## Contents

**Agradecimientos** iv  
**Notations** xi  

### 1 Introduction 1  
1.1 Current energy situation in Chile: Energía2050 1  
1.2 Solar cells: The three generations 2  
   1.2.1 Thin-film solar cells 2  
   1.2.2 Cadmium telluride solar cells 3  
1.3 Point defects in solids 4  
   1.3.1 Defect Formation Energies and Concentrations 6  
1.4 Objectives 6  
1.5 How to read this thesis 7  

### 2 Electronic-structure calculations 8  
2.1 The one-electron approximation: the many-electron problem 8  
   2.1.1 The Hartree Equations 9  
   2.1.2 The Hartree-Fock Equations 10  
2.2 Density Functional Theory and the Kohn-Sham Equations 14  
   2.2.1 Exchange and correlation in DFT: Local density, generalized gradient and hybrid approximations 18  
2.3 Basis set and boundary conditions 20  
2.4 Pseudopotentials 23  

### 3 Solid state embedding: QM/MM Method 26  
3.1 Introduction 26  
3.2 The QM/MM approach 27  
   3.2.1 Classification of QM/MM methods 28  
3.3 Coupling between QM and MM regions 29  
3.4 The long-range electrostatic potential 30  
3.5 Charged QM region 32  

### 4 Tellurium vacancy in bulk CdTe (F center) 34  
4.1 Supercell approach 35  
   4.1.1 Methodology 35  
   4.1.2 Geometric relaxation 36  
   4.1.3 Electronic structures 36
List of Tables

4.1 Transition levels of intrinsic defect by different methods [5]. ............... 35
4.2 Formation energies at PBE level with potential alignment and charge-image corrections (in eV). The range of the calculated potential alignment is between 0.02-0.08 eV and the Fermi energy $E_F$ is set at the VBM, i.e. -5.18 eV from the pristine crystal calculation. .................................................. 40
4.3 Formation energies corrected from PBE to GW calculation using the band-edge correction (in eV). The second column is the previous result without quasiparticle corrections. ......................................................... 41
4.4 CdTe lattice constant, as well as its static ($\varepsilon_0$) and high-frequency ($\varepsilon_\infty$) dielectric constants. Literature data taken from [5] and previous work done in reference [7] compared against our own calculations. .................. 42
4.5 Potential alignment for all the charge states (in eV). $\Delta E_v$ and $\Delta E_c$ are the energy differences with respect to the periodic VBM and CBM, respectively. 49
4.6 Formation energies at PBE level with corrections from QM/MM to PBC approach (in eV). ................................................................. 50
4.7 Formation energies corrected from PBE to GW calculation (in eV). The second column is the previous PBE result (Table 4.6). ...................... 50

D.1 List of observables and their calculated values (target) using FHI-aims at PBE level. The GULP fitting is represented in the third column. Differences with respect to the target values are shown in the last column. .............. 62
D.2 Potential parameters used in this study. ........................................ 62

