SLOWLY DECAYING RADIAL SOLUTIONS OF AN ELLIPTIC
EQUATION WITH SUBCRITICAL AND SUPERCRITICAL
EXPONENTS

By
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Abstract. We study radial solutions of the problem
Au+u’ +u? =0, u>0 inR",

where N > 3 and
N N+2
Neo SP<pN_,<a
We show that if p is close to N/(N —2), g is close to (N +2)/(N —2), and a certain
relation holds between them, then the problem has slowly decaying solutions.

1 Introduction

Let N > 3. We are interested in finding radially symmetric solutions u(r), r = |x|,
of

(1.1) Au+u’ +u? =0, u>0, inRV,
where
(1.2) pP<p<p<gq

where here and throughout the paper p* = (N +2)/(N — 2) and p* = N/(N — 2).
Solutions u of (1.1) such that lim|y_, ; #(x) =0 are called ground states. A
ground state u such that limy— 100 |x|Y ~2u(x) exists and is positive is said to have
rapid decay, and a ground state u such that limy +o0 [x|7? Du(x) =€ > 0, is
said to have slow decay. For a solution with slow decay, the constant £ depends
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on p and N only and is given by

2 2 1/(p—1)
K, := N-—-2-— .
p—1 p—1

When p = ¢ in equation (1.1), the existence of ground states is well under-
stood. In the subcritical case p < p*, there are no solutions [8], whereas ground
states exist in the supercritical case p > p*. In the critical case p = p*, all
solutions are radial around some point [7]. Radial ground states in the critical or
supercritical case are parametrized by u(0) and are unique up to the natural scal-
ing of the equation. In the critical case, the ground state is explicit and has rapid
decay; whereas in the supercritical case, the radial ground state has slow decay.

Lin and Ni [9] considered equation (1.1) to provide a counterexample to the
Nodal Domain Conjecture and found slowly decaying ground states when g =
2p — 1 given explicitly by

(1.3) u(x) = a(b+ x>~ = a(b+ [x[H”r!

witha =K, and b = | (N —2) = 2/(p — 1))".

Ni then asked whether there exist radial ground states under condition (1.2).
Bamoén, Flores, and del Pino [1] addressed this question and discovered a complex
picture of solutions. First they found an increasing number of rapidly decaying
ground states if one of the exponents is fixed and the other one is sufficiently close
to p*. More precisely, they proved that for p* < p < p* and an integer k > 1,
(1.1) has at least k radial ground states with rapid decay if g > p* is close enough
to p*. They also showed that for fixed ¢ > p* and k > 1 integral, (1.1) has at
least k radial ground states with rapid decay if p < p* is sufficiently close to p*
Furthermore, for g > p* fixed, there exists py > p* such that there are no radial
ground states if 1 < p < po. They obtained their results using dynamical systems
arguments. Recently, Campos [2] gave a different proof of the same main result.

Our main interest is the existence of slowly decaying radial solutions. Such
solutions, if they exist, are unique. Indeed, an Emden-Fowler change of variables,
following [1, p. 555] (see also [6]), transforms (1.1) into a first order 3-dimensional
system of ODEs. Slowly decaying solutions correspond to trajectories contained
in the 1-dimensional stable manifold of a stationary point, which implies unique-
ness. But regular slowly decaying solutions also lie in the 2-dimensional unstable
manifold of another stationary point, which suggests that their existence is non-
generic in the parameters p, q.

The only indication of existence of regular slowly decaying radial solutions is a
resultin [1], which states that for p* < p < p*, there exists a sequence of exponents
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{g;}, suchthatg; > p*, q; — p*, for which there exists a radial solution with slow
decay; but it is unknown whether these solutions are regular or singular.

We conjecture that slowly decaying singular solutions either do not exist, or
exist at most for a finite number of pairs (p, g). The reason is that such solutions
must satisfy the two constraints

(1.4) lim |x[¥“ Dux) =K, and lim |[x[*? Vu(x) = K,.
|x|]—0 |x|— o0

If one could discard the existence of slowly decaying singular solutions, the re-
sult of [1] would imply the existence of slowly decaying radial regular solutions
associated to the sequence of exponents {g;}.

