Tabla de Contenido

CAPÍTULO 1: INTRODUCCIÓN ... 1
 1.1 Objetivos .. 2
 1.3 Alcances ... 2
 1.2 Metodología .. 4
CAPÍTULO 2: ANTECEDENTES ... 5
 2.1 Intensidad de Mercalli Modificada ... 5
 2.2 Parámetros Instrumentales ... 7
 2.2.1 Intensidad de Arias .. 7
 2.2.2 Velocidad Absoluta Acumulada ... 7
 2.2.3 Intensidad Espectral de Housner ... 8
 2.2.4 Aceleración Máxima del Suelo y Velocidad Máxima del Suelo 9
 2.2.5 Duración Movimiento Fuerte ... 9
 2.2.6 Intensidad Sísmica de la Agencia Meteorológica de Japón 10
 2.2.7 Espectros de respuesta .. 11
 2.2.8 Cruces por cero ... 12
 2.2.9 Contenido de frecuencia ... 12
 2.2.10 Fuente Sismogénica ... 12
 2.2.11 Distancia al hipocentro ... 14
 2.2.12 Profundidad hipocentro ... 14
CAPÍTULO 3: MÉTODOS DE REGRESIÓN Y/O CLASIFICACIÓN 15
 3.1 Redes Neuronales Artificiales ... 16
 3.2 Regresión Logística Multinomial ... 20
 3.3 Mínimos Cuadrados Parciales (PLS) ... 22
CAPÍTULO 4: DETERMINACIÓN DE PARÁMETROS A PARTIR DE REGISTROS DE ACELERACIÓN ... 25
 4.2 Análisis parámetros .. 28
CAPÍTULO 5: PRUEBA DE MÉTODOS DE CLASIFICACIÓN 32
 5.1 Redes Neuronales Artificiales ... 32
 5.1.1 Manejo del set de datos .. 32
 5.1.2 Entrenamiento de la red ... 33
 5.1.3 Prueba de la Red Neuronal ... 36
 5.2 Regresión Logística Multinomial ... 38
 5.2.1 Manejo del set de datos .. 38
 5.2.2 Método de Regresión Logística Multinomial en Matlab 40
 5.2.3 Prueba de la Regresión Logística Multinomial 40
CAPÍTULO 6: APLICACIÓN DE MÉTODOS DE CLASIFICACIÓN ... 44
6.1 Redes Neuronales Artificiales ... 46
 6.1.1 Red Neuronal Artificial utilizando 16 parámetros .. 46
 6.1.2 Red Neuronal Artificial considerando un parámetro a la vez 58
6.2 Regresión Logística Multinomial ... 64
 6.2.1 Clasificación con 17 clases ... 64
 6.2.2 Clasificación con 5 clases ... 77
 6.2.3 Clasificación con 2 clases ... 86
 6.2.4 Clasificación considerando un parámetro a la vez .. 92
6.3 Resumen y Análisis de Resultados ... 101
6.3 Nuevos Resultados ... 104
 6.3.1 Nuevo Modelo ... 104
 6.3.2 Análisis error entre IMM modelo e IMM ONEMI .. 107
CAPÍTULO 7: COMENTARIOS Y CONCLUSIONES .. 113
CAPÍTULO 8: RECOMENDACIONES Y FUTURO TRABAJO .. 118
Bibliografía ... 120
ANEXO A: HISTOGRAMA VARIABLE DEPENDIENTE Y DE VARIABLES INDEPENDIENTES .. 124
ANEXO B: RELACIÓN ENTRE INTENSIDAD DE MERCALLI MODIFICADA Y CADA UNA DE LAS VARIABLES INDEPENDIENTES ... 148
ANEXO C: RELACIÓN ENTRE LAS VARIABLES INDEPENDIENTES 153
Índice de Tablas

