
Acta Mech 227, 3247–3260 (2016)
DOI 10.1007/s00707-015-1538-5

ORIGINAL PAPER

Williams R. Calderón-Muñoz · Cristian Jara-Bravo

Hydrodynamic modeling of hot-carrier effects in a PN
junction solar cell

Received: 30 December 2014 / Revised: 14 August 2015 / Published online: 14 January 2016
© Springer-Verlag Wien 2016

Abstract This article presents a one-dimensional two-temperature hydrodynamic model to study the thermal
and electrical behavior of a gallium arsenide (GaAs) PN junction solar cell. This model treats both electron and
heat transfer on equal footing and includes Gauss’s law, continuity and momentum equations for electrons and
holes, and energy balance using temperature for both carriers and lattice. A zero-order system of equations is
obtained using asymptotic series expansions based on the electronReynolds number for steady-state conditions.
An iterative scheme is implemented to solve the zero-order system. The results show the influence of carriers
and lattice temperatures in the electrical performance of a GaAs PN junction solar cell. Higher values of power
output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve
the thermal control in photovoltaic technologies.

1 Introduction

The third generation of solar cells has been developed with the goal of avoiding energy losses from different
sources. While there are certain associated losses that cannot be reduced, such as black body radiation, some
others such as spectrum losses, recombination processes or thermalization losses can be reduced by several
techniques. The detailed balance limit of nearly 34% considers a single-junction solar cell illuminated under
concentrated light where each incoming photon excites one electron–hole pair (100% quantum efficiency) and
thermal energy of electrons over the conduction band is relaxed [1]. One of themeans for improving this limit is
multi-junction solar cells, which have several layers of semiconductors tuned to absorb a certain wavelength of
light reaching a limit of efficiency of 42% for a two-layer cell, 49% for a three-layer cell and a theoretical limit
of 68% for an infinite-layer cell [2]. Another well-studied and currently operating technology is concentrator
solar cells which benefit from requiring a reduced dimension and the relative low cost of concentrator lenses or
mirrors. These cells are subjected to conditions of high radiation and require thermal control systems to achieve
optimum performance. While multi-junction solar cells absorb radiation of different wavelengths, hot-carrier
solar cells prevent the carriers from releasing its kinetic energy into lattice heating, permitting the transport
of hot carriers and avoiding thermalization losses. Ideal hot-carrier solar cells have a detailed balance limit of
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85% [3]. The main difficulty arises in thermally isolating carriers from phonons. In this sense, a mathematical
model of hot-carrier transport can be useful to determine operating conditions that contribute to the reduction
in thermalization losses.

Most of the modeling of semiconductor devices has been achieved through drift-diffusion models [4–6].
The main assumptions of these models are: (1) thermal equilibrium between charge carriers and lattice and
(2) electron and hole populations each form a quasi-thermal equilibrium with a characteristic Fermi level and
temperature [7]. Depletion region approximation, meaning the assumption of a region in a PN junction where
carrier concentrations are considered negligible compared with doping concentrations (NA and ND), is also
widely used. These approximations combined give a good understanding of the physical processes involved in
PN junction semiconductor devices under particular circumstances. In the past decades, efforts have beenmade
for expanding these models mainly because of the decrease in the device size (specially for transistors) and
the increasing interest in new technologies for solar cells. In semiconductor modeling, hydrodynamic models
have been used to describe the electron transport and temperature distributions in devices such as field effect
transistors [8–13]. These models have also been used in the stability analysis of electron flow to understand
whether semiconductors can be used as a radiative source [14,15], and lately to study the electron and hole
transport in quantum wells [16,17]. Physical similarities with fluid flow have been found for electron flow
in semiconductor devices by using hydrodynamic models [18]. From a thermal perspective, two-temperature
models have been used to describe semiconductor and thermoelectric devices [19,20]. Hydrodynamic models
permit to avoid details of the distribution of electrons and holes by providing a set of partial differential
equations to describe the voltage, the evolution of the electron and hole velocities, densities and temperatures
throughout the junction [21].

In this research, a one-dimensional two-temperature hydrodynamic model is used to simulate the steady-
state operating conditions of a GaAs single PN junction solar cell used under light. The dependency of charge
carrier and lattice temperature boundary conditions with power output is discussed.