In this work, we prove the existence of slowly decaying radial regular solutions
if p is close to p*, g is close to p*, and p and q are related by some equation. More
precisely, we prove the following theorem.

Theorem 1.1. For each integer k > 2, there exist dyp(k) > 0 and a function
ex(6) > 0,

e (0) = ];5 +0(0) aso— 0,
such that for 0 < 6 < dy(k) and exponents given by
(1.5) q=p +6 p=p +e(d),

there exists a radial slowly decaying solution u of (1.1). Moreover, there exist

constants a., . . . oy, depending on N and k, such that
k 1 1/(p—1)
_ -G+, .
uex) = 1w Jzz:l <1 + (ajé—(j+N{4))4/N—2|x|2> 0 *raj(+o(),

where yy = (N(N — 2))N=2/* and o(1) — 0 uniformly on RN as 6 — 0.

The constants a1, . . ., a; have explicit formulas in terms of numbers A% given
in (2.8) below, from which it follows that o; = limg_s¢ gél/@_”. This is consis-
tent with the second constraint in (1.4)

Solutions of (1.1) corresponding to k = 1 are the explicit ones found by Lin
and Ni, given in (1.3). In this case, g = 2p — 1, which corresponds to the relation
0 = 2e. Itis likely that when p is close to p*® and g is close to p*, the solutions we
construct in Theorem 1.1 are the same as those detected in [1].

The existence of slowly decaying solutions is interesting because of the fol-
lowing result of Flores [6]. If for some p, g in the range (1.2) there exists a radial
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Figure 1. Bifurcation diagram for (1.1) based on numerical computations with
N = 5. Points on the curves are pairs (p, g) for which we have found regular
slowly decaying solutions.

ground state with slow decay, andp > p. := N’l’ ;\2%}1 Il n

many radial ground states with rapid decay.

then there exist infinitely

Figure 1 shows a bifurcation diagram for (1.1) based on numerical computa-
tions. It is likely that for p close to p® and ¢ close to p*, these solutions are those
constructed in Theorem 1.1 for curves g = qx(p), k = 1,2, 3, .... The curve shown
for k = 1is the line ¢ =2p — 1, and the curves for k =2 and k = 3 startatp =p°
and have derivative consistent with Theorem 1.1. They bend slightly upwards. Our
numerical computations show that these curves can be continued even for p > p*.
Hence, we see, at least numerically, that solutions with slow decay exist for p > p,
and g = qx(p), and therefore the result of Flores [6] applies.

A dual phenomenon to the existence of bounded solutions with slow decay is
the existence of singular solutions with rapid decay. Bamén, Flores, and del Pino
[1] showed that for ¢ > p*, there exists a sequence of exponents {p;} such that
pj <p*,pj —> p*, for which there is either a rapidly decaying singular solution or
a slowly decaying singular solution.

Numerically, we have found a family of curves relating p € (p°, p*) and g > p*
for which singular rapidly decaying solutions exist; see Figure 2. These curves are
asymptotic to the line p = p* as g — oo.

Noting that singular solutions satisfy limy—o [x]> @ Dy(x) = K,, and using
formal asymptotic expansions, we arrive at the following conjecture.
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k=2 k=3

k=1

Figure 2. Bifurcation diagram for (1.1) showing singular rapidly decaying solu-
tions for N = 5.