Tabla 1: Parámetros de entrada ... 27
Tabla 2: Transformación de números romanos a números arábigos de los valores de IMM .. 32
Tabla 3: Valores vector de salida para Regresión Logística ... 38
Tabla 4: Valores vector de salida para Regresión Logística Multinomial agrupados en 5 clases .. 39
Tabla 5: Resumen porcentajes de clasificación de registros (RNA por parámetro) 43
Tabla 6: Conjunto de datos y división en sub conjuntos de entrenamiento, validación y prueba para Redes Neuronales Artificiales. Casos según criterio 1 ... 44
Tabla 7: Conjunto de datos y división en sub conjuntos de entrenamiento, validación y prueba para Regresión Logística Multinomial. Casos según criterio 1 44
Tabla 8: Modelos según los criterios que se aplican en ellos .. 47
Tabla 9: Resumen porcentajes de clasificación según caso por tipo de suelo y casos según criterios utilizados ... 48
Tabla 10: Porcentaje de registros clasificados correctamente y/o con un valor mayor 50
Tabla 11: Porcentaje de registros clasificados correctamente o máximo 1 grado por sobre el valor informado por la ONEMI .. 50
Tabla 12: Modelos según los criterios que se aplican en ellos .. 54
Tabla 13: Resumen porcentajes de clasificación según caso por tipo de suelo y casos según criterio utilizado .. 54
Tabla 14: Porcentaje de registros clasificados correctamente y/o con un valor mayor 57
Tabla 15: Porcentaje de registros clasificados correctamente o máximo 1 grado por sobre el valor informado por la ONEMI .. 57
Tabla 16: Resumen porcentajes de clasificación de registros (RNA 16 parámetros)...... 57
Tabla 17: Modelos según los criterios que se aplican en ellos .. 58
Tabla 18: log(PGA) ... 58
Tabla 19: log(PGV) ... 58
Tabla 20: log(Ia) ... 59
Tabla 21: log(SI) ... 59
Tabla 22: IJMA ... 59
Tabla 23: Resumen porcentajes de clasificación de registros (RNA por parámetro)...... 59
Tabla 24: Porcentaje de registros clasificados correctamente y/o con un valor mayor ... 62
Tabla 25: Porcentaje de registros clasificados correctamente o máximo 1 grado por sobre el valor informado por la ONEMI .. 62
Tabla 26: Regresión entre valor IMM salida del modelo y valor IMM informado por la ONEMI .. 63
Tabla 27: Pesos entre neuronas de la capa entrada y neuronas de la capa oculta 63
Tabla 28: Pesos entre neuronas de la capa oculta y neurona de la capa salida63
Tabla 29: Valores vector de salida para Regresión Logística agrupados en 2 clases64
Tabla 30: Modelos según los criterios que se aplican en ellos64
Tabla 31: Resumen porcentajes de clasificación según caso y modificaciones66
Tabla 32: Porcentaje de registros clasificados correctamente y/o con un valor mayor ...72
Tabla 33: Porcentaje de registros clasificados correctamente o máximo 1 grado por sobre el valor informado por la ONEMI ...72
Tabla 34: Modelos según los criterios que se aplican en ellos73
Tabla 35: Resumen porcentajes de clasificación según caso y modificaciones73
Tabla 36: Porcentaje de registros clasificados correctamente y/o con un valor mayor ...73
Tabla 37: Porcentaje de registros clasificados con máximo 1 grado por sobre el valor informado por la ONEMI ...76
Tabla 38: Resumen porcentajes de clasificación de registros RLM 17 clases76
Tabla 39: Modelos según los criterios que se aplican en ellos77
Tabla 40: Resumen porcentajes de clasificación según caso y criterios78
Tabla 41: Modelos según los criterios que se aplican en ellos84
Tabla 42: Resumen porcentajes de clasificación según caso y modificaciones84
Tabla 43: Modelos según los criterios que se aplican en ellos86
Tabla 44: Resumen porcentajes de clasificación según caso y modificaciones87
Tabla 45: Resumen resultados Regresión Logística Multinomial considerando 2 clases 92
Tabla 46: Porcentaje de los registros pertenecientes a la clase “≤ V” para el set de entrenamiento y prueba ...92
Tabla 47: Modelos según los criterios que se aplican en ellos92
Tabla 48: Resumen porcentajes de clasificación de registros (RLM por parámetro)93
Tabla 49: log(PGA) ...94
Tabla 50: log(PGV) ..95
Tabla 51: log(Ia) ...96
Tabla 52: log(SI) ...97
Tabla 53: IJMA ..97
Tabla 54: Porcentaje de registros clasificados correctamente y/o con un valor mayor 100
Tabla 55: Porcentaje de registros clasificados correctamente o máximo 1 grado por sobre el valor informado por la ONEMI ...100
Tabla 56: Resumen porcentajes de clasificación de registros (RNA 16 parámetros)101
Tabla 57: Resumen porcentajes de clasificación de registros RLM 17 clases101
Tabla 58: Resumen porcentajes de clasificación de registros (RNA por parámetro)102
Tabla 59: Resumen porcentajes de clasificación de registros (RL por parámetro)102
Tabla 60: Resumen resultados RLM considerando 2 clases103
Índice de Figuras

Figura 1: (a) Definición de la Intensidad Espectral de Housner (SI), la cual es calculada como el área bajo la curva del Espectro de Respuesta de Velocidad con un amortiguamiento de 20%, entre los periodos de 0.1 a 2.5 segundos, dividido por el largo del intervalo del período. (b) Traza de SI calculada para cada rotación de las componentes de aceleración horizontales (EW y NS) de los registros de la estación JMA Kobe para el terremoto de Kobe en el año 1995. (Fuente: Karim y Yamasaki, 2001 [16]).

Figura 2: Definición genérica de duración de movimiento fuerte de un acelerograma. (Fuente: Elaboración Propia)

Figura 3: Cálculo de la Intensidad Sísmica Instrumental JMA, la cual es obtenida (a) aplicando un filtro de pasa-banda en el dominio de las frecuencias y (b) considerando el efecto de duración τ(a) de PGA, el cual es obtenido en dominio del tiempo (c) sumando los segmentos de tiempo que exceden el valor de referencia de PGA de la suma vectorial de los tres componentes de los registros de aceleración (Fuente: Karim y Yamasaki, 2001) [16].

Figura 4: Perfil esquemático con la sismicidad del catálogo NEIC, registrada entre 1973 y 2007 de la zona en la latitud 33.5°S (considerando 0.5° en dirección norte y sur), cada punto representa un sismo, independiente de su magnitud o fecha de ocurrencia. El color azulado representa la posición esquemática de la placa de Nazca y verde, la placa Sudamericana. Las líneas punteadas indican la posición de las principales fuentes sismogénicas: a. interplaca tipo ‘thrust’; b. intraplaca de profundidad intermedia; c. corticales y d. ‘outer-rise’. (Fuente: Leyton, Ruiz y Sepúlveda, 2010)

Figura 5: Esquema que muestra la distancia que corresponde a la profundidad del hipocentro. (Fuente: universobservado.blogspot.cl)

Figura 6: Esquema neurona en RNA y analogía con neurona biológica. (Fuente: Universidad de Sevilla [38])

Figura 7: Ejemplos funciones de activación. (Fuente: Universidad de Sevilla [38])

Figura 8: Esquema RNA tipo feed-forward backpropagation. (Fuente: www.medicinaintensiva.org)

Figura 9: Representación de under-fitting, appropriate-fitting y over-fitting. (a) El ajuste de la línea azul es muy simple para explicar la varianza de los datos, (b) La línea azul representa un modelo que puede ser más fácilmente generalizado para otros datos, (c) La línea azul se ajusta perfectamente a los valores del conjunto de entrenamiento, pero
luego es difícil que se pueda ocupar para otro conjunto de datos. (Fuente: Universidad de Sevilla [16])

Figura 10: Control del error del set de validación para evitar el sobre-entrenamiento. (Fuente: Matlab)

Figura 11: Gráfico función inversa del logit

Figura 12: Representación Geométrica de la regresión mediante Mínimos Cuadrados Parciales. (Fuente: www.nature.com)