E.1 Memory usage (Gb) and time in a SCF-calculation using 1 node. ......... 66
E.2 Memory usage (Gb) and time in a SCF-calculation using 2 nodes. ......... 66
E.3 Memory usage (Gb) and time in a SCF-calculation using 3 nodes. ......... 67
# List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>CdTe price per watt and efficiency as a function of time [4].</td>
</tr>
<tr>
<td>1.2.2</td>
<td>The (a) layer structure and (b) band diagram of a typical CdTe solar cell. Figure taken from [1].</td>
</tr>
<tr>
<td>2.1.1</td>
<td>(a) Representation of occupied spin-orbitals (solid lines), in increasing order of energy, for the ground-state of an ( N )-electron system in the Hartree-Fock approximation; virtual spin-orbitals are represented with dashed lines. (b) Representation of an ionized state of the ( N )-electron system, with an electron removed from the occupied spin-orbital ( \psi_m ) (and transferred to infinity). (c) Representation of an excited state of the ( N )-electron system, with an electron removed from the occupied spin-orbital ( \psi_m ) and transferred to the virtual spin-orbital ( \psi_{\mu} ) (Image taken from [8]).</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Representation of the Hohenberg-Kohn theorem. Two different ground-state density functions must correspond to two different potentials, and vice versa.</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Comparison between &quot;Physicist’s&quot; and &quot;Chemist’s&quot; numerical realization of DFT.</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Illustrating an ionic pseudopotential and pseudo valence wavefunctions for cadmium with 46 core electrons generated with FHI98PP [21] using the procedure of Troullier and Martins. The left image shows the comparison of pseudo valence wavefunctions (solid lines) with the all-electron wavefunctions (dashed lines). The pseudo valence wavefunctions does not have nodes in the core region, while coinciding with the all-electron wavefunction beyond the core radius ( R_c ). The right image shows the corresponding pseudopotential ( V_{l}^{PP} ) for the s-, p-, d- and f-channel. Beyond ( R_c ) all ( V_{l}^{PP} ) are equal to the ionic reference potential, corresponding to the effective Coulomb potential of the nucleus ( (Z = 48) ) and core electrons ( (Q_l = -46) ).</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Example of size effects: interaction among the periodic replica of a charged defect using PBC.</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Representation of the embedded-cluster used in the QM/MM calculations: The central QM atoms, represented by the CdTe structure in the center, are surrounded by regions of MM atoms. The MM region is divided into two MM regions called active and fixed MM regions. Only the active MM region is allowed for optimization keeping the fixed region untouched. If it is needed, additional embedding potentials are included around the QM regions in the form of atom-centered pseudopotentials. The outer shell of point charges (blue) is fitted to ensure the reproduction of the correct long-range electrostatic potential within the system.</td>
</tr>
</tbody>
</table>
4.0.1 Conventional 8-atoms unit cell.  34
4.1.1 Stable geometries for the Te vacancy with different ionized states. The charge
and the point symmetry are indicated on each caption. The blue spheres
represent to the cadmium atoms and the red ones to the tellurium atoms.  37
4.1.2 Band structure calculations for the Te vacancy performed with a 512-atoms
supercell. The red dashed lines indicates the highest occupied level.  38
4.1.3 PBE total DOS (a) in the ideal CdTe (b) tellurium vacancy with neutral charge
state and (c) tellurium vacancy with singly positive charge state. The vertical
dashed line indicates the Fermi level of the ideal CdTe and also the defect
levels are shown in red and blue colors.  39
4.1.4 Wavefunction isosurface for neutral charge state (top panels) and 1+ state
(bottom panels). (a) level in the bandgap (b) level in the conduction band (c)
and (d) levels in the conduction band, respectively.  39
4.1.5 Formation energies as a function of the Fermi energy for the Te vacancy com-
puted with 512-atoms supercell in Te-rich conditions. (a) PBE formation
energies with potential alignment and charge-image correction. The vertical
dashed line indicates the gap at PBE level and (b) GW corrected formation
energies. The value $E_F=0$ eV represents the VBM and $E_F=1.55$ eV the CBM,
respectively.  41
4.2.1 Cluster model for a tellurium vacancy in bulk CdTe. Left: The quantum region
is a Cd$_{32}$Te$_{43}$, where the central atom is the tellurium to be removed. Right:
The cluster with quantum and classical regions. By colors: yellow correspond
to PPs, orange correspond to active MM region and blue correspond to fix
MM region. The red dots surrounding the cluster are adjusted point charges
for reproducing the Madelung potential.  43
4.2.2 Stable geometries for the Te vacancy with different ionized states. The charge
and the point symmetry are indicated on each caption.  45
4.2.3 Total density of states (DOS) of the Cd$_{32}$Te$_{43}$ cluster in vacuum: (a) bare
QM region (b) cluster embedded in a field of point charges without using
pseudopotentials to saturate the QM cluster (c) same cluster with nearby MM
ations replaced by Cd$^{2+}$ norm-conserving pseudopotentials. (d) reference
calculation using the PBC approach.  46
4.2.4 Comparison of the total density of states (DOS) (described in Sec. 4.2.5)
with polarization response: Even a relatively small embedded Cd$_{32}$Te$_{43}$ cluster
recovers important features from the reference bulk calculation (green color)
after the potential alignment.  47
4.2.5 PBE total DOS (a) in the ideal CdTe (b) tellurium vacancy with neutral charge
state and (c) tellurium vacancy with singly positive charge state. The vertical
dashed line indicates the Fermi level of the ideal CdTe and also the defect
levels are shown in red and blue colors.  48
4.2.6 Wavefunction isosurface for neutral charge state (top panels) and 1+ state
(bottom panels). (a) level in the bandgap (b) level in the conduction band (c)
and (d) levels in the conduction band, respectively.  48
4.2.7 Diagram of the potential alignment for neutral charge state from QM/MM to
PBC approach. The red dashed line is the VBM reference and the blue dashed
line is the CBM reference from the PBC approach.  49
4.2.8 Formation energies as a function of the Fermi energy for the Te vacancy computed with Cd$_{32}$Te$_{43}$ cluster in Te-rich conditions. (a) PBE formation energies with potential alignment, band-edges and polarization corrections. The vertical dashed line indicates the gap at PBE level and (b) GW corrected formation energies.

A.0.1 Cohesive energy of CdTe as a function of lattice constant for PBE, obtained as a fit by the Birch-Murnaghan equation of state. Total-energy calculations were performed with FHI-aims, using the tight predefined grids and basis settings.

E.1.1 Graphic of the memory usage and time in a SCF calculation using 1 node. The green line is a least squares fitting.

E.1.2 Graphic of the memory usage and time in a SCF calculation using 2 nodes.

E.1.3 Graphic of the memory usage and time in a SCF calculation using 3 nodes.

E.2.1 Output times for 64-atoms PBC, 75-atoms QM/MM and 512-atoms PBC approaches, respectively.