Tabla de contenido

1. Ca	apítulo: Introducción y Objetivos	1
1.1.	Introducción	2
1.2.	Objetivos	3
1.3.	Organización	4
2. Ca	apítulo: Marco Teórico	5
2.1.	. Tomógrafo	6
	2.1.1. Descripción general	6
	2.1.2. Algoritmo de reconstrucción	7
2.2.	. Métodos de velocimetría por procesamiento de imágenes	9
	2.2.1. Principio de operación PTV y PIV	10
	2.2.2. Particle Tracking Velocimetry	10
	2.2.3. Particle Image Velocimetry	11
	2.2.4. PivLab	12
	2.2.5. Consideraciones Experimentales	13
	2.2.6. Consideraciones PIV	16
2.3.	. Estratigrafía	17
2.4.	Parámetros adimensionales	19
	2.4.1. Esfuerzo de corte	19
	2.4.2. Densidad relativa sumergida del sedimento	19
	2.4.3. Gasto sólido de fondo	19
	2.4.4. Número de Reynolds	20
	2.4.5. Numero de Reynolds de la partícula	20
2.5.	Esfuerzo de corte	20
2.6.	. Perfil de Velocidad	21
	2.6.1. Método esfuerzo de Reynolds	21
	2.6.2. Método logarítmico	22
2.7.	. Transporte de Sedimentos	22
2.8.	. Conclusiones	
3. Ca	apítulo: Instalación Experimental y Metodología	25
3.1.	Instalación experimental	26
	3.1.1. Tubería	
	3.1.2. Bomba	27

3.1.3.	Tomógrafo resistivo	27
3.1.4.	Locación PIV	28
3.1.5.	Descripción del sistema de iluminación con láser	28
3.1.6.	Lente para la cámara de alta velocidad	29
3.1.7.	Cámara Alta velocidad	29
3.1.8.	Cámara Gopro	30
3.2. Calibra	ción Tubo Venturi	31
3.2.1.	Instalación experimental para la calibración del Venturi	32
3.2.2.	Metodología	33
3.3. Particle	image velocimetry	34
3.3.1.	Instalación Experimental	34
3.3.2.	Caracterización del error de la locación del PIV	36
3.3.3.	Metodología	39
3.3.4.	Procesamiento de la información	41
3.3.5.	Fabricación de partículas	43
3.3.6.	Propagación de errores Particle Image Velocimetry	46
3.4. Calibra	ción del Tomógrafo	46
3.4.1.	Calibración del tomógrafo para el caso de Sedimento en el lecho	48
3.4.2.	Curva Granulométrica y porosidad de la grava y el sedimento fino	54
3.4.3.	Metodología para la ejecución de las experiencias	57
3.4.4.	Procesamiento de la información	58
4. Capítulo: H	Resultados	60
4.1. Análisis	s de errores de la técnica PIV	61
4.2. Intensic	lad de la turbulencia	61
4.3. Perfiles	de velocidad	63
4.4. Caracte	rización Esfuerzo de corte	65
4.4.1.	Esfuerzos de corte total mediante PIV	65
4.4.2.	Esfuerzos de corte espacial mediante PIV	67
4.4.3.	Esfuerzo de corte turbulento mediante PIV	69
4.4.4.	Resumen PIV	72
4.4.5.	Esfuerzo de corte mediante perfil logarítmico	74
4.4.6.	Comparación esfuerzo corte logarítmico y PIV	77
4.5. Resulta	dos Tomógrafo	78
4.5.1.	Granulometría depositada	78

4.5.2. Estratigrafía	80
4.5.3. Series de tiempo	81
4.5.4. Tomogramas	84
4.6. Descripción del gasto sólido de fondo	
5. Capítulo: Discusión y Conclusiones	93
5.1. Discusión	94
Montaje Experimental	94
Instrumentación	94
Metodología experimental	95
5.2. Conclusiones	96
Metodología experimental	96
Parámetros derivados de la velocidad del flujo	96
Estratigrafía	97
Gasto sólido de fondo	97
6. Bibliografía	98
7. Anexos	102
A.1. Propagación de errores tubo Venturi	102
A.2. Propagación de errores PIV	104
A.3. Efecto de las burbujas	112