Figura 13: Loading plot obtenido de realizar PLS. Variables encerradas en cuadro rojo son candidatas a ser eliminadas. (Fuente: Elaboración Propia en Matlab)

Figura 14: Distribución a lo largo de Chile de estaciones de las que se obtuvieron los registros. (Ordines, 2017) [20]

Figura 15: Excel con lista de los 1122 registros

Figura 16: Excel que contiene el valor de la escala IMM de todos los sismos sensibles ocurridos entre los años 2007 a 2015

Figura 17: Comparación relación entre PGA-IMM y PGV-IMM con y sin uso de logaritmo en base 10

Figura 18: Comparación relación entre Ia-IMM, SI-IMM y CAV-IMM con y sin uso de logaritmo en base 10

Figura 19: Comparación relación entre Profundidad-IMM, Distancia Hipocentro-IMM y Frecuencia Central-IMM con y sin uso de logaritmo en base 10

Figura 20: Estructura Red Neuronal. (Fuente: Matlab, resultado entrenamiento de la RNA)

Figura 21: Interfaz entrenamiento Redes Neuronales en Matlab. (Fuente: Matlab, resultado entrenamiento de la RNA)

Figura 22: Diferencia entre IMM predicho e IMM informado por la ONEMI. Red Neuronal Artificial

Figura 23: Predicción de IMM vs IMM ONEMI. Red Neuronal Artificial

Figura 24: Diferencia entre IMM predicho e IMM informado por la ONEMI. Regresión Logística Multinomial 17 clases

Figura 25: Predicción de IMM vs IMM ONEMI. Regresión Logística Multinomia 17 clases

Figura 26: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases

Figura 27: Predicción de IMM vs IMM ONEMI. RLM 5 clases

Figura 28: Loading Plot, define el nivel de información que aporta cada variable para realizar la regresión. Los parámetros que se encuentran encerrados por el cuadro verde son las que mayor información de la varianza de los datos aportan: log(PGA), log(PGV), log(Ia), log(SI) e IJMA.

Figura 29: Estructura Red Neuronal

Figura 30: Diferencia entre IMM predicho e IMM informado por la ONEMI. (a) Caso 0, (b) Caso 2, (c) Caso 3, (d) Caso 4. Método RNA
Figura 31: Porcentaje de clasificación por rango, para cada uno de los casos según tipo de suelo. Caso 0: todos los suelos, Caso 2: Solo suelo B, Caso 3: Solo suelo C, Caso 4: Todos los suelos menos roca dura. ... 51
Figura 32: Predicción de IMM vs IMM ONEMI. Redes Neuronales Artificiales Caso 0. 51
Figura 33: Predicción de IMM vs IMM ONEMI. Redes Neuronales Artificiales Caso 2. 52
Figura 34: Predicción de IMM vs IMM ONEMI. Redes Neuronales Artificiales Caso 3. 52
Figura 35: Predicción de IMM vs IMM ONEMI. Redes Neuronales Artificiales Caso 4. 52
Figura 36: Regresión Lineal. Caso 0 ... 53
Figura 37: Regresión Lineal. Caso 2 ... 53
Figura 38: Regresión Lineal. Caso 3 ... 53
Figura 39: Regresión Lineal. Caso 4 ... 53
Figura 40: Diferencia entre IMM predicho e IMM informado por la ONEMI. RNA Caso Extra. .. 54
Figura 41: Predicción de IMM vs IMM ONEMI. RNA Caso Extra............................... 55
Figura 42: Regresión lineal entre valor IMM ONEMI e IMM predicho. Caso Extra...... 55
Figura 43: Diferencia entre IMM predicho e IMM informado por la ONEMI. (a) log(PGA), (b) log(PGV), (c) log(1a), (d) log(SI), (e) IJMA. RNA por parámetro. 60
Figura 44: Predicción de IMM vs IMM ONEMI. RNA por parámetro (a) log(PGA), (b) log(PGV), (c) log(1a), (d) log(SI), (e) IJMA. RNA por parámetro...................................... 61
Figura 45: Diferencia entre IMM predicho e IMM informado por la ONEMI. Regresión Logística Multinomial 17 clases. Caso 0... 67
Figura 46: Predicción de IMM vs IMM ONEMI. Regresión Logística Multinomial 17 clases, Caso 0.. 68
Figura 47: Diferencia entre IMM predicho e IMM informado por la ONEMI. Regresión Logística Multinomial 17 clases, Caso 2... 68
Figura 48: Predicción de IMM vs IMM ONEMI. Regresión Logística Multinomial 17 clases, Caso 2.. 69
Figura 49: Diferencia entre IMM predicho e IMM informado por la ONEMI. Regresión Logística Multinomial 17 clases, Caso 3... 69
Figura 50: Predicción de IMM vs IMM ONEMI. Regresión Logística Multinomial 17 clases, Caso 3.. 70
Figura 51: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 17 clases, ... 70
Figura 52: Predicción de IMM vs IMM ONEMI. RLM 17 clases, Caso 4 71
Figura 53: Diferencia entre valor de la escala de la IMM predicho por el modelo y valor informado por la ONEMI. Modelo generado mediante RLM considerando 17 clases, Caso Extra... 74
Figura 54: Predicción de IMM vs IMM ONEMI. RLM 17 clases, Caso Extra 74
Figura 55: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases, ... 79
Figura 56: Predicción de IMM vs IMM ONEMI. RLM5 clases, Caso 0. 80
Figura 57: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases, Caso 2. ... 80
Figura 58: Predicción de IMM vs IMM ONEMI. RLM 5 clases, Caso 2.............................. 81
Figura 59: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases, Caso 2.. 82
Figura 60: Predicción de IMM vs IMM ONEMI. RLM 5 clases, Caso 3. 81
Figura 61: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases, Caso 3.. 82
Figura 62: Predicción de IMM vs IMM ONEMI. RLM 5 clases, Caso 4............................... 83
Figura 63: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 5 clases, Caso 4.. 82
Figura 64: Predicción de IMM vs IMM ONEMI. RLM 5 clases, Caso Extra......................... 85
Figura 65: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 2 clases .. 88
Figura 66: Predicción de IMM vs IMM ONEMI. RLM 2 clases... 88
Figura 67: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 2 clases, Caso Extra.. 88
Figura 68: Predicción de IMM vs IMM ONEMI. RLM 2 clases... 89
Figura 69: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 2 clases, Caso Extra.. 89
Figura 70: Predicción de IMM vs IMM ONEMI. RLM 2 clases... 90
Figura 71: Diferencia entre IMM predicho e IMM informado por la ONEMI. RLM 2 clases, Caso Extra.. 90
Figura 72: Predicción de IMM vs IMM ONEMI. RLM 2 clases... 91
Figura 73: Diferencia entre IMM predicho e IMM informado por la ONEMI. (a) log(PGA), (b) log(PGV), (c) log(Ia), (d) log(SI), (e) IJMA. Utilizando RLM. .. 98
Figura 74: Predicción de IMM vs IMM ONEMI. RLM por parámetro (a) log(PGA), (b) log(PGV), (c) log(Ia), (d) log(SI), (e) IJMA. Utilizando RLM. .. 99
Figura 75: Loading plot donde se muestra qué variable se considera de cada uno de los "grupos" visibles. .. 104
Figura 76: Gráfico que muestra relación entre log(PGA) y error del modelo (arriba), y log(PGV) y error del modelo (abajo). Modelo de RNA que considera 16 variables predictoras. .. 108
Figura 77: Gráfico que muestra relación entre log(PGA) y error del modelo (arriba), y log(PGV) y error del modelo (abajo). RNA considerando log(PGA) como variable predictora. .. 109
Figura 78: Gráfico que muestra relación entre log(PGA) y error del modelo (arriba), y log(PGV) y error del modelo (abajo). Modelo RLM 17 Clases.. 110
Figura 79: Gráfico que muestra relación entre log(PGA) y error del modelo (arriba), y log(PGV) y error del modelo (abajo). Modelo RLM 2 clases.. 111
Figura 80: Gráfico que muestra relación entre log(PGA) y error del modelo (arriba), y log(PGV) y error del modelo (abajo). Modelo RLM con log(PGV) como variable predictora. .. 112
Figura 81: Histograma Intensidad de Mercalli Modificada ... 118

