characteristic of a PV device can be produced meanly
due to its material structure or light absorption profile. First case refers to crystalline defects
or composed structures heterogeneity. In the second case, radiation patrons that evolve
during time or variations in the whether such as the passing of a cloud produce it [24]. This
condition means variations between local PV parameters in different areas of a module or
in variations between the parameters of nominally identical solar cells cut from the same
module. An example of measurable consequence is that hot spots are typically located close
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to module bus bars, which can be consider as a defect in the device [25]. Another one is that
nominally identical cells may degrade differently.

As PV devices are thermally insulated and have a low lattice thermal conduction, the fluc-
tuation in electric flow in the semiconductor layer triggers a variation in the temperature
profile, well known in large are PV modules. This variation results in spots of high transver-
sal conduction (i.e in a parallel plane to the layer width), allowing a local heat generation
that may develop in an unstable temperature increase.

It usually concentrates its effects in a specific zone of the device, where a hot spot is generated.
The stability of this point determines the magnitude of the degradation process; if it is stable,
its temperature decreases until it reaches the equilibrium with the surrounds, damaging the
zone slowly. Case contrary, but less frequent, the temperature increases exponentially leading
to the runaway phenomenon.

The thermal runaway phenomenon corresponds to an uncontrolled response of energy gen-
erated by its own system when the temperature surpasses a critical value, usually with
catastrophic consequences. Even if its application in PV is relatively new, alluding the work
of Karpov in the last decade, it is a well know process in other scientific areas meanly by
exothermic chemical reactions, such as in electrical engineering (current hogging), chemistry
(temperature accelerated exothermic reactions) [26, 27], astrophysics (nova explosion due to
runaway nuclear fusion) [28], among others.

In photovoltaic solar cells, the thermal runaway phenomenon causes problems with PV re-
liability, diminishing its lifespan and efficiency. This develops a current crush effect due to
inherent non-uniform junction temperature [29].

Experimentally, temperature profile of PV solar cells can be observed with infrared camera
mapping (IR), hence the temporal evolution of hot spots and its location in the frontal
plane of the device can be registered. Another mapping techniques which also reveal lateral
non-uniformities are optical beam induced current (OBIC), electron beam induced current
(EBIC), surface photo-voltage (SPV) mapping, photoluminescence (PL) mapping, and some
others [30, 31].

Analytically, typical junction models are usually based on diodes configurations, where the
equation system includes the Ohm’s Law, Kirchoff current and voltage laws, saturation cur-
rent and a heat transfer equation, which usually contains a light absorption, Joule dissipation,
Newton cooling law and a conductive heat transfer terms at least [9, 25, 29,32].

Diode current ID is given by temperature dependent Shockley Equation, Eq.(2.3):

ID = I0 (exp( qV

nKBT
)− 1) (2.3a)

I0 = I00 exp( −Eg
nKT

) (2.3b)

Where Eg represents band gap energy; n, the ideality factor; kB, Boltzmann’s constant; T ,
junction temperature;I0, reverse saturation current;I00, a constant; q, electron charge; and
the voltages.
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Heat equation can be written as:

C
dT
dt = H + IV + χ∆T − α∆T − σ∆T 4 (2.4)

where the C corresponds to a constant flux; H, to Joule dissipation; χ, to convection; α, to
conduction; and σ, to radiation.

PN junction modelled as equivalent circuit with diodes configurations usually includes current
source simulating the sun illumination and resistances, thermal and electrical, as can be seen
in Figure 2.13

(a) two diodes [32] (b) One diode [25]

Figure 2.13: Equivalent circuit of PN junction.

Vasko et al. [25] made a study in thin film PV modules, specifically in a triple junction based
on a-Si:H. It revealed that even when radiation is uniformly distributed in the module making
a uniform temperature profile at the beginning, its distribution became less homogeneous in
the course of heating and hot spots usually developed in the proximity of bus bars, as can
be seen in Figure 2.14.

Figure 2.14: IR mapping triple junction a-Si:H [25]
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Hot spots formation takes place when the forward current exceeds a certain critical value, in
this case approximately 15[A]. In addition, it was experimentally demonstrated that hot spots
are sensitive to convective air currents. Temporal evolution of hot spot temperature behaves
exponentially, which triggers the phenomenon of runaway instability, where the spot gets
hotter and simultaneously shrinks in its linear dimensions (See Figure 2.15); the temperature
of faraway regions simultaneously decreases as they dissipate smaller currents. Gorji [23] also
demonstrates that an already created hot spot can redistribute the temperature profile of
neighbour areas.

Figure 2.15: Temperature distribution over sample at 2[suns] [25].

It can be avoided in this case by increasing thermal conductivity by a factor, achievable
in practice, which allows to the module reach a maximum temperature beyond the critical
(90[◦C]), as can be seen in Figure 2.16.

Karpov et al. [32] made a thermal stability analysis on thin film photovoltaic modules, re-
leased that PV can undergo zero threshold localized thermal runaway leading to thermal
instabilities that affects negatively the device performance and reliability. Non uniform ma-
terial degradation accelerates at hot spots, such that an initial hot spot may then degrade
in a runaway mode under more and more stress as it becomes progressively shunting. More-
over, it can be unstable with respect to infinitesimally small fluctuations. They model the
device as two diodes, with heat capacitances and resistors, applying a linear stability analysis
over characteristics equations and then checking it by numerical modelling. This model also
corroborates the fact that scaling some device properties, like increasing thermal insulation
and decreasing thickness, runaway can be avoided.
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Figure 2.16: Simulated temporal temperature as a function of thermal conductiv-
ity χ [25].
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Chapter 3

Model Description

From the hydrodynamic model of the PN junction presented by Osses [33] temporal eigen-
values of the transient component of the zero order perturbation will be found. Transport
equations for electrons and holes model are deduced from the Boltzmann equations and
semi-classical theory.

Reference system is defined as the spatial coordinate x∗, in the direction of the electron
flow, and t∗ as time. Current is driven through the device by a voltage difference, diffusion,
generation and recombination processes between the two contacts at x∗ = 0.5L, whit L as
the total device longitude. The one-dimensional two-temperature hydrodynamic equations
for electron and hole flow in a PN junction solar cell include:

• Gauss’s law in Eqs. (3.1a) and (3.1b), which describe variation of electric potential as
a function of charge distribution.
• Mass conservation equations for electrons and holes in Eqs. (3.1c) and (3.1d), which

consider mass variation in a control volume (PN junction).
• Momentum conservation equations for electrons and holes in Eqs. (3.1e) and (3.1f),

which includes effects of Lorentz force, pressure and collisions.
• Energy conservation equation for electrons and lattice in Eqs. (3.1g) and (3.1h), which

consider effect of pressure for electrons and heat transfer by conduction and collision
term for both electrons and lattice.

It is considered thermal equilibrium among electrons and holes. Therefore, the electron and
hole temperature are imposed to be equals and constants throughout the device, T ∗c . The
changes of kinetic energy of electrons due to their interactions with the lattice is described
in Eq. (3.1g) and lattice thermal energy in Eq. (3.1h).
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The system of equations is as follows:

∂2V ∗

∂x∗2
= − e

εs
(p∗ − n∗ −NA) , x∗ < x∗J , (3.1a)

∂2V ∗

∂x∗2
= − e

εs
(p∗ − n∗ +ND) , x∗ > x∗J , (3.1b)

∂n∗

∂t∗
+ ∂(u∗en∗)

∂x∗
= (G∗n −R∗n), (3.1c)

∂p∗

∂t∗
+ ∂(u∗hp∗)

∂x∗
= (G∗p −R∗p), (3.1d)

∂u∗e
∂t∗

+ u∗e
∂u∗e
∂x∗

= e
me

∂V ∗

∂x∗
− kB
men∗

∂(n∗T ∗c )
∂x∗

− u∗e
τel
, (3.1e)

∂u∗h
∂t∗

+ u∗h
∂u∗h
∂x∗

= − e
mh

∂V ∗

∂x∗
− kB
mhp∗

∂(p∗T ∗c )
∂x∗

− u∗h
τhl
, (3.1f)

∂T ∗c
∂t∗

+ u∗e
∂T ∗c
∂x∗

= −2
3T
∗
c

∂u∗e
∂x∗

+ 2
3n∗kB

∂

∂x∗

(
ke
∂T ∗c
∂x∗

)
− T ∗c − T ∗L

τE
+ meu

∗
e

2

3kBτE
+ 2q∗heat

3n∗kB
, (3.1g)

CL
∂T ∗L
∂t∗

= ∂

∂x∗

(
kL
∂T ∗L
∂x∗

)
+ 3n∗kB

2

(
T ∗c − T ∗L
τE

)
, (3.1h)

where V ∗(x∗, t∗) is the electrostatic potential, n∗(x∗, t∗) is the electron density, p∗(x∗, t∗) is
the hole density, u∗e(x∗, t∗) is the x∗-component electron drift velocity, u∗h(x∗, t∗) is the x∗-
component hole drift velocity and T ∗c is the electron and hole temperature, T ∗L is the lattice
temperature and q∗heat is an imposed heat per unit length in an unit area in which the current
passes, which is absorbed from sunlight. The junction is defined at x∗ = x∗J . It is noteworthy
that the symbol ∗ that accompany each variable represents its dimensional state.