Índice de Figuras

FIGURA 2.1. REPRESENTACIÓN DE LOS 16 ELECTRODOS DE UNO DE LOS ANILLOS DEL TOMÓGRAFO.	7
FIGURA 2.2. RESOLUCIÓN DE LA IMAGEN RECONSTRUIDA POR EL SISTEMA DE ADQUISICIÓN DE DATOS	8
FIGURA 2.3. ESQUEMA DEL DESPLAZAMIENTO DE LAS PARTÍCULAS DE DOS FRAMES CONSECUTIVOS EN ALGORITMO PTV. PARTÍCULAS	
OSCURAS Y CLARAS REPRESENTAN EL INSTANTE $t0$ y $t0+\Delta t$ respectivamente	11
FIGURA 2.4. ESQUEMA DEL DESPLAZAMIENTO DE LAS PARTÍCULAS DE DOS FRAMES CONSECUTIVOS EN ALGORITMO PIV. PARTÍCULAS	
OSCURAS Y CLARAS REPRESENTAN EL INSTANTE $t0$ y $t0+\Delta t$ respectivamente	11
Figura 2.5. Esquema ley de Snell	16
FIGURA 2.6. DIFERENTES CONFIGURACIONES DE ALTURA SEDIMENTO FINO. (KUHNLE ET AL., 2013).	18
FIGURA 3.1. MONTAJE EXPERIMENTAL	26
FIGURA 3.2. ESQUEMA DE LA IZQUIERDA CORRESPONDE AL PERFIL TRANSVERSAL DE LA TUBERÍA DE PVC. ESQUEMA DE LA DERECHA	
CORRESPONDE AL PERFIL TRANSVERSAL DE LA TUBERÍA DE ACRÍLICO	27
FIGURA 3.3. TOMÓGRAFO RESISTIVO INSTALADO EN EL MONTAJE EXPERIMENTAL.	27
FIGURA 3.4. LOCACIÓN DE PIV Y CONTENEDOR DE AGUA	28
Figura 3.5. Láser Flex	29
Figura 3.6. Lente	29
Figura 3.7. Cámara de alta velocidad	30
Figura 3.8. Cámara Gopro Hero 3	30
Figura 3.9. Esquema tubo Venturi	31
FIGURA 3.10. INSTALACIÓN EXPERIMENTAL CALIBRACIÓN	32
FIGURA 3.11. REGRESIÓN POTENCIAL EN PLANO LOGARÍTMICO ENTRE CAUDAL Y VARIACIÓN DE PRESIÓN	34
FIGURA 3.12. INSTALACIÓN EXPERIMENTAL PIV	35
FIGURA 3.13. ESQUEMA DE LAS POSICIONES DEL PLANO LÁSER A LO LARGO DE LA TRANSVERSAL DEL FLUJO	35
FIGURA 3.14. ESQUEMA DE LA DISTORSIÓN DE LA POSICIÓN DEL PLANO DE LA LUZ AL ATRAVESAR LA TUBERÍA. ESQUEMA DE LA IZQUIER	DA Y