2 Mathematical modeling and physical considerations

2.1 Governing equations

The definition of a hydrodynamic model for semiconductors is not restricted to a single system of equations,
but refers to the similarity they have with the governing equations in fluid dynamics. The model presented here
is derived from the Boltzmann transport equations (BTE). Current is driven through the device by a voltage
difference, diffusion, generation and recombination processes between the two contacts at x∗ = 0, L . The
coordinate x∗ is in the direction of the electron flow, and t∗ is time. The one-dimensional two-temperature
hydrodynamic equations for electron and hole flow in a PN junction solar cell include Gauss’s law in Eqs. (1a)
and (1b), mass conservation equations for electrons and holes in Eqs. (1c) and (1d), momentum conservation
equations for electrons and holes in Eqs. (1e) and (1f) and energy conservation equation for electrons and
lattice in Eqs. (1g) and (1h). We consider thermal equilibrium between electrons and holes. Therefore, the
electron and hole temperature distributions are imposed to be equal throughout the device, T ∗

c . The system of
equations is

∂2V ∗

∂x∗2 = − e

εs

(
p∗ − n∗ − NA

)
, x∗ < x∗

J , (1a)
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∂n∗

∂t∗
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Fig. 1 Device scheme with boundary conditions
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where V ∗(x∗, t∗) is the voltage, n∗(x∗, t∗) is the electron density, p∗(x∗, t∗) is the hole density, u∗
e(x

∗, t∗) is
the x∗-component electron drift velocity, u∗

h(x
∗, t∗) is the x∗-component hole drift velocity, T ∗

c is the carrier
temperature and T ∗

L is the lattice temperature. The junction is defined at x∗ = x∗
J .

The physical parameters are the electron charge, e, the permittivity of the semiconductor, εs , the donor
concentration, ND , the acceptor concentration, NA, the effective electron mass, me, the effective hole mass,
mh , the electron–hole reduced massμeh , the Boltzmann constant, kB , the generation rate for electrons,Gn , the
generation rate for holes, Gp, the recombination rate for electrons, Rn , the recombination rate for holes, Rp,
the momentum relaxation time for electrons, τel , the momentum relaxation time for holes, τhl , the relaxation
time for electron–hole collisions, τeh , the energy relaxation time for electrons, τE , and the thermal conductivity
for electrons, ke.

The electric field, electron density and hole density at both ends are prescribed boundary conditions.
The physical realization is by considering the both ends sufficiently far away from the junction, in the neutral
regions. The carrier temperature, T ∗

c = T ∗
e = T ∗

h , takes into account the thermal equilibrium between electrons
and holes. Mathematically, the boundary conditions are V ∗(0, t∗) = Vap, V ∗(L , t∗) = 0, n∗(0, t∗) = n2i /NA,
n∗(L , t∗) = ND , p∗(0, t∗) = NA, p∗(L , t∗) = n2i /ND , T ∗

c (0, t∗) = TcP , T
∗
c (L , t∗) = TcN , T

∗
L (0, t∗) = TLP ,

T ∗
L (L , t∗) = TLN , where L is the length of the device and ni is the intrinsic carrier concentration. We consider

TcN = TcP and TLN = TLP as given temperatures for the carriers and lattice at the P and N sides, respectively,
and Vap as the applied voltage. The built-in potential of the PN junction is considered as a correction of the
applied voltage and is considered for numerical calculations. The use of symmetric boundary conditions for the
lattice and carrier temperatures is supported by the fact that the results from thermal modeling of photovoltaic
solar cells show that the temperature of the semiconductor layer is mostly uniform along the normal axis [22].
The device scheme with boundary conditions is shown in Fig. 1. Since we are satisfying that the number
of boundary conditions is the same as the order of the system of equations (1), we have a well-posed PDE
mathematical problem.

For convenience, non-dimensional versions of the governing equations are obtained. By writing V =
V ∗/V0, n = n∗/N0, p = p∗/N0, x = x∗/L , ue = u∗

e/U , uh = u∗
h/U , Tc = T ∗

c /T0, TL = T ∗
L /T0 and

t = t∗U/L , with V0 is the reference voltage, N0 is the reference doping density and T0 is the reference
temperature, the non-dimensional version of Eq. (1) is:

∂2V

∂x2
= −α

(
p − n − NA

N0

)
, x < xJ , (2a)
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Table 1 Physical properties for GaAs [20,21]