By considering TC = constant in space, Eqs. (3.1g) and (3.1h) can be reduce to the following:

CL
∂T ∗L
∂t∗

= ∂

∂x∗

(
kL
∂T ∗L
∂x∗

)
+ 1

2τE
men

∗u∗e
2 + q∗heat − n∗kBT ∗c

∂u∗e
∂x∗

(3.2)

3.1 Physical parameters

The physical parameters are the electron charge, e, the permittivity of the semiconductor, εs,
the donor concentration, ND, the acceptor concentration, NA, the effective electron mass, me,
the effective hole mass, mh, the Boltzmann constant, kB, the generation rate for electrons,
G∗n, the generation rate for holes, G∗p, the recombination rate for electrons, R∗n, the recom-
bination rate for holes, R∗p, the momentum relaxation time for electrons, τel, the momentum
relaxation time for holes, τhl, the energy relaxation time for electrons, τE, the lattice thermal
conductivity kL, and the heat capacity for lattice CL. In this analysis we consider τel, τhl,
τE, kL, and CL as constant values. In the next Table 3.1 there are values used considering a
reference temperature of 300[K].
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Table 3.1: Physical properties for GaAs [34]

Constant Value
e 1.60218× 10−19 [C]
εs 113.28× 10−12 [C2/(N m2)]
kB 1.38066× 10−23 [J/K]
kL 42.61 [W/(m K)]
ND 1× 1016 [m−3]
NA 1× 1016 [m−3]
me 6.01× 10−32 [kg]
mh 4.65× 10−31 [kg]
CL 8.73× 105 [J/(m3 K)]
µno 0.45 [m2/(V s)]
τp 2× 10−12 [s]
τE 4.4× 10−10 [s]

3.2 Assumptions

There is thermal equilibrium between electrons and holes. The charge carrier temperature
distribution is imposed to be uniform in space and known throughout the device but it can
be higher than the lattice and room temperatures, which can vary. There are two reasons
for this condition. First, carrier temperature fluctuations may increase the recombination
rate, reducing the PN junction performance [35,36], and also, these fluctuations may modify
the momentum and energy relaxation times more significantly throughout the device than
fluctuations in the lattice temperature values [37]. Secondly, an operating condition deter-
mined by an imposed heat flux, q∗heat, where the transport of hot electrons can be achieved
and maintained through the device in order to reduce the lattice heating and consequently
the recombination rates, improving the performance of the PN junction solar cell.

Respecting to lattice temperature, hot spot is considered already created and it influences
lattice boundary conditions at initial time. Temporal evolution of hot spot depends on its
stability; if the phenomenon is stable, it is related to long term degradation and otherwise,
thermal runaway is developed.

Other considerations are:

• The semi-classical approximation is valid, which means wave motion is despised in
carrier transport and the uncertainty of carrier momentum description is low. It is
used Boltzmann equation.
• Negligible magnetic field.
• Carrier density is consider in the depletion region.
• Electric field does not change in time, just in space. There isn’t reflection and movement

is not ondulatory.
• Homogeneous material.
• Structure band is isotropic and parabolic, which implies there is an scalar effective
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mass.
• There are not collisions between same carriers. Only carrier/lattice and electron/hole

collisions are considered. Collisions are binaries and perfectly inelastics, generated from
energy loss by generating phonons.
• Shockley-Read-Hall recombination processes (SRH) for electrons and holes, since this

mechanism determines the effective carrier lifetime and prevail under a dopying density
below 1018[cm3]; otherwise, Auger process is dominant (RAU). Therefore, recombina-
tion rates depend exponentially on the applied voltage through the PN junction.
• Generation by phonons absortion.
• Heavily doped regions near the ends, which lead to ohmic contacts.

3.3 Boundary Conditions

Boundary conditions are extracted from Osses analysis [33] and can be seen in Figure 3.1.
As it is said, x∗ is in the direction of the electron flow, from 0 to L as since p-side edge to
the other extreme in the n-side, and t∗ is time.

Figure 3.1: Device scheme with boundary conditions [33].

Voltage conditions refer that at zero bias, there isn’t any total current density in both edges
and there is an applied voltage only in p-side edge.

dV ∗

dx∗ (0, t∗) = 0, (3.3a)

dV ∗

dx∗ (L, t∗) = 0, (3.3b)

V ∗(0, t∗) = Vapplied, (3.3c)
V ∗(L, t∗) = 0. (3.3d)
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Carriers density are consider in equilibrium, meaning that boundary conditions are related
to the intrinsic carrier concentration, ni and impurities concentration, NA and ND.

n∗(0, t∗) = n2
i /NA, (3.4a)

n∗(L, t∗) = ND, (3.4b)
p∗(0, t∗) = NA, (3.4c)

p∗(L, t∗) = n2
i /ND. (3.4d)

The boundary conditions for the lattice temperature are a constant temperature through the
dispositive in the beginning and a constant temperature in a fixed edge. The use of symmetric
boundary conditions for the lattice temperature is supported by the fact that results from
thermal modeling of photovoltaic solar cells show that the temperature of the semiconductor
layer is mostly uniform along the normal axis [38].

T ∗L(0, t∗) = 330[K], (3.5a)
T ∗L(L, t∗) = 330[K]. (3.5b)

3.4 Non-dimensional Form

It is considered a non-dimensional form, using the reference parameters to cancel the dimen-
sion of variables. These reference parameters are V0 voltage, N0 doping density, L longitude of
the device, t0 time, U velocity, T0 temperature and q0 heat flux, defined as q0 = meN0U

2/τel.

Non-dimensional variables are V = V ∗/V0, n = n∗/N0, p = p∗/N0, x = x∗/L, ue = u∗e/U ,
uh = u∗h/U , T = T ∗/T0 and t = t∗/t0.

Replacing variables, a new set of equations is obtained.

∂2V

∂x2 = −α
(
p− n− NA

N0

)
, x < xJ , (3.6a)

∂2V

∂x2 = −α
(
p− n+ ND

N0

)
, x > xJ , (3.6b)

∂n

∂t
+ ∂(uen)

∂x
= (Gn −Rn), (3.6c)

∂p

∂t
+ ∂(uhp)

∂x
= (Gp −Rp), (3.6d)

Re

[
∂ue
∂t

+ ue
∂ue
∂x

]
= ∂V

∂x
− β

n

∂n

∂x
− ue, (3.6e)

Re

[
∂uh
∂t

+ uh
∂uh
∂x

]
= −mr

[
∂V

∂x
+ β

p

∂p

∂x

]
− γuh, (3.6f)

ψ1
∂TL
∂t

= ψ2
∂2TL
∂x2 + 1

2νnue
2 + qheat − βn

∂ue
∂x

. (3.6g)

Non-dimensional groups used are α = eL2N0/V0εs, γ = τel/τhl, mr = me/mh, β = kBT
∗
c /eV0,

ν = τel/τE, ψ1 = τelCLT0/meN0LU , ψ2 = τelkLT0/meN0L
2U2, Re = U2me/eV0, Gn − Rn =

(G∗n−R∗n)L/N0U , Gp−Rp = (G∗p−R∗p)L/N0U , t0 = L/U , U = eV0τel/meL and Re = Uτel/L.
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α is the available charge in the junction and its movement capacity. It is the ratio between
charge per area unit Q/A = eNoL and the electric displacement D = εsV0/L. Increasing
its value implies that carrier density variations involve a higher electric field variation, as is
indicated in Eq. (3.6a) y Eq. (3.6b).

Re is the Reynolds number for electrons due to the use of a hydrodynamic model, considering
U as the maximum average electron velocity and kinematic viscosity as nue = L2/τel. This
last means that increasing the number of collisions between electrons and lattice implies
higher thermal energy dissipation by the external electric field and consequently a lower gain
in group velocity. Reynolds number also can be written as Re = le/L, assuming le as the
length free path defined as le = Uτel . This definition corresponds to the Knudsen number
for the electron cloud, which point out relative disorder grade of the system.

Relative mass mr is the ratio between electron and hole mass. Knowing that hole mass
represent a valence electron mass, mr is equivalent to the relative inertia between conduction
and valence electrons.

γ is the ratio between the momentum relaxation time of electron and hole. Otherwise, ν is
the ratio between the momentum and energy relaxation time of electron.

β is the ratio between thermal energy of carriers and electric potential energy. A higher value
implies a predominance of diffusive phenomena.

ψ1 and ψ2 are the ratio between the heat capacity and heat conduction of the lattice with a
reference heat flux, respectively.
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Chapter 4

Resolution Method

The aim of this chapter is to explain the methodology used to obtain the eigenvalues of
the equation system. For this, perturbation method is applied to find zero order regular
perturbation system. Then, the solution considered is divided in two terms: steady state
component depending only in space and a transient response that varies in time and space.
The last one determines system stability of the front of a small perturbation. Such method
is used due to the non-linearity of the problem and the hardness to converge of the other
numerical methods.

The followed steps and sections where they can be found are:

3.4 Find non-dimension form
4.2 Apply asymptotically perturbation series
4.3 Propose a separated variables solution
4.3 Reduce the o.d.e order.

4.3.2 Resolve o.d.e with numerical methods
4.3.3 Find the transfer matrix
4.3.3 Apply boundary conditions

5 Find eigenvalues

These are explained at following, preceding by a brief explanation of perturbation theory
bases.