Índice de Figuras Anexo A
Figura A. 1: Histograma Intensidad de Mercalli Modificada 125
Figura A. 2: Histograma Mecanismo Focal .. 125
Figura A. 3: Histograma Tipo de Suelo ... 126
Figura A. 4: Histograma distancia al hipocentro para sismos menores a 6M y distancia de ruptura para sismos mayores a 6M ... 126
Figura A. 5: Histograma Intensidad de Housner ... 127
Figura A. 6: Histograma IJMA ... 127
Figura A. 7: Histograma PGA Dirección Horizontal .. 128
Figura A. 8: Histograma PGV Dirección Horizontal .. 128
Figura A. 9: Histograma Intensidad de Arias Dirección Horizontal 129
Figura A. 10: Histograma por partes Intensidad de Arias Dirección Horizontal 130
Figura A. 11: Histograma Velocidad Absoluta Acumulada Dirección Horizontal 131
Figura A. 12: Histograma CAV Dirección Horizontal por partes 132
Figura A. 13: Histograma CAV Dirección Horizontal sub-partes 133
Figura A. 14: Histograma Cruces por Cero Dirección Horizontal 134
Figura A. 15: Histograma Frecuencia Central Dirección Horizontal 134
Figura A. 16: Histograma Espectro de Desplazamiento Dirección Horizontal. Periodo T=0.2 [s] .. 135
Figura A. 17: Histograma Espectro de Desplazamiento Dirección Horizontal. Periodo T=1 [s] .. 135
Figura A. 18: Histograma Espectro de Velocidad Dirección Horizontal. Periodo T=0.2 [s] .. 136
Figura A. 19: Histograma Espectro de Velocidad Dirección Horizontal. Periodo T=1 [s] .. 136
Figura A. 20: Histograma Espectro de Aceleración Dirección Horizontal. Periodo T=0.2 [s] .. 137
Figura A. 21: Histograma Espectro de Aceleración Dirección Horizontal. Periodo T=1 [s] .. 137
Figura A. 22: Histograma PGA Dirección Vertical .. 138
Figura A. 23: Histograma PGV Dirección Vertical .. 138
Figura A. 24: Histograma Intensidad de Arias Dirección Vertical 139
Figura A. 25: Histograma Intensidad de Arias Dirección Vertical por partes 140
Figura A. 26: Histograma Velocidad Absoluta Acumulada Dirección Vertical141
Figura A. 27: Histograma CAV Dirección Vertical por partes.................................142
Figura A. 28: Histograma CAV Dirección Vertical sub-partes...............................143
Figura A. 29: Histograma Cruces por Cero Dirección Vertical..............................144
Figura A. 30: Histograma Frecuencia Central Dirección vertical...........................144
Figura A. 31: Histograma Espectro de Desplazamiento Dirección Vertical. Periodo T=0.2 [s]..145
Figura A. 32: Histograma Espectro de Desplazamiento Dirección Vertical. Periodo T=1 [s]..145
Figura A. 33: Histograma Espectro de Velocidad Dirección Vertical. Periodo T=0.2 [s]. ...146
Figura A. 34: Histograma Espectro de Velocidad Dirección Vertical. Periodo T=1 [s]...146
Figura A. 35: Histograma Espectro de Aceleración Dirección Vertical. Periodo T=0.2 [s]. ...147
Figura A. 36: Histograma Espectro de Aceleración Dirección Vertical. Periodo T=1 [s]. ...147

