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Resumen 

En escenarios ubicuos, conocer la posición de un dispositivo es imperativo para 
proveer al usuario de servicios personalizados basados en location awareness, un 
aspecto de diseño clave en la mayoría de las aplicaciones ubicuas que dependiente de 
las capacidades de los dispositivos para “sentir” cambios en su ambiente de trabajo. No 
existe una solución que aborde todos los tipos de posicionamiento, pues distintos tipos 
de aplicaciones requieren información de posicionamiento variada en términos de 
exactitud, precisión, complejidad, escalabilidad, y costo. 

En escenarios ubicuos estándar, suele más de una estrategia de posicionamiento 
disponible, pero en general los dispositivos móviles no son capaces de determinar cuál 
es la más adecuada dado el contexto de trabajo del usuario. Además, este contexto está 
en constante cambio a medida que el usuario se mueve, perdiéndose conexiones a 
ciertos elementos del ambiente y ganándose otras. Aunque existen soluciones que 
abordan el posicionamiento en escenarios específicos de manera efectiva, hacerlo 
tomando en cuenta la mayoría de estos escenarios sigue siendo un problema abierto. 

La propuesta presentada en esta tesis es un modelo de posicionamiento sensible al 
contexto (CAMPOS), que permite a dispositivos que realizan actividades débilmente 
acopladas en escenarios ad-hoc al aire libre, elegir estrategias de posicionamiento 
adecuadas a su contexto, basado en variables contextuales predefinidas. El modelo 
elabora un "catálogo" de estrategias disponibles y los puntos de referencia, usando las 
variables contextuales como entrada para un clasificador RandomForest, el cual 
determina un orden de “idoneidad” para las estrategias de posicionamiento, lo que 
permite acceder a estrategias ajustadas al contexto del usuario. 

CAMPOS fue diseñado usando una metodología iterativa basada en casos de 
estudio. Primero, se realizó una revisión de literatura para determinar umbrales y valores 
promedio iniciales para las métricas y variables del modelo. Luego, se implementaron dos 
conjuntos de simulaciones; el primero para experimentar con distintos escenarios y 
configuraciones de dispositivos; y el segundo para evaluar el rendimiento del modelo. La 
batería de pruebas incluyó 27 plantillas de escenario, ejecutadas 15 veces para un total 
de 405 experimentos. Las variables observadas incluyen el efecto de variar la cantidad 
de beacons (dispositivos con capacidad de posicionamiento), la cantidad total de 
dispositivos, y el rango de comunicación. Todos los experimentos presentados en este 
trabajo se realizaron utilizando el ns-3, un simulador de redes de eventos discretos 
orientado a la investigación. 

El aporte de CAMPOS reside en que no es una nueva propuesta de estrategia de 
posicionamiento, ni busca mejorar el estado del arte en términos de precisión. En vez de 
ello, proporciona a los dispositivos de una red los medios para censar su entorno y 
determinar qué estrategia de posicionamiento es más adecuada para su contexto. 
Además, dado que CAMPOS es independiente del proceso formal de posicionamiento, 
si apareciesen nuevas estrategias de posicionamiento en el futuro, éstas podrían 
añadirse a CAMPOS con relativa facilidad, permitiendo que los dispositivos 
potencialmente tengan acceso a dichas estrategias a través del modelo. 
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Abstract 

In mobile, ubiquitous scenarios, knowing a device’s position is mandatory in order to 
provide location awareness and personalized services. This design aspect is key for most 
ubiquitous applications, and strongly dependent on the device’s capabilities to sense 
changes in its environment. However, there is no one-size-fits-all solution to provide 
positioning to devices. Different types of mobile applications may require positioning 
information that varies in terms of accuracy, precision, complexity, scalability, cost, and 
deployment effort. 

Thus, in a standard ubiquitous scenario, one or more positioning methods could 
available, but the devices usually have no clear way of determining which is better suited 
to the user’s situation in relation to its environment, i.e., its work context. Moreover, this 
context is constantly changing as the user moves; while some connections to other 
devices and appliances are lost, new ones also become reachable. Although there are 
good solutions for addressing positioning in particular scenarios, doing so while 
considering most of these scenarios is still an open problem. 

This thesis work proposes a context-aware positioning model (CAMPOS) that 
addresses this problem by allowing devices performing loosely-coupled activities in ad 
hoc outdoor scenarios, to pick a suitable positioning strategy based on a set of predefined 
contextual variables (e.g., scenario embedded instrumentation, neighboring devices, 
etc.). The model assembles a “catalog” of available positioning methods and reference 
points, and uses the contextual variables as features for a Random Forest classifier. The 
classifier ranks all positioning strategies from the catalog in order of “suitability” for the 
device’s given context, allowing the use of strategies tailored to the user’s context rather 
than the default ones, and allowing devices without access to positioning strategies to 
perform trilateration positioning on the go. 

CAMPOS was designed using an iterative methodology based on case studies. First, 
a review of literature was performed to determine thresholds and average values for most 
of the metrics and model variables. Then, a set of simulations was implemented to 
experiment with different scenario and device configurations, and another to evaluate the 
performance of the model. The test battery included 27 experiment templates, each of 
which was executed 15 times, for a total of 405 experiments. During each simulation, we 
observed the effect of the variation of the amount of beacons, total population, and 
communication range. All experiments presented in this work were performed using the 
ns-3, a discrete-event networking simulator oriented towards research. 

The novelty of this thesis work lies in the fact that it is not focused on proposing a new 
positioning method, or improving the state-of-the-art in terms of accuracy. Instead, it 
provides all devices with means to assess their environment and determine which 
positioning strategy is more suitable for their given contextual situation. In addition, new 
positioning techniques can be included into CAMPOS with relative ease, because it is 
independent from the actual positioning. In this case, the new positioning strategy could 
be added to the model’s pool of recognized positioning strategies, and thus become an 
available option for the participating devices.   
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Chapter 1: Introduction 

The global population of Internet users has undergone an unforeseen growth in the past 

fifteen years, going from almost 400 million users in the year 2000 (roughly 6.5% of the 

world’s total population) to over 3,200 million in 2015 (more than 43% of the population). 

Since the arrival of Internet-capable mobile devices, such as smartphones or tablet PCs, 

these users have preferred these devices due to their portability, a trend that has 

intensified over the past few years (Fig.1-1). Several studies [90, 117, 126] show that 

people tends to rely more and more on their mobile devices as support for their daily 

activities (Fig. 1-2). This support ranges from using social media to interact with other 

people, to on-demand real-time surveillance of their homes [127, 170], to heart-rate 

monitoring devices [58, 66] for people with heart diseases. Moreover, it is expected that 

this tendency only becomes stronger with the proliferation of smart devices and smart 

spaces. 

 

  
 
Figure 1-1. Internet Penetration Prediction [116] 

 
 

Figure 1-2. Use of digital media in USA [102] 

 

The always connected paradigm [128] increases the need of users to carry Internet 

connectivity with them at all times, in order to interact with other people and with their 

environment in a simple and ubiquitous manner. The Internet-of-Things (IoT), wearable 

and smart devices, and smart environments, are a reality that must be considered in the 

design of the next generation of mobile and ubiquitous computing services and 

applications. 

Recent studies predict that an important growth in the use of wearable devices will 

occur over the course of the next five years [29, 75], which will change the current 

computing scenario (Fig. 1-3). The new computing scenario will become more and more 

heterogeneous in terms of device specializations, computing power, and portability. 

Device autonomy and interoperability will become fundamental aspects to be considered 
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in these solutions, since replicating services in multiple devices (e.g., positioning capability 

or data capture) does not make sense and adds to the size, weight, and cost of these 

devices, particularly to the smallest ones (such as wearables). 

 

Figure 1-3. CCS Insight's Global Wearable Devices Forecast 2016-2020 [29] 

This new computing approach, promoted by the IoT paradigm, conceives the 

capabilities of mobile (and wearable) computing devices as services that can be provided 

and consumed by other devices. Thus, a device without sensing or positioning capability 

could count on such information through collaboration with neighboring or remote devices. 

This avoids the limitation that every device participating in mobile collaboration processes 

can only do so if they are able to provide all the services required to be part of such a 

process. 

The advances in wireless communication and mobile computing have opened several 

opportunities to use technology to support the people activity, not only individual work, but 

also mobile collaboration. The following section introduces the concept of mobile 

collaboration and its main application domains. 

1.1. Mobile Collaboration 

A Mobile Collaborative System enables the members of a team to communicate and 

coordinate their activities, allowing them to achieve a common goal, usually in a loosely-

coupled manner, by using a combination of mobile and stationary technologies [12]. A 

mobile collaboration system generally includes (1) a wireless resource controller for 

receiving and/or transmitting data through a wireless medium, (2) a management module 

for receiving and/or transmitting data and controlling the operation of the mobile 

collaboration and communication system, (3) a policy database for storing a plurality of 

levels of authorization for network access, and (4) a communication module, for creating 
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and managing collaboration and coordination, and relaying and controlling the data traffic 

to and from the electronic devices [169] 

Mobile computing supported by wireless technologies is widely used in several mobile 

collaboration scenarios; e.g., hospital work [8, 153], logistics [123, 156], security [27, 31], 

transportation [86, 165], tourism [42, 96], and emergency responses [79, 121]. The way 

in which the users participate in the collaboration defines functional and non-functional 

requirements, as well as restrictions to the software applications they use. For instance, 

they could conduct participatory sensing, crowd-sensing, opportunistic sensing, and they 

can do it in a loosely-coupled or tightly-coupled manner. These configurations enable 

particular functionality and pose additional requirements to applications that support these 

activities. 

Particularly, participatory sensing [24, 133] involves the voluntary cooperation among 

users in order to gather, share and eventually process information, typically involving their 

local context [11]. These activities require the explicit participation of the users, although 

the interaction among them is usually indirect. Similarly, crowdsensing [55, 62] also 

requires user intervention to provide sensing information. However, it reuses data 

explicitly entered by the users through Internet services, such as social networks. 

Typically, these sensing approaches use infrastructure-based communication that allows 

mobile users to access centralized shared information repositories; therefore, these 

collaboration approaches can be used if the devices and the environment count on such 

a communication infrastructure. 

Opportunistic sensing [108, 133] uses a different strategy to gather and share 

information. This collaboration approach provides a method to capture context information 

automatically from sensors (e.g., those embedded in a smartphone), and eventually share 

it with other neighboring or remote devices. In this case, the user is not directly involved 

in the data collection process, and the information is sensed unobtrusively. Services 

considered in pervasive computing or unattended mobile collaboration can take 

advantage of opportunistic sensing. 

On the other hand, the direct collaboration among mobile users can be classified as 

loosely or tightly-coupled. The former is the most frequent, since it does not require a 

stable or permanent communication link among the participants. In loosely-coupled 

activities, the mobile users typically work autonomously most of the time, while 

sporadically performing on-demand collaboration processes; i.e., tightly-coupled activities 

(Fig. 1-4) [35, 68, 129]. After engaging in collaboration, the users return to autonomous 

work. This collaboration style is usually supported by ad hoc and opportunistic 

interactions. 

Contrarily, tightly-coupled work involves the use of synchronous mobile applications, 

which is not recommended for most collaboration scenarios due to the systems 
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dependency on the availability of a stable communication link among the participants (and 

eventually, remote resources). This collaboration style usually involves the use of 

centralized components, which must be available during user interaction. 

 

Figure 1-4. Work in mobile collaboration [68] 

Today, a large number of services provided or consumed by mobile users are highly 

dependent on the users’ context, particularly their location [34]. Therefore, there is an 

important demand for accurate indoor and outdoor positioning strategies to support mobile 

collaboration [60, 69, 125]. By means of a positioning technique, a mobile device can 

either gather the information about its position (e.g., context information) or it can be 

localized from elsewhere. 

This strongly emerging interest in positioning is driven by several factors. At first, the 

great success of wireless systems is essentially explained by the mobility they enable, 

which is coupled with uncertainty. However, this uncertainty is often not desired in most 

of the application domains, and the only means to efficiently overcome this limitation is to 

know the position of our assets (including people, and stationary and mobile resources). 

Data security and integrity (ensuring that the data is safe from interlopers, and that it has 

not been tampered with, respectively) also benefit strongly from local positioning, because 

by using information on the origin, propagation path, and destination of the data, the 

participants have means to detect interlopers and disregard messages that come from 

outside of their intended work area. Last but not least, the data capacity of wireless 

networks is inherently limited, so an intelligent context-dependent information transfer is 

needed [163]. One essential context service to address this issue is the positioning of the 

participating resources. 

Positioning can be roughly divided in two categories, based on the environment in 

which they work best: outdoor positioning, and indoor positioning. In outdoor 

environments, the GPS (a satellite-based positioning system), is currently the most widely 
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used, offering maximum coverage with relatively little effort [70]. However, GPS cannot 

be deployed for indoor use, because it requires having line-of-sight (LOS) transmission 

between receivers and satellites. Indoor scenarios are inherently more complex that 

outdoors, due to obstacles (e.g., walls, equipment, etc.) [87]. 

Some authors believe that the positioning problem for outdoor environments has a 

concrete solution in the form of the Global Positioning System [59]. Nevertheless, such a 

solution requires that each participating device has GPS, which is not always feasible. 

The diversification of mobile computing devices (including clothes) and the integration old 

and new technology to address particular problems, create the need of new solutions, 

able to deal with the heterogeneity of devices.  

In addition, mobile collaborative applications require different types of positioning 

information, or varying degrees of accuracy. For instance, the most widely used 

coordinate systems are degree/minutes/seconds (DMS), degree decimal minutes, and 

universal transverse mercator (UTM) [69]. In addition, the accuracy requirement varies 

greatly depending on the type of consumer application, ranging from Kilometers to up to 

few centimeters, depending on the requesting application. 

Given the previously stated limitations, this work is particularly focused on outdoor 

positioning, considering heterogeneous devices participating in mobile collaboration 

process, even if they do not have positioning capability. Although this research also 

considers supporting mobile collaboration activities, such as crowdsourcing, participatory 

sensing, and opportunistic sensing, the largest portion of the research effort is focused on 

supporting loosely-coupled activities in ad hoc scenarios. 

1.2. Problem Statement 

In mobile computing environments, users might need to interact with both their devices 

and their surroundings, because everyday more and more technology components are 

embedded in the physical scenario; i.e., in their physical context. Figure 1-5 portrays an 

example of such a scenario, in which users pursue different activities while interacting with 

their surroundings through their portable devices. Either taking a walk around the city, 

visiting landmarks, or travelling by vehicle, users have access to several services available 

in the environment, most of which benefit from having access to positioning services. 

Ubiquitous systems, which are a particular flavor of collaborative systems, typically 

involve several autonomous computational devices of modern life, ranging from consumer 

electronics to smartphones. Ideally, users do not notice the presence of these devices in 

their physical environment, but they still benefit from the services provided by these 

computing artifacts [97]. 

In order to provide adequate services to address the users’ needs, most context-
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aware applications require knowing the position of the user or other resources (e.g., 

access points, public video-cameras, or other users). If a device is unable to obtain its 

position or if the positioning error is too high, any service provided by the supporting 

application might not work properly, jeopardizing the collaboration process. Moreover, 

attempting to reduce the positioning error of a given estimation could lead to several 

additional positioning attempts, which could yield similar results at the cost of additional 

energy consumption. 

 

Figure 1-5. Example of a collaborative outdoor environment 

In some cases, the participating devices that have access to several types of 

positioning strategies generally commit to a single one (mainly GPS), even if using another 

strategy could provide better results in terms of response time or accuracy. Therefore, the 

devices involved in mobile computing activities need to determine their best positioning 

alternative, even under unfavorable or limited conditions. Moreover, not all of the 

participating devices possess peripherals that enable to perform positioning on their own, 

and not all of them have these peripherals enabled at all times. Thus, they would be not 

able to take advantage of services embedded in their surroundings, unless they count on 

external support for performing positioning. 

Therefore, we can safely assume that there are instances where a mobile device 

cannot perform positioning when required, even if one or more positioning systems or 

strategies are available in the environment. Examples of such situations include: 

- The target device has no positioning capabilities whatsoever. 

- The target device has positioning capabilities, but is unable to access positioning 

strategies available on the scenario, due to issues in the local or remote node (i.e., 

obstructed line of sight towards GPS satellites, server overload, network flooding). 

- The target device manages to estimate its position, but the estimation error is too 

large to be useful. 

Additionally, energy is usually a valuable and scarce asset for mobile devices, which 
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is not always readily available on mobile environments; therefore, it must be taken into 

account both, when selecting the positioning strategy to be used, and also when 

performing the positioning itself. Allowing positioning services to spend large amounts of 

energy by focusing on maximizing accuracy does not make sense in all scenarios, since 

it reduces the time period in which the collaborative system is available. This leads us to 

postulate the following research questions: 

RQ 1: How to enable all or most of devices in a given outdoor scenario to estimate their 

positions, even if they have limited or no positioning capabilities of their own? 

RQ 2: How to achieve the former without increasing considerably the energy 

consumption of both individual devices and the entire network? 

1.3. Work Hypotheses 

Considering the stated problem and the research questions presented in the previous 

section, we have defined the following work hypotheses: 

H1: Devices in outdoor environments could use their peripherals and communications 

capabilities to sense their environment, effectively assembling a working-context that 

includes all elements relevant to the positioning process. 

H2: Devices with positioning capabilities could make use of their contextual information 

to determine which positioning strategy is better suited given their current context, and 

taking into account factors such as accuracy, response time and energy consumption. 

H3: Devices with no self-positioning capabilities that are part of a mobile network could 

collaborate with their close neighbors, sharing positioning information (if available) and 

using it to obtain a rough estimate of their position. 

1.4. Thesis Goals 

The main objective of this thesis work is to propose a context-aware model for positioning 

(CAMPOS) that allows devices in outdoor environments to obtain their positions, 

regardless of their capabilities. The model must allow most or all of the participant devices 

to perform outdoor positioning, includes devices that do not have proper positioning 

peripherals (i.e., no GPS receiver, no RFID reader). In addition, the model must support 

the sharing of positioning information among participants. In terms of energy consumption, 

the model must attempt to maintain the overall consumption of the positioning process 

within levels similar to those of self-positioning strategies (namely, GPS). 

A device using the model proposed in this thesis should be able to: 

- Sense changes in its context, and adapt its behavior accordingly. Devices 
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using the model should have the capability to sense their environment and 

determine whether to perform positioning or not (and how), based on contextual 

information. 

- Collaborate with neighboring devices by sharing positioning information. 

The participant devices should be able to request and/or relay positioning 

information to their peers, potentially enabling all of them to estimate their positions. 

- Avoid unnecessary energy consumption. Devices utilizing the model can decide 

not to attempt to perform positioning if conditions are not suitable, thus saving 

energy. The average energy consumption of devices utilizing the model to perform 

positioning should not exceed that of devices that do not use the model. 

- Require no additional instrumentation. Devices should be able to work with what 

is available in the environment, without the need of additional instrumentation or 

equipment. 

It is important to note that we are not attempting to maximize the accuracy of the 

positioning estimates, tracking the users, or relaying messages through the network 

(aside from positioning information). Our focus is on providing “tailored” collaborative 

positioning based on the context of a device, in outdoor environments. 

1.5. Applications Scenarios 

In this section, we illustrate three possible application scenarios of this proposal, as a way 

to help the reader in understanding the application domains of the model. 

1.5.1. Disaster Relief Efforts 

Several countries in South America and the Asia-Pacific region are frequently affected by 

natural disasters, such as earthquakes, tsunamis, landslides, and volcano eruptions. 

When these extreme events hit urban areas, a first response process is triggered and 

several emergency response companies are deployed in the affected area; e.g., 

firefighters, police, government agencies medical personnel, and eventually military units 

[120]. Every organization is in charge of specific activities that range from performing 

search and rescue of victims to secure particular working perimeters. 

Typically, electric energy is not available in the affected area, because the power 

distribution network is usually damaged or turned off for security reasons. Similarly, the 

infrastructure-based communication network is frequently damaged or collapsed; 

therefore the communication is mediated mainly by very high / ultra-high frequency 

(VHF/UHF) radio systems [121]. Figure 1-6 provides an example of an emergency 

scenario, showing the rescue efforts of firemen, policemen, and military personnel while 

aiding in the rescue of trapped people in a collapsed building after the February 2016 

earthquake near Pingtung City, Taiwan. 
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In such a scenario, the most critical response activities should be performed during the 

first 72 hours after the event (also known as the golden relief time), since after such a 

period the probability of rescuing people alive in the affected area is quite low [43, 119]. 

These activities include search and rescue of victims, providing first-aid to injured people, 

diagnosing the stability of physical infrastructure, establishing evacuation and re-entry 

routes, and securing the working area. All these activities are interconnected and require 

coordination among the response organizations. Coordination has a direct impact on the 

effectiveness of the initial response to the emergency. 

Command posts deployed in the field try to coordinate the local activities, but they 

usually fail due to the unavailability of digital communication support and geo-referenced 

information that would allow them to know the status of the first response process [99, 

148]. Therefore, improvisation becomes the common denominator in those scenarios, 

which reduces the effectiveness of these processes [16, 106]. 

 

Figure 1-6. Fallen building after an earthquake, Taiwan 

Most research work done to address this coordination problem is focused on providing 

digital communication in the field, in order to support interactions among first responders 

and positioning of the available resources (including rescuers) [15, 50, 53, 99, 135]. This 

process involves manned and unmanned vehicles, mobile workers, mobile 

communication brokers (mules), mobile and stationary sensors, and intermediary devices 

(typically, information temporal repositories). Many of these devices do not possess 

positioning capabilities, although most of them require some degree of positioning. 

Therefore, a positioning method that considers such a diversity would be very welcome to 

support the coordination of these activities, and therefore to increase the effectiveness of 
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the first response process.  

This is particularly relevant for response organizations belonging to developing 

countries (e.g., all of Latin America), where the most important one (firefighters) is 

composed almost exclusively of volunteers, financed mainly by the community with little 

economic support of the government. These organizations generally use several outdated 

mobile computing devices donated to them by the community (e.g., cellular phones, tablet 

and laptops), which are installed in the fire trucks to store and exchange digital information 

with first responders, and with mobile and stationary resources. Although the police, 

medical units, and military forces generally have more technology to support their 

activities, not all of their resources have positioning capabilities, or can position resources 

in the affected area; e.g., under roof, or in partially collapsed buildings, where the access 

to satellite signals are limited.  

Moreover, all these organizations would benefit from knowing the position of some of 

the firefighters’ resources (e.g., rescue teams travelling through the evacuation route 

towards the first aids points) while performing their activities. Therefore, providing 

firefighters with positioning also allows more coordination during rescue activities, and 

improves the performance of the response activities of all involved organizations. 

A context-aware positioning model that takes advantage of computing devices with 

positioning capability (e.g., those embedding GPS), in order to provide positioning to those 

who are not able to do it by themselves, would represent an important contribution in this 

scenario. 

1.5.2. Tourism/Leisure 

The leisure and tourism sector is extremely heterogeneous [146] in terms of the activities 

that the users perform during their off-time, and also how these activities can be aided by 

ubiquitous applications. For example, some people use their free time to travel abroad, 

visiting new countries, exotic locations, and the like; while others enjoy visiting meeting 

places from their own or from neighboring cities, such as malls, amusement parks, or 

beaches. In these scenarios, several venues of application for positioning become 

available, including social networking, point of interest (POI) research for visiting and 

meeting, traffic information, urban navigation, automated tourism services, theft 

prevention, and personal tracking [172]. 

Most mobile users take advantage of geo-tagging to add value to their social network 

publications, serving as a means to “prove” that they actually traveled to a certain location, 

or that they attended a certain event. For instance, a traveler might post a Facebook status 

with a picture of a sunset, adding a geo-tag for the Caribbean beach he or she is currently 

visiting. Another user could post a “selfie” on Instagram, with a concert stage as a 

background with a band playing, with a geo-tag that shows his location within the concert’s 

venue. 
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On a different venue, automated tourism services offer context-aware or location-

aware travel information to tourists, including guides to certain parts of supported cities, 

restaurants, history of the place, and POI guides. Examples of automated tourism systems 

include GUIDE [32], COMPASS [161], CRUMPET [147], and SightSeeing4U [144]. The 

main goal of these systems is enabling users to get the most out of their visits to supported 

locations, providing contextual information related to their current position within the 

complex. For instance, Figure 1-7 shows tourists visiting the Louvre museum. These users 

can access information related to Etruscan and Roman history and anecdotes while 

visiting the Denon Pavilion, with detailed information updating on their smart device as 

they move through the exhibits. 

 

Figure 1-7. Denon Pavilion of the Louvre Museum, Paris, France 

Positioning applied to traffic information and urban navigation provides tourists and 

locals alike with information related to the status of roads and routes through cities. In the 

case of traffic information, knowing their position allows users to geo-tag events occurring 

in roads, such as accidents, blockades, strike marches, or potential traffic jams, enabling 

other users to visualize these events and avoid them. 

Urban navigation services provide users with the location of nearby POIs to users, 

including restaurants, fuel stations, parking lots, plazas, malls, historical buildings, etc. In 

addition, routes can be traced to go from one point in the map to another, making a 

differentiation between the types users, which can be vehicles (restricted to roads and 

highways), or pedestrians. Some urban navigation systems even allow tracing water 
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routes, such as the Marine Navigation application [101] from the Netherlands. 

In terms of personal security, theft prevention systems provide people (including 

tourists) the ability to track the location of assets, such as vehicles or devices. These 

systems work either reactively, or passively; users can visualize the current location of 

their marked assets, or set alarms to fire when the location of said assets changes without 

permission. This way, users are able not only to determine whether something of their 

property has been stolen, but also where such a product is located. 

Similarly, personal tracking systems allow users to determine the position of tagged 

individuals, such as children, pets, and even mentally ill persons (e.g., a Parkinson 

disease patient, or a person with autism spectrum disorder), so that they do not get lost 

while visiting places unfamiliar to them. These systems also work reactively or passively, 

by sending alerts to the caretaker, or showing the target’s location on demand. 

If the proposed context-aware positioning model was to be deployed in these 

scenarios, the need for a centralized location strategy would become less imperative, and 

it could be delegated to other positioning methods that offer similar results. 

1.5.3. Logistics 

Logistics can be defined as a business planning framework for the management of 

material, service, information and capital flows, including the increasingly complex 

information, communication and control systems required in today's business 

environment [95]. In logistics, the supply chain management of assets is a key activity that 

constitutes, on average, the highest portion of the total logistics-related costs [56]. An area 

with significant potential for research is dynamic planning, specifically dynamic re-

scheduling and re-routing of vehicles, which of late has become more relevant due to the 

emergence of technologies enabling real-time, high-bandwidth information exchange 

between fleet vehicles and/or between a vehicle and its headquarters. 

Supply chain management processes can be classified in two major categories: 

planning and execution. While supply chain planning deals with processes related to 

determining material requirements, planning for production and distribution, etc., supply 

chain execution focuses on the actual implementation of the supply chain plan, comprising 

processes, such as production and stock control, warehouse management, 

transportation, and delivery [56]. 

The transportation of merchandise from one place to another, i.e., “cargo”, can occur 

through a variety of transportation means and it is organized in different shipment 

categories. Unit loads of similar types are usually assembled into higher standardized 

units, such as ISO containers, swap bodies, or semi-trailers; which can be transported by 

train, road vehicles, boats, airplanes, couriers, freight forwarders, and multi-modal 

transport operators. When moving cargo, typical constraints are maximum weight and 
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volume, which must be taken into account when planning transportation. 

Handling systems, which deals with the load, unload, transport, storage, and retrieval 

process of assets within a certain complex, includes handlers (e.g., trans-pallet, 

counterweight, or stacker handlers) and storage systems (i.e., pile stocking, cell racks 

cantilever racks and gravity racks. Assets are picked either manually or automatically, 

sorted, and carried to their destination, mostly either storage or transport. Manual picking 

can be man-to-goods, i.e., operator using a cart or conveyor belt; or goods-to-man, i.e., 

the operator benefiting from the presence of a mini-load carousel or an AVSS (Automatic 

Vertical Storage System). Automatic picking is done either with dispensers or depalletizing 

robots. Sorting can be done manually through carts or conveyor belts, or automatically 

through sorters. 

 

Figure 1-8. Container storage and transport logistics in DuisPort, Duisburg 

To help grasp the actual scope of logistics and stress the need for location services, 

Figure 1-8 portrays Duisport, the largest inland port in the world. Each year, more than 40 

million tons of various goods are handled with more than 20,000 ships calling at the port. 

The public harbor facilities stretch across an area of 7.4 Km2, with 21 docks covering an 

area of 1.8 Km2, and 40 Km of wharf. A number of companies run their own private docks, 

and based on 2010 estimations, 114 million tons of goods are handled in Duisburg yearly. 

An application of positioning to supply management is autonomous control. The idea 

of autonomous control is to develop decentralized, non-hierarchical planning and 

controlling methods for the automation of processes. Logistic objects are defined as 
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material items (e.g., vehicles, storage areas) or immaterial items (e.g., customer orders). 

These items can interact with other logistic objects within the system, and autonomous 

logistic objects are able to act independently according to their own objectives and 

navigate through the logistic network on their own [14], using their position to trace routes 

and determine proximity to target objects and tasks. 

The benefit of applying positioning to cargo is more direct in the sense that the user 

will know the position of his/her assets on demand, with the possibility of visualizing not 

only its current location, but potentially also the route and arrival estimations if provided 

by the charter company in charge of transportation. The benefit is similar for the handling 

of assets, which would benefit from positioning by letting owners, transporters, and all 

other interested parties the location of the assets in question. 

1.6. Thesis Contribution 

This thesis work presents a context-aware positioning model (named CAMPOS) that 

enables all the devices (or most of them) in an outdoor scenario, to estimate their position 

based on information they gather from their direct context (i.e., their environment). This 

way, participating devices would be able to determine the best course of action attempting 

to perform positioning, doing so in a transparent manner (i.e., the user does not need to 

intervene in the positioning process), based on the information they can sense from their 

surroundings. 

Users of the model would be able to obtain their positions under conditions they would 

normally be unable to, or to save energy by letting the model choose less energy 

expensive positioning strategies than the de facto strategy. This would grant devices that 

have limited or no sensing or positioning capabilities, to access their position via 

collaboration, as well as allowing devices that do have positioning capabilities to 

determine which available positioning strategy provides greater benefits in the long run. 

CAMPOS would be especially suitable in the event of natural or intentional disasters, 

such as earthquakes, landslides, or bomb attacks, in which the supporting communication 

and power infrastructures are usually taken down due to severe damage, or for safety 

reasons. The model could help the relief efforts of volunteers, firemen, and military 

personnel by providing context-aware energy-wise positioning during their search-and-

rescue and sweeping operations. However, the model is not limited to this type of 

scenario, and it could also be used in several others, including tourism [146, 147, 149], 

logistics [14, 47, 56], surveillance [105, 159], and analysis of behavioral models [2, 3], to 

name a few. Figure 1-9 shows a brief overview of how the model works. First, the 

environment is sensed. Then, the sensed context is evaluated. Finally, based on the 

previous evaluation, the most suitable positioning strategy available is chosen. 
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Figure 1-9. Overview of the proposed method 

Most of the applied proposals presented in the related work are focused on increasing 

the accuracy of the positioning estimates, either through the use of more than one strategy 

at the time or by taking advantage of collaboration with neighboring nodes, paying little or 

no mind to other devices that do not possess the peripherals required to perform 

positioning. The proposed positioning model, on the other hand, focuses on providing 

these devices with the capacity to estimate their positions, and providing both devices 

with and without positioning capabilities with the most suitable available strategy given 

their context. 

1.7. Limitations of the Model 

This section details the limitations of the proposed context-aware positioning model. Each 

limitation is discussed pointing out its impact on our research, and also possible ways to 

overcome them are indicated in future work. 

1.7.1. Real-world validation of the model 

Similar to most thesis works in this area, the experimentation process was performed 

using simulations. Due to the collaborative nature of the model, it was almost impossible 

to conduct real-world validations involving several of experimentation settings. Although 

this aspect could be an issue, the research presented in this document was implemented 

on ns-3 network simulator [67, 154], using outdoor communication models implemented 

in such a simulator, which are broadly accepted by the research community of the area 

and also allow to reproduce the experiments to make in-detail analysis. Moreover, the 

mobility and setting models used in the simulations are well accepted by the research 

community as valid counterparts to real-world scenarios, and they have already been 

extensively used in networking research [54, 77, 84, 132, 138, 150, 155]. 

For more technical depth on the subject of ns-3 and network simulations, please refer 

to Chapter 5. 
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1.7.2. Indoor Positioning 

The positioning model has been tailored to work based on the conditions present in 

outdoor scenarios, and it does not specifically address aspects involved in indoor 

positioning, due to the inherent difference between these types of environments. 

Specifically, indoor environments present several types of obstacles, including walls, the 

building geometry and construction material, electronic equipment, and even human 

beings and their devices. In addition, interference and noise sources from wired and 

wireless networks also influence the signals from satellites and exterior reference points, 

such as antennas and access points. 

The presence of these elements influences the propagation of electromagnetic 

waves, leading to multipath effects, non-Line-of-Sight, scattering and other false readings, 

which in turn affects the positioning estimations. Given that CAMPOS has been designed 

with outdoor environments in mind, it is not possible for our current version of the model 

to support indoor positioning in an accurate way. 