Conjecture 1.2. Let £ > 1 be an integer and p = p* — ¢. Then there exist
&o > 0 and a function g;(g) > 0 such that for 0 < ¢ < g, there exists a radial sin-
gular rapidly decaying solution u of (1.1). Moreover, there exist positive constants
pPi, ... Bk, depending on N and &, such that

N-2 1

) k 1 2 T g-1 )
(16)  u() = K, Il [mZ( ) g, (1+o(1)>],

x4+ (Bje0 )=
and gy (¢) satisfies
1 N/2
< © 1) =cyke+o(e) ase— 0,
qie) —
where

_ 1 (N —=2\V2721((N2

2\ 2 (V)
and o(1) — 0 uniformly on RY as § — 0. Here, #; = yy'.
2 Scheme of the proof of Theorem 1.1

The Emden-Fowler change of variables r = ¢', v(t) = r*u(r), where a =
(N —2)/2, shows that the equation Au+u” +u =0in R" is equivalent to

2.1 0" —a?v + 7P + %! =0 inR,
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where 6, =a +2 — ap and 6, = a +2 — aq. Equation (2.1) is the Euler-Lagrange
equation of the functional
00 1 2 p+1 g+1
2.2) 1) = / )+ L o2 eV V1T
—o \2 2 p+1 g+1

When p and g are given by (1.5), 6, = 1 — a¢ and 0, = —ad. In the sequel, for
0 > 0, we always work with ¢ in the range J/C < ¢ < Cd, for some fixed C > 1.
For small ¢, 6 > 0 a first approximation to a solution of (2.1) is given by

(2.3) Uop(t) = yn27%cosh(r)™*, teR,
where
24) yn = (NN = 2)N 27

U, satisfies
N+2

Uj —a*Uy+ Uy =0.

In the original variables, this function is the standard bubble

MO(X) =N (1 + |x|2)(N—2)/2

and satisfies

N+2
Aug+uy= =0, up > 0in RV,
Thus Uy corresponds to a function with rapid decay. The translate Uy(t — &) be-
comes a good approximation of (2.1) as £ —» —oo and ¢, — 0. To achieve an
approximation with slow decay, we set f = 1/(p — 1) and define
ot

e .
U@ =78 | 4 s MR

If g =2p—1, U is solution of (2.1) with one bump. As in [3] and [2], one can find
a multibump solution of (2.1) starting with

k
(2.5) V@) =) UG—¢)),
j=1

where &; € R are parameters to be adjusted. After a change of variables, V is, at
main order, the solution in the statement of Theorem 1.1.

The location of the points £, j =1, ...k, can be determined by an expansion
of I(V). Indeed, assuming they are sufficiently separated, we have

k k—1 k
I(V)=—c1 Y e =2y 7D 4036 & +keo +Ad +0(9),
j=l j=l j=1
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where c1, ¢, 3, A, ¢g are constants; see Proposition 3.1, where the values of these
constants are given. Note that ¢y, ¢, c3 > 0. To yield a solution, &, ..., & must
be close to a critical point of the above functional. To see this more clearly, write

&1 =logd —log Ay,

(2.6) 1 .
fj+1:§j+alog5—logAj+1 forj=1,...,k—1,
where
1 .
2.7) MSAjSMforallJ:l,...,k,

and M > 1 is a constant to be fixed later. Note that

. j
& = (1+J )10g5—ZIOgA,~ forj=1,...,k
o
i=1

With this choice of the points £;, I(V) takes the form

k
—C15Al_l — 6‘252/\;&
Jj=2
a k—1
_0352(k—j+1)10gAj+C3k(1+ " )510g5+kco+A5+0(5).

j=1
Note that
Cl a — .
P(Ar - A = s esklog Ay +jz_; (czAja+(k—J+l)C310gAj)
has a unique critical point A* = (A}, ..., A}), given by
c1 cHro Ve
(2.8) A’{:kc3, A;=<C3(k—j+1)> , J=2,...,k,

and that this critical point is a nondegenerate minimum. In the sequel, we fix the
number M in (2.7) so that A} € (1/2M,2M),i =1, .. k.