Constant Value

e 1.60218 × 10−19 C
εs 113.28 × 10−12 C2/(N m2)
kB 1.38066 × 10−23 J/K
kL 42.61 W/(m K)
ND 1 × 1016 cm−3

NA 1 × 1017 cm−3

me 6.01 × 10−32 kg
mh 4.65 × 10−31 kg
CL 8.73 × 105 J/(m3 K)
μno 0.45 m2/(V s)
τp 2 × 10−12 s
τE 4.4 × 10−10 s

∂2V

∂x2
= −α

(
p − n + ND

N0

)
, x > xJ , (2b)

∂n

∂t
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p
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1

n
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ψ0
∂TL
∂t

= ψ1
∂2TL
∂x2

+ ν(n + p)(Tc − TL) + ψ2νnu
2
e + ψ2

mr
νpu2h, (2h)

where α = eL2N0/V0εs , γ = τel/τhl ,mr = me/mh , β = kBT0/eV0, ν = τel/τE , φ1 = (2keτel)/(3N0kB L2),
φ2 = (2e2V 2

0 τ 2el)/(3mekBT0L2), ψ0 = (2τelCLU )/(3N0kB L), ψ1 = (2τelkL)/(3N0kB L2), ψ2 =
(meU 2)/(3kBT0), Re = U 2me/eV0, Gn − Rn = (G∗

n − R∗
n)L/N0U , Gp − Rp = (G∗

p − R∗
p)L/N0U ,

and U = eV0τel/meL is the maximum average electron velocity. Re is the Reynolds number and it can be
written as Re = Uτel/L , which is the Knudsen number for the electron cloud.

2.2 Mathematical and numerical method

A one-dimensional two-temperature hydrodynamic model is used to simulate the steady-state operating con-
ditions of a GaAs single PN junction solar cell used under concentrated light, in order to study the behavior
of these devices when carriers are not in thermal equilibrium with lattice. Charge carrier densities, velocities,
voltage and electric field distributions are obtained for different applied bias, and the total current densities
(electrons and holes) as a function of applied voltage are obtained for different carrier temperature boundary
conditions. We consider the physical properties for GaAs given in Table 1, the system parameters given in
Table 2 and the non-dimensional parameters given in Table 3. For the purposes of this paper, a PN junction
under light (constant net generation rate) with xJ = 0.1 was considered. Since Eq. (2) are nonlinear, we use
perturbation method in asymptotic expansions to reduce the nonlinearities and get an approximated solution
[23].

If the number of collisions in the device is high, it is expected to have a small distance between two
collisions for an electron in the flow. This assumption implies that the Reynolds number is small Re < 1, and
it can be used as a perturbation parameter in asymptotic perturbation series for the dependent variables in Eqs.
(2). The asymptotic perturbation series for the dependent variables are
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Table 2 System parameters

Constant Value

L 10 × 10−6 m
N0 1 × 1016 cm−3

V0 1.0 V
T0 300 K

Table 3 Dimensionless parameters for GaAs

Parameter Value

α 1403
β 0.026
γ 1.118
mr 0.129
ν 0.357
ψ1 0.397
ψ2 0.017
φ1 0.031
φ2 0.034
Re 1.3 × 10−3

V (x) ≈ V 0(x) + εV 1(x) + · · · ,

n(x) ≈ n0(x) + εn1(x) + · · · ,

p(x) ≈ p0(x) + εp1(x) + · · · ,

ue(x) ≈ ue0(x) + εue1(x) + · · · ,

uh(x) ≈ uh0(x) + εuh1(x) + · · · ,

T c(x) ≈ Tc0(x) + εTc1(x) + · · · ,

T L(x) ≈ TL0(x) + εTL1(x) + · · · ,

where ε = Re. By replacing the asymptotic expansions into the steady-state version of Eq. (2), a zero-order
system is obtained. This system can be written in terms of electron and hole current densities. Two second-
order differential equations for the electron and hole densities are obtained by combining the continuity and
momentum conservation equations:

d2V 0

dx2
= −α

(
p0 − n0 − NA

N0

)
, x < xJ , (3a)

d2V 0

dx2
= −α

(
p0 − n0 + ND

N0

)
, x > xJ , (3b)

β
d2(n0Tc0)

dx2
− dn0

dx

dV 0

dx
− n0

d2V 0

dx2
+ (Gn − Rn) = 0, (3c)