4.1 Perturbation Theory

Differential equations can be solved in closed form using solutions based on advanced theory,
approximation by numerical analysis or approximation by formulas. The last includes the
perturbation theory, that has an advantage of having an approximate formula for the solution
of an equation and is possible to recognize the effects of the parameters in the solution better
than the numerical approach.
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In perturbation theory, the problem is simplified to a solvable equation. Then, the solution
is the obtainable base form plus a perturbation, which usually takes the form of a series in
base of a perturbation parameter "ε", which needs to be sufficiently small to give a good
approximation. This solution only asymptotically converge to the one that responds to the
target problem.

Several symbols are used in discussing approximations to functions and they serve to under-
stand the associated error magnitude. The most commonly used are ∼=, o, O and OS. The
symbol ∼= used as y(x; ε) ∼= ŷ(x; ε) means that the function ŷ is proposed as an approxima-
tion to y, nothing is implied about the validity of the approximation. A gauge function is a
positive monotone function δ(ε) defined in some interval 0 < ε < ε0 of interest for a particular
problem; the most common gauge functions are defined for all ε > 0. "Monotone" means that
a gauge function must be increasing or decreasing through its domain. Gauge functions are
used to measure the size of other function. The following are the most important definitions.

Assuming the following limit Lim exists, o, O and OS can be defined as Lim := limit(ε→0+)
|f(ε)|
δ(ε)

f(ε) = o(δ(ε)) if Lim = 0, (4.1a)
f(ε) = O(δ(ε)) if Lim <∞, (4.1b)
f(ε) = OS(δ(ε)) if 0 < Lim <∞. (4.1c)

For the application in the error term, the next definition is established.

Definition: The function f(x, ε) satisfies the condition f(x, ε) = O(δ(ε)) uniformly for x in
the interval a ≤ x ≤ b if and only if there exist constants c and ε1 such that |f(x, ε)| ≤ cδ(ε)
for all x in a ≤ x ≤ b and for all ε in 0 < ε ≤ ε1.

Once these symbols are defined, it will be explained what kind of differential equations can
be solved and how. If a problem looks like a solvable one and it can be separated as:

Ly + εNy = 0, (4.2)

where L and N are functions of differentials; y and ε are the unknown quantity and the
perturbation parameter, respectively; Ly = 0 is the solvable equation and εNy = 0 is the
perturbation one. Its proposed solutions can be approximated as an asymptotic series

y(x; p; ε) =
k∑

n=0
yn(x; p)δn(ε) + o(δk(ε)). (4.3)

In the particular case of an initial value problem with the form:
aÿ + bẏ + cy = εf(t, y, ẏ, ε), (4.4a)

y(0) = α, (4.4b)
ẏ(0) = β. (4.4c)
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That exists for all 0 ≤ t ≤ T , |ε| < ε0, α ∈ A and β ∈ B. The solution can be defined by the
following theorem.

Theorem: Let f be defined for all t in a compact interval 0 ≤ t ≤ T , for all y and ẏ, and
for all ε near zero. Let f have a continuous partial derivates of all order ≤ r. Let compact
intervals A and B be specified for α and β. Then there exists ε0 > 0 such that a solution.

y = φ(t;α; β; ε). (4.5)

Furthermore this solution is unique and φ is as smooth as f ; that is, it has continuous partial
derivates of all orders ≤ r with respect to all of its arguments t, α, β and ε.

It follows immediately from last theorem and Taylor’s theorem that for any k ≤ r− 1, φ has
an asymptotic approximation of the form.

φ(t, α, β, ε) =
k∑

n=0
φn(t;α; β)εn +O(εk+1), (4.6)

uniformly for 0 ≤ t ≤ T and for α, β in compact subsets.

4.2 Disturbed System

It is considered the physical properties for GaAs shown in Table 3.1. The values of the
non-dimensional parameters have to be restricted to satisfy the built-in potential and the
boundary conditions. The average time among collisions is small, and as a consequence, it
is expected to have a small distance between two collisions for an electron in the flow. This
implies that the Reynolds number is small, Re < 1, and it can be used as a perturbation
parameter ’ε’ in asymptotic perturbation series [34] for the dependent variables in Eqs. (3.6).

A symmetric PN junction in the dark and under light (constant net-generation rate), with
xJ = 0.5 and ND = NA, was considered. Thus, the asymptotic perturbation series for the
dependent variables are

V (x, t) = V0(x, t) + εV1(x, t) +O(ε2), (4.7a)
n(x, t) = n0(x, t) + εn1(x, t) +O(ε2), (4.7b)
p(x, t) = p0(x, t) + εp1(x, t) +O(ε2), (4.7c)
ue(x, t) = ue0(x, t) + εue1(x, t) +O(ε2), (4.7d)
uh(x, t) = uh0(x, t) + εuh1(x, t) +O(ε2), (4.7e)
TL(x, t) = TL0(x, t) + εTL1(x, t) +O(ε2). (4.7f)

These consider an error of order ε2, which implies only one perturbed term. To obtain a first
order system replaced Eqs. (4.7) into the equation system Eqs. (3.6); then, factorize by the
powers of ε and identify the order system related to its corresponding power. Terms with
power over one are considered inside the error. At following, zero and first order is presented.
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4.2.1 Zero order system

Equation system related to zero order is presented at following.

∂2V0(x, t)
∂x2 = −α

(
p0(x, t)− n0(x, t)− NA

N0

)
, x < xJ , (4.8a)

∂2V0(x, t)
∂x2 = −α

(
p0(x, t)− n0(x, t) + ND

N0

)
, x > xJ , (4.8b)

∂n0(x, t)
∂t

+ ∂(ue0(x, t)n0(x, t))
∂x

= (Gn −Rn), (4.8c)

∂p0(x, t)
∂t

+ ∂(uh0(x, t)p0(x, t))
∂x

= (Gp −Rp), (4.8d)

∂V0(x, t)
∂x

n0(x, t)− β∂n0(x, t)
∂x

− ue0(x, t) = 0, (4.8e)

−mr

[
∂V0(x, t)
∂x

p0(x, t) + β
∂p0(x, t)
∂x

]
− γuh0p0(x, t) = 0, (4.8f)

ψ1
∂TL0(x, t)

∂t
= ψ2

∂2TL0(x, t)
∂x2 + 1

2νn0(x, t)ue0
2(x, t) + qheat − βn0(x, t)∂ue0(x, t)

∂x
. (4.8g)

4.2.2 First Order System

Equation system related to first order is presented due to its similarity to low flow of zero
order system; however, it is not solved. It is noteworthy that in this system, all variables
depend on both dimensions and there are constants terms to the perturbation; that means
there are terms constituted only by zero order variables.

∂2V1(x, t)
∂x2 = −α (p1(x, t)− n1(x, t)) , (4.9a)

∂n1(x, t)
∂t

+ ue0(x, t)∂n1(x, t)
∂x

+ n0(x, t)∂ue1(x, t)
∂x

+ ue1(x, t)∂n0(x, t)
∂x

+ n1(x, t)∂ue0(x, t)
∂x

= 0,
(4.9b)

∂p1(x, t)
∂t

+ uh0(x, t)∂p1(x, t)
∂x

+ p0(x, t)∂uh1(x, t)
∂x

+ uh1(x, t)∂p0(x, t)
dx + p1(x, t)∂uh0(x, t)

∂x
= 0,
(4.9c)

ue0(x, t)n0(x, t)∂ue0(x, t)
∂x

= n0(x, t)∂V1(x, t)
∂x

− βT1(x, t)∂n1(x, t)
∂x

+ n1(x, t)∂V0(x, t)
dx

− n0(x, t)ue1(x, t)− n1(x, t)ue0(x, t),
(4.9d)

− uh0(x, t)p0(x, t)∂uh0(x, t)
∂x

= mrp0(x, t)∂V1(x, t)
∂x

+mrβT1(x, t)∂p1(x, t)
∂x

+mrp1(x, t)∂V0(x, t)
∂x

+ γp0(x, t)uh0(x, t) + γp1(x, t)uh0(x, t),
(4.9e)

ψ1
∂TL1(x, t)

∂t
= ψ2

∂2TL1(x, t)
∂x2 + 1

2νn1(x, t)ue0
2(x, t) + νn0(x, t)ue0(x, t)ue1(x, t)

− βn1
∂ue0(x, t)

∂x
− βn0(x, t)∂ue1(x, t)

∂x
.

(4.9f)
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4.3 Linear stability analysis

Linear stability analysis determines what is the effect of an initial disturbance on a laminar
flow. The system response can be expressed in two states: a steady and a transient one.
The steady state solution depends only on space and can be considered as a base flow; the
transient state solution can be considered as a perturbation of the system and it is defined
as a small perturbation through a small parameter "δ", |δ| << 1.

By replacing,

V0(x, t) = V (x) + δV ′(x, t), (4.10a)
n0(x, t) = n(x) + δn′(x, t), (4.10b)
p0(x, t) = p(x) + δp′(x, t), (4.10c)

ue0(x, t) = ue(x) + δue
′(x, t), (4.10d)

uh0(x, t) = uh(x) + δuh
′(x, t), (4.10e)

TL0(x, t) = TL(x) + δT ′L(x, t), (4.10f)

in Eqs.(4.8), the following systems in Eqs.(4.11) and Eqs.(4.12) are obtained. In Eqs.(4.10),
nomenclature x represents the steady flow and x′, the transient response for any variable.