Índice de Figuras Anexo B
Figura B. 1: Relación entre IMM y (a) Fuente Sismogénica, (b) profundidad, (c) Distancia hipocentro, (d) log(PGA), (e) log(PGV), (f) Duración movimiento fuerte149
Figura B. 2: Relación entre IMM y (a) log(Ia), (b) log(SI), (c) IJMA, (d) CAV, (e) Espectro de Desplazamiento T=0.2 [s], (f) Espectro de Desplazamiento T=1[s]........150
Figura B. 3: Relación de IMM y (a) Espectro de Velocidad T=0.2 [s], (b) Espectro de Velocidad T=1 [s], (c) Espectro de Aceleración T=0.2 [s], Espectro de Aceleración T=1 [s], (e) Cruces por Cero, (f) Frecuencia Central...151
Figura B. 4: Relación de IMM y Tipo de Suelo...152

Índice de Figuras Anexo C
Figura C. 1: Relación entre Fuente Sismogénica y (a) Profundidad, (b) Distancia Hipocentro o Ruptura, (c) log(SI), (d) IJMA..154
Figura C. 2: Relación entre Fuente Sismogénica y (a) log(PGA) horizontal, (b) log(PGA) vertical, (c) log(PGV) horizontal, (d) log(PGV) vertical, (e) log(Ia) horizontal, (f) log(Ia) vertical...155
Figura C. 3: Relación entre Fuente Sismogénica y (a) Duración Mov. Fuerte Horizontal, (b) Duración Mov. Fuerte Vertical, (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical.156
Figura C. 4: Relación entre Fuente Sismogénica y (a) log(CAV) Horizontal, (b) log(CAV) Vertical, (c) Espectro de Desplazamiento Horizontal T=0.2 [s], (d) Espectro de Desplazamiento Vertical T=0.2 [s], (e) Espectro de Desplazamiento Horizontal T=1 [s], (f) Espectro de Desplazamiento Vertical T=1 [s]..157
Figura C. 5: Relación entre Fuente Sismogénica y (a) Espectro de Velocidad Horizontal $T=0.2$ [s], (b) Espectro de Velocidad Vertical $T=0.2$ [s], (c) Espectro de Velocidad Horizontal $T=1$ [s], (d) Espectro de Velocidad Vertical $T=1$ [s]. .. 158

Figura C. 6: Relación entre Fuente Sismogénica y (a) Espectro de Aceleración Horizontal $T=0.2$ [s], (b) Espectro de Aceleración Vertical $T=0.2$ [s], (c) Espectro de Aceleración Horizontal $T=1$ [s], (d) Espectro de Aceleración Vertical $T=1$ [s]. .. 159

Figura C. 7: Relación entre Profundidad y (a) Distancia Hipocentro o Ruptura, (b) Intensidad de Housner, (c) IJMA, (d) log(PGA) horizontal, (e) log(PGA) vertical. 160

Figura C. 8: Relación entre Profundidad y (a) log(PGV) horizontal, (b) log(PGV) vertical, (c) Duración Mov. Fuerte horizontal, (d) Duración Mov. Fuerte Vertical, (e) log(Ia) horizontal, (f) log(Ia) vertical.. 161

Figura C. 9: Relación entre Profundidad y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical, (e) log(CAV) Horizontal, (f) log(CAV) Vertical. ... 162

Figura C. 10: Relación entre Profundidad y (a) Espectro de Desplazamiento Horizontal $T=0.2$ [s], (b) Espectro de Desplazamiento Vertical $T=0.2$ [s], (c) Espectro de Desplazamiento Horizontal $T=1$ [s], (d) Espectro de Desplazamiento Vertical $T=1$ [s], (e) Espectro de Velocidad Horizontal $T=0.2$ [s], (f) Espectro de Velocidad Vertical $T=0.2$ [s]. ... 163

Figura C. 11: Relación entre Profundidad y (a) Espectro de Velocidad Horizontal $T=1$ [s], (b) Espectro de Velocidad Vertical $T=1$ [s], (c) Espectro de Aceleración Horizontal $T=0.2$ [s], (d) Espectro de Aceleración Vertical $T=0.2$ [s], (e) Espectro de Aceleración Horizontal $T=1$ [s], (f) Espectro de Aceleración Vertical $T=1$ [s]. ... 164

Figura C. 12: Relación entre Distancia Hipocentro o Ruptura y (a) log(SI), (b) IJMA, (c) log(PGA) Horizontal, (d) log(PGA) Vertical, (e) log(PGV) Horizontal, (f) log(PGV) Vertical.. 165

Figura C. 13: Relación entre Distancia Hipocentro o Ruptura y (a) log(Ia) Horizontal, (b) log(Ia) Vertical, (c) Duración Mov. Fuerte Horizontal, (d) Duración Mov. Fuerte Vertical, (e) Cruces por Cero Horizontal, (f) Cruces por Cero Vertical. .. 166

Figura C. 14: Relación entre Distancia Hipocentro o Ruptura y (a) Frecuencia Central Horizontal, (b) Frecuencia Central Vertical, (c) log(CAV) Horizontal, (d) log(CAV) Vertical.. 167

Figura C. 15: Relación entre Distancia Hipocentro o Ruptura y (a) Espectro de Desplazamiento Horizontal $T=0.2$ [s], (b) Espectro de Desplazamiento Vertical $T=0.2$ [s], (c) Espectro de Desplazamiento Horizontal $T=1$ [s], (d) Espectro de Desplazamiento Vertical $T=1$ [s], (e) Espectro de Velocidad Horizontal $T=0.2$ [s], (f) Espectro de Velocidad Vertical $T=0.2$ [s]. ... 168

Figura C. 16: Relación entre Distancia Hipocentro o Ruptura y (a) Espectro de Velocidad Horizontal $T=1$ [s], (b) Espectro de Velocidad Vertical $T=1$ [s], (c) Espectro de Aceleración Horizontal $T=0.2$ [s], (d) Espectro de Aceleración Vertical $T=0.2$ [s], (e) Espectro de Aceleración Horizontal $T=1$ [s], (f) Espectro de Aceleración Vertical $T=1$ [s]. ... 169