To find a solution v of (2.1) close to V, we perform a Lyapunov-Schmidt re-
duction, i.e., we look for a solution v of the form v = V + ¢, where ¢ is a lower
order correction. We find the following equation for ¢:

(2.9) Lp+E+N($) =0inR,
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where
(210) LQS = QS” — a2¢ + (peUpZVP—l + qeaqtvq—l)¢’

N(@) = e ((V+g) = VP =pVP=ig) + ™ ((V+$)! = VI —qVT™'p),
11) E =V"—a?V +e7'VP +%'V4,

The perturbation ¢ : R — R is small in an appropriate norm, defined by ||¢|. =
sup,cg |¢()|/w(z) , where

e~ (e+D)(1=¢1) ifr>¢&,

Zle eVI=Gl ifr < &

(2.12) w(t) =

for small 7 > O and 0 < v < min(2, a). To motivate this choice of norm, we
remark that the exponential decay of ¢ between the points ¢; is expected because
away from these points, the dominant terms in (2.1) are the linear ones ¢” — a¢.
Bounded solutions then have exponential decay away from the £; of the form
e "4l with 0 < v < a. In general, for ¢ > £, one can expect the same behavior.
However, the solution we are looking for has slow decay as t — +00 in the sense
that it behaves like =2/ as t — +oo, where f = 1/(p — 1).

We want to use the contraction mapping principle to solve our nonlinear prob-

a

lem. For this, we need for ¢ to decay more rapidly than e~* as r — +00. To see

this, observe that
etf,,t ((V + ¢)p — VP _pr—l¢) ~ eu,,th—2¢2 ~ eu,,t+(a—2/)’)(p—2)t¢2’

where f =1/(p—1). Also o, +(a —2B)(p —2) =2 — a = a+ O(¢). Hence,
if there exists a constant A such that ¢ satisfies |¢(¢)] < Ae™V=<l for t > &, the
first term in N (¢) is of the form

CAZeH+0K1 (+0@O=2m1=) 4 5 =,

The contraction principle then applies if m satisfies a + O(€) —2m < —m for small
€, which leads to the choice m = a + 7 for some 7 > 0.

Having introduced a suitable norm for application of the contraction mapping
principle, let us look at the error £ defined by (2.11). Note that E contains a
term of the form Se*2/" where S is a function of &, 5, Ay, ..., Ax, which we
call the slowly decaying part, and other terms, which decay more rapidly. Since
p =a+0(), |E|« =+0ccunless S = 0. In Proposition 4.1, we prove that there
exists a function ¢;(5, Ay, ..., Ax) > Osuchthat S = 0if & = g,(5, A1, ..., Av),
and then also |E|, < C5Y for some # > 1/2 and all 6 > 0 small. The function

ex(0, A, ..., Ay) is at main order of the form Cd/ A for some constant C.
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Using the contraction mapping principle and a suitable right inverse of L, con-
structed in Section 5, which preserves the norm || ||., we prove in Section 6 that
for small enough J > 0 and ¢ = g;(A, ), there exists a solution ¢ of the nonlinear
projected problem

k
Lp+E+N(p) = ciZ;
i=1

which satisfies |||, < AdY for a suitable constant A > 0. Here, the Z; are defined
in (5.2). Finally, to find a solution of (2.9), it remains to verify that there exists
A =(Aq, ..., Ay) such that the constants ¢; all vanish. We do this in Section 6.

3 Expansion of the energy

Proposition 3.1. Let M > 1, and k > 2 be an integer. Let &y, . .., & be given
by (2.6), A = (A1, ..., Ap) € [1/M, M1, and V be given by (2.5). If0 < & = O(J)
as 0 — 0, the functional I of (2.2) satisfies

I(V) = —0p(A) +kco+Ad + Bdlogd + d0Bs(AN),

where

k
c —u .
q)(Al,...,Ak):All+C3klogA1+§ (czAj +(k—]+1)C310gAj),
j=2

and ®5 — 0in C' norm on [1/M, M1* as 6 — 0. The constants are given by

L[y 2y L[
o=, ((UH” +a’Uy) — o Us ,

N — 2 o8 IN-2
(3.1) = o Cuiar
(3.2) cy = Vg / Uo(t)> ' e dt
(3.3) =, / U3 dr,

k [ee)

» k[ .