4.3.1 Steady-State System

This system has been solved by Osses [33], which numerical code was provided by C.Jara
and J.Osses, and is used in the development of this Thesis. As explained in the Assumptions
Section (3.2), T (x) = constant. Each steady state variable is defined in an array of one
thousand nodes and the relative error magnitude of these values is 10−13.

∂2V (x)
∂x2 = −α

(
p(x)− n(x)− NA

N0

)
, x < xJ (4.11a)

∂2V (x)
∂x2 = −α

(
p(x)− n(x) + ND

N0

)
, x > xJ (4.11b)

∂(ue(x)n(x))
∂x

= (Gn −Rn), (4.11c)

∂(uh(x)p(x))
∂x

= (Gp −Rp), (4.11d)

n(x)∂V (x)
∂x

− β∂n(x)
∂x

− n(x)ue(x) = 0, (4.11e)

mr

[
p(x)∂V (x)

∂x
+ β

∂p(x)
∂x

]
+ p(x)γuh(x) = 0, (4.11f)

ψ2
∂2TL(x)
∂x2 + 1

2νn(x)ue(x)2 + qheat − βn(x)∂ue(x)
∂x

= 0. (4.11g)
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(a) Hole Density (b) Electron Density

(c) Hole Velocity (d) Electron Velocity

(e) Electric Potential (f) Lattice Temperature

Figure 4.1: Steady-state variables distribution in space.
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Graphs of the steady state response of zero order system thought space are displayed in
Figure 4.1. These correspond to the particular case of thermal equilibrium, temperature of
330[K], an applied voltage of 0.4[V ], a doping concentration of 1022[m−3] and a longitude of
4× 10−6[m]. The main code conditions of steady flow can be modified.

4.3.2 Transient-state System

Transient state system corresponds to equations extracted from zero order system without
the pure steady state components and neglecting the contribution of terms with δ2 or lower
in order to linearize. Due to this, it can predict only the onset of instability.

∂2V ′(x, t)
∂x2 + α

(
p′(x, t)− n′(x, t)

)
= 0, (4.12a)

∂n′(x, t)
∂t

+ ue(x)∂n
′(x, t)
∂x

+ n(x)∂ue
′(x, t)
∂x

+ ue
′(x, t)dn(x)

dx + n′(x, t)due(x)
dx = 0, (4.12b)

∂p′(x, t)
∂t

+ uh(x)∂p
′(x, t)
∂x

+ p(x)∂uh
′(x, t)
∂x

+ uh
′(x, t)dp(x)

dx + p′(x, t)duh(x)
dx = 0, (4.12c)

n(x)∂V
′(x, t)
∂x

− β∂n
′(x, t)
∂x

+ n′(x, t)dV (x)
dx − n(x)ue

′(x, t)− n′(x, t)ue(x) = 0, (4.12d)

mrp(x)∂V
′(x, t)
∂x

+mrβ
∂p′(x, t)
∂x

+mrp
′(x, t)dV (x)

dx + γp(x)uh′(x, t) + γp′(x, t)uh(x) = 0, (4.12e)

ψ1
∂TL

′(x, t)
∂t

= ψ2
∂2TL

′(x, t)
∂x2 + 1

2νn
′(x, t)ue

2(x) + νn(x)ue(x)ue
′(x, t)− βn′due(x)

dx
− βn(x)∂ue

′(x, t)
∂x

.

(4.12f)

Analyzing transient state of zero order response, first and second equation of system Eqs.(4.8)
are the same hence it contribute in one equation. The lattice energy equation, Eq.(4.14f), is
solved independently in the system of Eqs.(3.6), by using the solutions of n(x) and ue(x). As
temporal terms in Eqs.(4.12) are defined by a first order derivative weighted and accompanied
by parameters that depends only in space, it can be considered as constants for the temporal
dimension. This kind of differential equation have an exponential solution, hence separated
variables solutions is proposed as follows

V ′

n′

u′e
p′

u′h
T ′L


=



V̂ (x)
n̂(x)
ûe(x)
p̂(x)
ûh(x)
T̂L(x)


eωt, (4.13)

where the eigenvalue ω and the amplitudes denoted by ̂ are all complex. Thus, we get a
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system of differential equations with variable coefficients:

d2V̂

dx2 + α (p̂− n̂) = 0, (4.14a)

ωn̂+ ue
dn̂
dx + n

dûe

dx + ûe
dn
dx + n̂

due

dx = 0, (4.14b)

ωp̂+ uh
dp̂
dx + p

dûh
dx + ûh

dp
dx + p̂

duh
dx = 0, (4.14c)

n
dV̂
dx − β

dn̂
dx + n̂

dV
dx − nûe − n̂ue = 0 (4.14d)

mrp
dV̂
dx + βmr

dp̂
dx +mrp̂

dV
dx + γpûh + γp̂uh = 0 (4.14e)

ψ1ωT̂L = ψ2
d2T̂L
dx2 + 1

2νn̂u
2
e + νn ueûe − βn̂

due

dx − βn
dûe

dx . (4.14f)

A numerical method to solve a first order ODE is used, hence it is necessary to reduce the
system order, defining two new variables with physical meaning:

Ê = −∂V̂
∂x

(4.15a)

q̂L = ∂T̂L
∂x

(4.15b)

where E represents the electrical field and qL, the heat transfer flux from the lattice.

To solve numerically the equation system, the basic form y′(x) = f(y, x) is required. For
this, it is organized in a matrix form, where the vector is defined "Y" as an array of the
parameters including the last added, considering their contribution to the equation system.
Hence, it can be written as:

JdY
dx = PY, (4.16)

or
dY
dx = [J−1P]Y, (4.17)

where,

Y =



V̂

Ê
n̂
ûe
p̂
ûh
T̂L
q̂L


, (4.18)
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J =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 ue n 0 0 0 0
0 0 0 0 uh p 0 0
n 0 −β 0 0 0 0 0
mrp 0 0 0 mrβ 0 0 0

0 0 0 0 0 0 1 0
0 0 0 −βn 0 0 0 ψ2


, (4.19)

P =



0 −1 0 0 0 0 0 0
0 0 −α 0 α 0 0 0
0 0 −ω − due

dx −dn
dx 0 0 0 0

0 0 0 0 −ω − duh

dx − dp
dx 0 0

0 0 −dV
dx + ue n 0 0 0 0

0 0 0 0 −dV
dx −mrγuh −mrγp 0 0

0 0 0 0 0 0 0 1
0 0 −1

2νue
2 + β due

dx −νnue 0 0 ωψ1 0


, (4.20)

J−1P is a square matrix which depends on the eigenvalue in time ω and the position x.

4.3.3 Boundary Conditions

From the definition of the perturbation:

y(x, 0) = y0(x, 0) + εy1(x, 0) +O(ε2). (4.21)

Imposing the perturbation contribution neglected in borders, zero order response is:

y(x, 0) = y0(x, 0) = y(x) + δy′(x, 0). (4.22)

As the boundary conditions expressed to the target problem must be fulfilled at every time,
they define the steady-state’s. Hence, the transient conditions are defined null when they are
explicit in the target problem and unknown in the contrary. This can be expressed as Y(0)
at x = 0 and Y(1) at x = 1:

Y(0) =



0
0
0

ûe(0)
0

ûh(0)
0

q̂L(0)


, Y(1) =



0
0
0

ûe(1)
0

ûh(1)
0

q̂L(1)


. (4.23)

To simplify the numerical resolution by integrating the differential equation Eq.(4.17) from
x = 0 to x = 1, auxiliaries initial conditions are used [34]. Multiples Y(0) are defined
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as the orthonormal vectors ei, where subscript i defined the position of the value 1 in the
vector. Solving with these basic vectors, generates a new matrix A which defined the relation
between the boundary conditions at x = 0 and x = 1 as the form:

Y(1) = AY(0). (4.24)

This matrix A is entitled the transfer matrix and explicit the behaviour of the system. In this
case, it depends only on the eigenvalues ω that are determined by the boundary conditions.

4.3.4 Integration Methods

Numerical methods are based on information about the target function by introducing points
between two intermediate points [39].

The Cauchy problem, also known as initial value problem, describe the nature of the problem
to solve and consist of finding the solution of and ODE given suitable initial conditions. In
particular, denoting by I an interval of R containing the point x0, Cauchy problem associate
with a first order ODE reads:

Find a real-valued function y ∈ C1(I), such that:

y′(x) = f(x, y(x)), x ∈ I, (4.25a)
y(x0) = y0. (4.25b)

where f(x, y(x)) is a given real-valued function in the strip S = I × (−∞,∞), which is
continuous with respect both variables.

Fixing 0 < X <∞, letting I = (x0, x0 +X) be the integration interval and, correspondingly,
for h > 0, let xn = x0 + nh, with n ∈ N, be the sequence of discretization nodes of I into
subintervals In = [xn, xn+1]. The width of h of such intervals is called the discretization
stepsize. It is used the notation yj = y(xj) and fj = f(xj, uj).