Figura C. 17: Relación entre log(PGA) Horizontal y (a) log(PGA) Vertical, (b) log(PGV) Horizontal, (c) log(PGV) Vertical, (d) Duración Mov. Fuerte Horizontal, (e) Duración Mov. Fuerte Vertical. .. 170
Figura C. 18: Relación entre log(PGA) Horizontal y (a) log(Ia) Horizontal, (b) log(Ia) Vertical, (c) log(SI), (d) IJMA, (e) log(CAV) Horizontal, (f) log(CAV) Vertical

Figura C. 19: Relación entre log(PGA) Horizontal y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 20: Relación entre log(PGA) Horizontal y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 21: Relación entre log(PGA) Horizontal y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 22: Relación entre log(PGA) Vertical y (a) log(PGV) Horizontal, (b) log(PGV) Vertical, (c) Duración Mov. Fuerte Horizontal, (d) Duración Mov. Fuerte Vertical, (e) log(Ia) Horizontal, (f) log(Ia) Vertical.

Figura C. 23: Relación entre log(PGA) Vertical y (a) log(SI), (b) IJMA, (c) log(CAV) Horizontal, (d) log(CAV) Vertical.

Figura C. 24: Relación entre log(PGA) Vertical y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 25: Relación entre log(PGA) Vertical y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 26: Relación entre log(PGA) Vertical y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 27: Relación entre log(PGV) Horizontal y (a) log(PGV) Vertical, (b) Duración Mov. Fuerte Horizontal, (c) Duración Mov. Fuerte Vertical, (d) log(Ia) Horizontal, (f) log(SI).

Figura C. 28: Relación entre log(PGV) Horizontal y (a) IJMA, (b) log(CAV) Horizontal, (c) log(CAV) Vertical, (d) Espectro de Desplazamiento Horizontal T=0.2 [s], (e) Espectro de Desplazamiento Vertical T=0.2 [s].

Figura C. 29: Relación entre log(PGV) Horizontal y (a) Espectro de Desplazamiento Horizontal T=1 [s], (b) Espectro de Desplazamiento Vertical T=1 [s], (c) Espectro de Velocidad Horizontal T=0.2 [s], (d) Espectro de Velocidad Vertical T=0.2 [s], (e) Espectro de Velocidad Horizontal T=1 [s], (f) Espectro de Velocidad Vertical T=1 [s].

Figura C. 30: Relación entre log(PGV) Horizontal y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].
Figura C. 31: Relación entre log(PGV) y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical......184

Figura C. 32: Relación entre log(PGV) Vertical y (a) Duración Mov. Fuerte Horizontal, (b) Duración Mov. Fuerte Vertical, (c) log(Ia) Horizontal, (d) log(Ia) Vertical...........185

Figura C. 33: Relación entre log(PGV) Vertical y (a) log(SI), (b) IJMA, (c) log(CAV) Horizontal, (d) log(CAV) Vertical. ..186

Figura C. 34: Relación entre log(PGV) Vertical y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s] ..187

Figura C. 35: Relación entre log(PGV) Vertical y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s]...........188

Figura C. 36: Relación entre log(PGV) Vertical y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical...189

Figura C. 37: Relación entre Duración Mov. Fuerte Horizontal y (a) Duración Mov. Fuerte Vertical, (b) log(Ia) Horizontal, (c) log(Ia) Vertical, (d) log(SI), (e) IJMA.190

Figura C. 38: Relación entre Duración Mov. Fuerte Horizontal y (a) log(CAV) Horizontal, (b) log(CAV) Vertical, (c) Espectro de Desplazamiento Horizontal T=0.2 [s], (d) Espectro de Desplazamiento Vertical T=0.2 [s], (e) Espectro de Desplazamiento Horizontal T=1 [s], (f) Espectro de Desplazamiento Vertical T=1 [s]...191

Figura C. 39: Relación entre Duración Mov. Fuerte Horizontal y (a) Espectro de Velocidad Horizontal T=0.2 [s], (b) Espectro de Velocidad Vertical T=0.2 [s], (c) Espectro de Velocidad Horizontal T=1 [s], (d) Espectro de Velocidad Vertical T=1 [s], (e) Espectro de Aceleración Horizontal T=0.2 [s], (f) Espectro de Aceleración Vertical T=0.2 [s]..192

Figura C. 40: Relación entre Duración Mov. Fuerte Horizontal y (a) Espectro de Aceleración Horizontal T=1 [s], (b) Espectro de Aceleración Vertical T=1 [s], (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical...193

Figura C. 41: Relación entre Duración Mov. Fuerte Horizontal y (a) log(Ia) Horizontal, (b) log(Ia) Vertical, (c) log(SI), (d) IJMA, (e) log(CAV) Horizontal, (f) log(CAV) Vertical ...194

Figura C. 42: Relación entre Duración Mov. Fuerte Horizontal y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s], ...195

Figura C. 43: Relación entre Duración Mov. Fuerte Horizontal y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e)
Figura C. 44: Relación entre Duración Mov. Fuerte Horizontal y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 45: Relación entre log(Ia) Horizontal y (a) log(Ia) Vertical, (b) log(SI), log(CAV) Horizontal, (d) log(CAV) Vertical.

Figura C. 46: Relación entre log(Ia) Horizontal y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 47: Relación entre log(Ia) Horizontal y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 48: Relación entre log(Ia) Horizontal y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 49: Relación entre log(Ia) Vertical y (a) log(SI), (b) IJMA, (c) log(CAV) Horizontal, (d) log(CAV) Vertical.

Figura C. 50: Relación entre log(Ia) Vertical y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 51: Relación entre log(Ia) Vertical y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 52: Relación entre log(Ia) Vertical y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 53: Relación entre log(SI) y (a) IJMA, (b) log(CAV) Horizontal, (c) log(CAV) Vertical, (d) Espectro de Desplazamiento Horizontal T=0.2 [s], (e) Espectro de Desplazamiento Vertical T=0.2 [s].