However, devices on indoor environments could still benefit and/or contribute in the 

collaboration process of the model, if the conditions for positioning are suitable (e.g., they 

have unobstructed line-of-sight to an outdoor participant, or are close to a window). 

Moreover, given that the model is detached from the actual positioning strategies, future 

work could be focused on including complete support for indoor environments. 

1.7.3. Security and Privacy 

The current version of the positioning model does not address security or privacy concerns 

related to the shared information; therefore, malicious users could potentially utilize the 

model to obtain other users’ device information, detect or track the users, or even deceive 

them with false information. 

However, the model follows the line of peer-to-peer (P2P) networks file sharing, which 

are also highly dependent on its users’ intent, but still have been proven to be relatively 

safe for most of the users’ operations (specifically file sharing), although malicious users 

are always a threat. Nonetheless, ensuring the security and privacy of the shared 

information is a challenge that should be addressed as part of future work. 

1.8. Document Organization 

The next section shows the concepts required to understand the scope of this work. 

Section 3 shows the related work. The proposed context-aware positioning model 

(CAMPOS) is detailed in Section 4. The simulation scenario and the experiments are 

specified in Section 5. The results are shown and discussed in Section 6. Section 7 

presents the conclusions and future work.  
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Chapter 2: Background 

This section introduces the concepts and background information necessary to 

understand this thesis work. First, the context-aware computing paradigm is introduced. 

Then, the concepts behind positioning are briefly explained and a classification of 

positioning techniques is presented. Finally, the concepts of mobile ad hoc network 

(Manet) and opportunistic network (Oppnet) are explained, since they are the most 

frequent communication infrastructure that is available to support this type of collaboration 

process. 

A brief summary of this section is provided in [115], including a comparison of these 

methods regarding the type of activities to be supported. 

2.1. Positioning 

The position of a resource is a representation of its physical location in a given 

environment. Positioning is the process of determining the position of the resource in such 

an environment. Positioning can be roughly divided in two categories, outdoor and indoor, 

based on the type of environment they address. 

In outdoor environments, the GPS, a satellite-based positioning system, is currently 

the most widely used. It offers maximum coverage for positioning with relatively little effort 

[70]. However, its performance is limited on indoor environments, mainly due to obstructed 

line-of-sight (LOS) transmission between receivers and satellites, which severely affect 

GPS’ accuracy. 

On the other hand, as we mentioned earlier, indoor environments tend to be more 

complex than outdoors [87] due to the presence of several types of obstacles, which carry 

about issues with signal readings, and thus to a higher error on the positioning 

estimations. 

As we mentioned earlier, some authors believe that outdoor positioning has a 

concrete solution in the form GPS [59]. However, the appearance of new technologies 

and the proliferation of wireless and mobile networks has allowed for positioning to remain 

an open area, filled with research opportunities [59, 94, 131]. Important positioning 

research issues include the degree of accuracy of the positioning estimations; the delay 

of the estimations; the amount of concurrent requests that can be processed 

simultaneously; and the coverage area of the positioning service; the energy consumption 

of the positioning process; and the reliability of positioning services, i.e., the degree of 

availability of these services. 

Moreover, different types of positioning information could be used, depending on the 

positioning requirements and limitations of the user’s application. According to Hightower 
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et al. [69], the main types of positioning are physical, symbolic, absolute, and relative. 

Physical positioning is expressed in the form of coordinates, which identify a point on a 

multi-dimensional map (i.e., 2-D or 3-D). The most widely used coordinate systems are 

degree/minutes/seconds (DMS), degree decimal minutes, and universal transverse 

mercator (UTM). Symbolic positioning expresses a location in a natural-language way, 

such as “in the office”, “in the third-floor bedroom”, etc. Absolute positioning uses a shared 

reference grid for all located objects. Relative positioning depends on its own frame of 

reference, and its information is usually based on the proximity to known reference points 

or base stations [94]. 

The following subsections include a review of the most widely used strategies for 

positioning. In general, most positioning methods attempt to measure one or more signals, 

and then process these measurements in order to estimate the position of a resource. A 

positioning system uses different kinds of signals and varied technologies to determine a 

resource’s position, depending on the technologies used [69]. These technologies can be 

categorized in four groups: Infrared, radio frequency, ultrasound, and inertial, with radio 

frequency signals being the most popular [137]. We will not address these technologies 

any further in this thesis, because they are out of the scope of this research. Instead, we 

focus on the communication and positioning techniques that make use of these 

technologies (e.g., WiFi, RFID, etc.). 

Based on the information measured and how the position estimation is performed, we 

can classify positioning techniques in four groups: (1) angulation and lateration, (2) 

proximity, (3) fingerprinting, and (4) scene analysis. Angulation, lateration, fingerprinting, 

and scene analysis can provide absolute, relative and proximity position information, while 

proximity only provides proximity information. Next we explain each of them. 

2.1.1. Angulation and Lateration 

Angulation and lateration use the geometric properties of triangles (i.e., angles and 

distance, respectively) and a set of reference points with known locations to estimate the 

position of a resource. The accuracy of this positioning approach improves when more 

reference points are used for the estimation process. An advantage of this method is that 

it involves a small setup effort in order to start calculating the resources location. 

2.1.1.1. Lateration 

Also known as range measurement, it estimates the position of a resource measuring its 

distance to at least three reference points with known geographical coordinates. Using 

the direction or length of the vectors drawn between the location to be estimated and the 

reference points, the absolute position of the desired resource can be calculated [162]. 

Five methods are commonly used to estimate positions using lateration: time of arrival, 

time difference of arrival, round-trip time of flight, received signal phase, and received 

signal strength. GPS, a special case of lateration method, and it is also addressed in this 
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section. 

Time of Arrival (TOA) 

TOA assumes that the distance between two devices is directly proportional to the time it 

takes to send and receive a message. TOA-based positioning systems measure this time, 

and use it to calculate the distance between transmitter and receiver. Figure 2-1-a shows 

three devices (𝑁𝑖), each located at a distance 𝐷𝑖from the target. The time it takes for a 

response from these devices to reach the target determines the distance between them, 

and this information is used to estimate the target’s position. 

 
 

(a) Time of Arrival (b) Time Difference of Arrival 

 
 

(c) Round-trip Time of Flight (d) Received Signal Strength Intensity 

Figure 2-1. Lateration methods I 

At least three reference points are required for 2-D positioning [49], and an additional 

one for 3-D. In order for TOA to work, the clock of all participants has to be precisely 

synchronized, and a time-stamp must be labeled in the message, so that the measuring 

unit can estimate the distance the signal has traveled. 

Time Difference of Arrival (TDOA) 

TDOA determines the relative position of a resource by examining the time difference at 
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which its signal arrives at multiple measuring units. Thus, a target position can be 

estimated from the intersections of two or more TDOA measurements. For each of these 

measurements, the target must lie on a hyperboloid with a constant range difference 

between the two measuring units. Two hyperbolas are formed from TDOA measurements 

at three fixed measuring units to provide an intersection point, which locates the target 

resource [49]. Note that the receivers do not need to know the absolute time at which the 

pulse was transmitted; only the time difference is relevant. 

Figure 2-1-b shows the way in which TDOA performs the position estimation. The 

three dimensional hyperboloids (dotted lines), formed from each device 𝑁𝑖, represent the 

possible locations of the target given their time differences 𝑇𝑖 measured from 

communications with the target. The intersection from these hyperboloids forms a three 

dimensional polygon that is assumed to include the target true location. 

Round-tripTime of Flight (RTOF) 

This method measures the time it takes a signal to travel from the target device to the 

measuring unit, and back [61]. RTOF requires a less strict relative clock synchronization 

than TOA, although both methods use the same range measurement mechanism. 

The measuring unit can be considered as a common radar, with the target responding 

to an interrogating radar signal and the complete roundtrip propagation time being 

calculated by the measuring units. However, it is still difficult for a measuring unit to know 

the exact delay/processing time it takes the target to return the signal. This delay can be 

ignored in long or medium-range systems, if it is small in comparison to the transmission 

time. However, in short-range systems, such as those used for indoor location, it cannot 

be ignored. Figure 2-1-c shows the positioning strategy used by RTOF, which is 

essentially identical to TOA, with the exception that each of the 𝑇𝑖 measurements accounts 

the two-way duration of a communication, instead of measuring only the one-way duration 

of a response (as TOA does). 

Received Signal Strength (RSS) 

Also known as Signal Attenuation, RSS estimates the position of a resource by measuring 

its distance from a set of measuring units based on the attenuation of emitted signal 

strengths [78]. RSS calculates the signal path-loss due to propagation, using theoretical 

and empirical models to translate the difference between emitted and the received signal 

strength into a range estimate. In Figure 2-1-d, the distance of the target from device 𝑁1 

is denoted by the RSSI (received signal strength intensity); depending on the power and 

frequency of the transmitter, this distance could range from 1 to several meters. When 

used jointly with RSSI readings from other devices, the target can estimate its position. 

RSS requires an important setup effort, and it can be affected by multipath fading and 

shadowing effects, which are always present in indoor environments. This can be 

addressed by using additional reference points. Moreover, the size of the positioning grid 

greatly affects the accuracy. Smaller grid spacing provides greater accuracy up to a 
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certain point (values measured 15 centimeters apart will be more or less the same) [131]. 

On the other hand, increasing the size of the cells in the grid reduces the search space in 

the database, drastically decreasing the accuracy of the positioning. 

Received Signal Phase (RSP) 

Also known as Carrier Signal Phase of Arrival, this method uses the carrier phase (or 

phase difference) of a frequency range to estimate the position of a target [130]. 

In order to understand how RSP works, let us assume that all participating devices 

emit sinusoidal signals of the same frequency with a zero phase offset, as shown on 

Figure 2-2-a. The RSP method calculates the phase difference of all signals received at 

the target, estimating its position based on those calculations. For an indoor positioning 

system, it is possible to use the signal phase method together with TOA/TDOA or RSS 

method to increase accuracy. However, this method requires a direct line-of-sight signal 

path; otherwise, it will cause more errors, especially in indoor environments. 

 

 

(a) Received Signal Phase (b) Global Positioning System 

 Figure 2-2. Lateration methods II 

Global Positioning System (GPS) 

GPS is a satellite-based positioning system (Figure 2-2-b), currently the most widely used 

in outdoor environments because it provides maximum coverage. GPS capability can be 

added to various devices simply by adding GPS cards and accessories to these devices. 

This enables position-based services, such as navigation, tourism, etc. [70]. However, 

GPS cannot be deployed for indoor use, because LOS transmission between receivers 

and satellites is not possible in an indoor environment. 

A GPS receiver calculates its position by precisely timing the signals sent by GPS 

satellites high above the Earth. Each satellite continually transmits messages that include 
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the time the message was transmitted, and the satellite position at time of message 

transmission. The receiver uses the messages it receives to calculate the transit time of 

each message and to determine its distance to each satellite. These distances and the 

satellites positions are used to compute the position of the receiver [160]. 

At least three satellites are required to calculate a target’s position, since space has 

three dimensions and it is assumed that the target is near the Earth's surface. However, 

even a tiny clock error, multiplied by the speed at which satellite signals propagate, results 

in a large positional error. Therefore, receivers usually employ four or more satellites to 

resolve their position, although fewer satellites can be used in special cases. If a 

positioning variable is already known (i.e., altitude), a receiver can compute its position 

accurately using only three satellites. 

When fewer than four satellites are accessible, some GPS receivers may use 

additional clues or assumptions (such as reusing the last known altitude, dead-reckoning, 

or inertial navigation) to give a less accurate or degraded position estimation [22]. 

GPS also has some disadvantages; for instance, its accuracy depends on the number 

of visible satellites; its setup time can be quite long, many minutes in the worst case; and 

power consumption can be high. Moreover, GPS does not work indoor or when satellites 

are in shadow [158]. 

2.1.1.2. Angulation 

Also known as direction of arrival, angulation calculates the position of a device by 

computing the angles relative to two or more reference points with known geographical 

coordinates. Using the angle of the vectors drawn between the target’s location and the 

reference points, it calculates the absolute position of the desired resource, as shown in 

Figure 2-3 [162]. The most well-known method used for angulation is the angle of arrival 

(AOA). 

In AOA, the location of a target resource can be estimated using the intersection of 

several pairs of angle direction lines, each formed by the circular radius from a base 

station or a beacon station to the mobile target. AOA methods use at least two known 

reference points and two measured angles to derive the 2-D location of the target 

resource. This estimation, commonly referred to as direction finding, can be accomplished 

either with directional antenna or with an array of antennae [30]. 

The advantages of AOA are that a position estimate may be determined with fewer 

measuring units than lateration, three or two for 2-D environments, and three for 3-D. Also, 

no time-synchronization between measuring units is required. Its disadvantages include 

relatively large and complex hardware requirements, as well as location estimate 

degradation as mobile targets or measuring units move farther from each other. 
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Figure 2-3. Angulation by Angle of Arrival 

2.1.2. Proximity 

Proximity positioning usually relies upon a dense grid of detectors, each with a well-known 

position. When a mobile device is detected by a single antenna, it is considered to be 

collocated with it. When more than one station detects the mobile target, it is considered 

to be collocated with the one that receives the strongest signal [17], or at the intersection 

area of both stations. The accuracy of proximity positioning systems depends on which 

detection technology is used, and on the number of reference points deployed in the 

physical environment. The greater the density of reference points, the higher the 

accuracy. 

This method is relatively simple to implement over different types of physical media, 

although an important setup effort is required on early deployment stages. Positioning 

systems using infrared radiation (IR) and radio frequency identification (RFID) are often 

based on this method. Five methods have been considered for proximity positioning: Cell 

ID, radio frequency identification, the closest neighbor algorithm, and the least square 

algorithm. Next we explain all of them. 

2.1.2.1. Cell-ID 

Cell ID (CID), also known as Cell of Origin, relies on the fact that mobile cellular networks 

can identify the approximate position of a mobile device by knowing which cell site the 

device is using at a given time [158]. A base station covers a set of cells, each with a 

known position and identified by a unique Cell-ID. Cells are grouped into clusters, each of 

them identified by a Location Area Identifier (LAI). A mobile target continuously selects a 

cell and exchanges data with its corresponding base station. In turn, each station 

broadcasts both the LAI and the Cell-ID to its cells. Figure 2-4-a shows how the CID 

antennas provide to the shown devices, with high-grain positioning capability. 

Since the mobile targets are always receiving these broadcast messages, they 

always know their corresponding Cell-ID. This allows the mobile targets to approximate 
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their position using the geographical coordinates of their corresponding base station, 

independent of the target’s absolute position within the cell. The main benefit of Cell-ID is 

that it is already in use today, and it can be supported by all mobile handsets. 

 
 

(a) Cell-ID (b) Radio Frequency ID 

 

 

(c) Closest Neighbor (d) Least Square 

Figure 2-4. Proximity strategies 

2.1.2.2. Radio Frequency Identification 

The radio frequency identification (RFID) is a means of storing and retrieving data through 

electromagnetic transmission to a radio-frequency compatible integrated circuit. RFID 

enables flexible and cheap identification of individual person or device [33], and it is 

commonly used in complex indoor environments, such as offices, hospitals, etc. 

There are two kinds of RFID technologies, passive and active RFID [59]. With passive 

RFID, a tracked tag is only a receiver, making them small and inexpensive at the cost of 

a reduced coverage range. Active RFID tags are transceivers, actively transmitting their 

identification and other information, which makes the cost of tags higher, but it provides a 

greater coverage area of active tags. 
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In Figure 2-4-b, a floor-plan of a house covered with RFID sensors is presented, 

showing three devices 𝑁𝑖 carrying RFID tags. Devices 𝑁1 and 𝑁2 are in contact with RFID 

sensors, which means that their positions are known (high-grained, defined by the location 

of the sensor), whereas device 𝑁3 is at a blind spot, and thus its position is unknown. 

2.1.2.3. Closest-Neighbor Algorithm 

The closest neighbor algorithm (CN) can be used to approximate the position of a device 

in a fixed environment. The process, shown in Figure 2-4-c, is straightforward. In order to 

understand how CN works, let us consider a group of base stations arranged in a regular 

grid, in which a station is located 𝐿 meters away from each other. In order to determine 

the position of a particular resource, each station performs a distance measurement to 

the resource in question. 

Let 𝑑𝑖 be the distance measurement to each neighbor performed by base station 𝑖, 

which is located at 𝑅𝑖 = [𝑥𝑖, 𝑦𝑖]. The CN algorithm estimates the position of the target 

resource as that of the station that is located closest to it. In other words, the position of a 

resource is the value of 𝑅𝑖 for which the corresponding distance measurement, 𝑑𝑖 is the 

minimum in the set [82]. 

2.1.2.4. Least Square Algorithm 

This method focuses on minimizing the value of the objective function 𝑓(𝑥) =

∑ (√(𝑥 − 𝑥𝑖)2 +  (𝑦 − 𝑦𝑖)2 − 𝑑𝑖)
2

𝑁
𝑖=1 , where 𝑁 is the number of reference base stations. 

The square-root term is the distance between a point (𝑥, 𝑦) in the Cartesian coordinate 

system and a reference base station located at the point (𝑥𝑖, 𝑦𝑖), and 𝑑𝑖 is known as the 

residual of the estimate. Given that this is a minimizing function, the closer it approaches 

to the target’s position, the lower the function’s value would be. At 𝑓(𝑥) = 0, it would have 

estimated the target’s actual position. 

However, in practice, the set of distance measurements, 𝑑𝑖  (1 ≤ 𝑖 ≤ 𝑁) always 

contains errors, so the function will never be zero even at the target’s position. These 

errors are related to synchronization mismatches between the transmitter and receiver 

devices, (known as systematic error), or due to obstructed line-of-sight channel 

conditions, known as channel-related errors [82], pictured in Figure 2-4-d. These channel 

conditions generally result in the strongest signal being received with longer delay, making 

the distance measurement longer than it should be, thus decreasing accuracy. 

2.1.3. Fingerprinting 

Also known as scene analysis, this technique calculates the position of resources in a 

bounded physical space by comparing the current measurements of a given set of signals 

with pre-measured data related to particular locations. Typically, it involves two phases: 

an offline training phase, and an online estimation phase. 
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During the offline phase, samples of location related data (e.g., Wi-Fi received signals 

strength) are collected for the whole physical space considered for the estimation process. 

During the online stage, the currently observed signal strengths of a resource are used in 

conjunction with the previously collected data to figure out an estimated position for the 

target resource. 

The fingerprinting technique is simple to deploy compared to AOA or TDOA 

techniques [81], but it is costly to implement over a large area. Instead of depending on 

accurate estimates of angle or distance to determine the location, location fingerprinting 

associates location-dependent characteristics (such as signal attenuation) with a location 

and uses these characteristics to infer location position. 

Additionally, fingerprinting is quite accurate, but it involves an important effort to 

collect samples during the offline phase [162]. One of the main challenges to this 

technique is that the signal emitted by the resources could be affected by diffraction, 

reflection, and scattering in indoor environments. 

 

Figure 2-5. General scheme of fingerprinting 

Fingerprinting can be performed by using pattern recognition based methods and 

probabilistic methods, and the general scheme of the strategy is shown in Figure 2-5. The 

main idea is to use sets of received signal strengths (𝑅𝑆𝑆𝐼𝑖) from several access points 

(𝐴𝑃𝑖), each with their respective intensities, and associate them to fixed cells in a grid 

(𝑥𝑘, 𝑦𝑘). This data is used during the training phase to assemble a “directory” of positions 

based on perceived RSSIs, and then during the positioning phase, a device uses its 

perceived set of RSSI to determine its position. 

The following subsections provide an in depth explanation of the methods used to 

perform both pattern recognition and probabilistic fingerprinting. 
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2.1.3.1. Pattern Recognition-based fingerprinting 

Pattern recognition methods are applied to fingerprinting positioning, which means they 

are intended for indoor environments. These methods include the k-nearest neighbor, 

support vector machines, smallest m-vertex polygon, and neural networks. 

k-Nearest Neighbor Averaging Method (kNN) 

The kNN averaging uses the online signal strength to search for 𝑘 closest matches of 

known locations in a signal space from a previously built signal database, by means of 

the root mean square errors principle [166]. In this approach, 𝑘 is a parameter that can be 

adapted in order to improve performance. By averaging these 𝑘 location candidates with 

or without adopting the distances in signal space as weights, an estimated location is 

obtained via weighted kNN or un-weighted kNN. 

Support Vector Machine (SVM) 

A widely used technique for data classification and regression, SVM is a tool for statistical 

analysis and machine learning. SVMs have been used extensively for a wide range of 

applications in science, medicine, and engineering with excellent empirical performance 

[37]. Both support vector classification of multiple classes and support vector regression 

have been successfully used in location fingerprinting, by treating the positioning problem 

as a classification problem [94]. Thus, the SVM attempts to classify the received signal 

strength of a target to multiple reference points into a class, i.e., a position in the grid. 

Smallest M-vertex Polygon (SMP) 

SMP uses the online signal strength values to search for candidate locations in signal 

space with respect to each signal transmitter separately. M-vertex polygons are formed 

by choosing at least one candidate from each transmitter (assuming a total of 𝑀 

transmitters). Averaging the coordinates of vertices of the smallest polygon (the one with 

the shortest perimeter) gives the position estimate of a target resource [94]. 

Neural Networks 

Usually, a multi-layer perceptron (MLP) network with one hidden layer is used for neural-

networks-based positioning system [166]. During the offline stage, the signal strength and 

the corresponding location coordinates are adopted as the inputs and the targets for the 

training purpose. After the training stage, appropriate weights are obtained. The input 

vector of signal strengths is multiplied by the trained input weight matrix, and then added 

with input layer bias, if a bias is chosen. The result is put into the transfer function of the 

hidden layer neuron, and the output of the function is multiplied by the trained hidden layer 

weight matrix, and then added to the hidden layer bias if it is chosen. The output of the 

system is a two-element vector for 2-D or a three-element vector for 3-D estimated 

location. 

2.1.3.2. Probabilistic fingerprinting 

These methods attempt to estimate the probability of a resource being at a certain place, 
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given the observed measurements at each location [85]. Connections and divisions 

between different places can be considered, since someone cannot walk through walls, 

or through water bodies. This approach is more complex and requires more computational 

power, but it usually presents better results than the previous ones. The most commonly 

used method for probabilistic fingerprinting are the Bayes’ Theorem and Markov Chains. 

Bayes’ Theorem (BT) 

This method addresses positioning as a classification problem [85]. Assuming that there 

are 𝑛 location candidates {𝐿1, 𝐿2, 𝐿3, … , 𝐿𝑛}, and 𝑠 is the signal strength vector observed 

during the online stage, the following decision rule can be obtained: Choose 𝐿𝑖 if 𝑃(𝐿𝑖|𝑠) >

𝑃(𝐿𝑗|𝑠), for 𝑖, 𝑗 = 1,2,3, … , 𝑛; 𝑗 ≠ 𝑖. Here, 𝑃(𝐿𝑖|𝑠) denotes the probability that the mobile 

node is in location 𝐿𝑖, given that the received signal vector is 𝑠 [94]. Moreover, let us 

assume that 𝑃(𝐿𝑖) is the probability that the mobile node is in location 𝐿𝑖. The given 

decision rule is based on posteriori probability. Using Bayes’ formula, and assuming that 

𝑃(𝐿𝑖) > 𝑃(𝐿𝑗) for 𝑖, 𝑗 = 1,2,3, … , 𝑛, we choose 𝐿𝑖 if 𝑃(𝑠|𝐿𝑖) > 𝑃(𝑠|𝐿𝑗), for 𝑖, 𝑗 =

1,2,3, … , 𝑛; 𝑗 ≠ 𝑖, based on the likelihood that 𝑃(𝑠|𝐿𝑖) is the probability that the signal vector 

s is received given that the mobile node is located in location 𝐿𝑖. 

Markov Chains Positioning (MC) 

The key idea of Markov Chains positioning is to compute and update a probability 

distribution over all possible locations in the environment [23]. Let 𝑙 = 〈𝑥, 𝑦, Ɵ〉 denote a 

location in the state space of a target resource. The distribution, denoted by 𝑃(𝐿𝑡 = 𝑙) 

expresses the target’s subjective belief for being at position 𝑙 at time 𝑡. Initially, 𝑃(𝐿𝑡0) 

reflects the initial state of knowledge. If the target knows its initial position, 𝑃(𝐿𝑡0) is 

centered on the correct location; if a resource does not know its initial location, 𝑃(𝐿𝑡0) is 

uniformly distributed to reflect the global uncertainty of the resource. 𝑃(𝐿) is updated 

whenever new sensor readings are received, allowing for positioning. This method is 

usually combined with vision analysis techniques for robot navigation [23]. 

2.1.4. Scene Analysis 

This technique analyzes images received from one or more capturing points (e.g., 

cameras located in the surveillance area) to attempt identifying one or more target 

resources [21]. Real-time analysis of images or video is feasible when a small number of 

objects are present; otherwise, it is more efficient to combine this technique with 

fingerprinting or proximity techniques. Using vision analysis involves an important effort 

during the setup phase, because they rely heavily on monitoring equipment. 

For vision-based positioning systems, a low price camera can cover a large area, and 

the targets require no additional devices for the position estimation. While vision analysis 

has unique advantages over other positioning systems, it also presents unique 

challenges. Privacy is an issue due to the nature of vision analysis, where multiple images 

of the targets are acquired. Since the position estimations are based on the saved vision 
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information in a database, it needs to be updated if there is any change in the environment, 

like moving a desk from one side of the room to the other [59].  

Vision-based positioning systems can also be greatly influenced by interference 

sources, such as weather, light, etc. For example, the turning on and off a light in a room 

reduces the detection accuracy of a target’s position. A person’s appearance in an image 

varies significantly due to posture, facing direction, distance from the camera, and 

occlusions [21]. Moreover, trying to position multiple resources moving around at the same 

time is still a challenge, due to the high computational requirements of this technique. 

Although a variety of algorithms can overcome most of these difficulties, a solution must 

work fast enough to make the system responsive to the room’s occupants. The 

Simultaneous Localization and Mapping technique tries to address these problems. 

Simultaneous Localization and Mapping (SLAM) addresses the problem of a resource 

(usually a robot) navigating an unknown environment. While navigating the environment, 

the robot seeks to acquire a map of its environment, and at the same time it wishes to 

localize itself using its map [109]. The use of SLAM can be motivated by two different 

needs: (1) detailed environment models, or (2) an accurate sense of a mobile robot’s 

location. SLAM serves both purposes, but we will focus only on the positioning part. SLAM 

can be achieved through extended Kalman filters, graph-based optimization techniques, 

and particle filtering, among other navigation techniques. The general idea of SLAM is 

pictured on Figure 2-6. 

Extended Kalman Filters (EKF) 

Historically, EKF [103] is the earliest and perhaps the most influential SLAM algorithm. 

First, a map with all known landmarks must be stored in a database accessible to the 

robot. If the identity of an observed landmark is unknown, EKF cannot be applied. 

Typically, a robot compares which of the landmarks stored in the database most likely 

corresponds to a landmark just observed, using this information to estimate its current 

position. The proximity estimation to a landmark considers measurement noise and actual 

uncertainty using Mahalanobis distance [39], which is a weighted quadratic distance, to 

gauge similarity between observed and stored data. To minimize the chances of false data 

associations, many implementations use visible features to distinguish individual 

landmarks and associate groups of landmarks observed simultaneously [157]. A key 

limitation of the EKF solution to the SLAM problem lies in the quadratic nature of the 

covariance matrix. A number of researchers have proposed extensions to the EKF SLAM 

algorithms that gain remarkable scalability through decomposing the map into sub-maps, 

for which co-variances are maintained separately. EKF SLAM has been applied 

successfully to a large range of navigation problems, involving airborne, underwater, 

indoor, and various other vehicles [157]. 
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Figure 2-6. SLAM applied to robot navigation 

Graph-Based Optimization (GO) 

This method addresses the SLAM problem through nonlinear sparse optimization. 

Landmarks and robot locations can be thought of as nodes in a graph. Every consecutive 

pair of positions {𝑥𝑡 − 1, 𝑥𝑡} is tied together by an arc that represents the information 

conveyed by the odometry reading 𝑢𝑡. Other arcs exist between locations 𝑥𝑡 and 

landmarks 𝑚𝑖, assuming that at time 𝑡 the robot sensed landmark 𝑖. Arcs in this graph are 

soft constraints. Relaxing these constraints yields the robot’s best estimate for the map 

and the full path [98]. GO SLAM can scale to much higher dimensional maps than EKF 

SLAM. Unlike EKF, GOT does not use a covariance matrix, which translates into less 

used space and lower update times, depending on the size of the map [157]. Although the 

update time of the graph is constant and the amount of memory required is linear, 

optimizations can be expensive. Finding the optimal data association is suspected to be 

an NP-hard problem, although in practice the number of plausible assignments is usually 

small. 

Particle Methods (PM) 

This SLAM method is based on particle filters. In this paradigm, a particle represents a 

concrete guess of the value of the current state (position) of a robot based on observed 

landmarks. By collecting a set of particles, the particle filters capture a representative 

sample of the path distribution of the robot [109], allowing for an estimation of its position. 

Under controlled conditions, the particle filter has been shown to approach the true path 

as the particle set size goes to infinity. The key problem with this method is that the space 

of maps and robot paths is immense, exponentially scaling with the dimension of the 

underlying state space [110]. 
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2.2. Context-Awareness 

Context-awareness is a property that is potentially available in mobile devices and that is 

defined complementarily to location awareness. Whereas location may determine how 

certain processes operate around a participating device, context may be applied more 

flexibly with mobile users, especially with users of smartphones. Context-awareness 

originated in ubiquitous computing seeking to deal with the problem of linking changes in 

the environment with computer systems, which are otherwise static. 

In the following subsections we will show other author’s definitions of context and 

awareness, and then we will proceed to define what context-awareness is for the purpose 

of this thesis work. 

2.2.1. Definition of Context 

Context is a complex description of shared knowledge about physical, social, historical, 

or other circumstances within which an action or an event occurs [20], and it is necessary 

to understand the motive behind those actions and events. For example, if no context is 

given, the action of “shutting down” could refer closing a business, ceasing operations on 

a nuclear reactor, or even turning off a laptop. 

According to Brézillon [19], context is “whatever does not intervene explicitly in a 

problem solving but constrains it”, and it is continually evolving as the problem is solved. 

Context can be divided into external knowledge, which is not relevant for current tasks; 

and contextual knowledge, which is strongly connected to the task, although it is not 

considered as part of it. Schillit et al. [145] define context as the location and identities of 

relevant objects and people, and the changes that occur to them. Figure 2-7 shows an 

example of the importance of context, and how it affects not only the perception of objects 

and events, but also the behavior of the person interpreting the scene. 

Ryan et al. [139] consider two additional elements, environment and time. Dey [41] 

defines context as the users’ emotional state, focus of attention, location, orientation, date, 

time, and other users in their environment. Abowd [1] state that context is any information 

that can be used to characterize the situation of a person, place, or object that is 

considered relevant to the user-application interaction. 

Messeguer et.al [107] address the problem of automating group awareness in 

computer-supported collaborative learning applications, by estimating group 

arrangements from location sensors and the history of the interactions of the participants. 

They propose a three-phase filtering strategy, which manages uncertain contextual 

information by identifying sources of uncertainty, representing uncertain information, and 

determining how to proceed based on such information. 
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Figure 2-7. Changes in the environment can alter the perception of identical 

objects 

For purposes of this thesis work, we define context as the elements that can help a 

device in the process of estimating its position at a given time. This definition includes 

both elements in the environment and some that are part of the device itself. Specifically, 

it encompasses the positioning strategies, access points, and neighbors present in the 

device’s vicinity; peripherals installed on the device (such as positioning transceivers and 

communication antennas); and status indicators (energy level and known positions). 

2.2.2. Definition of Awareness 

Awareness is a term used to denote knowledge created through the interaction of a 

resource and its environment, i.e., knowing what is going on [63]. It is meant to convey 

how individuals monitor and perceive the information in the environment they are in, which 

can be critical to the performance of the resource, and to the success of collaboration with 

other resources. 

Dourish and Bellotti [44] define awareness as an understanding of the activities of 

others, which provides a context for your own activity, and it is used to ensure that 

individual contributions are relevant to the group’s activity as a whole and to evaluate 

individual actions with respect to group goals and progress. 

We define awareness as the capacity of a device to detect and interact with elements 

in its environmental context, namely other devices, access points, and positioning 

strategies. 
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2.2.3. Definition of Context-Awareness 

Hull et al. [74] define context-awareness as the capacity of computing devices to detect, 

sense, interpret, and react to changes in the local environment and on the computing 

devices themselves. Salber et al. [142] define context-awareness as the ability to provide 

maximum flexibility to a computational service, based on real-time changes on its context. 

Ryan [140] defines context-aware applications as those that monitor input from 

environmental sensors and allow users to select from a range of physical and logical 

contexts based on their interests or activities. Fickas et al. [52] define context-aware 

applications (to which they refer to as “environment-directed”) as applications that monitor 

changes in context, and adapt their operation according to predefined or user-defined 

guidelines. 