DERECHA CORRESPONDEN A LA DISTORSIÓN EN LA TRANSVERSAL Y VERTICAL RESPECTIVAMENTE	37
FIGURA 3.15. CORRECCIÓN DEL HAZ DE LUZ EN FUNCIÓN DEL ÁNGULO CENTRAL DE LA TUBERÍA	38
FIGURA 3.16. RELACIÓN DATOS EXPERIMENTALES Y DATOS CORREGIDOS PARA TODOS LOS PLANOS DE MEDICIÓN	39
FIGURA 3.17. IMAGEN PRE-PROCESADA (A LA IZQUIERDA) Y ORIGINAL (A LA DERECHA) EN PIVLAB.	41
FIGURA 3.18. IMAGEN PRE-PROCESADA LISTA PARA SER EVALUADA E IMAGEN ORIGINAL	42
FIGURA 3.19. VECTORES DE VELOCIDAD CALCULADOS MEDIANTE FFT EN LA REGIÓN DE INTERÉS	43
FIGURA 3.20. MÉTODO DE GENERACIÓN DE PARTÍCULAS USANDO LIMA	44
FIGURA 3.21. MÉTODO DE GENERACIÓN DE PARTÍCULAS USANDO UN ESMERIL DREMEL	45
FIGURA 3.22. CURVA GRANULOMÉTRICA PARTÍCULAS DE RODAMINA.	45
FIGURA 3.23. MÉTODO PARA OBTENER LA REFERENCIA AGUA	47
FIGURA 3.24. COMPARACIÓN DE LAS CONCENTRACIÓNES PROMEDIO EN BASE A REFERENCIA W Y WG	49
FIGURA 3.25. TOMOGRAMAS COLECTADOS DURANTE LA CALIBRACIÓN DEL SEDIMENTO FINO	50
FIGURA 3.26. TOMOGRAMAS COLECTADOS DURANTE LA CALIBRACIÓN DE LA COMBINACIÓN DE SEDIMENTO FINO Y GRAVA	51
FIGURA 3.27. CALIBRACIÓN TOMÓGRAFO. COMPARACIÓN DE LA CONCENTRACIÓN DE SEDIMENTO FINO USANDO REFERENCIA AGUA Y	
REFERENCIA AGUA-GRAVA	52
FIGURA 3.28. PERFILES DE CONCENTRACIÓN PROMEDIO DE SEDIMENTO FINO Y SEDIMENTO FINO MÁS GRAVA	53
FIGURA 3.29. PERFIL DE LA POROSIDAD DE UNA MUESTRA DE SUELO.	54
FIGURA 3.30. CONCENTRACIÓN PROMEDIO DE LOS 100 TOMOGRAMAS COLECTADOS PARA CADA DE LAS TRES MEDICIONES SOBRE EL L	ECHO
DE GRAVA	55
FIGURA 3.31. CURVA GRANULOMÉTRICA MICROESFERAS DE VIDRIO.	56
FIGURA 3.32. CURVA GRANULOMÉTRICA DEL LECHO DE GRAVA	56