β
d2(p0Tc0)

dx2
+ d p0

dx

dV 0

dx
+ p0

d2V 0

dx2
+ γ

mr
(Gp − Rp) = 0, (3d)

φ1
d2Tc0
dx2

− νn0(Tc0 − TL0) + φ2n0
(
u2e0 − ν

2
(u2e0 − u2h0)

)
= 0, (3e)

ψ1
d2TL0
dx2

+ ν(n0 + p0)(Tc0 − TL0) + ψ2νn0u
2
e0 + ψ2

mr
ν p0u

2
h0 = 0, (3f)

where

ue0 = dV 0

dx
− β

n0

d(n0Tc0)

dx
, (4a)

uh0 = −mr

γ

(
dV 0

dx
+ β

p0

d(p0Tc0)

dx

)

. (4b)
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An iterative scheme is required to solve the zero-order system in Eqs. (3) due to the nonlinearities. For
this, the finite difference method is used to discretize each equation separately assuming every variable known
except for the one to obtain. Some input variables need to be chosen as initial conditions to solve the system
in an explicit way from these conditions to the final steady-state conditions, moving forward by a pseudo-time
step (θ ) to obtain convergence. The iterative scheme was implemented in the software Wolfram Mathematica.

The voltage, V 0(x), and carrier temperature, Tc0(x), are used as initial conditions. A linear distribution is
used for carrier temperature between boundary conditions, giving

Tc
0
0(x) = TcN + (TcN − TcP)x, (5)

where x ∈ [0, 1], since it is the normalized length. The depletion region approximation [5] is used to determine
the initial condition of the voltage. For simplicity, the depletion region length is obtained for the P- and N -doped
sides of the junction as dimensionless values, wn and wp, respectively:

wp =
[
2εs(Vbi − Vapp)

qL2

(
NA

ND(NA + ND)

)]1/2
, (6)

wn =
[
2εs(Vbi − Vapp)

qL2

(
ND

NA(NA + ND)

)]1/2
. (7)

Using these expressions, the depletion region approximation for voltage is obtained as a combination of
parabolic profiles resulting from the integration of the depleted regions.

V
0
0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

VP 0 < x < wp,

(
qNAL2/εsV0

) (
(x − xJ )2 + 2wp(x − xJ ) + w2

p

)
+ VP wp < x < xJ ,

(
qNDL2/εsV0

) (
(x − xJ )2 + 2wn(x − xJ ) − w2

n

) + VN xJ < x < xJ + wn,

VN xJ + wn < x < 1.

(8)

The second-order equation for the electron density, Eq. (3c), can be written for the iteration step k as

d2nk0
dx2

λn1 + dnk0
dx

λn2 + nk0λn3 = (Rn − Gn), (9)

where λn1 = βTc0
k
, λn2 = 2β(dTc0

k
/dx) − (dV0

k
/dx) and λn3 = β(d2Tc0

k
/dx2) − (d2V0

k
/dx2). A regular

one-dimensional grid is used with a spatial step size of x . An upwind scheme was used to discretize the
first-order derivatives, and therefore, the direction of the discretization depends on the sign of λn2 in the way
described below where the notation z(stepk, xi ) = zki is considered:

d(n0)ki
dx

=
{(

(n0)ki+1 − (n0)ki
)
/x if (λn2)i < 0

(
(n0)ki − (n0)ki−1

)
/x if (λn2)i > 0

(10)

From this, the discretized equation can be expressed as a linear system in matrix form, where the diagonal of
a tridiagonal matrix is defined as

(An)i i =
{−2(λn1)i/x2 − (λn2)i/x + (λn3)i if (λn2)i < 0,

−2(λn1)i/x2 + (λn2)i/x + (λn3)i if (λn2)i > 0.
(11)

The superdiagonal and subdiagonal are defined in a similar way as

(An)i j |(i− j)=−1 =
{

(λn1)i/x2 + (λn2)i/x if (λn2)i < 0,

(λn1)i/x2 if (λn2)i > 0,
(12)

(An)i j |(i− j)=1 =
{

(λn1)i/x2 if (λn2)i < 0,

(λn1)i/x2 − (λn2)i/x if (λn2)i > 0.
(13)
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Therefore, the right hand side of the system is

( fn)i = (Rn − Gn)i . (14)

Finally, the linear system to solve in order to obtain the kth iteration step becomes

An(Tc
k
0, V

k
0)n

k
0 = fn . (15)