Following our previous definitions of context and awareness, we define context-

awareness as the capacity of a device to detect and interact with all the elements present 

in its vicinity that can help it in the process of estimating its position at a given time. 

2.2.4. Context-Aware Systems 

A system can be considered as context-aware if it uses its context to provide relevant 

information and/or services to users, where relevancy depends on the user’s task [1]. In 

order for an application to be considered as context-aware, it must be able to “adapt to its 

context,” i.e., sense, interpret, and react to changes in context [134]. 

However, context-awareness is subjective and heavily dependent on the 

requirements of the consumer application. For example, a GPS navigator measures a 

car’s position and then adjusts it to fit in a map API, such as OpenStreetMap, showing the 

results to the users in a screen. The navigator is constantly updating the position of the 

car, and it “reacts” to events in the roads, such as corners and blocked roads, by 

suggesting changes in direction or speed. 

Another example of a context-aware application is a heart rate sensor monitor. The 

sensor measures the rate of a patient’s heartbeats, and it sends such information to the 

monitor, which analyzes the historical and acquired data to determine whether the patient 

is in danger of a heart attack or not. If the monitor determines that the patient’s life is in 

danger, it sends an alert to the medical personnel at the hospital, or to an ambulance 

paramedics team, depending on the location of the patient. 

Clearly, both applications are context-aware, but each utilizes different types of 

information as input, and reacts to different stimuli. Thus, in order to determine the scope 

and limitations of our proposal, we must delineate our working context, as well as the 

degree of awareness that our model provides to the users. 
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2.3. Mobile Ad-hoc Networks 

Conventional cellular and mobile networks are, in a sense, limited by their need to count 

on preexisting infrastructure (i.e., base stations, routers) [57]. Mobile ad-hoc networks 

(MANETs), get rid of this limitation by allowing devices with similar characteristics to 

interact with each other without the need for centralized control. This does not mean, 

however, that they are without issue; traditional wireless communication problems such 

as bandwidth optimization, energy administration, and transmission quality, remain 

unsolved in MANETs [92]. In addition, due to the multi-hop communication and the lack 

of fixed infrastructure, new research problems have arisen, such as network discovery 

and maintenance, and ad-hoc addressing and self-routing. 

Since mobile ad-hoc network topologies are wireless in nature, they are highly 

dynamic and random, given that nodes are free to enter and leave the network as they 

move around (Figure 2-8). Nonetheless, wireless communication has significantly lower 

transmission capacity than its wired counterpart, and since the data travels through the 

air, security is also an issue. Additionally, environmental factors can affect the 

transmission, causing higher data loss rates, additional delays due to retransmissions and 

jitter, channel overload from too many signals, etc. 

 

Figure 2-8. Example of a MANET topology 

One of the more important problems of mobile ad-hoc networks is the energy 

consumption, which also affects the positioning process of a device. The highly mobile, 

wireless nature of the network nodes implies that they must rely on portable energy 

sources, such as batteries or other exhaustible means of power, and thus have limited 

operating time. Thus, energy saving must be an important criteria when designing mobile 

applications [57], and nodes must be power-aware, offering sets of functions according to 

their available power, in order to extend their operating time. 
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MANET configurations have been successfully applied in several fields, including 

commercial advertising, collaborative messaging, military tactical communication, sensor 

networks, rescue missions in times of natural disasters, as well as other commercial and 

educational applications. 

 

Figure 2-9. Example of a flowchart of an OPPNET [93] 

2.4. Opportunistic Networks 

Traditional networks are deployed together with fixed, pre-defined network 

parameters, such as size, location, etc. OPPNETS, on the other hand, are a superset of 

MANETs that contain sensor networks [93], which can be deployed on the fly. After 

deployment, the sensor nodes begin detecting the presence of nodes or systems from 

different communication media, such as Bluetooth, wired internet, WiFi, Radio, RFID, 

Satellite, etc. Any detected node or system, called “helpers”, is identified, classified, and 

evaluated, and any potential candidate that is useful and reliable is invited to join the 

network following the procedure detailed in Figure 2-9. 
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Candidate helpers can either accept or reject the invitation. Only those helpers that 

accept are admitted into the network. At the time of joining, their resources are integrated 

into the OPPNET, and any task being processed can be offloaded to, or distributed 

amongst, the new members. 

A human operator, and/or an autonomous decentralized command center determines 

the tasks performed by an OPPNET throughout its lifetime. When its goals are reached, 

the OPPNET releases its helpers and restores them to a state that is closest to when they 

were invited to join the network, minimizing intrusiveness and potential damage to its 

systems. Thus, OPPNETS can be used as a bridge between disjoint communication 

media, leverage available services, and also provide access to sensor y data from diverse 

sensing systems that are already present in our environment, without the need to deploy 

additional instrumentation.  
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Chapter 3: Related Work 

Several proposals address the problem of positioning on mobile, heterogeneous outdoor 

environments. Most of these approaches commonly rely on communication between a 

target resource (i.e., a mobile device) and a series of reference points with known 

positions (e.g., GPS satellites, access points, or other mobile devices) to estimate the 

position of the intended target through autonomous or collaborative approaches. These 

research works are usually focused on finding alternatives to GPS, or on improving the 

accuracy of positioning estimations by experimenting with hybrid techniques or using 

novel approaches. 

Although some of these works are able to reduce the error of a positioning estimation 

to the range of centimeters, they typically require an existing communication infrastructure 

and/or a source of energy to function properly, both of which are usually not necessarily 

available in mobile environments. In addition, most of the pre-established proposals 

address the positioning problem focusing on a single positioning strategy (or a static 

combination of various techniques), and they tend not to take advantage of contextual 

elements present in the devices’ environment. 

Next we present the different alternatives by grouping the related work into four 

categories; self-positioning, collaborative positioning, context-aware positioning, and 

analog studies. 

3.1. Self-Positioning 

Self-positioning is the positioning process performed by a device through its own means, 

or by accessing a positioning strategy embedded in the scenario, without help from its 

peers. Several proposals have been reported to provide devices with access to this 

service. For instance, Shin et al. [152] propose a personal indoor/outdoor Wi-Fi 

Positioning System using received signal strength (RSS) from dense Wi-Fi access points 

(AP) dedicated to localization of Android-based smartphones. This method measures the 

RSS from each AP three times, calculating the mean value and comparing it to each 

training value (stored in a database). If the difference between the mean value and the 

training values is below a given threshold, the training value is withdrawn and the mean 

of filtered training values is calculated again. Finally, the mean value is compared with the 

database value and a proper location on the map is found with a proper scan time and 

threshold, thereby yielding a low error rate. 

Other possibility to perform self-positioning is to use the Global Navigation Satellite 

Systems (GNNS), which incorporates several satellite-based positioning systems, 

including GPS, GLONASS (GLObal NAvigation Satellite System), Galileo, and Compass 

[71]. In GNSS, the measurements obtained from a group include extra measurements, 

specifically the relative distances between the neighboring users. As a result, there are 
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several factors that impact on the positioning accuracy, and cause problems for the 

performance analysis, for instance clock bias or synchronization issues, and geometric 

position dilution of precision (i.e., the multiplicative effect of satellite geometry on 

perceived precision, which affects the final error measurement over the course of several 

estimations). However, GNNS-based positioning systems remain the most widely 

available, due to their huge coverage area (which spans from entire countries to the whole 

world). 

Zhang et al. [171] present an alternative approach in which a database (DB) is trained 

using navigational data from users, utilizing different strategies to survey sensor-based 

navigation errors in indoor positioning. They combine different navigation trajectories 

moving in and out of a target building to create the DB, restricting the time length of 

available indoor navigation trajectories, i.e., the trajectories from the last received GNSS 

signal before entering an indoor area, until the next GNSS signal is received after walking 

out of the target building. Their results showed that the errors in pedestrian navigation 

were reduced from 6.0 to 5.7 m during 5–10 minutes of indoor walking. Their study is 

focused on providing indoor positioning, and outdoor signals are used only to establish 

entry and exit points throughout the user’s indoor route. 

Evenou and Marx [48] present a dead-reckoning navigation structure and signal 

processing algorithms for self-localization of an autonomous mobile devices. Their 

proposal fuses pedestrian dead-reckoning and WiFi signal strength measurements to 

estimate the position and bearing of mobile devices. Although dead-reckoning estimations 

derive in high accuracy errors, the WiFi measurements can help correct the drift while 

navigating urban areas with access points present, providing high-accuracy real-time 

navigation. They also propose a structure based on a Kalman filter and a particle filter, 

which allows to further improve the Wi-Fi measurements, and the accuracy estimations, 

by reducing the error to less than 2 meters of the target true position. 

Shaw et al. [151] apply the problem of mapping an estimate of a user’s current 

location to a semantically meaningful POI, such as a home, restaurant, or store. To this 

end, they propose a spatial search algorithm that infers a user’s location by combining 

aggregate signals mined from billions of foursquare check-ins, with real-time contextual 

information. This work uses machine learning techniques to create an optimal ranking 

function, which learns from large amounts of implicit feedback, evaluating the 

performance of their system in a variety of real-world situations. This novel work takes 

advantage of social networks’ positioning information to locate target devices. However, 

given the nature of the algorithms used, it requires an extensive location database. 

The scheme proposed by Ning et al. [118] focuses in high accuracy localization of 

mobile stations in outdoor environments using a two-phase positioning method. During 

the training phase, they partition the target area into clusters from historical RSS data 

using an improved clustering scheme. The location of the assets can be estimated during 

the online phase, by analyzing these clusters with a refined intersection approach. Since 
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clusters are created with RSS deviations from the observed path loss model rather than 

raw RSS, the clusters remain invariant to changes in the base station’s transmitter power. 

Thus, the intersection approach used in the online phase improves the accuracy of the 

location estimations. 

Xu et al. [168] remarks that satellite signals from GNSS are vulnerable and 

susceptible to blockage in certain urban scenarios, and therefore they propose a system 

architecture that integrates WLAN fingerprinting, visual positioning, baroceptor altitude 

estimation, and GNSS to allow seamless indoor/outdoor positioning of vehicles and 

pedestrians. Their work is based on GNSS for outdoor positioning, and fingerprinting and 

SLAM for indoor positioning, with the possibility of alternating between these types of 

scenarios. Results indicate that they can indeed achieve seamless indoor/outdoor 

positioning with better accuracy than single-source methods, reaching accuracy levels of 

less than 1 meter for outdoors, and less than 3 meters for indoors. 

3.2. Collaborative Positioning 

Collaborative positioning proposals estimate the position of a target device by borrowing 

positioning information from neighboring devices, or by using multiple estimations from 

different sources (or from the same source).  

Huang et al. [73] studied the multiplicative effect of various factors on the accuracy of 

GNSS collaborative positioning algorithms, using their proposed Collaborative Dilution of 

Precision model. Using such a model, they also analyze the performance of GNSS 

standalone positioning. Their results show that GNSS collaborative positioning accuracy 

is always higher than or equal to that of GNSS standalone positioning. 

Sahoo et al. [141] state that collaboration is highly essential for nodes to perform 

positioning efficiently in outdoor and indoor environments. They use beacon and anchor 

nodes with known positions to estimate the position of a target node in a distributive 

manner, employing localization algorithms that consider fading and shadowing effects. 

They show analytical methods that use probability distribution functions to find the 

probability of wrongly identifying a transmission arriving from a node with location 

information, reducing the localization error and thus providing more accurate positioning 

information to the target node. These researchers state that their algorithm works well 

even when only one beacon node is present. The algorithm performs calculations with low 

time complexity, which is suitable when memory and energy constraints are present. This 

work is similar to our own, with the difference that Sahoo et al. use probability distribution 

functions to determine viable neighbor signals, and their experiments utilize smaller 

scenarios (200 × 300 m2) and a greater number of nodes (250–500) in order to achieve 

acceptable accuracy levels. 

Savarese et al. [143] developed a two-phase distributed algorithm for determining the 
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positions of nodes in an ad hoc wireless sensor network. The algorithm assumes that 

some of the users know their positions (i.e., they act as anchors). The anchors broadcast 

their positions to their neighbors, allowing the latter to estimate their positions with a 

certain degree of confidence, which improves iteratively with each new transmission from 

the anchors. 

This work provides collaborative positioning in outdoor environments to all 

participants of an ad hoc network. However, unlike CAMPOS, the beacon nodes’ position 

is transmitted to all nodes in the network and then improved iteratively, which could 

significantly increase the energy consumption of the process and overload the 

communication link. 

Capkun et al. [26] propose a distributed, infrastructure-free positioning algorithm that 

uses distance between mobile nodes to build a relative coordinate system. In this 

algorithm the nodes’ positions are computed in two dimensions, thereby providing location 

information accurate enough to support basic positioning capabilities within the 

environment. The nodes know the position of their neighbors using the relative coordinate 

system, but they have no way to translate such a position to a geographic coordinate 

system, unless nodes with GPS capabilities are included in the network. 

The proposal of Capkun et al. is interesting because it enables nodes in ad hoc 

networks to collaboratively determine the positions of each neighbor in relation to their 

own. However, it does not take into account the physical scenario of the devices, and thus 

it is unable to provide the actual geographical position of the nodes. 

Kealy et al. [83] discuss the applicability of collaborative positioning algorithms and 

techniques for mobile terrestrial devices, presenting a range of qualitative and quantitative 

measurement information that supports collaborative approaches. They assess the cost-

benefit of these measurements, determining the point of diminishing marginal utility for 

positioning, i.e., the point at which integrating additional information provides a negligible 

return to the positioning performance. 

Jing et al. [80] propose a collaborative positioning solution for indoor pedestrian 

navigation that integrates measurements from various users via peer-to-peer ranging. 

They propose a particle-filter-based adaptive ranging constraint collaborative positioning 

(ARCP) algorithm, which integrates inertial measurements, map information, and relative 

ranging. Their approach improves the positioning accuracy and robustness of indoor 

environments by applying a selecting-and-weighting scheme to the ranging constraint on 

each user, based on their ranging measurements and network geometry. They indicate 

that ARCP improves accuracy measurements by over 60%, while reducing positioning 

error in 45%, and providing enhanced robustness. 

Jing et al. utilize Matlab mathematical simulations of real positioning an inertial 

navigation data applied to different types of indoor scenarios, analyzing the network 
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characteristics and the positioning outcome and comparing it to results obtained in 

posterior trials. Their simulated environments consisted of a square area of 100×100 m2, 

with anchors randomly placed all around the simulation scenario. 

3.3. Context-aware Positioning 

Context-aware proposals prioritize reactive changes in their behavior to perform self-

adaptation to changes in their surroundings. Although most collaborative approaches can 

be considered to be context-aware, in the sense that they “detect” their neighbors, true 

context-awareness requires adaption. 

Ficco et al. [51] state that outdoor positioning has achieved a satisfactory degree of 

technological maturity and effectiveness, which is not the case for seamless indoor and 

outdoor exchange. They propose a hybrid location approach that switches among 

positioning technologies supported by the target device and that are available in the 

environment, in a dynamic and transparent manner. By combining RSS fingerprinting for 

indoor positioning and GPS for outdoor localization, their proposal performs opportunistic 

technology switching according to a count-and-threshold mechanism, providing 

ubiquitous location services across indoor and outdoor scenarios, as well as minimizing 

the power consumption of the device. 

The work of Kealy et al. [83], first introduced in Subsection 3.2, assesses the cost-

benefit of a wide range of qualitative and quantitative measurements of collaborative 

approaches, determining the point at which integrating additional information provides a 

negligible return to the positioning performance. This approach deviates from the 

traditional idea of greedily integrating all available signals of opportunity, stressing the 

need to identify an optimal set of measurements for the requirements of the application 

given its current context and need, i.e., “fitness for use”. 

Wang et al. [164] present a discussion of RSSI-based positioning algorithms for 

indoor scenarios, proposing weighing schemes to leverage the credibility of the measured 

RSSI values, to cope with heavy signal strength distortion induced by to multi-path and 

shadowing. They also propose a boundary selection and local grid scanning to lower the 

searching time during online tracking, and RSSI data dissemination and collection 

schemes to reduce traffic overhead. Their results yielded accuracy values of up to 2 

meters in 80% of the estimations; however, a few test cases showed an improbable error 

of up to one room. 

3.4. Analog Studies 

Eltahir [46] presents a study of the effect of some radio propagation models, such as 

free space and two-ray ground, on the communication capability of devices in simulated 

urban mobile ad hoc networks. The study shows that commonly used propagation models 
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do not necessarily provide results similar to real-world conditions. Thus, choosing an 

incorrect propagation model could translate into misleading positioning measurements, 

particularly when using Wi-Fi signal strength. 

Similarly, Camp et al. [25] provide a detailed explanation of mobility models used on 

ad hoc network research, as well as an evaluation of their performance, and Stoffers et 

al. [154] provide a comparison of radio propagation models. 

Oliver et al. [122] present a study aimed at exploring users’ physical activity intensity, 

GPS speeds, and routes traveled during their activities by combining GPS, Geographic 

Information Systems (GIS), and accelerometry. Their work is relevant for our research 

due to their analysis of loss of GPS signals due to a range of methodological issues, such 

as low battery life, signal drop out, and participant noncompliance. 

Baig et al. [6] present an overview of crowdsourced computer networks, which are 

network infrastructures built by citizens and organizations that are not necessarily involved 

with telecommunication enterprises. Community networks are a subset of crowdsourced 

networks, characterized for being open, free, and neutral. They are open because the 

knowledge to build them is available without restraint; free because the network access is 

non-discriminatory (i.e., anyone can join); and neutral because any technical solution 

available may be used to extend the network, and because the network can be used to 

transmit data of any kind by any participant, including commercial purposes.  

Although all of the presented proposals deal with the positioning problem by either 

attempting to improve the accuracy of the estimations, or by providing novel approaches, 

only a few of them deal with the problem of providing positioning to devices without proper 

positioning capabilities, such as the proposals of Sahoo et al. [141] and Savarese et al. 

[143]. In addition, given that the main focus is to improve accuracy measurements, the 

energy consumption is generally overlooked when designing new positioning methods, 

unless the solution deals explicitly with either decreasing the consumption, or at least 

maintaining it within a certain threshold (e.g., the work of Sahoo et al. [141]. 
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Chapter 4: Context-Aware Positioning Model 

In order to address the problem of providing devices that are in any way positioning-

impaired with means to determine their position, we have designed CAMPOS, a 

positioning model based on randomized decision trees (i.e., random forest). The model is 

capable of assessing a device’s environment at any given time, essentially sensing its 

context (as defined in Subsection 2.2) in order to detect the presence of elements that 

can be used to provide positioning capability to the device. These elements include other 

devices, access points, and positioning strategies. 

Once the context of a device has been assessed, the model processes the gathered 

information and determines which positioning strategies are available and accessible, 

ranking them based on their suitability to the device’s sensed context. This ranking is 

performed by treating the decision problem as a classification problem, using a Random 

Forest classifier. The contextual variables are treated as classification features, and 

inputted to the random forest classifier, which provides the ranking as an output. 

The model was designed to (a) allow users (i.e., stationary and mobile devices) to 

estimate their positions in outdoor environments, either by accessing positioning 

strategies directly, or by sharing positioning information with neighboring users having 

known positions; (b) allow a smooth transition when switching from using one positioning 

strategies to another; and (c) spend as little energy as possible, considering the 

positioning restrictions. 

The model has been designed with a particular scenario in mind, specifically that of 

urban areas affected by disasters; however, it can be used in several similar scenarios, 

including university campus localization, vehicular theft prevention, etc. Additionally, given 

that the model is able to choose from a pool of several positioning strategies, the process 

of switching from one particular strategy to another during periods of intensive positioning 

queries should be transparent to the user; i.e., the model should manage to perform the 

switch in such a way that the users are unaffected, or at least not inconvenienced. 

Finally, given that the model is based on sensing a device’s context at intervals and 

communication over mobile ad-hoc networks, the energy consumption must be kept in 

check to assure that it does not negatively impact the device’s autonomy during the whole 

positioning process. 

Devices making use of the model would utilize their peripherals to sense their 

immediate environment, gathering contextual information that can be consumed by the 

model, in order to determine the suitability of each of the positioning strategies available 

in a given scenario. Thus, a device possessing any kind of positioning capabilities could 

either directly use a positioning strategy available in the scenario (i.e., perform self-

positioning), such as GPS or radio frequency identification (RFID); or use the position of 

at least three of its neighbors as reference points, in order to estimate its position by itself 
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(i.e., collaborative positioning). 

In a similar manner, devices with no positioning capabilities whatsoever, or those that 

possess positioning capabilities, but are in any way impeded from using them, could also 

take advantage of collaboration in order to estimate their position by using information 

from neighbors with known positions as input. 

Thus, the model can provide devices access to at least one positioning strategy 

present in a given environment, enabling users to perform positioning in situations where 

they would normally be unable to, as well as favoring positioning strategies that would 

expend less energy than using the default strategy (usually GPS). 

It is important to note that the model does not aim to improve the accuracy of the 

devices’ positioning estimations. It only addresses the problem of providing context-aware 

positioning with reasonable energy consumption to devices participating in disaster relief 

efforts, or similar scenarios, regardless of whether these devices have the peripherals 

required to support such activity. 

Additionally, although the model does not particularly address indoor environments, 

these scenarios are also supported, although with lower accuracy than in the intended 

outdoor scenarios. This accuracy decrement is variable from one indoor scenario to 

another (even between two consecutive measurements in the same scenario), and it is 

heavily dependent on the structure and materials of the building. Given that the model is 

optimized for outdoor use, it cannot manage the multipath and signal loss effects found 

inside buildings, rendering the collaborative part of the model useless due to high error 

(i.e., low accuracy). 

However, the model can be used to determine which building a device is currently in 

when used indoors. This is useful to support several disaster relief activities, as well as 

other types of applications such as geo-social networking [7]. In disaster-relief effort 

scenarios, indoor positioning is typically used only to provide coarse-grained awareness 

information about the devices’ location (e.g., first responders and equipment), given that 

the reference points required for these positioning strategies to work are usually 

unavailable or in a new location (e.g., in the case of collapsed buildings). 

Therefore, if an outdoor positioning mechanism is able to provide coarse-grained 

positioning information when under a roof or under cover (i.e., with a relatively high error 

but within the building), the use of a more accurate, specific indoor positioning strategy, is 

usually discarded. Provided that the proposed model has such a capability, improving its 

support for indoor positioning is only desirable. 

The following subsections provide an insight on the inner workings of the CAMPOS 

model. Section 4-1 shows an overview of the entire process. Section 4-2 deals with the 

first stage, the context sensing. The second stage, context information management, is 

presented in Section 4-3. The third stage, context-aware positioning, is shown in Section 
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4-4. Finally, we provide an example of the utilization of the model in Section 4-5. 

4.1. Overview of the Proposed Model 

Figure 4-1 shows an overview of each of the steps that encompass the model’s 

stages: (1) sensing the context, (2) managing the context information, and (3) performing 

the context-aware positioning. 

 

Figure 4-1. Three stage context-aware positioning model 

During stage 1, the device “senses” its context through its peripherals, gathering 

information relevant to the positioning process from the scenario. Basically, the device 

sends a broadcast to other devices through all available channels (i.e., communication 

technologies), assembling a list of candidate reference points from neighboring devices 

and access points. This lists, coupled with the device’s own positioning capabilities, is 

assembled as a feature vector and sent towards the second stage. 

Over the initial phase of stage 2, the feature vector is received and processed, and 

irrelevant or duplicate information is pruned into a “summary” of the device’s context. 

Then, this summary is inputted into a random forest classifier that determines the most 

suitable available position strategy from the summary, generating a list of recommended 

positioning strategies in order of relevance for the given summary. 

Stage 3 is the final operative stage, during which the actual positioning is performed 
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following the recommendations in order of relevance. If access to peripherals is required, 

such as when a self-positioning strategies is recommended (e.g., GPS), a positioning 

request will be sent towards stage 1 through stage 2 to use the corresponding peripheral. 

Otherwise, collaborative positioning is performed directly using the information from the 

summary. 

4.1.1. CAMPOS Positioning Algorithm 

All three stages of the positioning model are encompassed in Algorithm 4-1. The 

entire process begins when a consumer application requests that the model performs a 

positioning estimation, represented by the estimatePosition() function. 

The first step is assembling the device (𝐷) and scenario (𝐹) feature vectors, which is 

achieved via the requestContextSensing() function. For purposes of simplifying the 

algorithm’s explanation, we assume that both of these feature vectors are updated 

through requestContextSensing(), because although their assemblages are made 

through separate processes, they are always carried out simultaneously. 

Algorithm 4-1. Handling a positioning request from a consumer 

application (C++ pseudo-code) 

 

position estimatePosition(): 

deviceFeatureVector D 

scenarioFeatureVector F 

[D, F] ← requestContextSensing () 

scenarioFeatureVector F ← requestContextSensing () 

if (contextDB.hasPreviousKnownPosition ()) 

if (NOT contextDB.hasContextChanged (D)) 

return contextDB.lastKnownPosition() 

  else 

if (NOT onTimeOut())//not waiting, numberOfAttempts <= n 

    scenarioSummary S ← processFeatureVectors(D, F) 

    recommendationVector R ← getRecommendations(S) 

    return requestPositioning(S, R) 

 else 

if (NOT onTimeOut ()) 

   scenarioSummary S ← processFeatureVectors(D, F) 

   recommendationVector R ← getRecommendations(S) 

   return performPositioning(S, R) 

 

Once the feature vectors have been assembled, the model checks the contextual 

database stored in its memory to determine whether the device has a valid last known 

position stored or not (contextDB.hasPreviousKnownPosition()). If there is a last 

known position, the model proceeds to determine whether the device’s context has 

changed or not since that estimation was performed (hasContextChanged()). 

Otherwise, the model proceeds to perform a positioning estimation, a process that is 

detailed further down. 
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If the context has not changed (hasContextChanged() = false), the model 

returns the last known position (contextDB.lastKnownPosition) to the consumer 

application, ending the positioning request in success and updating the contextDB. 

On the other hand, if the context has changed, a new positioning estimation must be 

performed. The onTimeOut() function determines whether the model is ready to perform 

positioning or not. A device is put on timeout when several failed positioning estimations 

are performed, which allows to save energy by avoiding unnecessary peripheral 

utilization, and to avoid flooding the network with positioning requests. 

If a device is in timeout, the current positioning request immediately ends in failure 

without triggering a new positioning request. Otherwise, the model processes the scenario 

feature vector (processFeatureVectors()), extracting relevant information and 

deleting duplicate and irrelevant elements, resulting in the contextual summary 𝑆. The 

model then uses the summary 𝑆 to determine the recommended positioning strategies 

vector 𝑅 via getRecommendations(),and request that the actual positioning is 

executed. 

The performPositioning() function determines how the positioning is 

performed, based on the summary 𝑆 and recommendations 𝑅. If the recommendation is 

to perform collaborative positioning, the model uses the neighbor nodes’ information 

stored in 𝑆 to perform trilateration. If the recommendation is to access any positioning 

strategy present in the environment, the positioning is delegated to the corresponding 

peripherals. 

Either way, the positioning attempt can end up in success or failure. In the event of 

success, the estimated position is stored in the contextDB and relied back towards the 

consumer application. For a failure, there can be two outcomes; either a new positioning 

request is scheduled, or the device is put on timeout. 

4.1.2. Sequence call diagram 

Figure 4-2 shows the sequence call diagram of the model’s behavior, which helps in 

understanding how the stages relate to each other and how the different functions are 

called. The positioning estimation begins with a consumer application requesting the 

position of a device (e.g., when FourSquare needs to know the position of its user after 

he/she attempts to log into a restaurant). Stage 2 (context information management) 

receives this request and asks stage 1 (context sensing) to assess the device’s 

environment and gather contextual information relevant to the positioning process, which 

is then formatted into a feature vector and sent back towards stage 2. 

 The sequence of a positioning estimation begins with a consumer application 

requesting the position of a device (e.g., when FourSquare needs to know the position of 

its user after he/she attempts to log into a restaurant). Stage 2 (context information 
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management) receives this request and asks stage 1 (context sensing) to assess the 

device’s environment and gather contextual information relevant to the positioning 

process, which is then formatted into a feature vector and sent back towards stage 2. 

 If the device has had a position estimated prior to the current request, and there have 

been no relevant changes to the device’s context (i.e., it has not moved since it acquired 

its last position, and that position was acquired within a time lapse determined by the 

consumer application’s relevance factor), stage 2 bypasses stage 3 and returns the last 

known position as the current position. 

 

Figure 4-2. UML sequence diagram of the model’s behavior 

If the context has indeed changed, or the device did not have a last known position 

to begin with, stage 2 checks whether the device is in “time out” or not. A device is put on 

time out when a given number of failed consecutive estimation attempts are reached, or 

a number of successful context-sensing requests yield similar results (i.e. no change, or 

not enough information to perform an estimation), after which the node is told to wait for 

a time 𝑡. If the device is in timeout, stage 2 will abort the estimation attempt; otherwise it 

will process the feature vector and assemble the contextual summary, and determine its 

corresponding recommendations, which are sent towards stage 3. 

Finally, during stage 3 the recommendation vector’s strategies are read in order of 

relevance, and the model attempts to execute the corresponding positioning strategy, 

requesting access to peripherals for self-positioning, or using the summary for 

collaborative positioning. If the position is successfully estimated, it is sent back towards 
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stage 2 and stored, and relied back to the consumer application. On the other hand, if the 

position is not acquired, a new positioning request will be scheduled (or the device will be 

put on time out, depending on the number of attempts). 

In the following sub-sections we describe in detail the context-aware positioning 

model, as well as the specific actions conducted during each of the stages that comprise 

it. In addition, Subsection 4.5 offers a thorough example scenario in which the model 

would prove useful. 

4.2. Stage I: Context Sensing 

The context sensing stage of the model involves sensing the physical environment of a 

particular device, in order to determine which contextual elements are present at the time 

a positioning request is requested, as well as interacting with these elements. In order to 

achieve this, a device must be able to detect, identify, and characterize contextual 

elements from both its physical environment and other devices in its vicinity, which can 

then be used to help describe and infer the target users’ location context. 

The contextual elements that we have taken into account when designing our 

positioning model (i.e., what we have defined as our context) include the communication 

protocols and technologies that the target device possesses, which determines its 

connectivity and directly affects the amount of neighboring devices that can be reached; 

the positioning strategies that are available in the environment, and that can be accessed 

by the device; and neighboring devices, which includes both mobile (e.g., smartphones, 

tablets, etc.), and stationary elements (e.g., access points, other devices with antennas). 

The specific communication protocols considered taken into account are TCP/IP and 

UDP (transmission control protocol/Internet protocol and user datagram protocol, 

respectively). The communication technologies are GRPS (general packet radio service), 

HSDPA (high speed downlink packet access), LTE (long term evolution), Wi-Fi, and 

Bluetooth. As for the devices that participate in the positioning process, the model does 

not require any particular type of device to work; as long as the participants can perform 

self-positioning and/or communicate with other devices, and have enough energy 

available, they can be part of the positioning process. 

The positioning model assumes the existence of an ad hoc communication 

infrastructure in the work scenario (e.g., in the example provided in Subsection 4.5, 

Freeside, the earthquake-stricken town) that implements unstable communication links 

among the nodes, e.g., a mobile ad hoc network (Figure 4-3). 

The model also considers that networking issues related to communication (such as, 

the discovery of neighboring devices and the management of 

connections/disconnections) are addressed by the communication protocol that 

implements these links, which is entirely dependent on the devices capabilities. For 
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instance, one device might have the Optimized Link State Routing Protocol (OLSR) [76] 

implemented, while another type of device might have the High Level MANET Protocol 

(HLMP) [136]. In other words, the positioning model runs into the application layer, and it 

uses the communication services provided by the networking layer. 

 

Figure 4-3. A device sensing its context 

Regarding the positioning strategies, several types are considered, including but not 

limited to, fingerprinting, RFID, trilateration, and GPS. Again, note that the positioning 

strategies available for a given device are independent from the model, and rely entirely 

on the device’s capabilities; i.e., if no GPS transceiver is present, the model will not 

recommend the use of GPS, even when it would be the preferred strategy otherwise. A 

basic illustration of the process of assembling the feature vectors is shown in Figure 4-4. 

The devices’ peripherals are also taken into account, since they determine which 

contextual elements can be sensed and interacted with. When the model requests an 

interaction with the environment, the associated peripherals convey the required data. For 

example, when the consumer application requests a positioning estimation, the model will 

use the device’s peripherals to assess the scenario; similarly, if the model requests 

performing dead-reckoning, the digital compass will return the device’s current direction 

and the accelerometer the movement speed. 

Subsection 4.5 provides a case of use of our model. In such example, this stage 

occurs at the beginning and end of each of the portrayed positioning attempts, specifically 

during (a) the context sensing performed by each of the example teams’ transceivers; (b) 

when communicating with other devices asking for positioning information for 

collaboration; and (c) when requesting access to or use of a particular positioning strategy 

present in the environment. In the sequence diagram shown in Figure 4-2, this stage is 

represented by the entity called “Context Sensing”, which interacts mainly with the entities 

https://tools.ietf.org/html/rfc3626
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“Environment”, which represents the real-world scenario, and “Context Sensing”, which is 

described in this subsection. 