Figura 3.33. Representación cualitativa del perfil de sedimento estimado en base a fotografía y tomograma. Zona del
TOMOGRAMA REPRESENTADA EN ROJO APROXIMA LA DISTRIBUCIÓN DE MICROESFERAS DE VIDRIOS DEPOSITADA EN EL LECHO
Figura 4.1. Comparación de los perfiles de la intensidad turbulenta u' y v' con las expresiones universales de Nezu y
Nakagawa (1993) y Kironoto y Graf (1994)62
FIGURA 4.2. PERFILES DE VELOCIDAD ADIMENSIONALES PARA CADA UNO DE LOS PLANOS.
FIGURA 4.3. COMPARACIÓN PERFILES DE VELOCIDAD ADIMENSIONALES COLECTADOS POR CAUDAL. P1, P2 Y P3 CORRESPONDEN A PLANO
1, PLANO 2 Y PLANO 3 RESPECTIVAMENTE
FIGURA 4.4. PERFILES DEL ESFUERZO CORTE DE REYNOLDS TOTAL ADIMENSIONAL DE LOS PLANOS 1,2 Y 3
FIGURA 4.5. COMPARACIÓN PERFILES DE ESFUERZO DE CORTE ADIMENSIONALES COLECTADOS POR CAUDAL. P1, P2 Y P3 CORRESPONDEN A
PLANO 1, PLANO 2 Y PLANO 3 RESPECTIVAMENTE
FIGURA 4.6. PERFILES DEL ESFUERZO CORTE ESPACIAL ADIMENSIONAL DE LOS PLANOS 1,2 Y 3.
Figura 4.7. Comparación perfiles de esfuerzo de corte espacial adimensionales colectados por caudal. P1, P2 y P3
CORRESPONDEN A PLANO 1, PLANO 2 Y PLANO 3 RESPECTIVAMENTE
FIGURA 4.8. PERFILES DEL ESFUERZO CORTE TURBULENTO ADIMENSIONAL DE LOS PLANOS 1,2 Y 3
Figura 4.9. Comparación perfiles de esfuerzo de Reynolds adimensionales colectados por caudal. P1, P2 y P3
CORRESPONDEN A PLANO 1, PLANO 2 Y PLANO 3 RESPECTIVAMENTE
FIGURA 4.10. APROXIMACIÓN PERFIL LOGARÍTMICO DE VELOCIDAD POR CAUDAL Y PLANO75
Figura 4.11. Perfiles de rugosidad de cada plano. A), b) y c) corresponden a plano 1, 2 y 3 respectivamente. La línea
SEGMENTADA INDICA POSICIÓN DE d
FIGURA 4.12. COMPARACIÓN ESFUERZO DE CORTE DE REYNOLDS EXTENDIDO Y LOGARÍTMICO.
FIGURA 4.13. TAMAÑO DE LAS MICROESFERAS DE VIDRIO DEPOSITADAS A LO LARGO DEL TRAMO DE ESTUDIO DE IZQUIERDA A DERECHA79
FIGURA 4.14. POSICIÓN DE LAS MICROESFERAS EN FUNCIÓN DEL TIEMPO EN LOS PRIMEROS DOS METROS DE TUBERÍA.
FIGURA 4.15. PERFILES DE SEDIMENTO REALES PARA LOS TIEMPOS 0, 7 Y 38 MINUTOS RESPECTIVAMENTE PARA EL TRAMO 1
FIGURA 4.16. CONCENTRACIÓN PROMEDIO DEL SEDIMENTO DEPOSITADO EN EL TIEMPO SOBRE LA SECCIÓN DEL LECHO MEDIANTE
REFERENCIA W PARA A) 1 [L], B) 2 [L] C) 3 [L]
FIGURA 4.17. CONCENTRACIÓN PROMEDIO DEL SEDIMENTO DEPOSITADO EN EL TIEMPO SOBRE LA SECCIÓN DEL LECHO MEDIANTE
REFERENCIA WG PARA A) 1 [L], B) 2 [L] C) 3 [L]
FIGURA 4.18. TOMOGRAMAS EN BASE A REFERENCIA WG EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 3 LITROS
DE SEDIMENTO FINO
FIGURA 4.19. TOMOGRAMAS EN BASE A REFERENCIA W EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 3 LITROS
DE SEDIMENTO FINO
FIGURA 4.20. TOMOGRAMAS EN BASE A REFERENCIA WG EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 2 LITROS
DE SEDIMENTO FINO
FIGURA 4.21. TOMOGRAMAS EN BASE A REFERENCIA W EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 2 LITROS
DE SEDIMENTO FINO
FIGURA 4.22. TOMOGRAMAS EN BASE A REFERENCIA WG EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 1 LITROS
DE SEDIMENTO FINO
FIGURA 4.23. TOMOGRAMAS EN BASE A REFERENCIA W EN FUNCIÓN DEL TIEMPO A DISTINTOS CAUDALES PARA UN VOLUMEN DE 1 LITROS
DE SEDIMENTO FINO
Figura 4.24. Tomogramas en base a referencia WG en función del tiempo a distintos caudales para un volumen de 0.5
LITROS DE SEDIMENTO FINO.
Figura 4.25. Tomogramas en base a referencia W en función del tiempo a distintos caudales para un volumen de 0.5
LITROS DE SEDIMENTO FINO.
Figura 4.26. Descripción del parámetro e/Dg y $D(z)$
Figura 4.27. Curva de ajuste experimental para gasto sólido adimensional en función de e/Dg y $D(z).$ Se presentan
expresiones predictivas de gasto sólido de Meyer-Peter and Müller (1948) y Engelund and Fredsøe (1976) son
PRESENTADAS