The methodology to solve the second-order equation for the hole density, Eq. (3d), is analogue to the one used
for Eq. (3c). Rewriting Eq. (3d), we get

d2 pk0
dx2

λp1 + d pk0
dx

λp2 + pk0λp3 = γ

mr
(Rp − Gp), (16)

where λp1 = βTc
k
0, λp2 = 2β(dTc

k
0/dx)+(dV

k
0/dx) and λp3 = β(d2Tc

k
0/dx

2)+(d2V
k
0/dx

2). The first-order
discretization to be used is

d(p0)
k
i

dx
=

{(
(p0)

k
i+1 − (p0)

k
i

)
/x if (λp2)i < 0,

(
(p0)

k
i − (p0)

k
i−1

)
/x if (λp2)i > 0.

(17)

The tridiagonal matrix to obtain the hole density can be expressed as

(Ap)i i =
{−2(λp1)i/x2 − (λp2)i/x + (λp3)i if (λp2)i < 0,

−2(λp1)i/x2 + (λp2)i/x + (λp3)i if (λp2)i > 0,
(18)

(Ap)i j |(i− j)=−1 =
{

(λp1)i/x2 + (λp2)i/x if (λp2)i < 0,

(λp1)i/x2 if (λp2)i > 0,
(19)

(Ap)i j |(i− j)=1 =
{

(λp1)i/x2 if (λp2)i < 0,

(λp1)i/x2 − (λp2)i/x if (λp2)i > 0,
(20)

and the right-side vector is

( f p)i = γ

mr
(Rp − Gp)i . (21)

Finally, the linear system to solve in order to obtain the kth iteration step for holes becomes

Ap(Tc0
k
, V0

k
)p0

k = f p. (22)

Once the electron and hole densities are obtained, the velocities for electrons and holes along the device, ue0
and uh0 are obtained from Eqs. (4a) and (4b), respectively:

ue
k
0(n

k
0, V

k
0, Tc

k
0) = dV

k
0

dx
− β

nk0

d(nk0Tc
k
0)

dx
, (23)

uh
k
0(p

k
0, V

k
0, Tc

k
0) = −mr

γ

(
dV

k
0

dx
+ β

pk0

d(pk0Tc
k
0)

dx

)

. (24)

The next step is to solve the energy equation for lattice temperature, Eq. (3f), which can be written as

ψ1
d2TL

k
0

dx2
+ ν

(
nk0 + pk0

) (
Tc

k
0 − TL

k
0

)
+ ψ2νn

k
0(ue

k
0)

2 + ψ2

mr
ν pk0(uh

k
0)

2 = 0. (25)

The lattice temperature profile TL
k
0(n

k
0, p

k
0, V

k
0, Tc

k
0) can be easily obtained by solving the system of equations

AL(nk0)TL
k
0 = fL(nk0, p

k
0, ue

k
0, uh

k
0), (26)
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where

(AL)i j =
{−2ψ1/x2 − ν

(
(n0)ki + (p0)

k
i

)
if i = j,

ψ1/x2 if |i − j | = 1,
(27)

and

( fL)i (n
k
0, p

k
0, ue

k
0, uh

k
0) = −ψ2νn0

k
i (ue0

k
i )

2 − ψ2

mr
ν p0

k
i (uh0

k
i )

2 − ν
(
(n0)

k
i + (p0)

k
i

)
Tc0

k
i . (28)

An auxiliary iteration step is defined, k′, before obtaining the new input variables for iteration step k + 1. This
is done by solving Poisson’s equation and the energy equation for carriers, Eq. (3e), using the values for the
other variables obtained in the kth iteration. Poisson’s equation, Eqs. (3a) and (3b), can be written as

d2V
k′
0

dx2
= −α

(
pk0 − nk0 + C

)
, (29)

where C = −NA/N0 in the P-side and C = ND/N0 in the N-side of the junction. Defining

(MV )i j =
{−2 if i = j,

1 if |i − j | = 1,
(30)

( fV )i (n
k
0, p

k
0) = −α

(
p0

k
i − n0

k
i + Ci

)
, (31)

the new value V k′
0 (nk0, p

k
0) is obtained by solving

MV V
k′
0 = fV (nk0, p

k
0). (32)

The energy equation for the carrier temperature, Eq. (3e), can be written as

φ1
d2Tc

k′
0

dx2
− νnk0

(
Tc

k′
0 − TL

k
0

)
+ φ2

(
(ue

k
0)