 

Figure 4-4. Characterization of the environment 

During the context sensing stage, a device can perform the following tasks: (1) 

characterizing the physical environment and (2) interacting with that environment. These 

tasks are described in more detail in the following subsections. 

4.2.1. Characterizing the Physical Environment 

In order to allow the model to access and consume information from its device’s context, 

the latter must be represented in a simple and discrete manner. Thus, we have assembled 

the relevant contextual elements into two feature vectors; one that describes neighboring 

devices and another that describes the physical scenario. Each device assembles its own 

feature vector, and shares it with its neighbors when requested. 

4.2.1.1. Device Feature Vector 

The device feature vector (Table 4-1) stores the contextual information of a given 

device, based on its available peripherals and capabilities. It allows for describing devices 

in terms of both their capability to sense and access the environment, represented by the 

communication protocols, technologies, and peripherals they possess; and their own 

fitness to participate in the positioning process, represented by the positioning peripherals 

they have installed, whether they know their position or not, and a fitness score. This 

means a device is likely to behave differently depending on which contextual elements 

are available at a given time. 

Table 4-1. Device feature vector. 

Communication List of available communication protocols (i.e., TCP/IP and UDP). 
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Protocols 

Communication 
Technologies 

List of available technologies (e.g., GRPS, Wi-Fi, etc.). 

Positioning 
Capabilities 

List of positioning strategies (e.g., GPS, fingerprinting, etc.) that can be used. 

Peripherals 
A list of available sensors and actuators, each with their current measurements 
(e.g., GPS transceiver, Bluetooth, accelerometer, etc.) 

Position 
A list of a device’s last known positions, including their accuracy and positioning 
decay. 

Fitness 
An indicator of whether the device is apt to participate in (collaborative) 
positioning. 

Energy The device’s maximum and current energy levels. 

4.2.1.1.1. Fitness Indicator 

“Fitness” is a dynamic indicator that we have developed, which allows us to determine 

a device’s aptitude to perform positioning. The greater the fitness of a device, the more 

likely its positioning information could be useful during collaborative positioning. We have 

defined fitness as the product of a decay indicator, an accuracy modifier, a position switch 

(1 or 0), and an energy modifier. Formally, fitness is calculated as follows: 

F = D ∗ (A
Ai − 1

Ai
) ∗ P ∗

E

Emax
 (1) 

Where 𝐹 is the fitness score of a device, which can range from 0 to 100 (arbitrary 

units). 𝐷 is the decay of the last known position estimation. The parenthesis element of 

formula 1 represents the accuracy modifier, where 𝐴 is the accuracy requirement of the 

consumer application, and Ai the accuracy of the last positioning estimation (both 

percentages). P is a binary value representing whether the device knows its position or 

not (i.e., has a last known position). E is the current amount of energy, and 𝐸𝑚𝑎𝑥 the 

maximum energy level of the device, both represented as arbitrary units, and the division 

of both results in the fitness’ energy modifier. 

4.2.1.1.2. Decay Indicator 

Since the scenario is mobile, and thus highly volatile (i.e., most devices are moving), 

we have assigned a Decay indicator (𝐷) to the positioning estimations, in the range of 0 

to 100, representing the “validity” of these estimations as time passes and the devices 

move. Decay is represented by the following formula: 

D(s, t) = 100 − k ∗ ∑ si
t
i=1 , (2) 

Where D is the decay score, s is the speed of the device, t represents the time from 

the last positioning estimation, and k is a coefficient modifier, determined based on the 

type of node (for more on node types, refer to Subsection 5.1). 

The decay indicator (𝐷) of a device is initialized at a value of 100 whenever it 
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estimates its position successfully, and then it decreases steadily based on the user’s 

speed on the field. Once the decay reaches a threshold of 60, the model will begin 

requesting new positioning estimations, because it is assumed that the current position is 

no longer representative of a device’s true location. If the decay keep decreasing until 

reaches a threshold of 20, the node’s position is automatically set to unknown (𝑃 = 0). 

Figure 4-5-a shows the distribution of the decay of a positioning estimation for a single 

device over time. The blue line shows a stable decrease, which would only occur if the 

device has a fixed speed throughout the whole process; while the green line shows a 

staggering decrease, more similar to real world conditions in which the speed of the user’s 

varies over time. For more on decay, please refer to Subsection 5.1. 

 

(a) Decay Distribution (b) Accuracy Modifier Distribution 

 

(c) Accuracy Modifier Example (d) Fitness Distribution 

Figure 4-5. Fitness, Decay, and Accuracy Modifier distributions 

The accuracy modifier is a factor that allows us to apply a penalty to the fitness based 

on how far the accuracy of the last known position (Ai) is from the accuracy required by 

the consumer application (A). If the device has no last known position, the value of Ai is 

set at 1 to make the accuracy modifier equal to zero, which also makes fitness equal to 
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zero; otherwise, the value of Ai is set to the accuracy percentage of the last known 

position. 

Figure 4-5-b shows two distributions of the accuracy modifier. Our distribution is 

represented by the blue curve, which is close to a logarithmic scale, and allows us to apply 

only a small penalty to the fitness; whereas the green curve shows a linear distribution, 

which applies a huge range of possible penalties, depending on the Ai values. For 

instance, using our distribution, the accuracy modifier for Ai values of 40% and 60% with 

a requirement of A = 100% is roughly the same, 97.3% and 98.6%, respectively. 

Conversely, the linear accuracy modifier would yield modifiers of 40% and 60% for the 

same A and Ai values, far more punishing to the fitness score. Figure 4-5-c shows an 

example of the accuracy modifier values of our distribution through time. 

The energy modifier denoted by E and Emax works in a similar way to the accuracy 

modifier, but is a linear distribution, i.e., literally the percentage of energy the device has 

available. We opted for a linear distribution instead of a smoothed one because energy is 

an ever present concern for mobile devices. The lower the energy levels, the more 

punishing the modifier to fitness, and the less likely the device will be forced to participate 

in collaboration when its energy level is low. 

Finally, the P indicator works as a switch that allows the model to override any 

previous fitness value, effectively turning it into zero and forcing the device to perform a 

new positioning estimation. This is useful when the accuracy requirement of a consumer 

application varies over time, or when the user directly requests a positioning estimation, 

since it is much faster than waiting for the fitness score to decrease naturally. 

In general, devices with greater decay (i.e., lower 𝐷 values) and/or lower energy 

values would tend to have low fitness scores; on the other hand, devices with lower decay 

(i.e., greater 𝐷 values) and/or energy values yield higher fitness scores. Devices that do 

not know their position would have a fitness of zero (𝑖𝑓 𝑃 = 0 𝑜𝑟 𝐴𝑖 = 0, 𝑡ℎ𝑒𝑛 𝐹 = 0), since 

they would not contribute useful information during the positioning process or have too 

low energy levels to risk participation. 

Figure 4-5-d shows an example of the Fitness curve of a device. Note that the fitness 

is very similar to the decay curve shown in Figure 4-5-a; this is because fitness is strictly 

dependent on decay, but is adjusted by the accuracy and energy modifiers to reflect the 

state of a device during the positioning process. Thus, where decay dictates when a 

positioning estimation must be performed, fitness determines whether a device should 

attempt or participate in such a process. 

4.2.1.2. Scenario Feature Vector 

The scenario feature vector assembled by our model represents the immediate 

context-scenario of the device. This scenario feature vector brings together information 

from all accessible (and available) contextual elements in the devices’ proximity, allowing 
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a device to access that information afterwards, as required. 

In addition to the contextual elements from the surrounding environment of a device, 

this characterization also holds a list of the positioning strategies that can be accessed by 

such a device, as shown in Table 4-2. 

A given device possesses only one scenario feature vector at a time, which is updated 

each time it performs a new context sensing. This is done for ease of access and storage 

during later stages of the positioning process. 

Table 4-2. Scenario feature vector. 

Access Points List of access points available in a device’s context. 

Neighbors List of neighboring nodes available in a device’s context. 

Positioning Strategies List of positioning strategies available in a device’s context. 

A device would update its scenario feature vector each time it attempts to perform 

positioning, effectively assembling a map of the assets in its surrounding area; detecting 

access points, available positioning strategies, and asking for its neighbors’ device feature 

vectors. Neighbors that are fit to participate in collaboration would send back their own 

device feature vector, while those that are not able simply would not take any actions. 

Although access points are not “devices” in the sense we have defined in this thesis, 

they are also represented by using a device feature vector assembled on the fly, which 

only saves information related to whether the access points know their position or not, and 

it is assumed that they have infinite energy and a 100 fitness score. This way, access 

points are treated as stationary devices, and these are always preferred over mobile 

neighbors when performing collaborative trilateration, as long as they have known 

positions. 

Algorithm 4-2 shows a simplified version of the requestContextSensing() 

component of the model, which is in charge of performing the scenario-sensing and the 

assemblage of the feature vectors for the device (𝐷) and scenario (𝐹). To this end, each 

supported peripheral must be activated individually, in order to determine the availability 

of potential collaborators and positioning strategies, and all the information collected 

stored in the device and scenario feature vectors. 

The main idea of the algorithm is that for each supported peripheral, a discover signal 

or “ping” is broadcast to the environment, and if a response is received, an action is taken 

depending on the type of peripheral. 

For visualization purposes, instead of showing the activation of each peripheral, we 

have grouped them into three categories; communication, navigation, and positioning. For 

the communicationPeripheral category, if the device possesses the peripheral in 

question, it is added to the feature vector 𝐷. 
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In addition, any device that responds to the ping is added to the neighborList, 

which stores all neighboring devices and access points, independent of their fitness, which 

is in turn added to 𝐹. In the case of the navigationPeripheral category, if the device 

possesses the peripheral, it is immediately added to 𝐷. Finally, for the 

positioningPeripheral category, if the device possesses a positioning capability 

transceiver (or algorithm), it is automatically added to feature vector 𝐷, and if its 

corresponding positioning strategy is available in the scenario (P.ping == true), it also 

added to 𝐹. 

Algorithm 4-2. Assembling the device and scenario feature 

vectors (C++ pseudo-code) 

 

scenarioFeatureVector requestContextSensing(): 

deviceFeatureVector D 

 scenarioFeatureVector F 

 for each communicationPeripheral C in device 

  D.add(C) 

  neighborList L ← C.ping() 

  F.addNeighbors(L) 

 for each navigationPeripheral N in device 

  D.add(N) 

 for each positioningPeripheral P in device 

  D.add(P) 

  if (P.ping)//if strategy P is available in scenario 

   F.add(P) 

 return [D, F] 

 

After a device has finished scanning its environment, it will populate its scenario 

feature vector with the pertaining information, storing it in an Extensible Markup Language 

(XML) file. We decided to use an XML representation not only because it is a standard 

format, but also because it is flexible and allows for information integration using well-

known mechanisms. 

Thus, several feature vectors can be integrated into a large one, involving low 

computing effort. Given the diversity of devices participating in outdoor activities, counting 

on a common representation of the shared information is mandatory to ensure data 

interoperability. In this sense, the use of XML to represent the shared information seems 

to be the best option. An extract of the summary of a device is shown in XML format in 

Algorithm 4-3. 

Once the scenario feature vector of a device has been completed, the assorted XML 

file is sent towards the management of contextual information (presented in Subsection 

4.3) for processing. 

Algorithm 4-3. Extract of the representation of the device and 

scenario feature vectors (XML) 
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<?xml version="1.0" encoding="utf-8"?> 

 <data> 

  <device> 

   <commProtocols> 

    <protocol>0</protocol> 

   </commProtocols> 

   <commTechnnologies> 

    <technology>1</technology> 

    <technology>3</technology> 

    <technology>4</technology> 

   </commTechnnologies> 

   <positioningCapabilities> 

    <posStrategy>0</posStrategy> 

    <posStrategy>5</posStrategy> 

    <posStrategy>6</posStrategy> 

    <posStrategy>7</posStrategy> 

   </positioningCapabilities> 

   <peripherals> 

    <peripheral></peripheral> 

   </peripherals> 

   <position> 

    <latitude>40.748440</latitude> 

    <longitude>-73.984559</longitude> 

   </position> 

   <fitness>67</fitness> 

   <energy>2445</energy> 

  </device> 

  <scenario> 

   <neighbors>//includes devices and Access points 

    <device>...</device> 

    <device>...</device> 

    ... 

   </neighbors> 

   <positioningStrategies> 

    <posStrategy>0</posStrategy> 

    ... 

   </positioningStrategies> 

  </scenario> 

 </data> 

 

4.2.2. Interacting with the Physical Environment 

This task deals with the use of a device’s communication and navigation peripherals to 

interact with the environment. It is usually requested during the context sensing and 

context-aware positioning stages, as a means to detect surrounding assets, to use 

specific positioning strategies, or to communicate with neighboring devices. Figure 4-6 

shows an interaction between a device and GPS satellites, after which it obtains its 

position, and stores it for later use. 

The considered communication peripherals include all types used to send or receive 
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information, including Global System for Mobile Communications (GSM), Wi-Fi antennas, 

RFID card readers, and GPS transceivers. These are used to send and receive 

information among neighbors and access points, and indicate which devices can 

communicate with each other, since only devices that share communication channels can 

“talk”. For example, two devices with Wi-Fi capabilities can safely exchange information 

through that channel; however, any data they send will not be visible to devices without 

Wi-Fi, even if these devices are able to communicate with others through other channels 

such as GSM. 

 

Figure 4-6. Interacting with the physical environment 

As for navigation peripherals, they include the magnetometer or digital compass, used 

to determine the general direction of the device; the accelerometer, used to detect 

movement and measure traveled distances; and a gyroscope, used to determine the 

relative position of the device with respect to the plane. These peripherals are fairly 

common in most modern smartphones, but older devices may not possess them. Their  

main use is to provide a device with a degree of relative positioning, by using dead-

reckoning (discussed further at the end of this Chapter) when no other positioning 

strategies are available and a device knows its last position. 

Any information gathered during this task is sent back towards the requesting entity, 

generally the context sensing component during the sensing of the physical scenario 

(presented in Subsection 4.2.1), or during the execution of the context-aware positioning 

component (explained in Subsection 4.4). 

4.3. Stage II: Management of Contextual Information 

This is the second stage of the model, and the key part of the context-aware positioning 

process provided by it. During this phase, the contextual elements from a device’s context 
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are assessed and processed in order to eliminate redundant and irrelevant information 

related to the positioning of a device. 

When a consumer application requests a positioning estimation, the contextual 

information manager sends a request to the context sensing. Based on the information 

gathered from the device’s surroundings, it constructs a set of positioning strategies 

recommendations. These recommendations consist on a list of the positioning strategies 

that can be accessed by the device, prioritized according to the device’s current context 

and expected energy consumption level. The reference values for this last feature were 

obtained from several studies reported in the literature. 

In order to assemble the recommendation set, the considered positioning strategies 

are treated as classes and represented as a vector. Using the contextual information 

previously gathered, a set of randomized decision trees are used to assign scores to each 

positioning strategy in the vector, representing the likelihood of a device belonging to a 

class (i.e., to a positioning strategy). The higher this score, the greater the estimated 

suitability of the associated positioning strategy given the device’s context. 

Three tasks can be performed during this stage: (1) request sensing the physical 

environment; (2) process feature vectors and assemble recommendations; and (3) 

manage positioning information. These tasks are described in detail in the following 

subsections. 

4.3.1. Request Sensing the Physical Environment 

This task is triggered when the consumer application of a device requires a positioning 

estimation to be executed, or when a device’s decay indicator of a known position has 

crossed the established threshold and thus is no longer reliable. 

The actions of this task are very straightforward. The contextual information manager 

sends a context-sensing request to scan the environment and assemble the device and 

scenario feature vectors. The task is completed when the context sensing component 

sends back a raw XML file containing the feature vectors described in Subsection 4.2, 

which are then directed towards the next task for processing. 

4.3.2. Process Context Feature Vectors and Assemble Recommendations 

During this task, the scenario feature vector is processed, in order to extract relevant, 

ignore irrelevant, and update redundant information, by means of low-level data fusion 

[64]. The model uses the raw contextual information obtained during the context sensing 

stage, along with any other data stored from previous positioning attempts, in order to 

produce an up-to-date representation of the scenario.  Next we explain the process 

followed by CAMPOS to obtain the recommendation vector. 



60 
 

4.3.2.1. Data Fusion 

The data fusion is a straightforward process, which varies depending on which 

contextual elements are being assessed. Since most of the devices’ features are static, 

the data fusion concerning peripherals, communication protocols, technologies, available 

positioning strategies, and energy levels, is simply an update over the last known data 

that occurs only when changes are detected. 

This is because it is highly unlikely that a user would physically add or remove 

additional hardware elements while on the field (e.g., adding a GPRS antenna), but it is 

still flexible enough to allow these elements to change through time (e.g., energy levels), 

or to be unavailable due to external conditions (e.g., a RFID card reader becomes unable 

to read nearby tags, or a GPRS base station remains temporarily unreachable). 

When a new scenario feature vector is processed, the first step is to prune neighbors 

that are not useful for collaborative positioning. To this end, the model automatically 

discards all nodes with fitness scores below a threshold of 60 (on a scale of 1–100), and 

the remainder are used as input. Note that this threshold is dynamic, and it can be lowered 

by the model in subsequent positioning attempts if it is unable to find enough candidates 

using that threshold. 

For example, if the model chooses collaboration as the only possible positioning 

option, and no nodes are found at a fitness threshold of 60, the next positioning attempt 

of the model would be performed at 55; if only one node is found at that level, the next 

attempt will be made at a threshold of 50, and so on, until an adequate amount of nodes 

is found. 

Conversely, if the average fitness of the pruned nodes is over the current threshold, 

the threshold for the next positioning attempt will increase accordingly. If the threshold 

ever decreases to 20, the node’s position is automatically set to unknown, and the 

threshold is reset to its initial value of 60. 

The model then compares and updates any information changes between the recent 

contextual and stored data. The structure of the XML feature vectors allows for a rapid 

comparison of discrepancies between a node’s current and previous scenario information, 

facilitating this process. If any discrepancy is found, it is immediately updated. 

For instance, if we have information from node 𝑁7 in storage, and receive new 

information from context sensing (𝑁7
′), the model will probably detect changes only in the 

positioning capabilities, energy levels, and position features, since they change over time. 

On the other hand, the communication protocols, communication technologies, and 

peripherals features are likely to remain the same, unless direct action from the user is 

taken to shut them off, in which case the data is updated. 

The remaining nodes are then ordered based on their fitness scores, for easing the 
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access. This resulting subset should contain only viable candidate nodes for collaboration, 

essentially a summary of the collaboration work context of a device. This summary is in 

fact a trimmed version of the original scenario feature vector, which only contains the 

positioning information of viable neighbors, as well as the positioning strategies available 

in the target device’s current context. 

Algorithm 4-4 details the processing of the device and scenario feature vectors to 

construct the summary 𝑆. As explained above, the first step is updating the status of the 

stored device feature vector (contextDB.deviceFeatureVector) to match the 

current estimation’s features from feature vector 𝐷. 

Then, the positioning strategies from the scenario feature vector 𝐹 are assigned to 

the summary, and the devices are pruned based on the fitness threshold relative to the 

current positioning estimation (which is determined based on the amount of estimation 

attempts that have been performed). 

Algorithm 4-4. Processing the device and scenario feature 

vectors (C++ pseudo-code) 

  

scenarioSummary processFeatureVectors(deviceFeatureVector D,  

scenarioFeatureVector F): 

 scenarioSummary S 

if (contextDB.deviceContextHasChanged(D)) 

contextDB. updateDeviceFeatureVector(D) 
 S.deviceFeatureVector ← contextDB.deviceFeatureVector 

 S. scenarioFeatureVector.posStrategies ← F.posStrategies 
 S.scenarioFeatureVector.neighborlist ← getFitnessPrunedDeviceList(F) 

  return S 

 

4.3.2.2. Assembling the Recommendation Vector 

Once the data fusion is finished, the next step involves assembling the 

recommendations using the information from the summary. To this end, the positioning 

strategies are treated as classes, and represented as a vector (Table 4-3). Each strategy 

in the vector has an associated score, which represents the likelihood of a device 

belonging to that class (i.e., positioning strategy), given its contextual information.  

The higher this score, the greater the estimated suitability of the associated 

positioning strategy. All scores must add up to 1.0, regardless of the number of positioning 

strategies observed by the model. 

A total of eight positioning strategies have been considered when designing 

CAMPOS. Five of these strategies are dependent on the scenario and the devices’ 

positioning capabilities, i.e., self-positioning strategies: GPS, A-GPS, Cell-ID, 

fingerprinting, and RFID (S1 through S5). 

Table 4-3. Example of a recommendation vector. 
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Strategies S1 S2 S3 S4 S5 C1 C2 DR 

Score 0.35 0.15 0.05 0.10 0.30 0.0 0.00 0.05 

Two additional strategies can be estimated directly by the model by using information 

from the summary, i.e., collaborative positioning strategies: triangulation, and minimum 

bounding rectangle (C1 and C2, respectively). 

Finally, dead-reckoning (DR) is a self-positioning strategy that uses input from non-

positioning-specific peripherals as well as stored positioning information to guess the 

current position of a device. 

Any number of additional positioning strategies can be added to our model without 

restriction, but retraining is necessary for the model to consider them during the 

classification process. 

In order to build the set of positioning recommendations, the model attempts to 

determine the suitability of the positioning strategies, by using a randomized decision tree. 

Thus, each time the model attempts to classify a device (i.e., to determine its best 

positioning strategy choice), it picks a “remaining” attribute from the device’s associated 

scenario feature vector at each node expansion. 

A categorical feature (e.g., positioning capabilities) is considered “remaining” if the 

same categorical feature has not been chosen previously in a particular decision path, 

starting from the root of tree to the current node. However, continuous features (such as 

fitness or current energy level) can be chosen more than once in the same decision path, 

and each time that such a feature is chosen, the threshold is determined randomly. 

Depending on which decision path is chosen in each decision node, the scores of the 

recommendation vector’s positioning strategies are modified. Once all the attributes from 

the device’s feature vector for such a scenario have been chosen (i.e., there are no 

remaining features), the recommendation vector is considered to be assembled. 

Figure 4-7 shows an example of the process of assembling a recommendation vector 

using a set of randomized decision trees. 𝑋 represents the input of the tree, i.e., the 

device’s associated scenario feature vector. 𝜑1 and 𝜑𝑛 represent two different random 

decision trees, and 𝜑𝑖 = (𝑌 = 𝑐|𝑋 = 𝑥) represents the probability of obtaining the 

recommendation set 𝑌 given feature vector 𝑥. A total of ten randomized trees are used to 

assemble the recommendation vector, by averaging their individual scores. 

Figure 4-8 shows an example of a random decision tree, fully grown. If we were to 

use this type of decision tree, our decision process would be heavily dependent on 

chance, since once a condition is met (or not met), we would automatically be unable to 

access any other cut condition that is a child of the not chosen branch. For instance, if the 

device has more than 63%, it would follow the right branch of the tree from Figure 4-8, 

entirely missing the left branch fingerprinting, GPS, and Cell ID positioning strategies, 

even if the device is capable of accessing those strategies. 
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Moreover, some features are closely related, such as having an accelerometer, digital 

compass, gyroscope, and a last known position, all of which lead towards dead-reckoning. 

In a random tree these features can appear in any order, and if one of them is not met 

then dead-reckoning would be ruled out immediately. 

 

Figure 4-7. The model’s recommendation assembling. 

 

Figure 4-8. Example of a random decision tree 

Thus, we use randomized decision trees, in which the tree grows one node at a time, 

randomly choosing the current condition from the pool of available features, whether the 

past condition was met or not, until a positioning strategy (i.e., a leaf node) is chosen. 

Given that the cut conditions of the branch nodes are selected at random (using the 

guidelines explained earlier in this subsection), the order in which these conditions are 

chosen is decisive when determining the recommendation vector scores of a specific tree. 

This means that a device possessing a GPS transceiver, a fingerprinting app, and 

enough energy available, would immediately prefer whichever positioning option that 

appeared first, regardless of its contextual suitability. Thus the need to use averaging. By 
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letting several trees (𝑃𝜑𝑖
) cast their votes, we ensure variety in the final recommendation 

vector over the course of several attempts (i.e., there will be more than one option), while 

statistically allowing the better ranked positioning strategies to remain as the preferred 

options. An example of a randomized tree is shown in Figure 4-9. 

 

Figure 4-9. Example of the randomized decision trees used by our model 

Table 4-4 shows a few examples of scenario feature vectors, each representing the 

sensed context of a device at a given time. These vectors were used as training data for 

the model, in order to tailor the thresholds of the decision tree nodes. Note that all of the 

scenarios show the collaborative and dead-reckoning positioning strategies (C1, C2, and 

DR, respectively) as available, independent of other conditions. 

This does not necessarily imply that these strategies can readily be used, only that 

they are potentially available to the owner of the vector. To illustrate this fact, let us think 

of a bus station; although a certain bus line is known to pass through the station, there is 

no guarantee that a bus from that specific line will be waiting for you exactly when you 

need it. 

Table 4-4. Example of a scenario feature vector training data. 

 Detected Access Points* Detected Neighbors Available Pos. Strategies 

Scenario 1 [Dev 1, Dev 2] [Dev 3, Dev 4, Dev 5] [S1, S2, S3, S4, S5, DR] 

Scenario 2 [Dev 1] [Dev 3] [C1, C2, DR] 



65 
 

Scenario 3 [ ] [Dev 4, Dev 5, Dev 6, Dev 7] [S1, C1, C2, DR] 

Scenario 4 [Dev 1, Dev 2] [Dev 3, Dev 5] [S1, S4, C1, C2, DR] 

Scenario 5 [Dev 1, Dev 2, Dev 8] [ ] [C1, C2] 

* Access points are represented as devices by the model. 

Each example scenario feature vector has an associated training recommendation 

vector tailored to its context. These vectors have been assigned scores for each of the 

positioning strategies supported by the model. These scores were determined based on 

both results from controlled real world experimental and from literature, and represent the 

suitability of a strategy given a particular context. 

Table 4-5 shown examples of training recommendation vectors, which correspond to 

the scenario vectors from Table 4-4. Thus, given the Scenario 3 and Recommend 3 

vectors, the model knows that the most suitable option for positioning given Scenario 3’s 

context is S1 (i.e. GPS), followed by DR (i.e. dead reckoning); and will likely assemble 

those recommendations for similar scenarios. A score of zero means that a particular 

strategy is unavailable, due to being inaccessible to the device, or unreachable for any 

reason. 

Table 4-5. Example of a recommendation vector training data. 

 S1 S2 S3 S4 S5 C1 C2 DR 

Recommend 1 0.35 0.15 0.05 0.10 0.30 0.00 0.00 0.05 

Recommend 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Recommend 3 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.20 

Recommend 4 0.70 0.00 0.00 0.10 0.00 0.15 0.05 0.00 

Recommend 5 0.00 0.00 0.00 0.00 0.00 0.55 0.45 0.00 

Finally, Table 4-6 shows examples of training device feature vectors, representing 

both access points and neighboring devices portrayed in Table 4-4. The layout of the 

vector is simple: if a device possesses a given element, then it is assigned a value of one; 

otherwise, it is assigned a zero. Special values, such as energy and fitness, are 

represented in arbitrary units. 

For example, the device D3 (shown in Table 4-6) has access to both TCP/IP and UDP 

protocols, and also to Wi-Fi and Bluetooth. Moreover, it has a GPS transceiver and RFID 

card reader, a digital compass, and an accelerometer. Additionally, it knows its position 

(the actual accuracy is irrelevant at this stage, and it is to some extent addressed by the 

fitness), a fitness score of 56, a battery capacity of 2550 mAh with 3.85 V (equivalent to 

9817.5 mWh), and 87% battery left (i.e., current energy pool is roughly 8541.23 mWh). A 

basic analysis of the energy consumption of mobile device (particularly smartphones) 

attempting communication with neighboring devices is presented in [111]. For more 

information on energy consumption, please refer to Subsection 5.1. 

Another example to consider is D1, which represents an access point. Its device 
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feature vector shows that it has no positioning strategies available, and yet it knows its 

position. This is due to the fact that most router and similar access points have embedded 

technologies that allow them to estimate their positions using IP address location systems, 

which are based on algorithms that determine the location of an IP address by examining 

characteristics of the traffic coming from the address, or by looking at the addresses' 

associated data [45]. 

Table 4-6. Device feature vector training data example. 
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D1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 100 10 10 

D3 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 56 8.5 9.8 

D4 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 79 7.6 9.7 

D5 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 9.3 9.8 

D6 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 2.7 3.6 

* Positioning and communication peripherals not featured, since they are part of their 

assorted strategy and protocol or technology. 

All of the training data is inputted and processed during a single training stage that is 

unique to a given set of positioning strategies. The training determines the values of the 

thresholds for each of the feature vector’s attributes, and their effect over the 

recommendation vector’s strategy scores. After finishing its training phase, the model is 

capable of choosing the most suitable positioning strategy available to a device, given its 

current context. As we mentioned earlier, adding further strategies requires retraining of 

the model to work. 

Once the summary from the data fusion phase and the recommendation vector have 

been assembled, they are stored locally on the target device, for future reference. Thus, 

the next time the consumer application sends a positioning request to the model, the 

context information manager component will assemble a new summary and compare it 

with the latest stored summary, in order to check for changes in the navigation context of 

the device, i.e., whether the device has moved. 

If the model determines that the navigation context has not changed (i.e., the user 

has not moved), the manager skips the context-aware positioning stage, and just sends 

back the last estimated position (if available) to the consumer application, and updates 

the stored data with the newly obtained where required. Otherwise, the summary and 

recommendation vector are sent towards the context-aware positioning component, and 

the positioning estimation is performed as usual. 
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4.3.3. Manage Positioning Information 

This task is the final phase of the model, and it is triggered as a result of a successful 

positioning estimation made by the context-aware positioning component. The actions 

performed during this task are limited only to directing the device’s estimated position 

towards the consumer application, and also storing it for later use. 

Once the context-aware positioning component has acquired a position, either though 

collaboration or on its own, the resulting data is redirected towards the contextual 

information management component for the final phase of the positioning process. The 

positioning data is then stored in the model’s database, and redirected towards the 

consumer application. 

4.4. Stage III: Context-Aware Positioning  

This is the final stage of the model, and the one in charge of performing the actual 

positioning estimation. The context-aware component uses the information stored in the 

summary and the recommendations assembled by the contextual manager component in 

order to either request the use of positioning peripherals for self-positioning, or use the 

information from the summary to calculate the target’s position through collaboration. 

If the recommendation is to perform self-positioning, i.e., to access any of the 

positioning strategies embedded in the environment (strategies S1 through S5), then the 

context information manager would receive a request to access the corresponding 

peripherals (e.g., a GPS transceiver), in order to determine the position of the device. Note 

that the model only determines which strategy is to be used, and it has no control over the 

outcome of the estimation. Whether the peripherals actually manage to obtain the desired 

positioning estimation or not is entirely dependent on the device’s capabilities. 

On the other hand, if the recommendation is to perform collaborative positioning, the 

context-aware positioning component would take the information from the summary and 

the recommendation vector, and then use trilateration to determine the position of the 

target device. Unlike self-positioning, this process is entirely dependent on the model, 

because the context-aware component does all the calculations based on the stored 

contextual information from the summary. No additional peripheral utilization is required, 

unless too much time has passed since the last reading; in that case, a new context-

sensing must be made, and the while process starts over. 

When required, the model will attempt to perform positioning using the recommended 

candidate strategies, according to the contextual information and priorities included in the 

summary. Two tasks are performed during this stage: (1) request self-positioning, and (2) 

perform collaborative positioning. These tasks are explained in the next subsections. 
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4.4.1. Request Self-Positioning 

If a device using the model has positioning capabilities of its own, it is very likely that the 

best rated recommendation will be a self-positioning strategy, i.e., any of the strategies 

available in the physical scenario. In such a case, the context-aware component would 

send a request to use the respective positioning peripherals, and expect the resulting 

positioning information. For example, devices with GPS transceivers or RFID readers 

could activate them, while Android-based smartphones could use their embedded Wi-Fi 

positioning system or A-GPS to estimate their positions. 

Dead-reckoning (Figure 4-10), also known as deduced reckoning or DR, a special 

type of self-positioning, is the process of calculating one’s current position by using a 

previously determined position, or by fixing and advancing that position based upon 

known or estimated speeds, over elapsed time and course [10]. 

 

Figure 4-10. Accuracy degradation of Dead-reckoning over time 

In the context of our model, dead-reckoning is applied using the list of known 

positions, in conjunction with the navigation peripherals, in order to smooth transitions 

between different positioning strategies, since there could be a “blind” positioning elapsed 

time between using two different strategies, or between two consecutive estimations of 

the same strategy.  

However, DR is subject to cumulative errors, and requires means to correct its 

estimations by using a proper positioning strategy [10]. It is by no means reliable for use 

over long periods, and it is relied on only to offer positioning consistency during “blind 

gaps”, when the device does not have access to a proper positioning strategy. The 

proposed model strictly ignores all nodes using dead-reckoning during the collaborative 

positioning process. 