A= Uy — U; log Uy,
242 /_oo 0 "o /_oo 0 BT
o k—1 .

B=_k(l+ U
2+ ( 20 ) /_oo 0>

where 2* = 2N/(N — 2).
These constants can be explicitly computed using the identity
/oo r(fizﬂ )r(fﬁz'ﬂ)

cosh (s)™9 e #5ds = 297!
—oo I'(g)
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forall 4 € R and ¢ > max{u, —u}. Note that ¢y, ¢, c3 > 0.

Proof. We write I =1; + I, + I5 + I + Is, where

[e9) 1 2 2*
1(v) :/_Oo <2<u’>2+“202— " )
1 o0 . 1 1 o0
hw) = . /_Oo(lvl2 ol + (2* - s 1) /_Ooe”"t|v|(“1,

e} , |U|q+l
I3(v) :/ (1 - etfq) o
—00

e} p+1
lufv) = _/ egptLlr)lJr 1
—o0

following the computation in [3, Lemma 1.3]. Let us start with the computation
of I,(V). Since g = p* + J, recalling that U depends on ¢ and ¢ = O(J), we have

L[> ° ks [,
2*/ (VZ—VW):—;/ VzlogV+o(5)=—2*/ U* log U +0(5)

ké [ .
=—2*/ Ug log Uy + 0(9),

The second term in I,(V) is

5 / Y 4 o5y = O / IV 1oy = K / U2 +0(5).

(2*)? ) (2*)? -0 (2%)?
Therefore,
(3.4) L(V) =Ad +0(9).

Regarding I3(V), we have
ad [ ad G~ [
(V) = / V(@™ dr+ o) = Y / tU(t — &) dt + 0(6)
2" Joo 2 i=1 V7

ad & O
= o Zfl / Ug +0(5).
i=1

Since &; are given by (2.6),

o [ ..
35 KV =7, [ U

k
k(1+k_ 1>log5—Z(k—i+l)logA,~] +0(9).

20 i=1
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For I,(V), we see that

1 [ee) 1 o0
I - _ optyp+l — / opt _ +1
(V) el / o'y el Ut — &Y +0(0)

—00 —00

— etf,,afl > opt +1 — 5Al_1 /oo opt +1
= P+1/—oo€ U@ +0() = bl _Ooe U@ +0(5)
—9 [ _
(3.6) = —/fl 2];/\; 5 e Up(H) V=2 dt + o(5).

Finally, we compute 7,(V). Writing U;(¢) = U(¢t — ¢&;), we have
e’} 1 2 a2 1 2*
ny = [ (2(ZUZ) + 2<ZUf>2—2*(ZUi) )
=kl +IZ/OO(—U”+a2U~)U'— ! /Oo R 2*—ZU.2*
1% 2 o i i J bR i i i i

i#j " e

b

where we have set

e 22_1/00 .
IU_Z/_OO((U)+aU) [ v

—00

Note that
3.7 Iy =cog+0(0) asd — 0.

Indeed, I is a function of ¢, and
d © .1 .oU
Iy :/ (=U"+a’U—-U*""H" ",
de —o Og

sothat § Iy =0ate =0. Let F;(r) = F(t — &), where F = —U" + a?U — U~
Then, by (3.7),

1 © 1 [ o -
11(V)=2;/_00(Ui +F,-)U,~—2*/_OOKZ:U,~> —Zi:U,. +kco +0(9).
Letting

i —1/2
f =0, tj:<1+f />1og5, =2 k=1, 1 =—o0,
o

we can write
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where R is given by

k i— k k i
TEED 5 3 BCT/RS0 30 o IERNTTURSD 3 oY A7
2 i=1 j# vl 2 i=1 jAi Y R\lftizil 2* J

i=1 j#i vl

k . .
_ 21 Z/t 1 [(U,- +ZU,~)2 -u? —2*U?*—IZUJ} +0(9).
i=1 i

J# J#
If |i — j| > 2, then f:" U ~'U; = 0(5). We have the expansions
U®t) = yne™(1+0(e*)) ast— —oo,
U@t) = yne* "1+ 0(e™)) ast — +oo.
Therefore, fori =1,...,k—1landj =i+1,

i1 11— N2
/ vy, = / UONI U = (G — &) dt
t; t;