2 − ν

2

(
(ue

k
0)

2 − (uh
k
0)

2
))

= 0 (33)

to obtain Tc
k′
0 (nk0, TL
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0, ue0, uh0) by solving the system
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where

(Ac)i j =
{−2φ1/x2 − ν(n0)ki if i = j,

φ1/x2 if |i − j | = 1,
(35)

and
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k
i , (36)

obtaining the kth iteration step for the input variables Tc0 and V 0.
After evaluating the error between the input and the output variables, the real next step is chosen by using

a relaxation parameter, θ , that helps to obtain a slower transition into the real solution and therefore prevents
following iteration steps to diverge due to instabilities.

V
(k+1)
0 = V

k
0 + θ(V

k′
0 − V

k
0), (37)

Tc
(k+1)
0 = Tc

k
0 + θ(Tc

k′
0 − Tc

k
0). (38)
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3 Results and discussion

3.1 Hot-carrier effects on a GaAs PN junction solar cell

In order to study the temperatures of charge carriers and lattice as separated variables, three different applied
voltages (V ∗

ap) were imposed on an illuminated non-symmetric junction (xJ = L/10). In Figs. 2 and 3, we
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Fig. 2 Steady-state solution for a PN junction at different forward bias under light with α = 1403, Re = 1.3× 10−3 and AM 1.5
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Fig. 3 Steady-state solution for a PN junction at different forward bias under light with α = 1403, Re = 1.3× 10−3 and AM 1.5

show the region with the most abrupt changes for the variables through the device. This region corresponds
to the neighborhood of the junction, while in the outside region (x > 0.2) there are no significant changes
and variables asymptotically take the boundary conditions values. Results for voltage, electric field, electron
density and hole density are shown in Fig. 2; and results for electron velocity, hole velocity, carrier temperature
and lattice temperature are shown in Fig. 3. From these figures, voltage, electron density and hole density vary
smoothly in space for the three applied biases. The maximum electron velocity is in the P-side, and the
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Fig. 5 Power output for a GaAs PN junction solar cell under light with α = 1403, Re = 1.3× 10−3, AM 1.5, at different lattice
temperature boundary conditions, T ∗

L , and different charge carrier temperatures, T ∗
c

maximum hole velocity is in the N -side. The maximum electron temperature is in the junction and decreases
when the applied bias increases, and the lattice remains practically constant through the junction. Themaximum
absolute value of the electron and hole velocities decreases when the applied bias increases. These maximum
values can be explained by the carrier temperature distribution through the junction.

Differences between lattice and carrier temperatures are expected to affect the performance of GaAs PN
junction solar cells. By imposing specific boundary conditions for Tc, the performance of a solar cell under
light is analyzed. Results in Figs. 4 and 6 show different curves for total current densities as a function of
applied voltage for different boundary values of Tc and TL . The net generation rate is obtained using Air
Mass 1.5 (AM1.5), and Figs. 5 and 7 show the power output. The AM 1.5 spectrum corresponds to the sun
being at an angle of elevation of 42 o, where the atmospheric thickness attenuates the solar spectrum to an
integrated irradiance of 1000W/m2.Themaximumcurrent and power output increasewhen the imposed carrier
temperature boundary condition increases. This can be explained by favorable conditions for hot-carrier flow
and can be physically achieved using energy selective contacts for reducing the carrier cooling rate. Quantum
wells, quantum wires and quantum dots have been proposed to be used with this purpose [24].

3.2 GaAs solar cell characteristics and comparison to experimental data

Applied bias and doping density define the size of the region where themost abrupt changes in carrier densities,
electrostatic potential and electric field distributions are taking place, and therefore provide the information
of the conduction and valence band bending in the region around the junction. The voltage–current density
characteristics in a GaAs PN junction solar cell with non-symmetric doping concentrations and sides, and with
recombination and generation process, was studied with the one-dimensional two-temperature hydrodynamic
model. The physical properties were obtained from Table 1 and the system parameters from Table 2.