One-step Methods

A numerical method for the approximation problem in Eq.(4.25) is called one-step method
if ∀n ≥ 0, yn+1 depends only on yn. Otherwise, the scheme is called a multi-step method.

Most commonly used one-step method are:

1. forward Euler method
yn+1 = yn + hfn. (4.26)

2. backward Euler method
yn+1 = yn + hfn+1. (4.27)
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In both cases, y′ is approximate through a finite difference: forward and backward.
These are first order approximations of the first derivative of y with respect to h.

3. trapezoidal (or Crack-Nicolson) method

yn+1 = yn + h

2 [fn + fn+1]. (4.28)

This method approximate the integration by the trapezoidal quadrature rule.
4. Heun method

yn+1 = yn + h

2 [fn + f(xn+1, yn + hfn)]. (4.29)

It is derived from the previous one by replacing fn+1 with the forward Euler method.

Multi-steps Methods

In multi-step method are widely used due to its better accuracy. Simpler one came from the
centered finite difference and is named as midpoint method:

yn+1 = yn−1 + 2hfn (4.30)
When solving a nonlinear Cauchy problem of the form in Eq.(4.25), at each step implicit
schemes require dealing with this nonlinear equation. The predictor-corrector methods consist
of two kinds of steps: The initial, "prediction" step, starts from a function fitted to the
function-values and derivative-values at a preceding set of points to extrapolate this function’s
value at a subsequent, new point. The next, "corrector" step refines the initial approximation
by using the predicted value of the function and another method to interpolate that unknown
function’s value at the same subsequent point. One of the most known method is Runge-
Kutta Method.

Runge-Kutta Method

Runge Kutta method maintain the structure of one-step methods, and increase their accuracy
at the price of an increase of functional evaluations at the each time level, thus sacrifying
linearity. The second order solution at step xn+1 is obtained from:

yn+1 = yn + γ1k1 + γ2k2, (4.31)
where functions k1 and k2 are defined sequentially

k1 = hf(xn, yn), (4.32a)
k2 = hf(xn + αh, yn + βk1), (4.32b)

where α, β, γ1 and γ2 are constants to be determined. These ensure the highest order accuracy
for the method. To establish this order, Taylor series expansion of y(xn+1) is considered,
determining the value of β, γ1 and γ2. Most commonly value used for the arbitrary constant
α is 1/2 leading to the following formula:

yn+1 = yn + k2, (4.33a)
k1 = hf(xn, yn), (4.33b)

k2 = hf(xn + 1
2h, yn + 1

2k1). (4.33c)
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The order of the method, that means the order of the associated error, requires at least the
same quantity of steps or stages. The maximum order when these values coincide is fourth,
hence it is the most commonly used and an example of it is presented at following;

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4), (4.34a)

k1 = f(xn, yn), (4.34b)

k2 = f(xn + 1
2h, yn + h

2k1), (4.34c)

k3 = f(xn + 1
2h, yn + h

2k2), (4.34d)

k4 = f(xn+1, yn + hk3). (4.34e)

4.3.5 Temporal Eigenvalues

Once the transfer matrix A is determined, a non-trivial solution is required to be satisfied for
the system of algebraic equations in terms of ûe(0), ûh(0) and q̂L(0)(see Y(0)) that contains
the boundary conditions at x = 1. This system is defined by the matrix B, which rows are
filled in with equations of voltage, electric field and lattice temperature, and its columns
are filled in with the unknown variables related to velocities and transferred heat. The new
problem to solve become B · y = 0 or equivalently: a41 a61 a81

a42 a62 a82
a47 a67 a87


 ûe(0)

ûh(0)
q̂L(0).

 =

 0
0
0

 (4.35)

This leads to find the linearly independence of the new matrix B by finding the conditions
to force the determinant of B be equal to zero, that means, finding the eigenvalues ω’s that
solve the equation system.
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Chapter 5

Results

In this chapter results under different variables are shown. First, conditions about steady
state code, quantity of nodes, kind of numerical method used, among others, are determined.
Then, data process is defined in order to be able to assign a physical meaning. Finally,
varying operating conditions as boundary lattice temperature and design criteria as longitude,
positive eigenvalues are presented.

5.1 Validity of Results

As the results is sensitive to steady state and transient state codes, numerical conditions
are defined with their relative error respect to an ideal, defined in each case. These are
determined under a thermal equilibrium state at 300[K] and evaluated their real part due
to they determine the instability. Quantity of ω’s values depends on intermediary steps
of iteration methods and quantity of nodes from the grid discretization from the transient
steady state flow. This implies the number of result eigenvalues could be infinity, which can
be explained as a degeneration of the solution, mathematically translated as multiple roots
or same magnitude power.

5.1.1 Main Code Tolerance

It is necessary to determine the significant digits that influence the eigenvalue solution.
Varying by an order of 10−1 since 10−8 until 10−20. From Figures 5.1, it is shown that
the real part of eigenvalues is constant through significant digits until 10−13, from which its
value changes abruptly to another and remains constant. Respect to a solution evaluated
at infinity significant numbers, that is supposed to be equal to the one obtained at 10−20,
relative error decreases abruptly to zero in both cases minimum and maximum from the set
of eigenvalues.
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(a) Minimum of ω real component.

(b) Maximum of ω real component.

Figure 5.1: Significant digits in steady state code.
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5.1.2 Transient-state Code Conditions

Imposing the tolerance in the main code as the critic value found, 10−13, Runge Kutta
method of different orders are compared varying the quantity of nodes used. In first case, an
uncoupled system from heat transfer equation is shown, to compare lately with the complete
system. Number of nodes used in second and fourth order Runge Kutta are compared in
Figures 5.2 and 5.4. The abscissa axis expressed the quantity of nodes used in each iteration
and the ordinate axis present all the strictly positive eigenvalues, but conjugated complex
number are only expressed in one term.

Idealizing fourth order Runga Kutta method with 21 nodes, there are only 2 positive values
with a maximum magnitude order over 1050 and a minimum below 1010. By obtaining more
values, the results contain a considerable proportion of zeros, indicating that the constant
accompany the lower power of the polynomial decreases to zero. Numerical integration
method inverses the matrix [J−1P ] the same quantity of nodes numbers and powers it the
same quantity of step of the method. Due to magnitude order of variables is negative (i.e,
lower than one), values of terms of transfer matrix A diminish in each iteration.

In second Runge Kutta, Figure 5.2 shows that quantity of eigenvalues increases with the
quantity of nodes. From the relative error in Figure 5.3, the minimum in each different
quantity nodes cases is maintained below the ideal minimum and the maximum does not
present a convergence, oscillating around a relative error of 1010. For this reason this method
can not be used.

Looking at Figure 5.4, in fourth order lower quantities of nodes (minor than 13) expressed
acceptably the quantity of searched ω’s but don’t correspond in magnitude. Case contrary,
higher quantities perform as a degenerated solution, that is, one state of energy with a corre-
sponding magnitude has associated more than one value. Comparing results by the relative
error presented in Figure 5.5, maximum value tends to an unitary error that keeps the mag-
nitude order, same as the minimum value. Considering the relation between computational
processing time and accuracy of the solution, the optimal case corresponds to the case with
11 nodes.
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Figure 5.2: Positive eigenvalues from Runge Kutta 2nd order.

Figure 5.3: Relative error from Runge Kutta 2nd order.
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Figure 5.4: Positive eigenvalues from Runge Kutta 4th order.

Figure 5.5: Relative error from Runge Kutta 4th order.
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5.2 Data Processing

Solutions in general can be divided in complex and pure real solutions in which the real part
(ωR) of the eigenvalues represents unstable, growing exponentials in time. In case of complex
values, the imaginary part (ωI) correspond to oscillation frequency. As transient solutions are
expressed in form X(x)exp(ωR)cos(ωI + φ), Figure ?? represents the incidence of temporal
solution ω with an arbitrary amplitude in temporal representation.

(a) Stable. (b) Oscillating Stable.

(c) Unstable. (d) Oscillating Unstable.

Figure 5.6: General transient response representation in time.

Stables solutions decreased its value to zero, allowing the system to answer as its steady state.
In other hand, unstable solutions represents thermal runaway phenomenon, which leads to
the quick degradation of device, rendering it useless and consequently without presenting the
steady state.
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5.2.1 Range of Allowed Eigenvalues

Various degradation mechanisms have been proposed in terms of atomic phenomenon [40],
through there is no consensus in the field of what modes are presents in certain samples
or if all possible modes are yet accounted for. In this Thesis, a range of allowed eigenval-
ues is proposed considering thermal inertia and a characteristic time of thermal runaway
phenomenon.

Thermal inertia (Ith) is the material property to keep its temperature and is also known as
thermal storage effect. It considers the degree of slowness with which the temperature of a
body approaches that of its surroundings and the quantity of heat can be absorbed or lost.
It depends on material’s bulk thermal conductivity (k) and volumetric heat capacity, which
is the product of density (ρ) and specific heat capacity (c), as can be seen in Eq. (5.1).
For GaAs, Ith = 8.647[Wm−2K−1√s], while for Si, Ith = 15.668[Wm−2K−1√s] at room
temperature Troom = 300[K] and thermal equilibrium. As value for Si almost double GaAs,
it is expected that GaAs allows lower times to increase its temperature.