It is important to note that the actual self-positioning conducted by a device is 

transparent to our model, i.e., the model recommends using a positioning strategy, but it 

is up to the device’s peripherals to actually acquire the desired position estimation. 

Provided all goes well, the device’s position is obtained and sent towards the 
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contextual information management component for processing. In the event of a time-out 

(i.e., the strategy controller was reached, but no positioning estimation could be obtained), 

a new request is sent by the model. If this second request also fails, the model requests 

the estimation to the peripherals associated to the second most suitable strategy from the 

recommendations vector, and so on. If a total time of 30 seconds passes and no 

positioning estimation has been obtained, or if the device has run out of available 

strategies (i.e., it has tried to contact all of them unsuccessfully), the positioning estimation 

process is halted, and the model puts all of the device’s positioning requests on hold for 

up to one minute while waiting for the context to change. 

4.4.2. Request Collaborative Positioning 

If the recommendation is to perform collaborative positioning, the model will use the 

contextual information of the summary to select viable neighboring devices with known 

positions as reference points. Then, it proceeds to estimate the device’s position using 

either tri-lateration, or minimum bounding box approximation (MBB) [9]. 

Lateration, discussed broadly in Subsection 2.1, is a type of triangulation in which the 

position of a resource is estimated by measuring its distance to several reference points 

with known positions. Using the direction or length of the vector drawn between the 

location to be estimated and the reference points, it is possible to calculate the absolute 

position of the desired resource [162]. At least three reference points are required to 

perform tri-lateration, although more points could be used to improve the accuracy of the 

estimation, if available (multi-lateration). An advantage of this method is that it involves a 

small setup effort [69]. 

Figure 4-11-a shows an example of tri-lateration performed by the model during a 

simulation. The green nodes know their positions with fitness scores over the threshold of 

60; red nodes are those that do not know their positions, or that have a low fitness score 

and therefore cannot collaborate with the target. The solid lines link the target to the nodes 

chosen as reference points, while the dotted lines link nodes that have been 

acknowledged, but are not part of the collaboration process. 

The smallest or minimum bounding box is, for a point set (𝑆) in 𝑁 dimensions, the 

box with the smallest measure (area, volume, or hypervolume in higher dimensions) within 

which all specified points of 𝑆 lay. The MBB of a point set is the same as the MBB of its 

convex hull, a fact that may be used heuristically to speed up computation [9]. The term 

“box” comes from its usage in the Cartesian coordinate system, where it is indeed 

visualized as a rectangle in two dimensions (2D), a rectangular parallelepiped in three 

dimensions (3D), etc. 

Figure 4-11-b illustrates an example of MBB applied to 2D positioning. Using as many 

nodes that know their positions as possible, a series of rectangles is formed, each 

containing at least three nodes. Then, line segments are traced from the centers of these 
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rectangles to each other, forming an irregular polygon (in this case, a triangle), which 

represents the area where the node is likely located. In some cases, this polygon provides 

better accuracy than using tri-lateration. However, the cost of calculating this polygon 

increases in direct relation with the number of rectangles formed. 

Although this strategy was tested during early stages of the model, it was put on hold 

due to the vast additional research effort required to apply it to positioning without 

increasing the energy and computation requirements. The complexity of the MBB 

algorithm is of 𝑂(𝑛 log 𝑛) for 2D and 𝑂(𝑛3) for 3D, with the added requirement of finding 

the rectangle intersection elevating it further to 𝑂(𝑛2 log 𝑛) for 2D. 

  

(a) Trilateration (b) Minimum Bounding Rectangle 

Figure 4-11. Collaborative positioning strategy options 

In the following Chapter, we discuss the experiments performed during the 

development of the proposed model in depth, describing the simulated scenarios as well 

as their components, and providing technical insights on how the simulations were 

constructed and tailored to emulate a real world environment. Using these simulations, 

we attempt to answer the research questions stated in Section 1.2. 

4.5. Using the Model in a Specific Scenario 

In order to help the reader understand the sequence of events that occur when the devices 

use the model, as well as the interactions between devices and environment, we have 

assembled an example of a disaster-relief scenario, in which different devices attempt to 

perform positioning while using the model under different conditions and restrictions. 

To this end, we have catalogued devices into two roles based on the positioning 

capabilities they possess. These devices can either be beacons, or non-beacons. 
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Beacons can access at least one positioning strategy present in the scenario (e.g., GPS), 

and thus they can perform self-positioning. On the other hand, non-beacons have no 

innate positioning capabilities, and therefore they can only estimate their positions through 

collaboration (i.e., trilateration). For more information on the roles and behavior of the 

devices, refer to Subsection 5.1. 

Let us assume the existence of an imaginary town called Freeside, which is a well 

developed semi-rural town that holds a few governmental, residential, commercial, and 

educational infrastructures, as well as some amenities and parks. One of the town’s perks 

is that it offers free Wi-Fi to all households of their population of 3,000 people, as well as 

several autonomous Wi-Fi hotspots throughout the town. 

Sadly, Freeside has been hit by a 7.9 Richter scale earthquake. There has been 

extensive damage to its building, transport, and power structures, and although most 

civilian survivors have been evacuated, several more are still trapped under debris and 

collapsed buildings. In order to save them, a number of search and rescue teams have 

been deployed into the disaster zone. 

Each team has been assigned a block or a set of blocks, depending on their size, and 

the teams scour the debris until they find survivors or not, and then they proceed to their 

next assignment. The rescue teams use geo-tagging to mark the buildings (or blocks) they 

are probing in a digital map, to show other teams whether there are survivors still trapped, 

the building is unstable and therefore it must be avoided, or it is clean and can be safely 

passed in subsequent searches. 

Figure 4-12-a shows Freeside’s town layout. Note that this section depends strongly 

on color coding; reading it in black and white is not advised. There are two Wi-Fi hotspots 

still working within the town, represented by yellow router icons. GPS, represented by a 

green satellite icon on the upper left side of the map, can still be used because the 

satellites were unaffected by the earthquake. 

The relief-effort headquarters has been placed on the lower right section of the map, 

represented by a tent, and an antenna represented by a green icon has been placed next 

to headquarters to allow communication between command and rescue teams. 

A total of five rescue teams have been deployed, represented by firemen icons in red, 

green, blue, purple, and orange. The teams are comprised of three to seven people, 

trained rescuers, firemen, military personnel, and volunteers. Each team carries a geo-

tagging device used to mark buildings, which utilizes our model to perform the positioning 

estimations. In a real world scenario, far more devices would be deployed; we have 

included only five in our example for illustrative purposes only. Typically, at least a device 

mobile per team is required to keep communication and coordination among them and 

also with the command post. 

Figure 4-12-b shows the connectivity between the devices while on the field, i.e., the 
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quality of the communication link between these devices. Connectivity is important 

because it is directly related to the response time and accuracy of the estimations; a good 

signal quality would yield more accurate measurements of distance (for triangulation) and 

lower delay times (for GPS utilization), while an unstable signal could require additional 

communication attempts or increase the error of the measurements due to environmental 

effects. 

 

(a) Layout (b) Connectivity 

Figure 4-12. Example of a MANET formed by rescue teams in a disaster scenario 

The solid lines between nodes represent a good signal quality, while a dotted line 

represents unstable signals. Note that the distances and connectivity between rescue 

teams and reference points in Figure 4-12-b is not on scale, and they are shown as such 

for illustration purposes only. Some of the devices appear to be within range of others, but 

there is no connection between them; this is purposely done in order to emulate urban 

conditions, in which buildings and other obstacles could render a signal useless. Table 4-

7 presents a summary of the teams’ connectivity, as well as their capacity to perform 

positioning given their current context. 

Table 4-7: Viability of positioning for the deployed teams  

 # of Neighboring Devices Positioning Capabilities 

Good Signal Unstable Signal GPS Collaboration 

Red Team 2 1 Yes Yes* 

Green Team 6 1 Yes Yes 

Blue Team 3 0 Yes* Yes 

Purple Team 1 1 No No 

Orange Team 2 2 No Yes* 

* Connectivity with at least one transceiver is unstable, which translates into lower accuracy 

for the positioning estimation. 
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Now, let us return to our example scenario. Suppose that it is time for a change of 

shift, and headquarters command radioed all teams to update their positions and status. 

Each team would then use their devices to attempt to estimate their current position in 

order to do so. For ease of understanding, we assume that all teams will attempt to 

perform positioning simultaneously, during the course of several attempts. This is for 

visualization purposes only, because real world scenario devices perform asynchronous 

positioning attempts based only on their user’s needs. 

Additionally, the positioning attempts take place in span of seconds, so movement 

from the teams will not have a great impact over other teams’ positioning attempts during 

collaboration. Table 4-8 summarizes each of the attempts, showing the current status of 

the teams’ positions, the actions to be taken during subsequent attempts, and the result 

of executing the action. 

At the beginning of the first positioning attempt of the teams, none of them knows 

their position. Thus, they attempt to use their mobile devices to update their status, by 

sensing the environment and detecting the elements pictured in Figure 4-12-b and 

summarized in Table 4-7 (i.e., for Green Team, there is GPS available, and six good 

neighbors and one unstable neighbor for collaboration). 

Table 4-8: Status of the team’s positions during several attempts. 

# Attempt Red Green Blue Purple Orange 

1st 

Status Unknown Unknown Unknown Unknown Unknown 

Action GPS GPS GPS (faulty) N/A N/A 

Result Acquired Acquired Reattempt Reattempt Reattempt 

2nd 

Status Known Known Known (faulty) Unknown Unknown 

Action N/A N/A Collaboration N/A Collab. (faulty) 

Result N/A N/A Acquired Reattempt Reattempt 

3rd 

Status Known Known Known Unknown Known (faulty) 

Action N/A N/A N/A N/A Collab. (faulty) 

Result N/A N/A N/A Hold Hold 

4th 

Status Known Known Known Unknown Known (faulty) 

Action N/A N/A N/A N/A N/A 

Result N/A N/A N/A Hold Hold 

During the first positioning attempt, all teams but Purple have the potential to perform 

positioning. Purple team has no GSP access, nor enough neighbors for collaborative 

trilateration. However, since none of the teams know their position at the time, 

collaborative positioning is immediately ruled out, and GPS is asserted as the only viable 

option given the teams’ current context. 

Therefore, the Red, Green, and Blue use GPS, while Orange and Purple must 

reattempt the sensing in order to try detecting potential changes in their context. The Red 

and Green teams receive their estimated position without issue, but the Blue team’s 

positioning error is too great to be useful (due to the unstable link, which represents 
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negative environmental conditions), and it must perform a new estimation. 

During the second attempt, the Red and Green teams already know their positions, 

and their context has not changed (i.e., they have not moved), so their current position is 

updated using the latest stored. The Blue team, on the other hand, must attempt a new 

positioning estimation. It senses its environment again and detects the faulty GPS 

connection again, as well as three neighbors viable for collaboration. 

Since GPS has already failed once and there is a new option, collaboration is 

designed as the strategy to be used, and thus the Blue team uses one of Freeside’s 

remaining routers, the HQ’s antenna, and the Red Team’s transceiver (which now has a 

known position) as reference points to perform trilateration, successfully estimating its 

position. 

The Orange team also has access to three viable neighbors during this second 

attempt, two of Freeside routers and Green team’s transceiver, although one of the routers 

has an unstable connection. Collaborative trilateration is the chosen strategy, and 

although the Orange manages to estimate its position, it has a high error due to the faulty 

connection. Thus, the model determines that the device must reattempt to estimate its 

position in following attempts. 

During the third attempt, the Red, Green, and Blue teams already know their 

positions, so the new estimation is the same as the last known one. As for Purple team, 

its device senses its context again and it remains unchanged, with no positioning strategy 

available. 

Thus, the model tells Purple to put its estimations on hold for a time, in an attempt to 

avoid spending energy. It will wait a few minutes before trying again, in an attempt to allow 

its context to change (i.e., new neighbors could enter its range, and other conditions such 

as heavy clouds or rain could stop). 

Orange team’s device knows its position, but with low accuracy, so it makes another 

attempt at sensing its environment, finding no change in its context. Thus, Orange updates 

its current estimation using the last known one, stressing that it has low accuracy, and 

puts future attempts on hold for a few minutes in an attempt to save energy while waiting 

for significant changes in its context. 

Nothing occurs during the fourth attempt of this scenario, given that Red, Green, and 

Blue teams already know their positions with acceptable accuracy, and Orange and 

Purple teams’ estimation requests have been put on hold. All of the attempts should have 

been performed within a time window of up to one minute, depending on the conditions of 

the scenario. GPS has an average response time of 5 to 20 seconds [91], while 

trilateration could take between 10 and 30 seconds [36]. In both cases, the response time 

is small enough that the movement of the teams does not hamper the accuracy of the 
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collaborative estimations. 

In the following sub-sections we describe in detail the context-aware positioning 

model, as well as the specific actions conducted during each of the stages that comprise 

it. For ease of understanding, all of the interactions between elements of the model are 

shown in the sequence diagram shown in Figure 4-3. 
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Chapter 5: Experimental Design 

The purpose of this Chapter is to provide technical information on the inner workings of 

the simulated scenario, as well as showing how our proposed model interacts with the 

nodes during the simulations. It is intended for fellow researchers who would want to 

replicate our experiment, or improve this proposal. If the focus of the reader is only on the 

model, this section can be safely skipped, although several aspects and configurations of 

the model and the simulations are described within. 

The experiments presented in this work have been conducted using a series of 

outdoor simulated scenarios, each populated with three types of nodes: stationary nodes, 

pedestrians, and vehicles. Some of these nodes have positioning capabilities (e.g., a 

smartphone with an embedded GPS transceiver), and they interact with each other 

through a mobile ad hoc network (MANET) to sense neighboring devices, and to share 

contextual elements with them. 

All scenarios were designed using the third version of the Network Simulator 3 (ns-3 

[67]), a networking simulator built as a core system with a set of interchangeable libraries 

that can be linked or imported to user programs (simulations). It provides substantial 

support for simulation of networking scenarios and it is highly scalable, extensible, and 

modular [67]. The versatility of the ns-3 allows users to write simulation scenarios (based 

on already validated models) using only the features they want to represent, as well as 

adding their own libraries to the core of the simulator. 

The nodes mobility was modeled using the BonnMotion simulator [5], since this tool 

includes well-known models that represent people mobility in the study scenarios, 

particularly for disaster areas [4]. The mobility models considered in this work have a 

widely analyzed and validated mathematical basis [25, 72, 89], and they are accepted as 

valid real-world simulated counterparts. The randomized decision tree was implemented 

using an existing library, obtained from the OpenCV API Reference Library [124]. 

The following subsections describe the parameters of the simulated environment and 

the conditions under which the simulations are performed. They also explain the 

implementation of the experimental test bed, as well as the setup and use of the 

randomized decision tree library. 

5.1. Experiment Description 

The main goal of the proposed positioning model is to provide most or all devices in an 

ad hoc network with access to positioning, either by themselves or through collaboration, 

even if they have no positioning peripherals or strategies available, or they are under 

challenging conditions. In such a way, the model intends that the nodes spend no more 

energy than they would use under normal circumstances. 
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As stated before, all of the research presented in this thesis has been performed, 

evaluated, and tested by means of simulated scenarios emulating real-world outdoor 

environment conditions; all modeled using the ns-3 network simulator. The mobility and 

scenario setting models used in our simulations are well accepted by the research 

community as valid counterparts to real-world scenarios, and have been extensively used 

in networking research [54, 77, 84, 132, 138, 150, 155]. As such, the experiments 

presented in this thesis work can be considered as statistically identical to any experiment 

performed in the real world, as long as both have similar environmental conditions.  

Our simulated scenario uses the IEEE 802.11b standard for Wireless Local Area 

Networks, and considers that all the participant mobile nodes are or can become part of 

a MANET. The simulated network allows for loss of packages due to collision or 

propagation loss (common in outdoor environments), as well as the retransmission of 

these packets [13]. To all extents, nodes with self-positioning capabilities do not need to 

communicate to determine their own positions, but they can still help other nodes that are 

impeded to estimate their positions due to environmental conditions or lack of proper 

peripherals. The latter nodes are restricted to exchanging positioning information with 

other nodes in order to determine their positions; if they are unable to “talk” with other 

nodes, they cannot perform estimations. 

Under real world conditions, the greater the distance between an emitter and receiver, 

the more likely transmission errors will occur, represented by package losses, 

communication link severance, and retransmission requests, among others. To reproduce 

these adverse conditions, the ns-3 allows simulation designers to choose propagation loss 

models, which provide a predefined behavior for communication between nodes, and 

allow for a degree of configuration within the model’s boundaries. If the desired 

communication behavior requires further changes, they can be integrated into the model, 

although it would be preferable to choose another model instead. 

The propagation loss model chosen for our work is the “maximal range”, in which the 

propagation loss is determined based on the distance between transmitter and receiver 

(i.e., the communication threshold), emulating out-of-range package losses. Any 

transmission received within the designed communication threshold is assumed to be 

received at maximum transmission power, while transmissions “received” beyond the 

threshold are automatically given a signal strength of −1000 dBm (effectively zero), and 

are therefore dropped. Note that the ns-3 assigns randomly determined signal strengths 

to each package transmission, which are stored in the trace file; the maximal range 

propagation model simply does not take into account these values, and instead treats 

them as absolutes (i.e., a transmission is either received or dropped).  

The simulations observe thresholds of 30, 50, and 80 meters; any transmission 

received from a distance greater than the thresholds is assumed as lost, and any 

transmission within range is immediately received. However, this is not the case in real-

world network communications. Even if packages are transmitted within the transceivers 
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range, they do not always reach their intended destination, due to environmental or 

cursory conditions, such as bad weather or occlusion, which result in package loss or 

reception delays. 

Thus, we must add another layer to our simulation to emulate the delays and the 

drops. To that end, we use the “random propagation” delay model, which adds a random 

time reception offset to each transmission, following boundaries set by the user. For our 

simulations, we have determined 0.1 𝑠 and 1.0 𝑠 as the delay boundaries. We also use 

this random delay value to determine if a package is dropped by setting an additional 

threshold. If the transmission delay is equal or greater than 0.7 𝑠, there is a 50% probability 

that the receiver drops the transmission. In addition, in order to avoid flooding the network 

with positioning requests and probing attempts, we only allow communication between 

nodes at a distance of one hop; any broadcast received at 2 or more hops is immediately 

dropped by the receivers. 

 

Figure 5-1. Behavior of the chosen propagation loss and delay models 

5.1.1. Scenario Description 

The simulations considered 500 × 500 m2 areas, representing outdoor scenarios such as 

a park, a university campus, or a disaster zone, all of which are populated by three types 

of nodes: pedestrians, vehicles, and stationary (for more on node types, refer to 

Subsection 5.1.2). All scenarios can contain obstacles, such as walls, chasms, buildings, 

or trees; as well as roads for the vehicles to travel. 
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The scenarios are populated by all three types of nodes, in the following proportions: 

65% pedestrians, 25% vehicles, and 10% stationary. This proportion was taken from a 

public transport road planning and design document from Western Australia [167]. The 

percentages represent a population of 70% pedestrians and 30% vehicles, with a small 

amount of each being completely stationary (e.g., people sitting on benches or having a 

picnic, or parked vehicles). 

All of the nodes are placed within the scenario following different rules for placement 

(e.g., random placement, random from a list of viable positions, one by one from a list, 

etc.), and each node is assigned a random initial direction and speed values, based on 

their valid intervals. Moreover, each node is assigned a role, beacon or non-beacon 

(further discussed in Subsection 5.1.3), which determines their ability to perform 

positioning by themselves, or accessing a positioning strategy present in the environment. 

At the beginning of a simulation, none of the nodes knows their position, and all have 

an energy level of 100% (specific maximum values vary depending on the simulated 

device brand). During the first few seconds, all nodes start sensing their context, 

attempting to estimate their position. Only beacon nodes are able to position themselves 

at first, but eventually non-beacons obtain positioning information from neighboring nodes 

and begin estimating their positions. 

The first 30 seconds of a simulation are used for decay convergence, i.e., to allow the 

devices to mingle and update their decay indicators according to their perceived context. 

After that, we begin tracing four features: (1) the decay of the position of non-beacon 

nodes; (2) the number of non-beacons that know their positions, with a decay score of at 

most 60; (3) the number of non-beacon nodes that know their positions with any degree 

of decay (i.e., with decay scores over 0); and (4) the energy consumption of all individual 

nodes. The simulation last for 300 seconds after the decay convergence time, when the 

average scenario decay and amount of devices with known positions usually stabilize, at 

least until the energy levels begin to drop and the devices begin to shut down. 

To validate the model, we have performed extensive tests under variable 

circumstances. The test battery included a total of 27 experiment templates, which were 

executed 15 times each for a total of 405 experiments. During each experiment, we 

observed the effect of the variation of the values of certain features, specifically changing 

the total number of nodes, assigning the beacon role with bias to certain types of nodes, 

and changing the maximum communication range of the devices. 

We considered simulations with 100, 160, and 200 nodes; all using the proportions 

indicated earlier on this subsection. For the bias in the assignment of roles, we first 

assigned the beacon role randomly to any type of node; then only to pedestrian nodes; 

and finally only to vehicles. The communication ranges were assigned arbitrarily based 

on of actual ranges of different communication technologies. 
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In this work, we present the results of three different stages of the development of 

model, to show the improvement on its performance on the course of several benchmarks. 

For a summary and a discussion of the results, please refer to Chapter 6. 

5.1.2. Types of Node 

Regarding the nodes, pedestrians represent people on foot or using low speed 

transportation equipment (e.g., roller skates, hover boards), emulating the behavior of 

users engaged on their daily activities, such as walking around, shopping, or jogging, to 

name a few. This type of node can freely move throughout the entire scenario, their only 

restriction being that they cannot move through obstacles (e.g., walls or trees). Table 5-1 

provides an overview of the behavior of each type of node. 

Table 5-1. Node movement behavior comparison. 

 NODE TYPE 

FEATURES Pedestrian Vehicle Stationary 

Speed 0.0 m/s, 1.0 – 4.0 m/s 0.0 m/s, 5.0 – 20.0 m/s N/A 

Steering Angle 0° – 360° 0°, 90°, and -90° (1) 0° - 360° (2) 

Mobility Model Random Walk Random Waypoint N/A 

Movement Type Free (3) Bounded (3) N/A 

1 Vehicles are restricted only to keep going forward, and steering left or right. 

2 True stationary nodes cannot rotate; however, pedestrian and vehicle nodes with an 

effective speed of zero can still steer while stationary. 

3 Free movement implies the node can move in any direction within the scenario; 

bounded movement means that the node is restricted to certain sections only (i.e., 

roads). 

The pedestrian’s movement is based on the random walk mobility model [5], and they 

can change their direction (i.e., steer) in random angles and change their speeds within 

intervals of [0, 2𝜋] and [1.0, 4.0] 𝑚/𝑠, respectively. These changes occur after a time 𝑡 has 

passed or a distance 𝑑 has been covered by the node, depending on the how the mobility 

model is configured. Pedestrian nodes can also come to a complete stop (i.e., 0.0 𝑚/𝑠) 

for a time 𝑡, as people often do while pursuing their daily activities. 

Vehicle nodes represent people riding bicycles, cars, motorbikes, or similar land 

transportation vehicles, emulating the behavior of users commuting through roads and 

roadways. Vehicle nodes move using the random waypoint mobility model [5], in which 

the nodes choose a random speed after a given waypoint has been reached; then, a new 

waypoint is randomly chosen, and the vehicle node resumes its movement. 

However, our scenarios have a restriction that vehicles must only move through 

predefined routes (i.e., roads), and not freely. Thus, vehicle nodes can only steer in one 

of three ways; forward (no turn), right (90° turn), and left (-90° turn), and only if a waypoint 
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is available in the chosen direction. If a direction is chosen and no viable waypoint exists, 

it is discarded and another is chosen randomly. All roads in our simulations have been 

designed so that at least one steering option is available at all times. As for their speed, 

vehicles have a speed in an interval of [5.0, 20.0] 𝑚/𝑠, and also could come to a complete 

stop (i.e., 0.0 𝑚/𝑠). 

 

Figure 5-2. Pedestrian and vehicle nodes moving in a sample scenario. Pedestrian 

by Devin Night [40], cars from the CSUAC database [38] 

Finally, stationary nodes represent base stations and devices that are immobile such 

as Wi-Fi Hot Spots, routers, or antennas. These nodes use the constant position mobility 

model [5], in which they have an effective speed equal to zero, although their direction 

can still change in the same interval allowed to pedestrians (this was hard-coded into the 

mobility model, and it could not be changed). In addition, stationary nodes are assumed 

to have access to recharging stations or other types of durable power sources, such as 

the electric network or power generators. This means that in our simulations, stationary 

devices have infinite energy, and therefore unlimited battery life. 

Pedestrian and vehicle nodes that come to a full stop are considered as stationary, 

while their effective speed is 0.0 𝑚/𝑠. This is done to emulate users standing around or 

doing micro-mobility, such as parked vehicles, people sitting around resting, or working in 
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newsstands or hotdog carts. However, unlike “true” stationary nodes, which never move 

from their spot throughout the complete simulation duration, stationary pedestrians and 

vehicles do not have access to durable power sources, and thus retain their limited battery 

life. 

5.1.3. Node Roles 

In addition to their type, each node is assigned a role, which determines its positioning 

capabilities. Nodes can either be beacons (also known as anchors), or non-beacons. 

Beacon nodes have access to at least one positioning strategy (e.g., GPS), and therefore 

they are able to perform self-positioning when required by the users. Non-beacon nodes, 

on the other hand, have no positioning capabilities whatsoever, and they must rely on 

beacon and non-beacon nodes with known positions to determine their own position. 

In order for non-beacons to determine their positions, a scenario must have at least 

10% beacons present; otherwise, there might not be enough dissemination of useable 

positioning information, which would eventually lead non-beacons to stop attempting to 

position themselves, due to not detecting contextual changes over periods of time (refer 

to Section 4 for more on the behavior of the model). The threshold of 10% was chosen 

after analyzing our exploratory simulation results; thresholds with lower values led to 

average results where non-beacon positioning rates were close to 0% (for more on the 

subject, please refer to Section 6). For our experiments, we have considered three 

different configurations of beacons, only one of which can be used in a given simulation: 

10%, 25%, and 50% of (beacon) nodes, respectively. 

We assume that all participating devices are using the proposed context-aware 

positioning model. This means all nodes can potentially sense their environment and 

collaborate with their neighbors. The communication and navigation capabilities, 

represented in the simulation by the devices feature vector, are assigned randomly to all 

nodes. Thus, node A could have a feature vector showing that it possesses all 

communication protocols, three out of five communication technologies, no positioning 

capabilities, one navigation peripheral, etc., as shown in the following vector: 

[[1 1][1 0 1 1 0][0 0 0 … ][[1 0 0] … ] … ].  

Meanwhile, node B could have only UDP, two communication technologies, GPS, two 

navigation peripherals, etc., shown in the next vector: 

[[0 1][0 0 0 1 1][1 0 0 … ][[0 1 1] … ] … ].  

This allows for a wide range of device configurations, and provides device 

heterogeneity to the simulations. 

Since the scenario is highly volatile (i.e., most nodes are moving), we use the decay 
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indicator presented in Section 4 to validate the usefulness of the estimations, as time 

passes and the nodes move. Basically, the decay indicator begins with a value of 100 

when a position is obtained, and then decreases based on the speed of a node over the 

course of a simulation. Once the decay reaches a threshold of 60, the model will begin 

requesting new positioning estimations; however, if the decay drops below a threshold of 

20, the node’s position is immediately set to unknown. 

5.2. Implementation of the Simulated Scenario 

The steps followed in order to build an experiment based on the ns-3 script mockup are 

detailed below. First we explain how we can represent the model in the simulation 

scenario using an application class; then we describe the behavior of the nodes and the 

mobility models that can be used; and finally we show how to set up channels for 

communication between nodes. 

All of the algorithms shown in this section are presented in pseudo-code to facilitate 

understanding their functions. These scripts are useful to help in reproducing the 

experiments presented in this section, and also to allow researchers to add further 

improvements to the CAMPOS model. 

5.2.1. ns-3 Application Setup 

The ns-3 allows to easily setup and configure the behavior of any simulated scenario, by 

following a series of seemingly simple yet complicated steps. This subsection shows a 

detailed description of these steps, while configuring one of the most basic scenarios used 

in the early development of the model. 

One of the first and most important steps in the implementation of the simulations is 

setting up the communication application, which will dictate how the nodes can behave 

during the simulations. This application also allows setting certain specific behaviors that 

trigger under certain circumstances, such as performing an action after moving a given 

distance, what to do after receiving a given message, and so on. 

For our experiments, we required an application that simulated the exchange of 

mobile nodes’ positioning information through a MANET. All nodes must be able to 

transmit and receive messages (in our case, positioning information and network stats), 

and they also have a decay score and a threshold indicator to help determine when a new 

positioning estimation must be performed. As we mentioned in previous Chapters, 

positioning is performed by the device, at the request of the context-aware positioning 

model. Thus, the communication application should only deal with sensing network 

elements, and requesting positioning information from other nodes; the actual positioning 

request is handled by the model. 

Algorithm 5-1 shows an example of a common ns-3 application class. When this 
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application is attached to a node, the latter inherits all the functionality provided by the 

app, and thus it is able to communicate with other nodes to update its own decay 

decrement during each simulation turn, and to determine when a new estimation is 

required. The requests and positioning information are shared in the form of packets, and 

the decay information stored is a variable decrement, based on the time and the speed of 

the target nodes. 

Algorithm 5-1. Application Class Example (C++ pseudo-code) 

 

public class commApp 

 

public: 

commApp (); 

virtual ~commApp (); 

 

void Setup (socket, packetSize, packetAmount,  

 packetInterval); 

private: 

virtual void StartSimulation (); 

virtual void StopSimulation (); 

 

void scheduleTransmission (); 

void sendPacket (); 

void updatePositionDecay(); 

***etc.*** 

 

Ptr<Socket> m_socket; 

uint32_t    m_packetSize; 

uint32_t    m_packetAmount; 

Time        m_packetInterval; 

EventId     m_sendEvent; 

bool        m_running; 

uint32_t    m_packetsSent; 

uint32_t    m_decayDecrement; 

uint32_t    m_decayThreshold; 

The Setup procedure designates which socket will be used to communicate (more 

than one could be used if several communication channels are available), the size of the 

packets, the maximum amount of packets that a node can send, and the transmission rate 

(i.e., interval) at which the packets are sent. The socket class acts as a handle (abstract 

reference) so that the network interface can determine the endpoints of a connection, e.g., 

"send this data (from origin) to the TCP 192.68.1.12:80 socket". One can view sockets as 

“the mouths and ears” of the nodes, to exemplify their use. 

The packet size is static, because all of the nodes’ feature vectors have the same 

structure. The maximum amount of packages that can be sent should be set at high 

numbers (from 10,000 to 1,000,000, depending on the duration of the simulation) to 

ensure that the nodes do not “run out of packets”, and thus can continue communicating 

without issue. This variable can be used to limit the amount of messages that a node can 

send, but a new application must be created for each maximum packet amount, and then 
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attached to the relevant nodes. 

The StartSimulation procedure tells the nodes that they can begin transmitting 

(when required), and listening to transmissions (all the time). StopSimulation does the 

opposite, shutting down all of the node’s communication functionality. Once a node begins 

transmitting, the scheduleTransmission procedure takes over, and the application 

schedules the next execution of the sendPacket procedure at a time t in the future, and 

the node repeats the scheduling process as required. 

The updatePositionDecay function triggers when the node moves, calculating the 

decay decrement based on the distance the node has moved, and the time duration of 

the movement for the given turn, so that the model can calculate the decay score of the 

node. Each decrement is stored with a timestamp and the node Id, so that we can always 

calculate the accumulated decrement of a certain time interval for a given node. 

The EventId class serves as an identifier for the Simulator::Schedule() 

events. Each m_sendEvent variable is tied to a unique event, and it can be used to cancel 

or remove these events after they have been scheduled, by using 

Simulator::Cancel() or Simulator::Remove(). The m_running variable is 

simply an indicator of the state of the application; i.e., it is either currently active, or not. 

The commApp class could also be used to setup triggers when sending or receiving 

messages, such as forcing nodes to drop certain communications, and ignore 

transmission from certain sources, as well as determining the conditions upon which it will 

begin or stop making communication requests. Other new procedures, functions, and 

variables can be added, and the existent could be modified or overridden, depending on 

what the user wants to achieve with his or her simulation. In addition, any number of 

applications can be attached to a node, as required, each representing a specific behavior. 

5.2.2. Position Allocation 

The ns-3 simplifies the overall configuration process of a simulation by providing 

embedded helper classes, which work like black-box interfaces. By using these helpers, 

the user can conveniently setup most of the scenario and node configurations with ease. 

Examples of helper classes include the NodeContainer, MobilityHelper, 

WiFiHelper, and InternetStackHelper, among others. 

 Algorithm 5-2 shows the NodeContainer helper class, which allows to create and 

store groups of nodes, which can then be batch-configured using the helper class instead 

of the individual node objects. Any permitted node configuration can be attached to the 

node container, and all the nodes within will receive that configuration; in addition, there 

is no limit to the number of node containers that can be created in a given simulation. The 

algorithm illustrates the creation of the three types of nodes: 65 pedestrians, 25 vehicles, 
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and 10 stationary, each stored in its own node container. Later in this Chapter, we show 

how to attach behavior to these helpers, providing them with different capabilities in terms 

of communication and movement. 