Figura C. 54: Relación entre log(SI) y (a) Espectro de Desplazamiento Horizontal T=1 [s], (b) Espectro de Desplazamiento Vertical T=1 [s], (c) Espectro de Velocidad Horizontal T=0.2 [s], (d) Espectro de Velocidad Vertical T=0.2 [s], (e) Espectro de Velocidad Horizontal T=1 [s], (f) Espectro de Velocidad Vertical T=1 [s].

Figura C. 55: Relación entre log(SI) y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].

Figura C. 56: Relación entre log(SI) y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.
Figura C. 57: Relación entre IJMA y (a) log(CAV) Horizontal, (b) log(CAV) Vertical, (c) Espectro de Desplazamiento Horizontal T=0.2 [s], (d) Espectro de Desplazamiento Vertical T=0.2 [s], (e) Espectro de Desplazamiento Horizontal T=1 [s], (f) Espectro de Desplazamiento Vertical T=1 [s].

Figura C. 58: Relación entre IJMA y (a) Espectro de Velocidad Horizontal T=0.2 [s], (b) Espectro de Velocidad Vertical T=0.2 [s], (c) Espectro de Velocidad Horizontal T=1 [s], (d) Espectro de Velocidad Vertical T=1 [s].

Figura C. 59: Relación entre IJMA y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].

Figura C. 60: Relación entre IJMA y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 61: Relación entre log(CAV) Horizontal y (a) log(CAV) Vertical, (b) Espectro de Desplazamiento Horizontal T=0.2 [s], (c) Espectro de Desplazamiento Vertical T=0.2 [s], (d) Espectro de Desplazamiento Horizontal T=1 [s], (e) Espectro de Desplazamiento Vertical T=1 [s].

Figura C. 62: Relación entre log(CAV) Horizontal y (a) Espectro de Velocidad Horizontal T=0.2 [s], (b) Espectro de Velocidad Vertical T=0.2 [s], (c) Espectro de Velocidad Horizontal T=1 [s], (d) Espectro de Velocidad Vertical T=1 [s].

Figura C. 63: Relación entre log(CAV) Horizontal y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].

Figura C. 64: Relación entre log(CAV) Horizontal y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 65: Relación entre log(CAV) Vertical y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s], (e) Espectro de Velocidad Horizontal T=0.2 [s], (f) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 66: Relación entre log(CAV) Vertical y (a) Espectro de Desplazamiento Horizontal T=1 [s], (b) Espectro de Desplazamiento Vertical T=1 [s], (c) Espectro de Desplazamiento Horizontal T=0.2 [s], (d) Espectro de Desplazamiento Vertical T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 67: Relación entre log(CAV) Vertical y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 68: Relación entre Espectro de Desplazamiento Horizontal T=0.2 [s] y (a) Espectro de Desplazamiento Vertical T=0.2 [s], (b) Espectro de Desplazamiento Horizontal T=1 [s], (c) Espectro de Desplazamiento Vertical T=1 [s], (d) Espectro de Velocidad Horizontal T=0.2 [s], (e) Espectro de Velocidad Vertical T=0.2 [s].

Figura C. 69: Relación entre Espectro de Desplazamiento Horizontal T=0.2 [s] y (a) Espectro de Velocidad Horizontal T=1 [s], (b) Espectro de Velocidad Vertical T=1 [s], (c) Espectro de Aceleración Horizontal T=0.2 [s], (d) Espectro de Aceleración Vertical
T=0.2 [s], (e) Espectro de Aceleración Horizontal T=1 [s], (f) Espectro de Aceleración Vertical T=1 [s].

Figura C. 70: Relación entre Espectro de Desplazamiento Horizontal T=0.2 [s] y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 71: Relación entre Espectro de Desplazamiento Vertical T=0.2 [s] y (a) Espectro de Desplazamiento Horizontal T=1 [s], (b) Espectro de Desplazamiento Vertical T=1 [s], (c) Espectro de Velocidad Horizontal T=0.2 [s], (d) Espectro de Velocidad Vertical T=0.2 [s], (e) Espectro de Velocidad Horizontal T=1 [s], (f) Espectro de Velocidad Vertical T=1 [s].

Figura C. 72: Relación entre Espectro de Desplazamiento Vertical T=0.2 [s] y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].

Figura C. 73: Relación entre Espectro de Desplazamiento Vertical T=0.2 [s] y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 74: Relación entre Espectro de Desplazamiento Horizontal T=1 [s] y (a) Espectro de Desplazamiento Vertical T= [s], (b) Espectro de Velocidad Horizontal T=0.2 [s], (c) Espectro de Velocidad Vertical T=0.2 [s], (d) Espectro de Velocidad Horizontal T=1 [s], (e) Espectro de Velocidad Vertical T=1 [s].

Figura C. 75: Relación entre Espectro de Desplazamiento Horizontal T= [s] y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].

Figura C. 76: Relación entre Espectro de Desplazamiento Horizontal T=1 [s] y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical.

Figura C. 77: Relación entre Espectro de Desplazamiento Vertical T=1 [s] y (a) Espectro de Velocidad Horizontal T=0.2 [s], (b) Espectro de Velocidad Vertical T=0.2 [s], (c) Espectro de Velocidad Horizontal T=1 [s], (d) Espectro de Velocidad Vertical T=1 [s], (e) Espectro de Aceleración Horizontal T=0.2 [s], (f) Espectro de Aceleración Vertical T=0.2 [s].

Figura C. 78: Relación entre Espectro de Desplazamiento Vertical T=1 [s] y (a) Espectro de Aceleración Horizontal T=1 [s], (b) Espectro de Aceleración Vertical T=1 [s], (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical.