Examples of calculated voltage–current density characteristics are shown in Figs. 4 and 6. The two-
temperature hydrodynamic model predicts voltage–current characteristics showing a good agreement with
measurements when the charge carrier temperature is higher than the lattice temperature, as shown in Figs. 4
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and 6. When the charge carriers heat up and the lattice temperature boundary conditions remain constant,
the power output increases as shown in Fig. 7. This is in agreement with hot electron devices [25]. The
open-circuit voltage, Voc, decreases and the short-circuit current, Jsc, increases when the cell temperature,
T ∗
L , increases [26]. The open-circuit voltage is in the order of 1V at T ∗

L = 300K, 0.88V at T ∗
L = 350K, and

0.76V at T ∗
L = 400K, and increases when illumination intensity increases [27]. The predicted Voc temperature

coefficient (dVoc/dT ) is approximately −2mV/ ◦C as previously reported [27,28].

3.3 Reynolds number and viscous effects

The effects of carrier temperatures, device length and scattering effects in the total current densities through
a GaAs PN junction solar cell were studied. The non-dimensional generation and recombination rates can be
written as Gn − Rn = αη(G∗

n − R∗
n) and Gp − Rp = αη(G∗

p − R∗
p), with η = meεs/N 2

0 e
2τel . Therefore,

variations in α can be considered to play a major role in variations of the non-dimensional net generation
rate G = Gn − Rn = Gp − Rp. In the one-dimensional hydrodynamic model, the non-dimensional number
α takes into account the variations in device length. The Reynolds number Re and η take into account the
scattering effects through the momentum relaxation time for electrons τel . If the momentum relaxation time for
electrons decreases at constant device length, non-dimensional net generation rate increases and therefore total
current increases. The Reynolds number can be written as Re = UL/(L2/τel) where, in analogy with fluid
mechanics, UL represents the inertial effects and (L2/τel) represents the kinematic viscosity of the electron
flow. By increasing the device length, L (α increases), the viscous effects increase and diffusion of carriers is
modified through the junction, the electron and hole distributions are smoother at both edges of the junction,
the electrostatic potential distribution is smoother, and the electric field distribution becomes sharper. In larger
devices with a very short momentum relaxation time, most of the diffusion processes of carriers are taking
place in a small region around the junction. This can contribute to the thermal diffusion and heat dissipation
at the edges of the device, leading to have lower carrier temperatures.
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3.4 Suggested improvements in design of solar cell

The power output of a solar cell can be increased by increasing the open-circuit voltage, Voc, and the short-
circuit current, Jsc. Voc and Jsc depend on operational conditions such as lattice temperature, charge carrier
temperature and light intensity, as well as device characteristics such as device length and doping densities.
The temperature characteristic of Voc is influenced by the temperature characteristic of saturation current. This
current is proportional to the square root of the ratio between the diffusion constant and lifetime of electrons,
which is usually represented by a power-law lattice temperature dependence, T ∗

L
φ , with φ constant [29]. In the

two-temperature hydrodynamic model, this ratio is proportional to the carrier temperature, T ∗
c . Consequently,

the charge carrier temperature plays a fundamental role in the predicted value of Voc, and this suggests that
some improvements can be done.

According to the results,when the lattice temperature remains constant,Voc increaseswith the charge carrier
temperature, as shown in Fig. 6. This can be achieved using contacts at both edges of the PN junction with a
high electronic thermal conductivity in order to prevent charge carrier temperature fluctuations and avoid the
heat dissipation of the photogenerated carriers into the lattice. On the other hand, lattice temperature boundary
conditions are determined by lattice thermal conductivity as well as thermal properties of encapsulating layers
in a PV module. Therefore, the metal contacts and encapsulating layers have to be designed to dissipate the
heat from hot charge carriers in a sufficiently large region away from the contact–semiconductor interface, in
order to operate the solar cell at lower lattice temperatures.

4 Conclusions

Carrier temperature boundary conditions affect the performance of the solar cell. Generated hot carriers at
both edges of the device provide conditions to increase the total current density and power output. Under
this condition, a higher applied bias reduces the maximum carrier temperature through the device and lattice
temperature remains practically constant. A lower applied bias increases the maximum carrier temperature.
According to this, the flow of hot carriers with a lower temperature variation through the device contributes
more effectively to increase the electrical performance of a cell. At the same time, operating conditions with
hot carriers with a much higher temperature than the lattice increase the total current density and power output
and, consequently, improve the electrical performance of a GaAs PN junction solar cell.

The two-temperature thermal modeling contributes to predict the thermal resistance of solar cells and to
improve the thermal control strategies and the design of cooling systems to be used in photovoltaic modules.
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