Algorithm 5-2. Node Creation (C++ pseudo-code) 

 

NodeContainer walkerNodes; 

walkerNodes.Create (65); 

 

NodeContainer vehicleNodes; 

vehicleNodes.Create (25); 

 

NodeContainer immobileNodes; 

immobileNodes.Create (10); 

Once the nodes are created and assigned to a container, they must be assigned a 

position within the scenario, which can be done using the MobilityHelper class. 

Algorithm 5-3 shows examples of three position allocators, Grid, List, and 

RandomRectangle. 

Algorithm 5-3. Position allocators (C++ pseudo-code) 

 

//Grid Position Allocator 

mobility.SetPositionAllocator("ns3::GridPositionAllocator", 

 "MinX", DoubleValue (0.0), 

 "MinY", DoubleValue (0.0), 

 "DeltaX", DoubleValue (distance), 

 "DeltaY", DoubleValue (distance), 

 "GridWidth", UintegerValue (10), 

 "LayoutType",StringValue("RowFirst")); 

 

//Random Rectangle Position Allocator 

mobility.SetPositionAllocator("ns3::RandomRectangleAllocator", 

 "X", StringValue("ns3::UniformRandomVariable[-250,250]"), 

"Y", StringValue("ns3::UniformRandomVariable[-250,250]")); 

 

//List Position Allocator 

Ptr<ListAllocator> positionAlloc = CreateObject<ListAllocator>(); 

positionAlloc->Add (Vector (-210.0, 109.0, 0.0)); 

positionAlloc->Add (Vector (-183.0, -202.0, 0.0)); 

positionAlloc->Add (Vector (-211.0, 233.0, 0.0)); 

positionAlloc->Add (Vector (-64.0, -112.0, 0.0)); 

positionAlloc->Add (Vector (-45.0, 218.0, 0.0)); 

... 

 

The Grid allocator, exemplified on Figure 5-3, arranges the nodes in a grid. The first 

node is placed at scenario coordinates (MinX,MinY), and the rest of the nodes are 

allocated based on the chosen LayoutType; either RowFirst, or ColumnFirst. The 

RowFirst layout type places the next node at the same vertical coordinate (MinY) of the 

preceding one, separated by DeltaX units, until a total of GridWidth nodes are added 
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to the row. At that time, the next node is placed at the same horizontal coordinate of the 

previous row’s first node (MinX), separated vertically by DeltaY units. The 

ColumnFirst layout acts similarly, but instead of placing the next node horizontally, it is 

placed vertically, separated DeltaY units from its preceding node, until GridWidth 

nodes have been placed. Then, a new column is created DeltaX units from the preceding 

column’s first node, and so on. On either layout, the process continues until all nodes have 

been allocated. 

The RandomRectangle position allocator creates a bounded area within the 

scenario, in which the nodes are allocated at random (hence the name). For each node, 

a random coordinate (X,Y) is chosen, where Xϵ[MinX,MaxX] and Yϵ[MinY,MaxY]. 

The process continues until all nodes have been added. 

 

Figure 5-3. Grid position allocator description. 

The List allocator allows the user to manually provide a list of predefined 

deterministic positions, which are assigned sequentially to each node by the simulator, in 

order of creation. If there are no positions left in the list, but there are still nodes left, the 

list resets and the remaining nodes are allocated in order from the beginning. If there are 

no more nodes left but there are unused positions in the list, the allocation process finishes 

normally. 

It is important to choose position allocators carefully, as the results of a simulation are 

affected by them. The results from two different simulations using a Grid or List 

allocator could be very similar, while two simulations using the RandomRectangle 

allocator could yield very different results. Moreover, the List allocator, and in a lower 

degree the Grid, allow users to repeat experiments under identical position and mobility 

circumstances, which is useful to re-create scenarios while testing different values for the 

observed variables. In any case, once a position allocator has been chosen, it must be 

assigned to the nodes. To this end, simply create a MobilityHelper and assign the 

chosen position allocator to it, as depicted on Algorithm 5-4. 
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During our experiments, we have made extensive use of the RandomRectangle and 

List position allocators. 

Algorithm 5-4. Using position allocators (C++ pseudo-code) 

 

MobilityHelper mobility; 

//Insert code of the selected position allocator (e.g., List) 

mobility.SetPositionAllocator (positionAlloc); 

 

5.2.3. Node Mobility 

The next step in configuration of the scenario is determining how the nodes will move 

through the scenario. The ns-3 provides a comprehensive list of built-in mobility models, 

including random walk, random waypoint, constant acceleration, Gauss-Markov, etc. 

Depending on what the user wants to achieve, one or more of these models could be used 

in a simulation, each assigned to a specific NodeContainer. 

Deciding which mobility model must be used by each group of nodes is crucial, 

because it greatly impacts the nodes ability to communicate with each other. In 

collaborative scenarios, the nodes’ mobility determines the degree of dissemination of 

information throughout the scenario, since nodes with high mobility could spread 

messages between clusters of nodes that would otherwise be out of range from each 

other. 

The following subsections detail some of the built-In mobility models offered by the 

ns-3, as well as importing mobility models from external tools, specifically from 

BonnMotion [5], a versatile mobility generation tool for different networking simulation 

environments. 

5.2.3.1. ns-3 Built-in Mobility Models 

Algorithm 5-5 shows examples of the three built-in models we have used in our 

simulations; ConstantPosition, Waypoint, and RandomWalk2d. 

The ConstantPosition model is self-explanatory. Nodes using this type of mobility 

cannot move or change direction during the course of a simulation. 

In the Waypoint mobility model, each node stops moving for a user-defined duration 

(Pause), after which it picks a new waypoint (via the PositionAllocator), and a new 

random speed. The node then moves at a constant speed, pausing again after the 

waypoint is reached, and starting the process all over. This mobility model enforces no 

bounding box by itself; it is the PositionAllocator assigned to the node that bounds 

the movement. If the user provides no pointer to a PositionAllocator to be used to 

pick waypoints, the simulation program will assert. 
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Algorithm 5-5. Mobility models (C++ Pseudo-code) 

  

//Constant Position Mobility Model 

mobility.SetMobilityModel("ns3::ConstantPosition"); 

 

//Random Walk Mobility Model (based on time) 

mobility.SetMobilityModel("ns3::RandomWalk2d", 

 "Bounds", RectangleValue(Rectangle(-250, 250, -250, 250)), 

"Speed", StringValue("ns3::UniformRandomVariable[6, 20]"), 

 "Time", TimeValue(Seconds(1)), 

"Mode", StringValue ("Time")); 

 

//Random Walk Mobility Model (based on distance) 

mobility.SetMobilityModel("ns3::RandomWalk2d", 

 "Bounds", RectangleValue(Rectangle(-250, 250,-250, 250)), 

 "Distance", DoubleValue(30), 

 "Mode", StringValue ("Distance")); 

 

//Random Waypoint Mobility Model 

mobility.SetMobilityModel("ns3::RandomWaypoint", 

 "Speed", RandomVariableValue (ConstantVariable (200)), 

 "Pause", RandomVariableValue (ConstantVariable (5)), 

 "PositionAllocator", PointerValue (anyPositionAllocator)); 

 

Under the RandomWalk2d model, each node chooses a random speed and direction 

within the user-provided boundaries, until a stop condition is reached. If one of the 

scenario boundaries is hit, the node “rebounds” with a reflexive angle and speed. The 

RandomWalk2d stops condition (which forces a change of speed and direction) can be 

based on either Time or Distance. 

In the case of Time, the nodes move for time t (in seconds) and then randomly change 

direction and speed. For Distance, the nodes move d units, and then change direction 

and speed randomly. In addition, if we require the nodes to follow a predefined path, we 

can assign direction and speed manually, and modify these values through triggers at 

predefined times. 

Once the position allocator and mobility models have been chosen, they must be 

assigned to a node, or NodeContainer. The process is depicted in Algorithm 5-6. Only 

one allocator and one mobility model can be assigned to a single node, but any number 

of combinations of position allocators and mobility models can be assigned to any node 

during a single simulation; in addition, the mobility model of any node can be changed 

during the course of a simulation through triggers. 

Algorithm 5-6. Assigning mobility models (C++ pseudo-code) 

  

MobilityHelper mobility; 

//Insert code of chosen mobility model (e.g., RandomWalk) 

mobility.Install (anyNodeContainer); 
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As a side note, cutting off the initial phase is an important feature, because it allows 
the nodes to disseminate through the scenario regardless of their initial allocation. It has 
been observed that with the Random Waypoint model, nodes have a higher probability of 
being near the center of the simulation area, while they are initially uniformly distributed 
over the simulation area [67]. 

5.2.3.2. BonnMotion 

On a side note, a versatile tool that can be used to create mobility models or modify 

the behavior of existing ones is BonnMotion [5]. BonnMotion is a Java software which 

creates and analyzes mobility scenarios for the investigation of mobile ad hoc network 

characteristics. 

It is a versatile tool that allows exporting user configured mobility models scenarios in 

the format of several network simulators, including the ns-3. It is currently being developed 

by the Communication Systems group at the University of Bonn, Germany; the Toilers 

group at the Colorado School of Mines, USA; and the Distributed Systems group at the 

University of Osnabrück, Germany. 

For any chosen mobility model, a series of parameters can be used to configure the 

behavior of the nodes. Examples include the amount of nodes (set with -n), the scenario 

duration in seconds (-d), and the convergence time, also known as initial phase or the 

time given to the nodes to “mingle” (-i). Algorithm 5-7 shows the creation of a Random 

Waypoint scenario populated by 160 nodes, and with a duration of 600 seconds, and an 

initial phase of 300 seconds. 

Once the mobility scenario has been created, it is stored in two files: the first, with the 

suffix .params, contains the complete set of parameters used for the simulation, while the 

second, with the suffix .movements.gz, contains the (gzipped) movement data. Any 

parameter can be modified once the scenario has been created, by modifying the .params 

file accordingly. 

Algorithm 5-7. Setting up the waypoint mobility model (Bash) 

 

//Creating a mobility scenario from scratch 

$ ./ bm -f scenario1 RandomWaypoint -n 160 -d 600 -i 300 

 

//Creating a mobility scenario from an existing one 

$ ./ bm -f scenario2 -I scenario1.params RandomWaypoint -h 5.0 

 

The second line of code of Algorithm 5-7 shows how an existing scenario can be used 

as a template to create other scenarios. This is achieved by using the existing values for 

the parameters in the previous scenario (thus, a template), while being able to modify 

others directly through the command line. In the given example, the –h parameter, which 

represents maximal speed, is modified to 5 𝑚/𝑠, while the other parameters will remain 

the same as those of scenario1.params. 
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In order to use a BonnMotion generated mobility scenario, in ns-3, it must be first 

converted to the NSFile format, using the line of code from Algorithm 5-8, which generates 

two files as output. The first is the .ns_params file, which must be modified to set up some 

variables that are required by the ns-3, including the height and width of the simulated 

area, the number of nodes and duration, and the duration of the simulation, among others. 

The second file is the .ns_movements file, which schedules the movements of the nodes. 

Algorithm 5-8. Creating an ns-3 compatible BonnMotion mobility 

scenario(Bash) 

 

$ ./ bm NSFile -f scenario1 

  

Once the .ns_params file has been setup, the .ns_movements can be called as a 

parameter when running an ns-3 TCL script via –traceFile, as shown on Algorithm 

5-9. The traceFile parameter must point to the folder where the .ns_movement file is 

stored. 

 

Algorithm 5-9. Importing a ns-3 compatible scenario from 

BonnMotion into an TCL script (Bash), and 

assigning it to nodes (C++ pseudo-code) 

 

//The traceFile parameter can be added at the end of the call 

$ ./ waf --run "scratch/scenario1  

  --traceFile = /path/to/scenario1.ns_movements" 

 

//The traceFile variable must be linked to a MobilityHelper, and 

//installed to a single node, a group of nodes, or a NodeContainer 

MobilityHelper mobility = MobilityHelper(traceFile); 

mobility.Install (anyNodeContainer); 

5.2.4. Communication Behavior 

Once the nodes and the application have been set up, the scenario communication 

configuration variables must be configured. Algorithm 5-10 shows an example of how the 

environmental variables for a network are set up in an ns-3 script. In this case, the 

variables and values shown refer to the configuration of a Wi-Fi channel, which can be 

easily set through the WifiRemoteStationManager (referenced as “ns3::Wifi” in 

the example), WifiHelper, and YansWifiHelper classes. 

As stated earlier on this Chapter, the scenario observes the IEEE 802.11b wireless 

standard, with a Request To Send/Clear To Send (RTS/CTS) handshake threshold set for 

frames above 2200 bytes, disabling fragmentation for frames under that value. 

Retransmission of lost packets due to collision or propagation loss is allowed [13], which 

means the nodes will make sure they can establish communication and then use a 

redundant protocol to make sure they receive packets correctly. The transmitted 

information consists of a device’s contextual information (i.e., their feature vector), as well 



92 
 

as its unique node identifier. 

Algorithm 5-10. Communication variables configuration (C++ 

pseudo-code) 

 

double distance = 50;  // meters 

int packetSize = 1000; // bytes 

int numPackets = 10000; 

Time interPacketInterval = Seconds(1.0); 

 

//These are the default values for the WifiRemoteStationManager 

Config::SetDefault("ns3::Wifi::FragmentationThreshold", 2200); 

Config::SetDefault("ns3::Wifi::RtsCtsThreshold", 2200); 

Config::SetDefault("ns3::Wifi::NonUnicastMode","DsssRate1Mbps"); 

 

WifiHelper wifi; 

wifi.SetStandard(WIFI_PHY_STANDARD_80211b); 

YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default (); 

wifiPhy.Set("RxGain",DoubleValue(0)); 

wifiPhy.SetPcapDataLinkType(YansWifiPhyHelper::DLT_IEEE802_11_RADIO);  

 

The NonUnicastMode variable enables easy switching of mode for 

broadcasting/groupcasting packets, which are sent at a DSSS rate of 1 Mbps. DSSS, 

which stands for direct-distributed-multiplexor-distributed-demultiplexor sequence spread 

spectrum, is a modulation technique that allows to transmit signals using a bandwidth that 

is in excess of the bandwidth that is actually needed by the message. The main idea of 

DSSS is that by spreading the transmitted signal over a large bandwidth, the resulting 

wideband signal appears as noise, which allows greater resistance to intentional and 

unintentional interference with the transmitted signal [65]. 

The RxGain variable allows to assign an intentional signal gain at the time of 

transmission, which translates into higher RSSI values at the receivers’ end. It can be 

used to emulate the use of signal booster emitters, which are not necessary in our 

proposed environment; or to emulate stronger signals from certain devices. Note that for 

simulation purposes this value affects the signal speed, not the range, of the transmitter. 

Next, the signal propagation delay and signal loss models to be used must be 

configured. The ns-3 offers several propagation models for both signal delay and signal 

loss, which represent the power fluctuations of the signal under different real-world 

conditions, such as environmental occlusion, signal shadowing, and multipath effects. 

Examples of propagation models include the Range Propagation Loss Model, Constant 

Speed Propagation Delay Model, Building Propagation Loss Model, and Okumura-Hata 

Propagation Loss Model, and the assignation of these models is shown in Algorithm 5-11. 

Algorithm 5-11. Examples of propagation delay and propagation 

loss models (C++ pseudo-code) 

 

//Constant Speed Propagation Delay Model 
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wifiChannel.SetPropagationDelay("ns3::ConstantSpeedPropagation"); 

//Random Propagation Delay Model 

wifiChannel.SetPropagationDelay("ns3::RandomPropagationDelay"); 

 

//Friis Propagation Loss Model 

wifiChannel.AddPropagationLoss("ns3::Friis"); 

//Maximal Range Propagation Loss Model 

wifiChannel.AddPropagationLoss("ns3::Range", 

 "MaxRange", 50); 

//Okumura-Hata Propagation Loss Model 

wifiChannel.AddPropagationLoss("ns3::OkumuraHata"); 

 

For the range propagation loss model, the propagation loss depends only on the 

distance (range) in meters between transmitter and receiver, with the MaxRange attribute 

determining path loss. Receivers at or within range of the transmitter’s receive the 

transmission at transmit power level, while receivers beyond the threshold receive it at 

power -1000 dBm, effectively zero. 

The random propagation delay model, as its name implies, simply calculates a 

random delay in time for a transmission between two nodes. The constant speed 

propagation delay model, the signal speed is constant, independent of the distance 

between transmitter and receiver, i.e., there is no delay. 

The building propagation loss model provides means for simulating shadowing 

(indoor and outdoor), external wall penetration loss, and internal wall penetration loss, 

when there are buildings present in an environment. Signal loss based on distance is 

deferred to derived classes that implement the GetLoss method, otherwise this model 

offers no distance loss estimations. 

Finally, the Okumura-Hata propagation loss model takes into consideration the 

propagation loss caused in open, urban, and suburban areas, accounting for buildings, 

allowing path loss for distances of over 1 Km and frequencies ranging from 150 MHz to 

2.0 GHz [104]. 

Propagation loss models can be used in conjunction with a propagation delay model, 

if they are compatible. The Friis propagation model gives the power received by one 

antenna under idealized conditions, given another antenna some distance away 

transmitting a known amount of power. The model uses the following equation: 

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋𝑑)2𝐿
, (3) 

Where 𝑃𝑟 is the reception power; 𝑃𝑡 is the transmission power; 𝐺𝑡 is the transmission 

gain; 𝐺𝑟 is the reception gain; 𝜆 is the wavelength 𝑑; is the distance between transmitter 

and receiver (m); and 𝐿 is the system loss. 

The 𝜆 value is commonly calculated as 𝐶 𝑓⁄ , where 𝐶 =  299792458 m/s (the speed 
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of light in a vacuum); and 𝑓 is the frequency (Hz), which can be configured by the user via 

the Frequency attribute. However, the Friis model is valid only for propagation in free 

space within the so-called far field region, which can be considered as approximately the 

region for 𝑑 > 3𝜆. The model should still return a value for 𝑑 > 3𝜆, as doing so (rather 

than triggering a fatal error) is practical for many simulation scenarios. However, the 

values obtained in such conditions cannot be considered realistic [88]. 

We tested results on a few other propagation models, until finally settling on using a 

modified version of the range propagation loss model, with a communication threshold of 

50 m, representing the maximum communication range of the participant nodes. This 

propagation model is used in conjunction with a modified random propagation delay 

model, which adds a 0.7-second listening threshold to each transmission, which is used 

to randomly drop packages. 

The acceptable amount of packet loss depends on the type of data being sent. For 

instance, losses between 5% and 10% of the total packet in a VoIP or video stream affect 

the quality significantly [100], but communication can still be maintained. On the other 

hand, when transmitting a text document or web page, a single dropped packet could 

result in losing part of the file, which is why a reliable delivery protocol would be used for 

this purpose (to retransmit dropped packets). We chose a threshold of 0.7 to randomly 

drop packages to account for the inability to change the individual range of devices; thus, 

a harsher drop rate needed to be instantiated. 

Once the propagation loss and delay models have been chosen, they can be 

assigned to a communication channel (either a new or existing one) by means of the 

YansWifiChannelHelper class, as shown on Algorithm 5-12. The helper class 

NqosWiFiMacHelper allows to determine the MAC layer of the nodes (non-QoS), which 

can create MACs of the following types: access point (AP), non-AP station in a BSS (basic 

service set, or a single AP with associated stations), and ad-hoc (IBSS or independent 

BSS, where there is no central control AP).For our experiments, we use an ad-hoc MAC 

layer, and simulate AP and non-AP stations by including stationary nodes at certain points 

in the scenario. 

The ConstantRateWifiManager station manager is set to use constant rates for 

all data and RTS transmissions, so that all packets are sent at the same transmission rate. 

The DataMode and ControlMode determine the transmission rate of data and control 

signals, which is set to 1 Mbps. 

Algorithm 5-12. Configuring the global communication channel 

(C++ pseudo-code) 

 

YansWifiChannelHelper wifiChannel; 

 

//Code for chosen propagation delay model (only one can be active) 
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//Code for chosen propagation loss model (only one can be active) 

 

wifiPhy.SetChannel(wifiChannel.Create()); 

NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default (); 

wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", 

 "DataMode",StringValue ("DsssRate1Mbps"), 

 "ControlMode",StringValue ("DsssRate1Mbps")); 

wifiMac.SetType ("ns3::AdhocWifiMac"); 

 

Once the communication channel has been configured, it must be installed into the 

nodes, and then these nodes must be assigned to a network. In order to configure the 

nodes’ communication and network information in block, a NetDeviceContainer 

helper can be used. These helpers store a given NodeContainer and its associated 

channel and MAC (YansWifiPhyHelper and NqosWifiMachelper, respectively). 

Algorithm 5-13 shows both the installation of the communication channel to different types 

of devices. 

Algorithm 5-13. Installing the channel (C++ pseudo-code) 

 

NetDeviceContainer NDcontainer1 = wifi.Install(wifiPhy, wifiMac, 

 nodeContainer1); 

NetDeviceContainer NDcontainer2 = wifi.Install (wifiPhy, wifiMac, 

 nodeContainer2); 

NetDeviceContainer NDcontainer3 = wifi.Install(wifiPhy, wifiMac, 

 nodeContainer3); 

 

Now we must assign the node to a network, so that it can communicate with other 

nodes. In order to do this, the nodes require IP/TCP/UDP functionality, which is provided 

by the InternetStackHelper class. The helper takes care of setting up the traffic 

control layer, the communication protocol, and the routing strategy to be used (by default, 

it uses IPv4 with OLSR). The helper must then be installed to a node or NodeContainer, 

as shown on Algorithm 5-14, which assigns default networking options to the nodes. 

Then, the Ipv4AddressHelper is used to set up the IPv4 settings, which are then 

assigned to the node as well. As a result, the node “belongs” to the designed network; 

e.g., the nodes in NDcontainer1 belong to the network 10.1.1.0. Note that this helper 

is simply a local incremental counter, and it does not assign IPs dynamically, so that all 

assigned IPs will be correlative for each NodeContainer. 

Algorithm 5-14. Assigning nodes to networks (C++ pseudo-code) 

 

InternetStackHelper internet; 

internet.Install (nodeContainer1); 

internet.Install (nodeContainer2); 

internet.Install (nodeContainer3); 

 

//Assigning IP addresses 

Ipv4AddressHelper ipv4; 
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ipv4.SetBase("10.1.1.0,"255.255.255.0); 

Ipv4InterfaceContainer interface1 = ipv4.Assign (NDcontainer1); 

ipv4.SetBase(10.1.2.0",255.255.255.0"); 

Ipv4InterfaceContainer interface2 = ipv4.Assign (NDcontainer2); 

Ipv4InterfaceContainer interface3 = ipv4.Assign (NDcontainer3); 

 

Although our proposed positioning model supports different communication channels, 

due to ns-3 scenario limitations, we have focused on using Wi-Fi as the channel of choice, 

and simulated different channels (e.g., Bluetooth) by using different networks. The nodes 

can either use the same network, or separate networks with common nodes working as 

links (thus emulating the use of different channels), with a one-hop reception restriction 

for broadcasted signals. 

After following these steps, the communication network structure of the ns-3 

simulated scenario is finished. The nodes have some sort of mobility according to their 

type, and communication capabilities to represent their heterogeneity. 

However, if the simulation is run as-is, these nodes will not communicate because 

they lack the means to do so, and thus will blind and deaf to other nodes. In order for the 

nodes do so, they must be assigned communication roles, either sources (emitters) or 

sinks (receivers). Sources are nodes with transmission capabilities, while sinks are nodes 

listening to transmission on a particular port. 

For the experiments proposed in this thesis work, all nodes must be both sources and 

sinks, since they (potentially) have to collaborate with each other. To this end, we must 

create communication sockets on the nodes. 

A socket, pictured in Figure 5-4, is one endpoint (i.e., an IP address and a port 

number) of a two-way communication link between two applications running on different 

nodes on a network. Sockets are bound to specific port numbers, so that the TCP layer 

can identify which application a specific socket is communicating with. Thus, each node 

would require at least two pairs of sockets; one pair for discovery/handshake requests, 

and the other to send and receive information packets. 

As an example, picture a pair of radio handsets (i.e., devices). Any message sent is 

relied through the microphone, and heard through the speaker (i.e., sockets), allowing 

users Ana and Bob (i.e., the applications A and B shown in Figure 5-4) to communicate 

with each other. 
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Figure 5-4. Socket description 

Ana can send messages through her microphone on a certain bandwidth (i.e., a port), 

but they will only be received if Bob is listening to that particular bandwidth; otherwise, the 

message will be lost. If Bob is listening, he will hear the message through the speaker, 

and then send back an “acknowledge” through his microphone, beginning their 

conversation. 

Algorithm 5-15 shows an example of the assignation of the roles of source and sink 

to the nodes. For the sinks, a socket must be created (recvSink) to listen for incoming 

messages, and an InetSocketAddress with a particular port must be assigned to it 

(local). 

The GetAny option allows the node to listen to broadcasts from all sources, i.e., 

without network restriction. Then, a callback to the ReceivePacket must be set, to allow 

us to execute our code after a reception is successful. This process can be streamlined 

by using configuration methods, such as the setupApps method pictured in Algorithm 

5-16, which shows pseudo-code examples of some methods implemented for our 

simulations. Any number of different applications can be added to different nodes, shaping 

the behavior of the nodes on different triggers, such as receiving a message, sending one, 

receiving messages from specific nodes, etc. 

The assignation is similar for the sources. A socket is created, and an 

InetSocketAddress with a particular port is assigned to it, with the difference that it 
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must be assigned a particular destination IP, which in this case is the broadcast IP 

(255.255.255.255). With this, the node can broadcast messages to any listening node 

within range. 

Algorithm 5-15. Source and sink assignation (C++ pseudo-code) 

 

TypeId tid = TypeId::LookupByName ("ns3::UdpSocketFactory"); 

 

//Assigning Sinks to a group of nodes 

Ptr<Socket> recvSink; 

for(int iNode=0; iNode<65;  iNode++){  

recvSink = Socket::CreateSocket (aNodeContainer.Get(iNode),tid); 

local = InetSocketAddress (Ipv4Address::GetAny (), 80); 

recvSink->Bind (local); 

recvSink->SetRecvCallback(MakeCallback (&ReceivePacket)); 

} 

 

//Assigning Source to a single node 

Ptr<Socket> source; 

source = Socket::CreateSocket (walkerNodes.Get (0), tid); 

InetSocketAddress remote.Add(Ipv4Address("255.255.255.255"),80); 

source->Connect (remote); 

 

 

Algorithm 5-16. Examples of configuration and trigger methods 

(C++ pseudo-code) 

 

//Application Setup 

void MyApp::Setup (Ptr<Socket> socket, uint32_t packetSize, 

uint32_t nPackets, Time pktInterval){ 

m_socket = socket; 

m_packetSize = packetSize; 

m_nPackets = nPackets; 

m_pktInterval = pktInterval; 

} 

 

//Scheduling the beginning of the application operation  

void MyApp::StartApplication (void){ 

m_running = true; 

m_packetsSent = 0; 

m_socket->SetAllowBroadcast (true); 

SendPacket (); 

} 

 

//Scheduling the end of the application operation 

void MyApp::StopApplication (void){ 

m_running = false; 

if (m_sendEvent.IsRunning ()){ 

Simulator::Cancel (m_sendEvent); } 

if (m_socket){ 

m_socket->Close (); } 

} 
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//Creating and sending a package 

void MyApp::SendPacket (void){ 

Ptr<Packet> packet = Create<Packet> (m_packetSize); 

m_socket->Send (packet); 

if (++m_packetsSent < m_nPackets){ 

   ScheduleTx (); } 

} 

 

//Scheduling a transmission 

void MyApp::ScheduleTx (void){ 

if (m_running){ 

m_sendEvent = Simulator::Schedule (m_pktInterval, 

    &MyApp::SendPacket, 

this); } 

} 

 

//Receiving a transmission 

void ReceivePacket (Ptr<Socket> socket){ 

  Address from; 

  socket->RecvFrom(from); 

  this->updateDecay() 

} 

 

//Streamlining the node’s source and sink configuration 

void setupApps(Node myNode, TypeId tid, InetSocketAddress remote){ 

Ptr<Socket> source = Socket::CreateSocket (myNode,tid); 

remote = InetSocketAddress(Ipv4Address("255.255.255.255"), 80); 

source->Connect (remote); 

Ptr<MyApp> app = CreateObject<MyApp> (); 

app->Setup (source, 1040, 10000, Seconds (1.)); 

myNode->AddApplication (app); 

app->SetStartTime (Seconds(double(rand () % 20 + 5)*0.001)); 

app->SetStopTime (Seconds(600); 

} 

 

With this, the nodes have networking capabilities and they can dynamically form 

MANETs, but they will only use discover signals (pings) at engine-specified intervals, 

without sending any meaningful message. Basically, the nodes now see each other, but 

they are unable to talk because they do not know what to say. 

In order to allow the nodes to exchange information, they must be assigned the 

communication application created in Algorithm 5-2, a task that is shown in Algorithm 5-

17. In the pictured example, we use the Setup method from Algorithm 5-16 to assign the 

source node 10,000 packets with a size of 1040 bytes, which will be sent at a rate of 

one packet per millisecond. 

The beginning and end of the transmissions are set via the methods SetStartTime 

and SetStopTime, at one and 20 seconds respectively, for the example. 

Algorithm 5-17. Installing the communication application and 
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scheduling transmissions (C++ pseudo-code) 

 

//Adding an app to a node 

Ptr<MyApp> app = CreateObject<MyApp> (); 

app->Setup(source,1040,10000, Seconds(.001)); 

walkerNodes.Get(0)->AddApplication (app); 

 

//Scheduling the transmission 

app->SetStartTime (Seconds (1.)); 

app->SetStopTime (Seconds (20.)); 

 

The next section details the classification process of the Randomizes Decision Trees, 

as well as their implementation. 

5.3. Implementation of the Randomized Decision Trees 

Random trees have been introduced by Leo Breiman and Adele Cutler [18], as a ways to 

perform classification and regression of data under certain parameters. The random trees 

ensemble, or forest, as it is more widely known, is a collection of tree predictors that takes 

a feature vector as input, then classifies it with every tree in the forest, and outputs the 

class that received the majority of votes. In case of a regression, the classifier response 

is the average of the responses over all the trees in the forest. 

All the trees are trained with the same parameters, but on different training sets. 

These sets are generated from the original training set using the bootstrap procedure; for 

each training set, the same number of vectors as in the original set are randomly selected 

(𝑁). The vectors can be chosen with replacement, which means that some vectors could 

occur more than once, while others could be absent. 

At each node of each trained tree, not all the variables are used to find the best split, 

but rather a random subset of them. With each node in the tree, a new subset is generated, 

with the restriction that its size is fixed for all the nodes and all the trees, set to 

√𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 by default. None of the built trees are pruned. 

In random trees there is no need for any accuracy estimation procedures, such as 

cross-validation or bootstrap, or a separate test set to get an estimate of the training error, 

due to the error being estimated internally during the training phase. When the training set 

for the current tree is drawn by sampling with replacement, some vectors are left out 

(OOB, or out-of-bag). The size of OOB data is about 𝑁/3. 

The classification error is estimated by using this OOB-data as follows. For each 

vector, a prediction is calculated, which is OOB relative to the 𝑖𝑡ℎ tree, using the very 𝑖𝑡ℎ 

tree. After all the trees in a forest have been trained, for each vector that has ever been 

OOB, the winner class must be found (i.e., the class that got the majority of votes in the 

trees with vectors that fulfilled the condition) and compare it to the ground-truth response. 
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Then, the classification error estimate is computed as a ratio of the number of 

misclassified OOB vectors related to all the vectors in the original data. In case of 

regression, the OOB-error is computed as the squared error for OOB vectors difference, 

divided by the total number of vectors. 

The library used for the experiments is the OpenCV 2.4.13.0 Random Trees, which 

can be found online at [124]. The following subsections briefly detail the process of setup, 

training, and execution of the library. 

5.3.1. Setup and Training 

The first step is to get the RandomTrees library from the repository and installing it. Then, 

the execution of the tree is as simple as linking the library to a script, setting up the variable 

values for forest, and calling the library’s methods to train and execute the random forest 

classifier. In our case, the training data is a list of pre-assembled feature vectors with its 

resulting recommendation, and a single feature vectors for testing and for the actual 

classification. 

A tree is built recursively, starting from the root node. The training data is used to split 

the root node by choosing the optimum decision rule (the best “primary” split) based on 

some criteria. In machine learning, “purity” criteria are used for classification, and the sum 

of squared errors is used for regression. If necessary, surrogate splits can also be found. 

All the data is divided using the primary and the surrogate splits between the left and the 

right child node, recursively splitting both left and right nodes [124]. 

At each node the recursive procedure may stop (that is, stop splitting the node further) 

if (1) the depth of the constructed tree branch reaches the specified maximum value; (2) 

the number of training samples in the node is less than the specified threshold (i.e., it is 

not statistically representative to split the node further); (3) all the samples in the node 

belong to the same class, or, in case of regression, the variation is too small; and (4) the 

best found split does not give any noticeable improvement compared to a random choice. 