Figura 4.28. Gasto sólido adimensional en función de e/Dg y $D(z)$. Se presentan resultados experimentales de Niño et	
AL. (2017), KUHNLE ET AL. (2013) Y EXPRESIONES PREDICTIVAS DE GASTO SÓLIDO DE MEYER-PETER AND MÜLLER (1948), ASHIDA AND	,
MICHIUE (1972), ENGELUND AND FREDSØE (1976)	92
Figura A7.1. Concentración de burbujas. La primera y segunda corresponde a la concentración de referencia y burbuja:	S
de cada anillo y promedio del tomógrafo. La última imagen representa los errores asociados de la concentración	
PROMEDIO DE REFERENCIA Y BURBUJAS	13

Índice de Tablas

TABLA 3.1. CURVA OPERACIÓN DE LA BOMBA.	27
TABLA 3.2. POSICIONES OBSERVADAS Y CORREGIDAS POR REFRACCIÓN.	37
TABLA 3.3. POSICIONES OBSERVADAS Y CORREGIDAS	
TABLA 4.1. VALOR DEL ESFUERZO DE CORTE ADIMENSIONAL PARA TODOS LOS PLANOS Y CAUDALES.	63
TABLA 4.2. RAZÓN ENTRE LAS COMPONENTES DEL ESFUERZO DE CORTE OBTENIDOS MEDIANTE PIV.	72
TABLA 4.3. BALANCE VOLUMÉTRICO TUBERÍA.	73
TABLA 4.4. RESULTADO PROPAGACIÓN DE ERRORES	73
TABLA 4.5. RESUMEN DATOS PERFIL LOGARÍTMICO.	75
TABLA 4.6. VOLUMEN DEPOSITADO POR TRAMO CON RESPECTO AL DEPOSITADO EN TODA LA SECCIÓN DE ESTUDIO	79
TABLA 4.7. RESUMEN EXPERIMENTOS GASTO SÓLIDOS DE FONDO	90
TABLA A1. ERROR INTRÍNSECO DE CADA VARIABLE MEDIDA	
TABLA A2. PROPAGACIÓN ERRORES DE LAS VARIABLES VOLUMEN, CAUDAL Y VARIACIÓN DE PRESIÓN	
TABLA A3. ERROR ASOCIADO A LA MAGNIFICACIÓN DE LA IMAGEN PLANO CENTRAL	
TABLA A4. ERROR ASOCIADO A LA MAGNIFICACIÓN DE LA IMAGEN PLANO MEDIO	
TABLA A5. ERROR ASOCIADO A LA MAGNIFICACIÓN DE LA IMAGEN PLANO PARED	
TABLA A6. ERROR ASOCIADO AL DESPLAZAMIENTO DE LAS PARTÍCULAS PLANO CENTRAL	
TABLA A7. ERROR ASOCIADO AL DESPLAZAMIENTO DE LAS PARTÍCULAS PLANO MEDIO	
TABLA A8. ERROR ASOCIADO AL DESPLAZAMIENTO DE LAS PARTÍCULAS PLANO PARED	
TABLA A9. ERROR ASOCIADO AL PASAR DE UN CAMPO 3D A 2D PLANO CENTRAL	
TABLA A10. ERROR ASOCIADO AL PASAR DE UN CAMPO 3D A 2D PLANO MEDIO	
TABLA A11. ERROR ASOCIADO AL PASAR DE UN CAMPO 3D A 2D PLANO PARED	
TABLA A12. RESUMEN ERRORES PLANO CENTRAL	
TABLA A13. RESUMEN ERRORES PLANO MEDIO	
TABLA A14. RESUMEN ERRORES PLANO PARED	110
TABLA A15. ERROR DEL VECTOR DESPLAZAMIENTO PLANO CENTRAL	110
TABLA A16. ERROR DEL VECTOR DESPLAZAMIENTO PLANO MEDIO	111
TABLA A17. Error del vector desplazamiento plano pared	111