Ith =
√
kρc. (5.1)

As there is not experimental data of thermal evolution through time of solar cells based
on GaAs junction, comparison will fall on experimental work of Vasko [25], who evaluated
solar cells of a-Si:H triple junction. From an IR mapping, surface temperature is measured
following a hot spot development under forced convective cooling. Hence, it is supposed that
difference between surface and junction temperature is neglected.

Considering a mean thermal inertia of ωMTI = 5.55 × 10−4, calculated as the coefficient of
exponential regression of experimental data [25], it could be stablish a range of allowed values
with a meddle value equal to mean thermal inertial.

The range of allowed values represents limits in which thermal runaway occurs; solutions
below lower limit are associated to times larger than phenomenon characteristic time and,
in other hand, solutions over the upper limit implies times does not allowed considered the
thermal inertia of device. To determine the range of calculated eigenvalues, it is necessary
to considerate the non-dimensional constant t0 to dimensionalize them.The parameter t0 is a
function of junction longitude L and temperatures TC and TL expressed as t0 = L2

v0·µn
,as can

be seen in Figure 5.7.

Once eigenvalues become dimensional, they can be associated to a characteristic time, defined
as necessary time to achieve T (tend) = 600[K] from T (tinitial) = 301[K], as can be seen
in Eq.(5.2). These temperatures considering the steady state profile and transient state
evolution, that means, it is supposed that in one part of the temperature profile of transient
state solutions there is at least one point with a initial value of 1[K], which evolves to 300[K].

t(ω∗) = ln(300)/ω∗ (5.2)

Also, in order to compare to the reference eigenvalue ωMTI , the calculated characteristic time
is t(ωMTI) = 18[min]. Figures 5.8 and 5.9 represent a range of the calculated characteristic
time as a function of eigenvalues; first, with a range equal to experimental data dispersion;
and the second concentrates values closest to the reference.
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Figure 5.7: Reference time t0.

Figure 5.8: Allowed range of characteristic time.
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Figure 5.9: Allowed range of characteristic time-zoom.

5.3 Sensitivity Analysis

At following, a sensitivity analysis is applied to the system in order to determine device
behaviour at front of changes in temperature, longitude and applied voltage. There are pre-
sented strictly positive solutions and then, data interpretation is presented as the previously
defined characteristic time compared to the one generated by the experimental eigenvalue
ωMTI . The studied behaviour is focused in the allowed range; for this, zoom of each section
is presented apart and its surrounding. The phenomenon will be stable if there any positive
eigenvalues, but for analysis purpose there will be consider stable if a value leaves the allowed
zone. In order to consider the complete scheme, total quantity of eigenvalues are presented
in a base case of thermal equilibrium.

5.3.1 Solution at Thermal Equilibrium

Eigenvalues solutions at thermal equilibrium, with temperature of 300[K], longitude of 4 ×
10−6[m] and an applied voltage of 0.4[V ], are shown in Figures 5.10 and 5.11 considering
both cases with-no and with heat transfer contribution, respectively.

49



RESULTS 5.3. SENSITIVITY ANALYSIS

Figure 5.10: Eigenvalues at thermal equilibrium, qL = 0.

Figure 5.11: Eigenvalues at thermal equilibrium, qL > 0.
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With-no lattice temperature influence, solution is expressed in multiples eigenvalues with
high magnitude, real part orders expressed from 10−100 until 1040 and imaginary part, from
10−40 to 1040. Including energy equation contribution, graphs moves to the unstable zone
at right, decreasing oscillating frequency. It can be interpreted as system without lattice
temperature or TL = 0[K] has less probabilities of been unstable compared to the same
system with a lattice temperature higher than zero. Also, in case of a positive lattice tem-
perature, oscillating frequency (ωI) of central values is higher than temporal evolution value
(ωR), representing a movement of carrier through the junction without a concrete direction,
characteristic of turbulence phenomenon.

5.3.2 Variation in Temperature

As the model is two-temperature, three base cases are considered. First one, variation of
lattice temperature and constant carrier temperature. Second one is the opposite of the first
one and the last is a variation of both temperatures, considering the difference between them
constant.

Lattice Temperature

Lattice temperature range is imposed with a lower value representing a room temperature of
300[K] and a maximum value of 550[K]; this last is higher that used in accelerated degrada-
tion testing in order to considerate the difference between surface and junction temperature.
Carrier temperature are considered TC = 650[K] in order to be never reach by lattice temper-
ature and is constant to focus in the lattice temperature effect. Also, voltage and longitude
are fixed in Vapp = 0.4[V ], L = 4[µm].

Figure 5.12 represents eigenvalues results, concentrating the major quantity with a positive
real lower than 105 and higher than 1; there are few values over that, that is, one for temper-
atures lower than 450[K] and two for the others. Respect to magnitude of the eigenvalues
real part, 450[K] is the lattice temperature since the expansion of instability range becomes
higher. As can be seen in Figure 5.13, most values led to high characteristic times, above
105[min], and they can be prevented considering forced cooling and by another regulation
measures. There are also eigenvalues at low characteristic time, less than 10−5[min] that can
be considered instantaneous; hence, less probable due to thermal inertia. As there are not
eigenvalues in the allowed zone until 450[K], Figure 5.14 shows that tendency of eigenvalues
is increasing in time, so even if the phenomenon start at 450[K] it can be more controllable
if temperature arises. TL = 450[K] is a temperature used in accelerated test that induces
device degradation, so it is expected that an allowed eigenvalue is presented in that temper-
ature. Also, at higher lattice temperature phenomenon stabilizes and can be linked to the
decrease of device power [41].
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Figure 5.12: Positive eigenvalues at TC = 650[K], Vapp = 0.4[V ], L = 4[µm].

Figure 5.13: Characteristic time at TC = 650[K], Vapp = 0.4[V ], L = 4[µm].
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Figure 5.14: Allowed range at TC = 650[K], Vapp = 0.4[V ], L = 4[µm].

Carrier temperature

Carrier temperature start considering thermal equilibrium at T = 300[K] and then increasing
until TC = 800[K]. Lattice temperature is fixed at TL = 300, applied voltage at Vapp = 0.4[V ]
and longitude L = 4[µm].

Figure 5.12 represents eigenvalues results showing that, in contrast with lattice temperature,
carrier temperature increases the quantity of eigenvalues that are above the concentration
range of (1, 105), which coincides with the one presented for lattice temperature. There isn’t
a clear tendency in the maximum data, presenting a peak at 500[K]. The minimum positive
value, however, tends to decrease with the increase of carrier temperature. As can be seen
in Figure 5.16, most values led to high characteristic times, above 105[min]. There are also
eigenvalues at low characteristic time, less than 10−5[min], specially at thermal equilibrium.
There is not a eigenvalue in the allowed zone at thermal equilibrium, but is so close so it is
considered inside at the evidence that at that operating condition there is thermal runaway.
Figure 5.17 shows that higher temperatures raise their characteristic time, making it more
stable. Carrier with a temperature higher than the one of lattice is consider a hot carrier
and it is proved that increases device efficiency by dimishing thermalization losses [41].
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Figure 5.15: Positive eigenvalues at TL = 300[K], Vapp = 0.4[V ], L = 4[µm].

Figure 5.16: Characteristic times at TL = 300[K], Vapp = 0.4[V ], L = 4[µm].
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Figure 5.17: Allowed range at TL = 300[K], Vapp = 0.4[V ], L = 4[µm].

Constant Difference

To consider that an increase of lattice temperature leads to thermal runaway and an increase
of carrier temperature stabilize it, a combined effect is studied by fixing a difference in
temperature of TC − TL = 150[K]. Applied voltage is fixed at Vapp = 0.4[V ] and longitude
L = 4[µm].

From Figure 5.18, quantity of eigenvalues decrease with the increase of temperature, carrier
and lattice. The range of concentration is kept at any temperature configurations and the
upper values tends to increase from 450[K]. This leads to determine that lattice temperature
is critical in the stability and carrier temperature could control the range of instability,
decreasing the value of the solution. Figure 5.19 shows that only at 300[K] there is not any
eigenvalue in the allowed range; the most close value presents a characteristic time higher
than the upper limit. Lower values presents pseudo-spontaneous phenomenon, increasing the
characteristic time from 10−60 until 10−10, approximately. For lattice temperatures lower than
500[K], carrier temperature is lower than the used in the previous case (TC constant). Figure
5.20 shows that at that range phenomenon is unstable, contrary to the one with TC = 650[K].
To temperatures higher than 450[K], carrier temperature is higher too and phenomenon has
a higher characteristic time, stabilizing the system even at high lattice temperatures. Also,
projecting the analysis, it can be extracted that carrier temperature variation for a fixed
lattice temperature behaves as contour lines, representing the same curve moving through
characteristic time axis.
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Figure 5.18: Positive eigenvalues at TC − TL = 150[K], Vapp = 0.4[V ], L = 4[µm].

Figure 5.19: Characteristic time at TC − TL = 150[K], Vapp = 0.4[V ], L = 4[µm].
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Figure 5.20: Allowed range at TC − TL = 150[K], Vapp = 0.4[V ], L = 4[µm].