Figura C. 79: Relación entre Espectro de Velocidad Horizontal T=0.2 [s] y (a) Espectro de Velocidad Vertical T=0.2 [s], (b) Espectro de Velocidad Horizontal T=1 [s], (c) Espectro de Velocidad Vertical T=1 [s], (d) Espectro de Aceleración Horizontal T=0.2 [s], (e) Espectro de Aceleración Vertical T=0.2 [s].

Figura C. 80: Relación entre Espectro de Velocidad Horizontal T=0.2 [s] y (a) Espectro de Aceleración Horizontal T=1 [s], (b) Espectro de Aceleración Vertical T=1 [s], (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical.
Figura C. 81: Relación entre Espectro de Velocidad Vertical $T=0.2\ [s]$ y (a) Espectro de Velocidad Horizontal $T=1\ [s]$, (b) Espectro de Velocidad Vertical $T=1\ [s]$, (c) Espectro de Aceleración Horizontal $T=0.2\ [s]$, (d) Espectro de Aceleración Vertical $T=0.2\ [s]$.234

Figura C. 82: Relación entre Espectro de Velocidad Vertical $T=0.2\ [s]$ y (a) Espectro de Aceleración Horizontal $T=1\ [s]$, (b) Espectro de Aceleración Vertical $T=1\ [s]$, (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal. (f) Frecuencia Central Vertical...235

Figura C. 83: Relación entre Espectro de Velocidad Horizontal $T=1\ [s]$ y (a) Espectro de Velocidad Vertical $T=1\ [s]$, (b) Espectro de Aceleración Horizontal $T=0.2\ [s]$, (c) Espectro de Aceleración Vertical $T=0.2\ [s]$, (d) Espectro de Aceleración Horizontal $T=1\ [s]$, (e) Espectro de Aceleración Vertical $T=1\ [s]$. ..236

Figura C. 84: Relación entre Espectro de Velocidad Horizontal $T=1\ [s]$ y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Horizontal, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical...237

Figura C. 85: Relación entre Espectro de Velocidad Vertical $T=1\ [s]$ y (a) Espectro de Aceleración Horizontal $T=0.2\ [s]$, (b) Espectro de Aceleración Vertical $T=0.2\ [s]$, (c) Espectro de Aceleración Horizontal $T=1\ [s]$, (d) Espectro de Aceleración Vertical $T=1\ [s]$. ..238

Figura C. 86: Relación entre Espectro de Velocidad Vertical $T=1\ [s]$ y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical...239

Figura C. 87: Relación entre Relación entre Espectro de Aceleración Horizontal $T=0.2\ [s]$ y (a) Espectro de Aceleración Vertical $T=0.2\ [s]$, (b) Espectro de Aceleración Horizontal $T=1\ [s]$, (c) Espectro de Aceleración Vertical $T=1\ [s]$..240

Figura C. 88: Relación entre Relación entre Espectro de Aceleración Horizontal $T=0.2\ [s]$ y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical...241

Figura C. 89: Relación entre Relación entre Espectro de Aceleración Vertical $T=0.2\ [s]$ y (a) Espectro de Aceleración Horizontal $T=1\ [s]$, (b) Espectro de Aceleración Vertical $T=1\ [s]$, (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical...242

Figura C. 90: Relación entre Espectro de Aceleración Horizontal $T=1\ [s]$ y (a) Espectro de Aceleración Vertical $T=1\ [s]$, (b) Cruces por Cero Horizontal, (c) Cruces por Cero Vertical, (d) Frecuencia Central Horizontal, (e) Frecuencia Central Vertical.................................243

Figura C. 91: Relación entre Espectro de Aceleración Vertical $T=1\ [s]$ y (a) Cruces por Cero Horizontal, (b) Cruces por Cero Vertical, (c) Frecuencia Central Horizontal, (d) Frecuencia Central Vertical...244

Figura C. 92: Relación entre Cruces por Cero Horizontal y (a) Cruces por Cero Vertical, (b) Frecuencia Central Horizontal, (c) Frecuencia Central Vertical, (d) Relación entre Cruces por Cero Vertical y Frecuencia Central Horizontal, (e) Relación entre Cruces por Cero Vertical y Frecuencia Central Vertical...245

Figura C. 93: Relación entre Tipo de Suelo y (a) Fuente Sismogénica, (b) Profundidad, (c) Distancia Hipocentro o Ruptura, (d) $\log(SI)$, (e) IJMA. ...246
Figura C. 94: Relación entre Tipo de Suelo y (a) log(PGA) Horizontal, (b) log(PGA) Vertical, (c) log(PGV) Horizontal, (d) log(PGV) Vertical, (e) log(Ia) Horizontal, (f) log(Ia) Vertical.

Figura C. 95: Relación entre Tipo de Suelo y (a) Duración Mov. Fuerte Horizontal, (b) Duración Mov. Fuerte Vertical, (c) Cruces por Cero Horizontal, (d) Cruces por Cero Vertical, (e) Frecuencia Central Horizontal, (f) Frecuencia Central Vertical.

Figura C. 96: Relación entre Tipo de Suelo y (a) Espectro de Desplazamiento Horizontal T=0.2 [s], (b) Espectro de Desplazamiento Vertical T=0.2 [s], (c) Espectro de Desplazamiento Horizontal T=1 [s], (d) Espectro de Desplazamiento Vertical T=1 [s].

Figura C. 97: Relación entre Tipo de Suelo y (a) log(CAV) Horizontal, (b) log(CAV) Vertical, (c) Espectro de Velocidad Horizontal T=0.2 [s], (d) Espectro de Velocidad Vertical T=0.2 [s], (e) Espectro de Velocidad Horizontal T=1 [s], (f) Espectro de Velocidad Vertical T=1 [s].

Figura C. 98: Relación entre Tipo de Suelo y (a) Espectro de Aceleración Horizontal T=0.2 [s], (b) Espectro de Aceleración Vertical T=0.2 [s], (c) Espectro de Aceleración Horizontal T=1 [s], (d) Espectro de Aceleración Vertical T=1 [s].