Once the tree is built, it may be pruned using a cross-validation procedure, if 

necessary. In that event, some of the tree branches that may lead to the model overfitting 

are cut off. Normally, this procedure is only applied to standalone decision trees. Usually 

tree ensembles build trees that are small enough and use their own protection schemes 

against overfitting. 

Algorithm 5-18 shows the variable setup. The max_depth variable determines the 

depth of the tree. A low depth value will likely result in underfitting, and conversely a high 

value will likely lead to overfitting. The optimal depth value can be obtained using cross 

validation or other suitable methods, most likely trial and error. 

Algorithm 5-18. Setting up the training the variables (Python 

pseudo-code) 
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rtree_params = dict(max_depth = 11, 

 min_sample_count = 5, 

 use_surrogates = False, 

 max_categories = 15, 

 calc_var_importance = False, 

 nactive_vars = 0, 

 max_num_of_trees_in_the_forest = 1000, 

 termcrit_type = (cv2.TERM_CRITERIA_MAX_ITER,1000,1)) 

 

classifier = cv2.RTrees() 

classifier.train(train_data, //The list of [feature vector, class] 

     cv2.CV_ROW_SAMPLE, //tflag variable 

  label_data, 

  params=rtree_params); 

  

The min_sample_count determines the minimum samples required at a leaf node 

for it to be split. A reasonable value is a small percentage of the total data (e.g., 1%). For 

our experiments, we tested different values, until we finally settled for 5%. 

The use_surrogates variable determines whether surrogate splits will be built or 

not. A surrogate split is a mimic or a substitute for the primary splitter of a node, which 

allows to work when missing data is present (or rather, not present), computing variable 

importance correctly by using a close approximation (i.e., a clone) of a primary splitter that 

exists in the data. This is helpful when the classification process includes data that was 

not present during training; instead of crashing or exiting with error, the node determines 

a split based on previous information, and carries on. 

In order to find a suboptimal split, max_categories allows the clustering of possible 

values of a categorical variable into 𝐾 ≤ 𝑚𝑎𝑥_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 clusters. If a discrete variable 

takes more than max_categories values during an attempted split, the estimation of 

the best subset estimation could take too long (the algorithm is exponential). Instead, the 

trees try to find sub-optimal splits by clustering all the samples into max_categories 

clusters that is some categories are merged together. The clustering is applied only in 

classification problems with more than two classes for categorical variables with 𝑁 >

𝑚𝑎𝑥_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 possible values. 

The calc_var_importance determines whether variable importance will be 

calculated or not during training. Variable importance determines the impact of the 

variables on the result. 

The size of the randomly selected subset of features at each tree node and that are 

used to find the best splits, is set through nactive_vars. If set to 0, the size will be set 

to the square root of the total number of features; otherwise, it will be set to the users 

preference. 

In an analog manner, the maximum number of trees in the forest is set through    



103 
 

max_num_of_trees_in_the_forest. Typically, the more trees you have, the better 

the accuracy. However, the improvement in accuracy generally diminishes and 

asymptotes past a certain number (cut factor), and also increases the prediction time 

linearly. 

The final variable of the forest configuration process is termcrit_type, which 

determines the type of termination criteria. There are two termination types. The first, 

CV_TERMCRIT_ITER, terminates learning when the maximum number of trees in the 

forest is reached (max_num_of_trees_in_the_forest). The second, 

CV_TERMCRIT_EPS, terminates learning based on the forest_accuracy parameter 

(which indicates sufficient accuracy for OOB). In addition, both types can be used in 

tandem, entering CV_TERMCRIT_ITER|CV_TERMCRIT_EPS as the termination criteria. 

For our experiments, the termination criteria is CV_TERMCRIT_ITER, set to finish on 100 

trees have been added to the forest. 

Once the parameters for forest generation have been set, the training can begin. The 

classifier.train method receives four parameters, which are train_data, tflag, 

responses, and params. The method trains the statistical model using the input feature 

vectors (train_data) and the corresponding output values (responses), which are 

passed as matrices. 

By default, the input feature vectors are stored as train_data rows, i.e., all the 

features of a training vector are stored continuously. However, some algorithms can 

handle the transposed representation, when all values of each particular feature 

(component/input variable) over the whole input set are stored continuously. If both 

layouts are supported, the method includes the tflag parameter that specifies the 

orientation as CV_ROW_SAMPLE to store the feature vector as rows, and 

CV_COL_SAMPLE to store it as columns. 

The params variable stores miscellaneous parameters that might be required by 

underlying algorithms, or configuration parameters for the forest that could be required 

during execution. 

5.3.2. Determining the Recommended Strategy through Classification 

Once the training of a random forest has been completed, the process classifying is 

streamlined, as shown on Algorithm 5-19. The sample parameter represents a device’s 

scenario feature vector, i.e., the target device’s context. By executing the predict 

method over this sample, the cumulative result from all the trees in the forest (i.e., the 

class that receives the majority of votes) is returned as the chosen class for the given 

feature vector. And with that, a class has been determined for a given feature vector; i.e., 

a positioning strategy has been determined as the most suitable for the particular set of 

contextual features of the target device. 
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Algorithm 5-19. RT Classification (Python pseudo-code) 

 

cv2.RTrees.predict(sample) 

The following Chapter presents the results from our experiments, including our 

findings and a detailed discussion for two different scenarios. 
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Chapter 6: Analysis of Results 

This Chapter is focused on showing the results that were obtained after analyzing the data 

from the simulations, followed by a discussion of the trends and indicators identified during 

this process. We have chosen to include the results from three non-consecutive stages in 

the development of the model, in order to show its evolution through different iterations of 

the research process. 

 The base experiment is thoroughly described in Section 5.1, and it consists on a 

series of simulations of mobile nodes attempting to perform positioning in outdoor 

environments under different conditions. The scenarios consist in 500 × 500 m2 areas, 

which could contain obstacles (e.g., walls, buildings, and trees). Each scenario is 

populated by three types of nodes: pedestrians, vehicles and stationary nodes. The nodes 

are placed on the scenario following different rules (e.g., random placement, random from 

a list of viable positions, one by one from a list, etc.), and a random initial direction and 

speed is assigned to them. 

Each node has a role, beacon or non-beacon, which determines their ability to use a 

positioning strategy present in the environment. When a simulation begins, nodes have 

an energy level of 100% and they do not know their position. During the first 30 seconds, 

all nodes start sensing their context, attempting to estimate their own position, allowing 

their decay indicator to converge (i.e., to change according to the context values). 

During each simulation, we trace four features: (1) the decay of the position of non-

beacon nodes; (2) the number of non-beacons that know their positions with a decay score 

of at most 60; (3) the number of non-beacon nodes that know their positions, with any 

degree of decay (i.e., with decay scores over 0); and (4) the energy consumption of all 

individual nodes. In the next sections we describe more in detail these simulations and 

present and discuss the obtained results.  

The organization of this Chapter is as follows. First, we provide the results from the 

exploratory experiments, which were aimed at determining the working boundaries of the 

model. In Section 6.2, we present the results for three non-consecutive stages of the 

development of the model, and Section 6.3 provides the correspondent analysis and 

discussion for each of these sets of results. In Section 6.4 we provide answers to the 

research questions and discuss the validity of the hypotheses. 

6.1. Overview of the Exploratory Experiments 

This subsection shows the results from the exploratory phase of the experiments, in which 

we attempted to determine the effect of certain contextual variables over the performance 

of the model. 
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 The first step was to assemble the simulation environment, a process thoroughly 

described in Section 5, and summarized at the introductory paragraphs of Section 6. The 

following step was determining the minimum acceptable value for the decay threshold of 

the last valid known position of a device, i.e., the minimum value at which a new 

positioning estimation is required. 

The decay indicator (1), explained in Section 4.2, is the cornerstone of our model. It 

is a dynamic indicator of the validity of a positioning estimation, independent of its 

associated accuracy. When a position is successfully estimated, the decay indicator is set 

up at 100, and then steadily diminishes based on its associated formula, depending on 

time elapsed since the last positioning action and the distance travelled by the node. When 

the decay is low enough, the model attempts to estimate the position of the device again, 

by any means possible. 

The following subsections provide the results of exploratory experiments we obtained 

by addressing specific contextual variables. First, we relate the series of events that let us 

to establish the decay and fitness indicators. Then, we describe the impact of changing 

the communication range of the participating devices. After that, we elaborate on the effect 

that the amount of nodes in a given scenario has on the results provided by the model. 

Finally, we discuss the effect of assigning the beacon role exclusively to either vehicles or 

pedestrians. 

6.1.1. Decay Threshold 

In order to determine the threshold for the decay indicator, we set up a single node 

with a random-walk mobility model, and let it run around, noting the different decreasing 

values for the decay. Figure 6-1 shows an early experiment, in which we run the same 

simulation 25 times, with a random decrease for the decay in the range of [0.0, 10.0] for 

each second that passed. 

Each time its decay decreased, the node had a hard-coded 50% probability of finding 

from one to five “neighbors” viable for collaboration (remember that this node was in fact 

alone in the scenario). This allowed the target node to make a bogus positioning 

estimation by averaging the decay values of its neighbors, which resulted in the disastrous 

values that can be observed in Figure 6-1. After analyzing the results, it was clear that a 

random decay decrement was not at all helpful, and that decay by itself was not a good 

indicator of whether the node was fit to perform positioning or not. The maximum decay 

value that could be reached this way was of 10, and the average was below 5. Thus, the 

notion of “fitness” was incepted. 

Over the course of several additional experiments, we settled on the first formula for 

decay, which was dependent on distance traveled by the node and time elapsed since the 

last positioning. This approach to decay decreases the confidence on a positioning 

estimation according to the node’s own mobility, which made the scenario more dynamic 
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and allowed decay to stop decreasing when a node is stationary, increasing the 

usefulness of positioning estimations that would otherwise be labeled as deprecated. 

 

Figure 6-1. Decay measurements of a test node 

As a side-effect, tinkering with the decay threshold helped us come up with the 

precursor for the fitness indicator, which allows determining whether a device is apt or not 

to perform positioning. If the fitness of a device is too low, it would not be taken into 

account for the positioning process, helping thus save energy by avoiding repetitive 

positioning attempts. In addition, during collaboration, the fitness indicator determines the 

order in which nodes are selected; those with greater fitness always go first. For self-

positioning, by taking into account the accuracy requirement of the application, the device 

can opt not to perform positioning again if it obtains low fitness values several times. 

Fitness would gain more importance than decay regarding the model due to this. 

After about 32 experiments, each consisting of 50 simulations, we settled on the 

decay formula shown in (2), and the fitness formula shown in (1) (page 53, Subsections 

4.2.1.1.1 and 4.2.1.1.2), which provided a good positioning rate while maintaining the 

energy consumption levels at acceptable values. 

These values are summarized in Table 6-1 for each type of node. We have 

differentiated between beacons and non-beacons, and the Table shows results of non-

beacons only. This is due to beacons heavily influence the positioning rate and decay 

values, which could mean that the energy consumption may or may not have a little bias 

towards lower values. Stationary nodes do not count towards the global energy 

consumption, due to the assumption that these devices have access to a source of 

unlimited energy (as it is the case with access points, or devices plugged to the electric 

network). 

We decided to go with average decay instead of median decay, due to the volatility 
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of the results from one simulation to another. Although the simulations tend to yield similar 

results when using the same scenario configuration (except for the random starting 

position and direction), for some sets of results the median was deceptively better than 

the mean, but in fact, it did not reflect the actual state of the scenario decay. 

Table 6-1: Average observed values for a simulation (300 seconds). 

 Type of Node 

Pedestrian Vehicle Stationary 

Average Decay 47 18 100 

Positioning rate (per minute) 12 27 0 

Energy consumption ~2031 mW ~4638 mW N/A 

% of nodes with Decay > 60 25% 8% 100% 

% of nodes with Decay > 20 72% 45% 100% 

In any case, the average decay values for pedestrian and vehicles are 47 and 18, 

respectively. Although these values are generally below our threshold of 60, one must 

consider that they are average not only for a single node, but for all nodes of a specific 

type in the simulation scenario. Note that the percentage of nodes with a decay greater 

than 20 includes the nodes with a decay greater than 60. For instance, the average decay 

of pedestrians is 47, because there are far more nodes having decay values between 20 

and 60 than over 60 (47% and 25%, respectively, for a grand total of 72%). 

As for vehicle nodes, they consistently showed poor decay values on average for all 

simulations. It does not mean, however, that they did not know their positions; it was 

expected, as their decay diminished quickly due to their speed. Therefore, this situation is 

translated into more positioning requests than those of pedestrians, i.e., a higher 

positioning rate per minute, and therefore higher energy consumption. 

The positioning rate values shown in Table 6-1 determine how many positioning 

estimations were requested on average by the corresponding type of node. Vehicles tend 

to request more estimations than pedestrians, which is understandable due to they usually 

move to high speed, which cause decay to deprecate quickly. 

The average consumption of GPS is stated by Carrol et al. [28] as 166 ± 0.04% 𝑚𝑊. 

This value represents the consumption of an external antenna in a worst case scenario, 

and we have used that value as a reference for the consumption of the GPS internal 

antenna of a common smartphone. A rough conversion has been made from Ah (Ampere-

hour, or the cost of providing 1 ampere continuously during one hour) to mW (milliwatts) 

to facilitate the comparison of energy consumption. 

Figure 6-2 shows the decay results of three selected nodes, in a scenario populated 

following the rules for node type, proportion, role, and mobility, established in Section 5. 
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We found that non-beacon pedestrian nodes, such as the one shown in Figure 6-2-a, tend 

to have more stable decay values, in average. This is due to their limited speed, which 

allows them to remain within similar contextual conditions for longer periods of time, i.e., 

if they manage to find suitable neighbors, it is more likely they will remain together for 

longer due to their lower speed. 

  

(a) Pedestrian non-beacon node (𝑁47) (b) Vehicle non- beacon node (𝑁78) 

 

(c) Pedestrian beacon node (𝑁31) 

Figure 6-2. Individual decay measurements of nodes of different type and role 

The same cannot be said for vehicles, for the same reason we have explained earlier, 

i.e., due to their speed. All vehicle nodes, such as the ones shown in Figure 6-2-b, tend 

to have consistent lower decay values on all scenarios. As we stated earlier, it does not 

mean that they are unable to estimate their positions collaboratively, only that their decay 

(and therefore their fitness to participate in the collaboration process) decrements quickly 

due to their high speeds. 

For comparison purposes, Figure 6-2-c shows an example of the average decay 

curve of a pedestrian beacon node. When the decay of the node decreases below the 

threshold of 60, the node simply attempts a new estimation, and updates its decay 

accordingly. 



110 
 

6.1.2. Communication Range 

The communication range of a device determines the maximum distance at which such a 

device can communicate with other devices in a direct manner, i.e., without need for 

message routing. We have considered three different communication ranges for our 

experiments: 30, 50, and 80 meters. Due to limitations in the simulated scenario 

configuration, we had to assign the chosen range to all of the participant nodes, which 

means that all nodes have the same range for a given simulation. 

We found that the length of the communication range has a direct influence over the 

amount of neighboring nodes that can be reached by the requesting nodes. As a rule of 

thumb, the greater the communication range of the devices, the more neighbors that can 

be reached. This ensures that the target nodes are able to estimate their positions more 

often than with lower ranges, even when the scenario is populated with low numbers of 

nodes. 

Table 6-2 shows the average connectivity for the four considered amounts of nodes 

in a scenario: 100, 130, 160, and 200 nodes. These values have been obtained using a 

proportion of 25% beacons per scenario, i.e., 25 beacons for an amount of 100 nodes, 32 

beacons for 130 nodes, and so on. 

Table 6-2: Average node connectivity in a 25% beacon-node proportion scenario. 

 Amount of Nodes 

Range (m) 100 130 160 200 

30 1 1 1 2 

50 2 3 4 5 

80 5 7 8 10 

 

For instance, for a range of 30 meters, the (rounded) average amount of reachable 

neighbors is of 1 for an amount of 100 nodes (on average). This means that for simulations 

populated by 100 nodes (following the proportions and rules stated in Section 5), any node 

has at least one neighbor at any given time, on average. 

The trend is clear, and as the communication range increases, the connectivity of the 

nodes also increases. Figure 6-3 illustrates the values obtained after averaging results 

from a set of experiments. For all images, a threshold has been marked at the minimum 

amount of nodes required to perform triangulation, i.e., three (3). 

Considering all the variables we tested, the communication range showed a greater 

effect over the node connectivity, effectively doubling the amount of nodes that could be 

reached by a requesting non-beacon for each range distance increment. In order to 

exemplify this point, in a scenario with 130 nodes, when the range is increased from 30 
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to 50 meters, the amount of reachable nodes doubles from 1 to 3 (rounded), and when 

increasing the range from 50 to 80 meters the connectivity doubles from 3 to 7 (rounded). 

  

 (a) Communication range of 30 m  (b) Communication range of 50 m 

 

(c) Communication range of 80 m 

Figure 6-3. Average node connectivity over different communication ranges 

6.1.3. Amount of Neighbors 

The number of beacon nodes in a scenario is directly related to the probability of a 

requesting non-beacon finding neighbors that know their positions. When a scenario is 

populated by greater amounts of nodes, these petitioner nodes are more likely to find 

neighbors that know their positions (either beacons, or non-beacons with known 

positions), than in scenarios with lower population density. 

 Figure 6-4 shows the results of measuring the average connectivity of nodes in 

scenarios with a proportion of beacon nodes of 25% (i.e., 25 for the 100 node scenario, 
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32 for the 130 node scenario, etc.), a range of 50 meters, and the node proportion and 

mobility stated in Section 5. 

  

(a) 100 nodes scenario (b) 130 nodes scenario 

  

(c) 160 nodes scenario (d) 200 nodes scenario 

Figure 6-4. Average node connectivity over different amounts of nodes 

 For each graph, two curves are shown. The blue line shows the actual average 

connectivity in the scenario, for all nodes (non-beacons and beacons). On the other hand, 

the red line shows the connectivity of beacon nodes only. This allows us verifying that the 

beacon nodes are actually reaching (and thus being reached by) neighboring nodes, 

disseminating their positioning information throughout the scenario as they move. 

As expected the two curves overlap, which is a good indicator that the connectivity is 

stable for the entire scenario, in average. This is proved by the fact that the behavior of 

both curves is more similar as the number of nodes in the scenario increases, which 

makes sense given that the curves show average values for the nodes in the scenario. 

 Increasing the amount of nodes allows to provide better results in terms of 
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connectivity. The explanation of this behavior falls back on the amount of beacon nodes 

present in the scenarios. Since we follow beacon role assignation proportions, the greater 

the number of nodes, the greater the number of beacons, and therefore the more viable 

neighbors will be available for collaboration. 

Finally, although the number of nodes does increase the connectivity of the scenario, 

this finding was not as crucial as that of the communication range. Moreover, as more 

nodes are present in the scenario, the energy consumption level of the entire network 

tends to grow (which is not a good thing), skyrocketing when less beacons are present 

and the communication range is too low. 

6.1.4. Proportion of Beacons 

This experiment was implemented to (1) observe how the amount of nodes with 

positioning capabilities in a scenario (i.e., beacons) affected the results of a simulation, 

and (2) whether the assignation of this role to specific types of nodes had any effect over 

the results. 

For the first part of the experiment, we tested the scenario using the proposed 

communication ranges, proportions of beacons, and amount of nodes. The results, shown 

in Table 6-3, were conclusive. As expected, the proportion of beacons in a scenario 

directly increases the average decay level of the entire scenario, and it is affected by both 

the communication range and the amount of nodes in the scenario. 

Table 6-3: Average decay based on amount of nodes and beacon proportion. 

Beacon 
Proportion 

Comm. 
Range (m) 

Amount of Beacons 

100 130 160 200 

10% 

30 13 15 16 18 

50 18 21 24 33 

80 34 36 37 39 

25% 

30 30 32 37 40 

50 37 39 44 53 

80 58 59 59 61 

50% 

30 43 45 47 48 

50 61 62 62 64 

80 67 67 68 71 

 

It is important to note that the greater increment in the decay values is brought by the 

communication range, which varies ranging from 5 to 15 points. In contrast, the increase 

brought by the amount of beacons ranges from 1 to 9 points only. Interestingly, the total 

increment from the worst to best case scenarios was more favorable for the amount of 

beacons (+58) than for the communication range (+54), even though average increments 

were of +23 for the communication range and +7 for the amount of beacons. 

In any case, these results served to help us determining the operating boundaries of 
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the model, in terms of device specifications. In addition, we found what we call a “standard 

scenario”, which is the scenario configuration that resembles the most to a real-world 

outdoor environment. This scenario observes a proportion of beacons of 25%, with a 

device communication range of 50 meters. We still tested all possible combinations, but 

we stuck to this particular scenario when deciding to make changes to the model. 

For the second part of the experiment, we assigned the roles of beacon only to 

specific types of nodes. First, the role was assigned only to pedestrians, then vehicles, 

and finally stationary nodes. Table 6-4 shows the resulting average decay when assigning 

the role of beacon under different conditions. 

Table 6-4: Average decay based on amount of nodes and beacon assignation. 

 Amount of Nodes 

 100 130 160 200 

Random Assignation 37 39 44 53 

Pedestrians Only 32 33 40 47 

Vehicles Only 12 15 16 21 

Stationary Only (1) 0 0 1 4 

1 Stationary nodes are never taken into account when calculating the decay average, 

to avoid bias. 

The first set of results is for random assignation, or the default assignation scheme 

explained in Section 5. The values shown in this table correspond to those of the standard 

scenario, with a 25% of beacons and a communication range of 50 meters. We will not 

discuss these results, as they have been analyzed previously. 

The results for pedestrian nodes are very similar to those of the random assignation 

(a difference of only 5 points on average); therefore, we can safely assume that there is 

no benefit in assigning them the role exclusively. However, it is important to note that 

these results are still lower than those of random assignation, which was an indication that 

the heterogeneity of movement was in fact helping increase the decay values. 

As for vehicle nodes, we expected that their high mobility would give them an 

advantage, allowing them to share their positioning information better than pedestrians, 

since they can travel faster throughout the scenario. We expected that this would translate 

into greater (better) decay levels; however, as shown in Table 6-4, we could not have 

been more wrong. Given that the decay formula depends on time and distance, the decay 

values of vehicles rapidly decreased, resulting in short bursts of high decay levels, 

followed by periods of lower decay. Even though the average decay levels of pedestrian 

nodes were well within acceptable ranges, vehicles lowered the scenario average faster 

than they could keep raise it. In addition, under this role assignation scheme, the energy 

consumption skyrocketed, due to the additional number of positioning requests performed 

by vehicles. 

Finally, stationary beacon nodes proved to be the worst case scenario, with the 
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greatest average decay reaching only four points. This is due to the fact that the stationary 

beacons are few (10% of the total population) and they are not necessarily close by, which 

means that non-beacon nodes could have been unable to reach the minimum number of 

beacons required to perform trilateration. Given that the scenarios are quite large (500 × 

500 m2 sized) and the communication range is quite short (50 meters), a grid with a 

minimum of 5 stationary beacons per 100 × 100 m2 section would have been required to 

ensure coverage for non-beacons. This is not only unlikely in outdoor scenarios, but it 

breaks our requirement of not needing specific instrumentation for CAMPOS to work. 

Summarizing, these experiments allowed us determining a standard scenario, which 

we would later use to test our model, and also helped us realize that the assignation of 

roles was critical to achieve our goal of providing positioning for all devices in a scenario. 

With this, we have finished our presentation of the results from the exploratory 

experiments. Next section deals with the results from the actual experiments with the 

model. 

6.2. CAMPOS Results 

In this section we provide the results from two iterations of the CAMPOS development. 

The first set, shown in Subsection 6.2.1, includes the results from an early version of the 

model, which was built upon rule-based heuristics (i.e., a static decision tree). The second 

set, shown in Section 6.2.2, is from the latest version of the model (and regarding this 

thesis document, the last), in which we use the random forest classifier to assemble the 

recommendation vector of suitable positioning strategies. 

The results obtained during different stages of the development of the model have 

been published in the IEEE Systems, Man, and Cybernetics Conference (SMC) [112, 

113], and the Sensors Journal [114]. 

6.2.1. Early Model Development: Rule-based Heuristics 

As described in Section 5, the objective of these experiments was to observe the 

performance of the model under different conditions, such as varying the communication 

range and amount of beacons present in a scenario. 

Three variables were monitored during the experiments: (1) the average decay level 

of the scenario, (2) the average number of nodes over given thresholds, and (3) the global 

energy consumption of the scenario. We defined three thresholds for determining the 

operative capability of the nodes: 𝑇>0 to represent nodes that were able to obtain their 

position at any point in the past but were then unable to do so again, 𝑇>20 to represent 

nodes that are above our lower bound for participation in the positioning process, and 𝑇>60 

to represent nodes that are fit to collaborate. All results shown represent the average from 

the test battery, unless noted otherwise. 
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Figure 6-5 illustrates the average fitness of non-beacon nodes in scenarios with 

different proportions of this node type. Each graph portrays three curves for 

communication ranges of 30, 50 and 80 meters, respectively. This particular set of results 

was obtained in a scenario with 130 nodes. 

 

(a) 10% of beacon nodes (b) 25% of beacon nodes 

 

(c) 50% of beacon nodes  

Figure 6-5. Fitness distribution (averaged) of non-beacon nodes per 

communication range 

Figure 6-5-a shows the results for a scenario with 10% of beacon nodes. The average 

fitness of the scenario reaches about 4.05% at a communication range of 30 meters, 

11.26% at 50 meters, and 22.07% at 80 meters. The scenario with 25% beacons (Figure 

6-5-b) shows slightly better results, reaching average values of 9.46%, 24.32%, and 

41.89% for each of the communication ranges. As for the 50% beacon scenario (Figure 

6-5-c), the fitness reaches 16.67%, 36.48%, and 54.95% for communication ranges of 30, 

50 and 80 meters, respectively. 

Results show that the greater the communication ranges of the devices, the greater 

the fitness levels of the scenarios. The increment values for fitness Figure 6-5-a is +7.21% 

when augmenting the range from 30 to 50 meters, and +10.81% when going from 50 to 

80 meters. In a similar manner, the average fitness grows consistently as the number of 
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beacons present in the scenario increases, amounting to +14.86% and +17.57% in Figure 

6-5-b, and +19.82% and +18.47% in Figure 6-5-c. 

Similarly, as more beacons are present in the scenario, the fitness levels tend to rise. 

For a communication range of 30 meters, when comparing the graphs 6-5-a and 6-5-b, 

there is an increment of +5.40% in fitness, and of +7.21% when comparing graphs 6-5-b 

and 6-5-c. For a communication range of 50 meters, the fitness increment is of +13.06% 

and +12.16%, and for 80 meters the increment is of +19.82% and +13.06%. 

However, to determine whether the proposed model is actually helping non-beacon 

nodes to perform positioning, we must measure how many of them actually know their 

positions. It is not enough to just count nodes with known positions; it is necessary to 

determine whether their positioning information is up-to-date or not, and thus whether they 

are fit for collaboration. This information can be obtained by observing their fitness scores. 

Figure 6-6 shows the amount of nodes (%) that have fitness scores over the given 

thresholds (𝑇>0 and 𝑇>60), for scenarios with communication ranges of 30, 50 and 80 

meters. There are two sets of curves on each graph, all representing the number of nodes 

over a given fitness threshold for each of the three proportions of beacons (10%, 25%, 

and 50%). The solid curves represent the percentage of non-beacons with fitness scores 

over 60 (𝑇>60), while the dotted curves show the percentage of non-beacons with fitness 

scores greater than 0 (𝑇>0). 

For the scenario with a communication range of 30 meters (Figure 6-6-a), the average 

percentage of nodes with fitness 𝑇>60 is of 0.45 nodes when 10% beacons are present, 

1.80 for 25% of beacons, and 3.60 for 50% of beacons. This means that there are basically 

no nodes that have fitness levels fit for collaboration. The quantity of 𝑇>0 nodes is generally 

higher, with 10.81, 20.27, and 21.17 for each of the beacon proportions, respectively. 

When the communication range is raised to 50 meters (Figure 6-6-b), the average 

percentage of nodes over threshold 𝑇>60 increases to 4.05, 9.01, and 13.51 for each 

proportion of nodes. The count of 𝑇>0 nodes is of 35.59, 48.64, and 37.84, for the 10%, 

25%, and 50% beacon amounts, respectively. Finally, for a communication range of 80 

meters (Figure 6-6-c), the average percentage of nodes amounts to 4.95, 19.37, and 

27.93 for the 𝑇>60 nodes, and for the 𝑇>0 nodes it reaches values of 72.07, 68.47, and 

46.84 for each of the three beacon proportions, respectively. 

Results show that the number of nodes over both, the 𝑇>60 and the 𝑇>0 fitness 

thresholds, increases as the communication range of the devices is augmented, as 

expected. This increase is smaller when the threshold is greater (e.g., 60), but more 

noticeable when the threshold is lower (e.g., 20). When 10% of beacon nodes are present 

in a scenario, incrementing the communication range from 30 to 50 meters results in 

+1.35% of 𝑇>60 nodes (Figures 6-6-a and 6-6-b), and +1.80% when going from 50 to 80 

meters (Figures 6-6-b and 6-6-c). The amount of nodes with 𝑇>0 has a similar behavior, 



118 
 

growing +9.46% and +0.90% when increasing the communication range from 30 to 50 

meters, and from 50 to 80, respectively. 

 

(a) 30 m range (b) 50 meters range 

 

(c) 80 m range  

Figure 6-6. Percentage of nodes with fitness over thresholds 𝑇>0 and 𝑇>60, per 

proportion of beacons 

For the 25% beacon proportion scenario, the 𝑇>60 nodes show an increase of +4.95% 

and +4.50% when the communication range is incremented from 30 to 50 meters (Figures 

6-6-a and 6-6-b), and then from 50 to 80 meters (Figures 6-6-b and 6-6-c), respectively. 

Meanwhile, 𝑇>0 nodes show an increase of +2.25% and +10.81%, when going from a 

communication range of 30 to 50 meters, and from 50 to 80 meters, respectively. 

Finally, for the scenario with a 50% beacon proportion, the number of 𝑇>60 nodes 

increases by +14.41% and +8.56%, while the 𝑇>0 node amount grows by +21.62% and 

+3.60% nodes for the corresponding increments in the communication range. 

In terms of energy consumption, results are straightforward. Figure 6-7 shows three 

different curves that portray the average energy consumption of a set of scenarios with a 

proportion of 25% beacons, a communication range of 30 meters, and an amount of nodes 

of 130. 
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Figure 6-7. Energy consumption (standard scenario, with 130 nodes) 

These results were calculated based on the Carrol et al. [28] energy consumption 

formula for GPS (166 ± 0.04% 𝑚𝑊 per request). Results are averaged from the entire 

scenario, and they include three curves: (1) one for emulated self-positioning GPS (GPS 

Real), (2) one for self-positioning GPS under CAMPOS management (GPS Model), and 

(3) another for CAMPOS trilateration (collaboration). 

In all cases, the energy consumption is almost perfectly linear, because every 

communication attempt and information exchange requires expending energy. Assuming 

the curves are straight lines, the slope of each curve would be determined by the quantity 

of energy expended; the more energy spent, the greater the slope value. 

The GPS Real curve was determined using Carrol’s formula, with default intervals for 

GPS positioning requests. The values from this curve were measured in a real world 

device, and then emulated inside the simulation environment. It has the lower energy 

consumption values from all curves in Figure 6-7, amounting to 915 units after 300 

seconds of measuring. 

The second curve, GPS Model, uses the same formula as GPS Real, but instead of 

using the default GPS positioning request rate, it uses CAMPOS decay-based positioning 

request scheme. At the end of the simulation, this curve has a total energy consumption 

of 1037 units, an increment of +122 over vanilla GPS. 

Finally, the Collaboration curve, which uses CAMPOS decay-based positioning 

scheme, scored 1221 energy units consumed after 300 seconds. This result amounts to 

a difference of +306 units over GPS Real, and +184 units over GPS Model. 
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6.2.2. Late Model Development: Random Forest 

These sets of results are from the latest iteration of the model, in which we treat the 

problem of determining the best alternative to provide positioning to a device, based on 

its context as a classification problem. As explained in Sections 4 and 5, we settled for 

using a random forest classifier, with the feature vectors corresponding to a device and 

its contextual scenario as input, and the recommended positioning strategy as output. In 

addition, the decay formula (2) had to be revised, adding a coefficient (k) to cope with the 

huge difference in decrement between vehicles and pedestrians. 

  

(a) 10% of beacon nodes (b) 25% of beacon nodes 

 

 

(c) 50% of beacon nodes  

Figure 6-8. Average fitness per amount of nodes in scenario; communication 

range of 30 meters 

Figures 6-8, 6-9, and 6-10 depict the average fitness results of fifteen CAMPOS test 

simulations, grouped by communication range. Each graph shows the average fitness of 

non-beacon nodes for all four amounts of nodes, across the three observed beacon 

proportions. The solid lines represent the average results of all non-beacon nodes 

(“global” fitness), and the dotted lines represent only non-beacons with fitness greater 

than 0 (𝐹>0). The latter is included to provide an idea of the average fitness of the nodes 

that have managed to obtain their positions, avoiding bias by isolated nodes. Two 
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horizontal black lines have been traced, to represent the 𝑇>20 and 𝑇>60 thresholds. 