5.3.3 Variation in Longitude

Standard longitude is fixed in 4[µm] and the range proposed includes the half and the double
part. Lattice temperature is fixed at TL = 300, carrier temperature at TC = 450[K] and
applied voltage at Vapp = 0.4[V ].

Figure 5.21 represents the positive real eigenvalues solution. The concentration range deter-
mined before is kept too and the upper values change with longitude. The minimum value is
approximately constant, while the center column tends to decrease, moving to the stability
region. Figure 5.22 shows that in the case of a system "stable", with no values in the al-
lowed range, changing longitude doesn’t alter the stability. As a extrapolation from constant
temperature difference analysis, is imposed that parameters behave as contour lines, so the
analysis of stability of the allowed will be treated as it is could be reproduced in a unstable
case. Figure 5.23 shows that decreasing longitude stabilizes the system, changing greatly the
characteristic time varying from 4[µm] to 2[µm], and less important until 4[µm]. It could be
determine that there is a critical longitude that stabilizes the system, and over that system
can change its time to 5[h] by decreasing to the half from 8[µm]. As the recombination and
generation rate does not depend in this model on longitude, net charge is not compromised.
Also, the stability criteria fall on the capacity of absorbing and storage heat; hence, less mass
(from less longitude) can keep less heat and avoid a greater increase of temperature in the
system.
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Figure 5.21: Positive eigenvalues at TL = 300[K], TC = 450[K], Vapp = 0.4[V ].

Figure 5.22: Characteristic time at TL = 300[K], TC = 450[K], Vapp = 0.4[V ].
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Figure 5.23: Allowed range at TL = 300[K], TC = 450[K], Vapp = 0.4[V ].

5.3.4 Variation in applied voltage

Considering a minimum case of 0.4[V ], applied voltage is study until 1[V ]. Lattice temper-
ature is fixed at TL = 300, carrier temperature at TC = 450[K] and longitude L = 4[µm].

Figure 5.24 shows that the maximum value tends to decrease with the increase of applied
voltage, getting near the negative zone. The range that concentrates value is the same at the
previous cases and it doesn’t change at varying the applied voltage. Figure 5.25 shows that
most quantity of eigenvalue concentrates at high characteristic time,with a magnitude order
of 1010[min], approximately. Also, the are a few eigenvalues under the allowed zone that
shows a increase tendency, suggesting a stabilization, but they disappear at Vapp = 0.8[V ].
Analogous as the previous case, the tendency analysis will be applied at the nearer values,
with an order of 105. Figure 5.26 shows that the increase of applied voltage increase the
characteristic time, stabilizing the system. Increasing the applied voltage arises total current
density and, by accelerating electrons, the velocity in which heat is transported through the
junction increases, leading to higher characteristic times.
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Figure 5.24: Positive eigenvalues at TL = 300[K], TC = 450[K], L = 4[µm].

Figure 5.25: Characteristic time at TL = 300[K], TC = 450[K], L = 4[µm].
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Figure 5.26: Allowed range at TL = 300[K], TC = 450[K], L = 4[µm].

5.4 Surface Temperature

Thermal resistance is presented to stablish a relation between surface and junction tempera-
ture of device. This is a property, in this case of the encapsulant or package, that determines
the temperature difference between the two reference points related to the delivered input
power P , as can be seen in Eq. (5.3).

R = Tjunction − Tsurface
P

. (5.3)

Figure 5.27 presents experimental data of commercial Silicon solar cells, in which thermal
resistance is compared to irradiation, showing that it depends inversely on it [22, 42].

As thermal resistance varies with irradiation, the difference between junction and surface
temperature must increase too. In experimental works, a standard temperature difference in
commercial Silicon solar cell at room temperature is measure considering cases with natural
and forced cooling, as can be seen in Figure 5.28.

For the first case,Figure 5.28 a, surface temperature presents a minor increase with the
irradiation power (5[◦C]), while junction temperature almost 20[◦C]; maximum difference
of 15[◦C] . This generates a decrease in efficiency that coincides with thermal runaway
development. Under natural cooling, Figure 5.28 b, difference is significant, at orders of
45[◦C].
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Figure 5.27: Thermal resistance at varying irradiation [42].

Considering that a hot spot temperature can reach 10[◦C] over the surface temperature,
difference between this surface point and junction temperature may be between 25[◦C] to
55[◦C]. It is also appreciable that junction temperature can increase without influence surface
temperature greatly, that coincides with the lattice boundary conditions proposed. This
effects is considered also for thin film, but it would be expected that range difference would
be minor than the case of commercial cells.

Considering the following irradiation world map:

(a) Forced cooling. (b) Natural cooling.

Figure 5.28: Temperature and efficiency varying irradiations [43].
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Figure 5.29: Global horizontal irradiation [44].

It is clear that a cell design for a sector with different irradiation changes its thermal be-
haviour, increasing the probability of developing thermal runaway at same operating condi-
tions. It is recommendable to consider: during the design the stability sensitivity at varying
longitude; and during the operation, the control of junction temperature or the use of forced
cooling to reduce the difference between surface and junction temperature. If a hot spot
is noticed and the thin film PV cell is using hot carrier technology, it could be stabilized
increasing their temperature and, also, applied voltage can be changed .
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Chapter 6

Conclusions and Future Work

In this Thesis a two-temperature 1-D hydrodynamic model is studied to determine thermal
and electrical stability of PN junction solar cell. The model was previously solved for steady
state condition at zero order at front a perturbation, which is used to found the solutions at a
linearized transient state. Uncoupling time and space dimensions, temporal solution behaves
as an exponential and the sign of real part of eigenvalues determines stability. As there is an
infinite possible calculated eigenvalues, solution will be a probability; if there is at least one
positive solution, the system can be unstable.

As there is not a consensus in which modes are allowed, it is proposed a characteristic
time of thermal runaway that represents time to achieve a lattice temperature 600[K] from
300[K], considering a initial condition of 1[K] in some point of temperature profile. Allowed
characteristic time range consider a experimental value as meddle; thermal inertia forbids in-
stantaneous increases and slow times with magnitude of hours can be controlled, for example
by cooling, and does not refers the thermal runaway phenomenon.

6.1 Conclusions

There are five cases simulated: varying temperature (lattice, carrier and both), longitude
and applied voltage. In first case, varying temperature, there is considered one temperature
variable and the other is fixed in a constant value, except for the last temperature case in
where a constant difference is kept. Varying lattice temperature, thermal runaway start
when lattice boundary achieve 450[K]; an increase of carrier temperature, which represents
hot carriers,stabilizes temporal behaviour; then, considering both cases, lattice temperature
instability can be controlled by increasing temperature of hot carriers. Reducing the device
length and increasing applied voltage gets the device significantly more stable. Influence
depends on the cost of varying each variable in terms of how much stability system gains.

Respect to imaginary part of eigenvalue, oscillation frequency can be considered as turbu-
lence, in which the chaotic movement is represented as a movement of carriers through the
junction. It is only present for low eigenvalues, with real part less than 103, that corresponds
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to high characteristic time and out of thermal runaway allowed range.

The presented model considers that junction boundary temperature doesn’t evolve in time,
hence the increase in temperature is in the middle of the junction, where the instability is
develop. Changes in thermal resistance of encapsulant can avoid the phenomenon considering
that its increase allows the system to never reach the critical junction temperature. Also,
due to difference in temperature of surface and junction, cooling is imperative in order to
control this critical condition. Forced cooling can present a difference in magnitude order of
10[K], so it is proposed to use when junction temperature can not be determined.

6.2 Future Work

Avoiding thermal runaway, solar cell properties can be maintain and lifespan can be pro-
longed. This work is an hypothetical case for academic studies, so conclusions are presented
with qualitative nature, as tendencies and the existence of a critical value. For futures de-
velopments in the same line, there is proposed the following improvements in model.

• Carrier temperature variable in space and its relation to lattice temperature.
• Deeper studies in transient boundary conditions, considering the case with an initial

lattice in order to determine surface temperature evolution.
• Test the model in an actual experimentally developed material, to compare cases with

a more precise thermal inertia.
• Consider other layers in solar cell, to determine influence of thermal resistance in the

model.
• Experimental study to determine allowed modes of degradation.
• Expand the model to more spatial dimensions, to capture the effect of redistribution

of lattice temperature profile.
• Study long term degradation, considering multiples cycles and fatigue failure.

65



Bibliography

[1] Ministerio de Energía. Energía 2050. Política energética de Chile. Gobierno de Chile,
2015.

[2] Florian Pfeffer, Johannes Eisenlohr, Angelika Basch, Martin Hermle, Benjamin G Lee,
and Jan Christoph Goldschmidt. Systematic analysis of diffuse rear reflectors for en-
hanced light trapping in silicon solar cells. Solar Energy Materials and Solar Cells,
152:80–86, 2016.

[3] Bita Farhadi and Mosayeb Naseri. A novel efficient double junction ingap/gaas solar cell
using a thin carbon nano tube layer. Optik-International Journal for Light and Electron
Optics, 127(15):6224–6231, 2016.

[4] Johannes Eisenlohr, Nico Tucher, Hubert Hauser, Martin Graf, Jan Benick, Benedikt
Bläsi, Jan Christoph Goldschmidt, and Martin Hermle. Efficiency increase of crystalline
silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping.
Solar Energy Materials and Solar Cells, 155:288–293, 2016.