Due to the amount of data that must be shown, we will not present detailed fitness 

values for each curve and graph to avoid cluttering this subsection. However, we will 

provide trends and values for specific scenarios instead. 

  

(a) 10% of beacon nodes (b) 25% of beacon nodes 

 

 

(a) 50% of beacon nodes  

Figure 6-9. Average fitness per amount of nodes in scenario; communication 

range of 50 meters 

The results shown in Figure 6-8 correspond to a communication range of 30 meters. 

The global fitness values for a beacon proportion of 10% (Figure 6-8-a) remain 

consistently above 10 units, but do not reach minimum fitness operating levels. For all 

amounts of nodes, the fitness is within a range of [10, 20]. However, when nodes with a 

fitness of zero are excluded from the average (𝐹>0), the fitness rises, reaching values of 

47.87 to up to 56.74 (above 𝑇>20, and thus within operating levels). 

When incrementing the proportion of beacons to 25% (Figure 6-8-b), global fitness 

rises above 25, but below 40. On the other hand, values for 𝐹>0 nodes rise to within a 

range of 40 and 60. For a proportion of the 50% of beacons (Figure 6-8-c), the ranges of 

fitness increase to within 40 and 60 units for the global average, and above 60 for the 𝐹>0 
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nodes. The latter values are within acceptable levels for our model, although that density 

of beacons in such a small scenario is unlikely. 

For a communication range of 50 meters (Figure 6-9), the trend is similar, with fitness 

growing as the communication range and proportion of beacons increases. The ranges 

for global average fitness are of [15, 30], [30, 50], and [60, 70] for the 10%, 25% and 50% 

proportions of beacons, respectively. Conversely, the values for 𝐹>0 nodes are within 

ranges of [25, 40], [50, 65], and [60, 70], for the same proportions of beacons. 

  

(a) 10% of beacon nodes (b) 25% of beacon nodes 

 

 

(a) 50% of beacon nodes  

Figure 6-10. Average fitness per amount of nodes in scenario; communication 

range of 80 meters 

Finally, for the 80 meters communication range (Figure 6-10), both the global fitness 

and the fitness of 𝐹>0 nodes for a 10% of beacon proportion are within a range of [60, 70]. 

Similarly, for the 25% of beacon proportion, both the global and 𝐹>0 fitness are within a 

range of [55, 65], and within [65, 75] for a 50% of beacon proportion. 

Regarding the amounts of nodes with known positions, Figures 6-11 through 6-19 

show the amount of nodes that know their position with fitness over the three defined 

thresholds, 𝐹>0, 𝐹>20 and 𝐹>60. These results take into account both beacon and non-
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beacon nodes, to avoid confusion due to the graphs being based on the “amount of nodes 

in scenario” dimension (not percentages, but actual amounts). 

Since there is a significant amount of graphs depicting the behavior of the amount of 

nodes given a certain threshold (a total of 27), we decided to group them in three 

subsections. Each subsection deals with a specific communication range, and includes 

figures with the average results for each of the beacon proportions. For a summary and a 

detailed discussion of these results, please refer to Section 6.3.2, specifically Tables 6-8 

and 6-9. 

6.2.2.1. Node count in scenarios with a communication range of 30 meters 

  

(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) F>60  

Figure 6-11. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 30 meters, 10% of beacons 

The scenario with a communication range of 30 meters and a proportion of 10% 

beacons (Figure 6-11) shows that for the 100 node scenario, only an average of 28 nodes 

knows their position with any degree of fitness (𝐹>0), 23 have operating fitness values 

(𝐹>20), and barely 11 have adequate fitness (𝐹>60). This is the worst case scenario, in 

which only one non-beacon has a fitness value adequate to be a reference point for its 
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neighbors (subtracting the 10 beacons of the scenario, we get only one 𝐹>60 node). 

For the 130 node scenario, an average of 46 nodes have 𝐹>0, 38 have 𝐹>20, and 13 

have 𝐹>60 fitness. The 160 node scenario has 57 𝐹>0 nodes, 46 𝐹>20 nodes, and 17 𝐹>60 

nodes. Finally, the 200 node scenario has 98, 61, 22 nodes with fitness over thresholds 

of 𝐹>0, 𝐹>20, and 𝐹>60, respectively. 

Figure 6-12 shows the results for the scenario with a communication range of 30 

meters and a proportion of 25% of beacons. The 100 node scenario shows an average of 

53 𝐹>0 nodes, 51 𝐹>20, and 27 𝐹>60. For the 130 node scenario, there are 69, 55, and 37 

nodes for the 𝐹>0, 𝐹>20, and 𝐹>60 nodes, respectively. 

  

(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-12. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 30 meters, 25% beacons 

The 160 node scenario shows 108 𝐹>0 nodes, 97 𝐹>20, and 50 𝐹>60. Finally, the 200 

node scenario has nodes in amounts of 154 for the 𝐹>0 threshold, 128 for 𝐹>20, and 56 for 

the 𝐹>60 threshold. 

The 130 node scenario for this communication range and beacon proportion (30 
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meters and 25%, respectively) is the first scenario in which the model provides over 50% 

of nodes with known positions and fitness within operating (𝐹>20). 

The final scenario for the communication range of 30 meters is the 50% beacon node 

proportion, portrayed in Figure 6-13, which shows results of 66, 64 and 52 nodes for the 

thresholds of 𝐹>0, 𝐹>20, and 𝐹>60 for the 100 node scenario, respectively. 

  

(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-13. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 30 meters, 50% beacons 

These numbers change to 101, 97, and 71 for the 130 node scenario; 129, 126, and 

95 for the 160 node scenario; and 183, 176, 113 nodes over the established thresholds 

for the 200 node scenario. 

6.2.2.2. Node count in scenarios with a communication range of 50 meters 

This subsection groups the results for the scenarios with a communication range of 

50 meters, across all three beacon proportions. Figure 6-14 shows the average results of 

scenarios with a proportion of beacons of 10%. For the scenarios with 100 nodes, there 

are a total of 51 nodes with fitness over threshold F>0, 27 nodes over F>20and 13 nodes 

over F>60, in average. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-14. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 50 meters, 10% beacons 

When the number of nodes in the scenario increases to 130, the nodes with fitness 

over threshold increases to 83, 51, and 17 for the F>0, F>20and F>60, respectively. These 

numbers increase again to 144 nodes over fitness threshold F>0, 89 over F>20, and 24 

nodes over F>60, when the amount of nodes in the scenario is set to 160. 

When the number of nodes in the scenario amounts to 200, the count of nodes with 

fitness over threshold increases to 178 for the F>0 threshold, 124 for the F>20 threshold, 

and 33 for the F>60 threshold, respectively. 

For the beacon proportion of 25%, shown in Figure 6-15, the scenario with 100 nodes 

shows 77 nodes with fitness F>0, 62 with fitness F>20, and 27 with fitness F>60, on average. 

The scenario with a population of 130 nodes shows results amounting to 117 nodes with 

F>0, 102 nodes with F>20, and 48 nodes with F>60, across the three graphs. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-15. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 50 meters, 25% beacons 

The scenario with 160 nodes shows results of 151 nodes with fitness F>0, 139 with 

fitness F>20, and 61 with fitness F>60. Finally, the 200 node scenario shows results of 196, 

188, and 83 fitness, for each of the three fitness thresholds F>0, F>20, and F>60. 

Figure 6-16 shows results for the 50% proportion of beacons. When 100 nodes are 

present in the scenario, the amount of nodes over the F>0 threshold amount to 95, 93 for 

the F>20 threshold, and 56 for the F>60 threshold. For an amount of 130 nodes in a 

scenario, the node count with fitness over F>0 reaches 122, and it decreases to 119 for 

the F>20, and to 87 for the F>60. 

For the scenario with 160 nodes, there are 154 nodes with fitness F>0, 153 nodes 

with F>20, and 121 nodes with F>60. These values increase to 197 for the F>0 threshold, 

194 for F>20, and 145 for F>20 in scenarios with 200 nodes. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-16. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 50 meters, 50% beacons 

6.2.2.3. Node count in scenarios with a communication range of 80 meters 

This subsection deals with the results from the scenarios with communication ranges 

of 80 meters, for each of the three proportions of beacons. Figure 6-17 shows results of 

93 nodes for the F>0 fitness threshold, 62 nodes for the F>20 threshold, and 17 for the F>60 

threshold. 

In the scenario with 130 nodes, the number of nodes over a given threshold are of 

126 for the F>0 threshold, 97 for the F>20 threshold, and 17 for the F>60 threshold. For the 

scenario with a population of 160 nodes, the number of F>0 nodes is 151, a number that 

decreases for F>20, reaching 128 nodes, decreasing further to 23 for the F>0 threshold. 

For the scenario of 200 nodes, the amount of nodes with fitness over the F>0 threshold 

amounts to 197. This number decreases to 153 when the fitness threshold is increased 

to F>20, and to 28 when the fitness threshold is further increased to F>60. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-17. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 80 meters, 10% beacons 

Figure 6-18 shows the amount of nodes for the 25% beacon proportion scenarios. 

For a population of 100 nodes, the amounts of nodes over a threshold are 99, 98, and 47, 

for the fitness thresholds F>0, F>20, and F>60, respectively. 

If the population is increased to 130, the count of nodes over a given fitness threshold 

amounts to 128, 127, and 59 nodes with fitness over the established thresholds of F>0, 

F>20, and F>60, respectively. 

When the amount of nodes in the scenario increases to 160, the amount of nodes 

over the F>0 threshold is of 155, 153 for F>20, and 71 for the F>60. Finally, for scenarios 

with populations of 200 nodes, the amount of nodes with fitness over the F>0 threshold is 

of 199, 198 for the F>20 threshold, and 97 for the F>60 threshold. 

The results for the amount of nodes in scenarios with a 50% beacon proportion can 

be seen in Figure 6-19. For this particular communication range, almost 100% of the 

nodes across all population counts have operating fitness levels of above 20. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-18. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 80 meters, 25% beacons 

In the scenario with a population of 100 nodes, there is an average of 99 F>0 nodes, 

99 F>20, and 81 F>60 nodes. These numbers increase to 129, 128, and 101 for the F>0, 

F>20, and F>60 fitness thresholds, respectively, when the population of nodes is increased 

to 130. 

For the 160 nodes scenario, the amount of nodes with fitness values of F>0 is of 160, 

the amount of F>20 nodes is of 159, and that of F>60 nodes reaches 126. Finally, for the 

200 nodes scenarios, the fitness thresholds of F>0, F>20, and F>60, have values of 200, 

200, and 154, respectively. 
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(a) 𝐹>0 (b) 𝐹>20 

 

 

(c) 𝐹>60  

Figure 6-19. Amount of nodes with fitness over threshold (including beacons) per 

fitness threshold; communication range of 80 meters, 50% beacons 

6.3. Analysis and Discussion 

In this subsection, we provide an analysis of the results shown in Section 6.2. For each of 

the two experiments, we provide a discussion on the reasons behind the obtained results, 

as well as explanations on our findings and the consequences or benefits they carry. 

6.3.1. Early Model Development: Rule-based Heuristics 

The most notable finding was that the model does provide positioning to non-beacon 

nodes. This fact is illustrated in Tables 6-5 and 6-6, which show the average percentage 

of nodes that know their position with fitness over certain thresholds. Table 6-5 shows the 

amounts of nodes that have any value for fitness (𝑇>0), and Table 6-6 shows the amounts 

of nodes for fitness (𝑇>60). Remember that fitness determines the “confidence” on the 

node’s positioning information, and it is an indicator that the node is a valid reference point 

during the positioning process. 
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Table 6-5: Percentage of nodes with fitness over thresholds 𝑇>0, per proportion of 

beacons. 

Communication 
Range (m) 

Beacon Proportion 

10% 25% 50% 

30 11% 20% 21% 

50 36% 49% 38% 

80 72% 68% 47% 

For instance, let us assume a scenario populated by nodes with a proportion of 25% 

beacons, and a communication range of 50 meters. In such a scenario, there are 49% 

non-beacons that have managed to determine their positions at any point during the 

simulation (𝑇>0, Table 6-5), for a grand total of 74% nodes with known positions (adding 

up 49% non-beacons with known positions, plus 25% beacons). 

However, the amount of nodes that have meaningful positioning information in this 

scenario (i.e., nodes with 𝑇>60, Table 6-6) is of only 9%, amounting up to 34 nodes with 

meaningful known positions. 

Table 6-6: Percentage of nodes with fitness over threshold 𝑇>60 per proportion of 

beacons. 

Communication 
Range (m) 

Beacon Proportion 

10% 25% 50% 

30 0% 2% 4% 

50 4% 9% 14% 

80 5% 19% 28% 

Moreover, if the communication range increases, the population of 𝑇>0 nodes 

skyrockets, reaching total percentages of 82%, 93% and 97% of nodes with known 

positions for each of the proportion of beacons (counting non-beacons and beacons). 

However, this is not the case for 𝑇>60 nodes, which only reach percentages of 15%, 44%, 

and 78% of nodes with meaningful fitness. 

This is explained by the fact that having more beacon nodes increases the likelihood 

of non-beacons finding neighbors viable for collaboration. This allows more non-beacons 

to estimate their positions, both increasing the fitness scores in the scenario. In addition, 

it allows these nodes to become reference points for other non-beacons, helping increase 

the amount of nodes with known positions in the scenario. 

As for fitness, illustrated in Table 6-7, the overall average values remain low across 

all beacon proportions and communication ranges. This is explained by the fact that there 

are far more 𝑇>0 nodes than 𝑇>60, which lowers the total amount of fitness.  

Table 6-7: Fitness distribution based on beacon proportion and communication range. 
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Beacon 
Proportion 

Communication Range 

30 m 50 m 80 m 

10% 4 11 22 

25% 9 24 41 

50% 17 36 55 

The standard scenario, with a proportion of 25% beacon nodes and a communication 

range of 50 meters, yields only an average fitness of 24, just over the minimum operating 

threshold of the model. These results were not sufficient to fulfill our goals, and thus, 

indicated that the model required improvement to be actually useful. 

Related to energy consumption, the proportion of beacons proved to be counter-

intuitive in terms of the obtained results. We expected that more beacon nodes would 

result in greater (average) energy consumption, due to additional communications to GPS 

satellites (no peripheral utilization was emulated, only GPS communication). However, 

that was not the case. Although beacon nodes tend to utilize more energy than non-

beacons during the positioning estimation process, their own consumption is offset by 

non-beacons, which utilize less energy as more beacons are added to the scenario. This 

is due to having more reference points available, which translates into less positioning 

requests necessary to obtain meaningful positioning information during collaboration. 

 On the other hand, the energy consumption in terms of the communication range 

performed as predicted, although not with the magnitude we expected. Higher 

communication ranges allowed non-beacons to reach more neighbors when requesting 

positioning information, increasing the number of nodes that could be reached on each 

communication attempt. This, in turn, increased the energy consumption of the 

participants due to more broadcasts being heard than with lower ranges. However, this 

consumption was offset by the lower amount of positioning requests of non-beacons, 

which could find viable neighbors more easily, and thus estimate their position in fewer 

attempts. 

Conversely, lower communication ranges do not diminish the energy consumption, 

but actually increase it. This is because fewer viable neighbors are reached by non-

beacons when requesting collaboration. Since non-beacons are less likely to estimate 

their positions, and isolated individual nodes are unable to reach viable neighbors, they 

must expend more energy sending additional positioning requests. 

Finally, limiting the communication of devices to a single channel (such as, WiFi) is 

less energy-demanding than allowing multiple channels. When using a single 

communication channel, only one positioning request has to be sent on each attempt; 

when using multiple channels, a request has to be sent from each of the corresponding 

peripherals (one per available channel). Additionally, sending requests through multiple 

channels implies that some requests will be received more than once by some neighbors, 

and others will be lost if no neighbors are capable to receive them, which also translates 
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into greater energy consumption. 

6.3.2. Late Model Development: Random Forest 

Thanks to the improvements made to the fitness formula, as well as other improvements 

within the contextual management component of the model, the overall fitness of all 

scenarios greatly improved in relation to results from previous experiments. These results, 

illustrated in Table 6-8, show that the latest iteration of CAMPOS reaches operating values 

(𝐹>20) even within scenarios with adverse conditions. 

Table 6-8: Fitness distribution of non-beacons across all types of scenarios. 

Amount 
of 

Nodes in 
Scenario 

Comm. 

Range 

Beacon Proportion 

10% 25% 50% 

All 𝐅>𝟎 All 𝐅>𝟎 All 𝐅>𝟎 

100 

30 m 13 49 30 54 47 64 

50 m 18 31 36 51 61 63 

80 m 36 36 57 57 66 66 

130 

30 m 13 41 29 50 52 63 

50 m 22 32 40 54 63 64 

80 m 38 38 60 60 67 67 

160 

30 m 12 39 36 56 54 63 

50 m 27 31 47 58 65 65 

80 m 38 38 60 60 70 70 

200 

30 m 17 36 39 47 57 62 

50 m 31 34 54 62 67 68 

80 m 38 38 61 61 69 69 

We made a differentiation between all and only 𝐹>0 nodes to emphasize the variation 

between the fitness values from the entire non-beacon population (counting nodes that 

have zero fitness), and those from non-beacons that know their positions with any degree 

of fitness. 

In general, the fitness values for nodes that have been able to determine their 

positions are greater than those of the entire scenario, especially when the communication 

range and proportion of beacons are lower. For instance, for scenarios with 

communication ranges of 30 meters and a beacon proportion of 10%, the scenario fitness 

is of 13 for populations of 100 and 130 nodes, 12 for populations of 160 nodes, and 17 for 

200 nodes. Conversely, the 𝐹>0 nodes amount to 49, 41, 39, and 36 units for the same 

population amounts. 
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This particular scenario presented a counter-intuitive trend, in which the fitness values 

decreased instead of increasing, as the scenario population augmented. Since there is a 

correlation between values for both all and 𝐹>0 nodes, we attribute this trend to energy 

saving procedures that limit the amount of failed positioning requests before putting the 

node “on hold”, which tends to activate when nodes get isolated. 

As the communication range and the proportion of beacons increases, the values for 

the entire scenario and 𝐹>0 nodes tend to close in, reaching similar values as the 

population of nodes in the scenario grows. For instance, the (rounded) fitness of scenarios 

with communication ranges of 80 meters and proportions of 50% beacons is almost 

identical for all and 𝐹>0. 

Table 6-9: Amount of nodes with fitness over thresholds, across all types of scenarios. 

Amount of 
Nodes in 
Scenario 

Comm. 

Range 

Beacon Proportion 

10% 25% 50% 

𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 

100 

30 m 11 23 28 27 51 53 52 64 66 

50 m 13 27 51 27 62 77 56 93 95 

80 m 17 62 93 47 98 99 81 99 99 

130 

30 m 13 38 46 37 55 69 71 97 101 

50 m 17 51 83 48 102 117 87 119 122 

80 m 17 97 126 59 127 128 101 128 129 

160 

30 m 17 46 57 50 97 108 95 126 129 

50 m 24 89 144 61 139 151 121 153 154 

80 m 23 128 151 71 153 155 126 159 160 

200 

30 m 22 61 98 56 128 154 113 176 183 

50 m 33 124 178 83 188 196 145 194 197 

80 m 28 153 197 97 198 199 154 200 200 

Tables 6-9 and 6-10 show the amount of nodes that know their positions with any 

degree of fitness; the first in absolute values, and the latter as percentages. Note that 

values provided in these tables are cumulative for each fitness threshold, i.e., 𝐹>0 contains 

both 𝐹>20 and 𝐹>60, and 𝐹>20 contains 𝐹>60. This means that the 90% node percentage of 

Table 6-10, for the communication range of 50 meters, a proportion of beacons of 25%, 

and population of 130, breaks out into three values: 37% 𝐹>60, 41% 𝐹<20,60>, and 12% 

𝐹[0,20>. 

Table 6-10: Percentage of nodes with fitness over thresholds, across all scenarios. 
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Amount of 
Nodes in 
Scenario 

Comm. 

Range 

Beacon Proportion 

10% 25% 50% 

𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 𝐅>𝟔𝟎 𝐅>𝟐𝟎 𝐅>𝟎 

100 

30 m 10% 29% 35% 28% 42% 53% 55% 75% 78% 

50 m 13% 39% 64% 37% 78% 90% 67% 92% 94% 

80 m 13% 75% 97% 45% 98% 98% 78% 98% 99% 

130 

30 m 10% 29% 35% 28% 42% 53% 55% 75% 78% 

50 m 13% 39% 64% 37% 78% 90% 67% 92% 94% 

80 m 13% 75% 97% 45% 98% 98% 78% 98% 99% 

160 

30 m 11% 29% 36% 31% 61% 68% 59% 79% 81% 

50 m 15% 56% 90% 38% 87% 94% 76% 96% 96% 

80 m 14% 80% 94% 44% 96% 97% 79% 99% 100% 

200 

30 m 11% 31% 49% 28% 64% 77% 57% 88% 92% 

50 m 17% 62% 89% 42% 94% 98% 73% 97% 99% 

80 m 14% 77% 99% 49% 99% 100% 77% 100% 100% 

Summarizing, the standard scenario (communication range of 50 meters, beacon 

proportion of 25%) shows average fitness values within a range of [36, 54] for all scenario 

populations, and within [51, 62] when only taking into account nodes with 𝐹 ≥ 0. Both 

fitness ranges are within operating levels for the model, although only about 38% of non-

beacons (on average, across all scenario populations) reached the expected fitness 

threshold of 𝐹>60, while another 50% remained below that, but above 𝐹>20. Note that these 

values are reasonable, considering the volatility of mobile outdoor scenarios. 

In terms of energy consumption, the amounts of energy utilized by the model during 

this stage had no statistically significant variation from those shown in the discussion of 

the previous experiment. The tweaks made to the fitness and decay formulae helped 

improve the fitness and amount of nodes in scenario indicators, but they had almost no 

effect over the actual energy consumption. This is due to the model working basically in 

the same manner as in earlier versions in terms of communication, showing only slight 

improvements over results from previous stages of development. However, this 

improvement was not significant enough to be considered an actual “enhancement”, but 

rather a statistical occurrence within the expected deviation. 

6.4. Revisiting the Research Questions and the Hypotheses 

This subsection revisits the research questions and the hypotheses stated to address the 

problem of providing positioning to all or most devices in a MANET, in mobile outdoor 

environments, even if they are somehow impeded to do so. 
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We proposed that in most cases, participating devices commit to a single positioning 

strategy, even when there are better options. Moreover, not all of the participating devices 

possess peripherals that enable them to perform positioning on their own, or they could 

have their peripherals turned off. In addition, we stated that energy is usually a scarce 

asset in mobile environments, and that aspect must be taken into account during the 

positioning process. With these statements in mind, two research questions were 

postulated to drive our research forward: 

RQ1: How to enable all or most of devices in a given outdoor scenario to estimate 

their positions, even if they have limited or no positioning capabilities of their own? 

RQ2: How to achieve the former without increasing considerably the energy 

consumption of both individual devices and the entire network? 

In order to tackle these questions and solve the aforementioned positioning problem, 

we proposed the following three hypotheses: 

H1: Devices in outdoor environments could use their peripherals and communications 

capabilities to sense their environment, effectively assembling a working-context that 

includes all elements relevant to the positioning process. 

H2: Devices with positioning capabilities could make use of their contextual 

information to determine which positioning strategy is better suited given their current 

context, and taking into account factors such as accuracy, response time and energy 

consumption. 

H3: Devices with no self-positioning capabilities that are part of a mobile network 

could collaborate with their close neighbors, sharing positioning information (if 

available) and using it to obtain a rough estimate of their position. 

Concerning the research questions, we answered RQ1 by providing “equality of 

access” to all the participants of a MANET, in the sense that devices are not inherently 

limited to specific positioning strategies (e.g., using only GPS, or both GPS and RFID, but 

not other available strategies). Instead, every device is considered to have the possibility 

to access any positioning strategy available in its surrounding context from the start. Then, 

based on the device’s capability to interact with its environment (through its peripherals), 

this set of strategies is reduced only to those positioning strategies the device can actually 

access. 

The results presented in Tables 6-8 and 6-10 for the standard scenario (i.e., the one 

that most closely resembles a real world outdoor environment) show that at least 37% of 

the devices for each population had fitness of over 60 units (𝐹>60). This means that 37% 

of the population (including beacons) has access to reliable positioning information. An 

additional 41% of devices have fitness lower than 60 but greater than 20 (i.e., within 

minimum operating levels), and 12% with fitness below 20 (i.e., excluded from the 
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positioning process). 

Although we were unable to provide all the devices in the scenario with consistent 

access to their position, we managed to achieve a total of 78% nodes with working fitness 

levels, and an additional 12% of nodes that at some point obtained their positions, but 

have since been unable to perform a new estimation. 

With this, an average total of 90% of the nodes across all scenarios had at some point 

access to their positions regardless of their capabilities. Therefore, devices with 

positioning capabilities that are in some way impeded to perform positioning could perform 

positioning through other means, and devices with self-positioning capabilities could 

attempt to use a different positioning strategy than their default. 

Summarizing, it is possible to enable most devices in a given outdoor scenario to 

estimate their positions regardless of their positioning capabilities, which essentially 

provides an answer to RQ1. 

As for the second research question (RQ2), at network level, there is an unavoidable 

increase in energy consumption due to the additional communication attempts performed 

by requesting non-beacons. This is barely offset by energy saving measures (such as, the 

“hold” mode), but it remains as an additional cost that does not occur in scenarios 

populated only by self-positioning devices. 

Thus, we answered RQ2, but it did not achieve the energy consumption goal we 

proposed. The energy consumption of the model is only slightly higher than that of using 

plain GPS, and we had proposed that it would be at most equal, and preferably lower. A 

more detailed explanation is provided further down this section, during the discussion of 

goal fulfillment. 

Regarding the stated hypotheses, by answering the research questions, we validated 

all three of them to some extent. By utilizing the communication and navigation peripherals 

of the devices, the CAMPOS model provides devices with the ability to sense and 

characterize their working-context. With this, the model can assemble the device and 

scenario feature vectors (shown in Section 4.2) that are later used to determine the 

positioning recommendations, therefore validating the first hypothesis (H1). 

As for hypothesis H2, CAMPOS provides devices with the possibility to asses all of 

the positioning strategies available to them, determining which is better suited based on 

the assembled feature vectors that represent their working context. A random forest 

classifier (Section 4.2) then uses these vectors to determine the more suitable positioning 

strategy, and once the positioning process is finished, the model provides the requesting 

applications with the position of the device. Factors such as the accuracy requirement of 

the requesting application, and the energy levels of the devices, are restrictions imposed 

on the model, which endorses the validation of the second hypothesis (H2). 
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Finally, related to the third hypothesis (H3), the model potentially enables all devices 

without self-positioning capabilities to perform positioning collaboratively, as well as those 

with self-positioning capabilities that for some reason are unable to perform positioning. 

Results show that 90% of the devices in a given scenario knew their positions at some 

point during the simulation, while a total of 78% know their positions with fitness within 

operating levels. Thus, we can safely say that hypothesis H3 has been thoroughly 

validated. 

In terms of the thesis objective, we fulfilled the main objective by providing most of 

the participant devices with the capacity of performing outdoor positioning, regardless of 

their inherent (or inexistent) positioning capabilities. CAMPOS allows devices to sense 

changes in their context, and adapt their behavior accordingly, either by recommending 

the use of a positioning strategy, or by removing the device from the collaboration. This 

ability, of course, is limited by the device’s sensing capabilities. 

The model provides self-positioning devices with a “menu” of positioning capabilities, 

allowing them to pick the one that works better for their surrounding context, instead of 

using the default one (generally GPS). As for devices without positioning capabilities and 

self-positioning devices unable to access positioning strategies, the model provides them 

with the capacity to perform collaborative positioning based on their neighbors positioning 

information. 

In addition, CAMPOS requires no additional instrumentation, basing its functions on 

strategies and reference points (i.e., neighboring devices and access points) that the 

requesting devices can sense in the environment. If a device is unable to sense a 

particular positioning strategy, it can still benefit from it via collaboration, through a 

surrogate device that has access to said positioning strategy. 

The only goal that was not entirely fulfilled (with respect to our initial expectations) is 

that of avoiding unnecessary energy consumption. Although the model allows devices not 

to attempt to perform positioning if conditions are not suitable, the amount of 

communications required to perform collaborative positioning, as well as the energy 

required to perform context-sensing, tend to increase the energy consumption levels of all 

participant devices. 

Results show that an additional 184 to 306 energy units are spent by devices utilizing 

the model actively for a lapse of 5 minutes, with respect to devices that do not (Figure 6-

8). These amounts are not high in terms of battery energy, considering that the model 

works in short bursts of activity, and then it “sleeps” waiting for fitness to decay before 

attempting a new positioning request. However, continuous use of the model over 

prolonged time lapses is sure to bring down the battery of a device. This latent issue 

should be tackled as part of the future work. 
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Chapter 7: Conclusions and Future Work 

This thesis presents CAMPOS, a context-aware positioning model for outdoor 

scenarios. The model provides mobile devices with the means to determine their position 

based on contextual elements such as neighboring devices, access points, and available 

positioning strategies, to name a few. The model was tested using simulated outdoor 

environments, consisting of 500 × 500 m2 areas populated by three types of nodes: 

pedestrians, vehicles, and stationary. These nodes have roles depending on their ability 

to use positioning strategies; beacons have access to at least one positioning strategy, 

and non-beacons have no access whatsoever. 

CAMPOS enables up to 90% of devices in an outdoor scenario to estimate their 

position based on information gathered from their surrounding context, specifically the 

population of reference points (i.e., access points and other devices with known positions) 

and available positioning strategies. In addition, devices with access to more than one 

positioning strategy are provided with the ability to choose the strategy that works better 

than the default one (mainly GPS) for their particular context. 

The model succeeds in providing a degree of positioning to mobile applications 

running on devices otherwise unable to position themselves. This goal is reached by 

sharing positioning information with the neighboring nodes. However, due to the nature of 

the collaboration (i.e., the reference points’ positions have a variable error), the accuracy 

of the estimations is expected to be significantly lower than using a positioning strategy 

directly. Based on literature, the expected collaboration errors could range from less than 

1 meter to over 12 meters above the error associated to GPS. Note that this positioning 

error applies to devices that would be unable to position themselves if not for CAMPOS. 

Likewise, by using the set of recommendations assembled by the model, a device is 

able to access any of the positioning strategies available in its surroundings. This 

eliminates the need to start the whole positioning process over when there has been no 

significant change in context, since the device can use any of the recommended 

strategies. The interval at which the model senses the environment depends on the speed 

of the device, and on the position accuracy requirement of the consumer application. 

In terms of energy, despite advances in battery technology, maintaining an active 

connection (e.g., GPS or Wi-Fi) consumes significant amounts of power. Thus, the model 

must make additional decisions to ensure extended operation to the devices, e.g., sensing 

the context of a device to determine whether it is moving or not, in order to avoid 

requesting an unnecessary positioning estimation, or determining whether a device has 

enough energy to go through the positioning process without jeopardizing the device’s 

basic functions. 

Given that most proposals are focused on providing novel approaches to increase the 

accuracy of the positioning estimates, there is little room for comparison with other 
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proposals in terms of how many nodes benefit from the use of our model. In addition, 

since the fitness metric is a novel proposal that represents a state of “validity” of a 

positioning estimation, and not its accuracy, it is not possible to compare on those 

grounds, either. 

The proposal of Savarese et al. [143] is one of the few collaborative proposals that 

provides actual numbers for amounts of nodes that achieve positioning. About 45% of the 

population with their positions, as long as at least five reference points are available for 

each target node. This number increases closer to 95% when there are 12 reference 

points. Note that their proposal requires the use of a specific positioning algorithm, Hop-

TERRAIN with (and without) refinement, and that their scenario consists on a 200 × 200 

meter scenario populated by 400 nodes, a scenario smaller than ours and with a larger 

population. However, their proposal requires only 5% of beacons present in a scenario. 

In addition, although we did not achieve our goal of keeping the energy consumption 

at the same level as that of GPS (or lower), the additional energy expended is not 

considerable. However, given the nature of mobile environments, it is not negligible, and 

must be tackled in future iterations of the model. 

The future work involves conducting an evaluation of the energy consumption of the 

model, seeking to improve the consumption levels not only to node level, but also 

considering the whole interconnected system. Several settings of the application scenario 

should be simulated and analyzed. The obtained results should help us improve the 

positioning priorities considered during the strategy choosing process performed by the 

model. Security and privacy issues related to the shared information are also some of the 

challenges to address during the next step. In addition, an optimal context-sensing interval 

must be found in order to ensure less energy usage. 

Another aspect that should be tackled in future work is a test of the performance of 

CAMPOS in a real world environment. Although the ns-3, the simulator chosen as our 

experimental test-bed, has been tested extensively with great success by the research 

community, a real world experiment is still necessary in order to corroborate the validity 

of our context-aware positioning model. 
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