[5] Sanjeev Jakhar, MS Soni, and Nikhil Gakkhar. Historical and recent development of
concentrating photovoltaic cooling technologies. Renewable and Sustainable Energy Re-
views, 60:41–59, 2016.

[6] Leonardo Micheli, Eduardo F Fernandez, Florencia Almonacid, Tapas K Mallick, and
Greg P Smestad. Performance, limits and economic perspectives for passive cooling of
high concentrator photovoltaics. Solar Energy Materials and Solar Cells, 153:164–178,
2016.

[7] Marco Beccali, Maurizio Cellura, Sonia Longo, and Francesco Guarino. Solar heating
and cooling systems versus conventional systems assisted by photovoltaic: Application
of a simplified lca tool. Solar Energy Materials and Solar Cells, 2016.

[8] DT Cotfas, PA Cotfas, and S Kaplanis. Methods and techniques to determine the
dynamic parameters of solar cells: Review. Renewable and Sustainable Energy Reviews,
61:213–221, 2016.

[9] A Rezaee Jordehi. Parameter estimation of solar photovoltaic PV cell- a review. Re-
newable and Sustainable Energy Reviews, 61:354–371, 2016.

66



BIBLIOGRAPHY BIBLIOGRAPHY

[10] Simon Min Sze. Semiconductor Devices: Physics and Technology. John Wiley & Sons,
2008.

[11] Said Ibrahim, Dina Ibrahim, and Guido Righini. Structure of Solid, course Chemistry
of Energy Storage Materials. Minerva, 2014.

[12] Sammy Kayali, George Ponchak, and Roland Shaw. GaAs MMIC Reliability Assurance
Guideline for Space Applications. California Institute of Technology, 1996.

[13] Chih-Tang Sah. Fundamentals of Solid-state Electronics. World Scientific, 1991.

[14] Adrian Kitai. Principles of solar cells, LEDs and diodes: the role of the PN junction.
John Wiley & Sons, 2011.

[15] Shin-ichiro Sato, Takeshi Ohshima, and Mitsuru Imaizumi. Modeling of degradation
behavior of InGaP/GaAs/Ge triple-junction space solar cell exposed to charged particles.
Journal of Applied Physics, 105(4):044504, 2009.

[16] François Charru. Hydrodynamic Instabilities, volume 37. Cambridge University Press,
2011.

[17] Williams R Calderón Munoz. Linear stability of electron-flow hydrodynamics in ungated
semiconductors. PhD thesis, University of Notre Dame, 2009.

[18] Jason F Hiltner and James R Sites. Stability of CdTe solar cells at elevated temperatures:
bias, temperature, and Cu dependence. In National center for photovoltaics (NCPV)
15th program review meeting, volume 462, pages 170–175. AIP Publishing, 1999.

[19] Naba R Paudel, Kristopher A Wieland, Matthew Young, Sally Asher, and Alvin D
Compaan. Stability of sub-micron-thick CdTe solar cells. Progress in Photovoltaics:
Research and Applications, 22(1):107–114, 2014.

[20] David L King, Jay A Kratochvil, and William E Boyson. Temperature coefficients for
pv modules and arrays: measurement methods, difficulties, and results. In Photovoltaic
Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, pages 1183–
1186. IEEE, 1997.

[21] Thomas Nordmann and Luzi Clavadetscher. Understanding temperature effects on PV
system performance. In Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World
Conference on, volume 3, pages 2243–2246. IEEE, 2003.

[22] BJ Huang, PE Yang, YP Lin, BY Lin, HJ Chen, RC Lai, and JS Cheng. Solar cell
junction temperature measurement of PV module. Solar Energy, 85(2):388–392, 2011.

[23] Nima E Gorji. Thermal runaway in thin film PV: temperature profile modeling. 2014.

[24] C Magarreiro, MC Brito, and PMM Soares. Assessment of diffuse radiation models for
cloudy atmospheric conditions in the azores region. Solar Energy, 108:538–547, 2014.

67



BIBLIOGRAPHY BIBLIOGRAPHY

[25] Anthony C Vasko, Aarohi Vijh, and Victor G Karpov. Hot spots spontaneously emerging
in thin film photovoltaics. Solar Energy, 108:264–273, 2014.

[26] Celina Mikolajczak, Michael Kahn, Kevin White, and Richard Thomas Long. Lithium-
ion batteries hazard and use assessment. Springer Science & Business Media, 2012.

[27] KT Wan, FA Cozzarelli, and DJ Inman. Thermal runaway due to strain-heating feed-
back. AIAA journal, 26(10):1263–1268, 1988.

[28] Jordi Casanova, Jordi José, Enrique García-Berro, Steven N Shore, and Alan C Calder.
Kelvin-helmholtz instabilities as the source of inhomogeneous mixing in nova explosions.
Nature, 478(7370):490–492, 2011.

[29] LL Liou and B Bayraktaroglu. Thermal stability analysis of AlGaAs/GaAs heterojunc-
tion bipolar transistors with multiple emitter fingers. IEEE Transactions on Electron
Devices, 41(5):629–636, 1994.

[30] VG Karpov, AD Compaan, and Diana Shvydka. Random diode arrays and mesoscale
physics of large-area semiconductor devices. Physical Review B, 69(4):045325, 2004.

[31] D. Shvydka V.G.Karpov. Understanding and mitigating effects of non-uniformities on
reliability on thin film photovoltaic. Reliability of Photovoltaic Cells, Modules, Compo-
nents, and Systems II, 7412:15, 2009.

[32] VG Karpov, A Vasko, and A Vijh. Hot spot runaway in thin film photovoltaics and
related structures. Applied Physics Letters, 103(7):074105, 2013.

[33] Juan Osses-Márquez and Williams R Calderón-Muñoz. Thermal influence on charge
carrier transport in solar cells based on GaAs PN junctions. Journal of Applied Physics,
116(15):154502, 2014.

[34] Williams R Calderón-Muñoz, Debdeep Jena, and Mihir Sen. Temperature influence on
hydrodynamic instabilities in a one-dimensional electron flow in semiconductors. Journal
of applied physics, 107(7):074504, 2010.

[35] IN Volovichev, GN Logvinov, O Yu Titov, and Yu G Gurevich. Recombination and
lifetimes of charge carriers in semiconductors. Journal of applied physics, 95(8):4494–
4496, 2004.

[36] Sara Shishehchi, Asghar Asgari, and Reza Kheradmand. The effect of temperature
on the recombination rate of AlGaN/GaN light emitting diodes. Optical and quantum
electronics, 41(7):525–530, 2009.

[37] Ansgar Jüngel, Maria Cristina Mariani, and Diego Rial. Local existence of solutions to
the transient quantum hydrodynamic equations. Mathematical Models and Methods in
Applied Sciences, 12(04):485–495, 2002.

[38] Jong Pil Kim, Ho Lim, Ju Hun Song, Young June Chang, and Chung Hwan Jeon.
Numerical analysis on the thermal characteristics of photovoltaic module with ambient

68



BIBLIOGRAPHY BIBLIOGRAPHY

temperature variation. Solar Energy Materials and Solar Cells, 95(1):404–407, 2011.

[39] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical mathematics, volume 37.
Springer Science & Business Media, 2010.

[40] Roussillon Karpov, Shvydka. Physical modes of thin film PV degradation. Conference
Record of the Thirty First IEEE, pages 437–440, 2005.

[41] Williams R Calderón-Muñoz and Cristian Jara-Bravo. Hydrodynamic modeling of hot-
carrier effects in a PN junction solar cell. Acta Mechanica, pages 1–14, 2016.

[42] Jihong Zhang, Yulin Gao, Yijun Lu, Lihong Zhu, Ziquan Guo, Guolong Chen, and
Zhong Chen. Transient thermal resistance test of single-crystal-silicon solar cell. IEEE
Transactions on Electron Devices, 59(9):2345–2349, 2012.

[43] Sun Ho Jang and Moo Whan Shin. Thermal characterization of junction in solar cell
packages. IEEE Electron Device Letters, 31(7):743–745, 2010.

[44] SolarGIS. Free download of solar resource maps. urlhttp://solargis.com/, 2016.

69


	Introduction
	Objectives
	General Objective
	Specific Objectives

	Methodology

	Background
	Semiconductor Physics
	Semiconductor Microstructure
	Carrier Transport Phenomena

	PN junction
	Photovoltaic Solar Cell
	Design

	Properties of Gallium Arsenide
	Hydrodynamic Stability
	Hot Spot in PV Solar Cells

	Model Description
	Physical parameters
	Assumptions
	Boundary Conditions
	Non-dimensional Form

	Resolution Method
	Perturbation Theory
	Disturbed System
	Zero order system
	First Order System

	Linear stability analysis
	Steady-State System
	Transient-state System
	Boundary Conditions
	Integration Methods
	Temporal Eigenvalues


	Results
	Validity of Results
	Main Code Tolerance
	Transient-state Code Conditions

	Data Processing
	Range of Allowed Eigenvalues

	Sensitivity Analysis
	Solution at Thermal Equilibrium
	Variation in Temperature
	Variation in Longitude
	Variation in applied voltage

	Surface Temperature

	Conclusions and Future Work
	Conclusions
	Future Work

	 Bibliography