=<

ti-1—&
ti

=S

tio1—Gi
W-a \ q2p
= J’Né “ Ai+1 /

Ut N ele=2p) (1 + 0(62(l—(§i+1 —fi))))dt
;=S

= ynOATE / Uo(H)%> e~ dt + o(5).

A similar calculation shows thatifi =2,...,kand j =i — 1, then

ti—1 0 +
/ UT'u; = yNéAi_“/ Uo(H)V "2 e™ dt + 0(5).
1 —00
Now R =o0(d) as 6 — 0. Indeed,
ti—1 ti—1
/ [(Ui +S Uy - vF —2rur ZUJ} < C/ UF Ty U3
fi j# J# fi j#

o 1logd| . .
< C/ e nat p2a(, logdl—0) g
0
L .
|logd|
20 N—4
< Cs? / N2y,
0

which is OS5 +22) if N > 5, 0(5%|1ogd|) if N = 4, and O(82) if N = 3. The
other terms in R can be handled similarly. Therefore,

o k
(3.8) L(V) = —dyy / Uo(D"2e* dt > AT* + ke + 0(9).

j=2
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Combining (3.4), (3.5), (3.6), and (3.8), we arrive at
I(V) = —0p(A) +kco+Ad +Bdlogd +0(d) asd — 0

for some constants A, B, with o(J) uniformly in the region A; € [1/M, M],
i =1,...,k A similar calculation shows that this expansion is also valid in
the C' norm with respectto A = (A1, ..., Ag). ]

4 Error estimate

Proposition 4.1. Let k > 2 be an integer and M > 1. Let &, ...,& be
given by (2.6), A = (A1, ..., Ay) € [1/M,M1*, and E be given by (2.11). For
sufficiently small v > 0 and © > 0 in (2.12), there exist 69 > 0, 0 > 1/2, and a

function €;(6, Ay, ..., Ar) > 0 such that
IE|l. < C5°
for0 <0 < g and ¢ = €(0, Ay, ..., Ai), with the constant C independent of o.
The function ¢y is C' and satisfies
o
_ N
“4.1) &0, A1, ..., \y) = 4a3A15+0(5) as o — 0,
aé‘k
4.2) oA 0, A1,...,Ax) =000) asd— 0,

where o(9), O(5) are uniform in the region A € [1/M, M1~.

Proof. Letuswrite U;(1) = U(t=¢;),V = Z’;zl Uj,andE = Z’;zl E;+A+B,
where

=17 — 4207, opt TP ot 774
E]—Uj aU]+e'Uj+elUj,

k
A :e””t(Vp—ZUf), and
j=1
k
B =e”q’<v4—ZU;?).
Jj=1

Let  =1/(p — 1) = a — ea® + O(&?). Then a computation shows that

2 @+(=¢))
(1 + e2t=E)p+1

2 @+2)(=E))
—4BBHD (|| ey

Ui — oa’Uj + e U% = [e””gvf Vv +4yn BB — 05)}
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Note that the terms U;-’ —a? U; + e”Pth of E; have slow decay, i.e.,
Ui - a*U;j + eyl ~ T ast — 0.
Define the slowly decaying part of E; as
Sj = iz ($7wBB — we™ T gyl om0 ) la2p,

where y|;>¢ /2 is the indicator function of the set [£;/2, +o0) and Ej =E; —§;.
The term A also has a slowly decaying part,

k k
Sy = X[t>c’1/2]y1}7\/ (Z e—(a—Z/f)fj)P _ Z e—(a—2/>’)p¢fj e(a—2/>’)t.
j=1 j=1
SetA =A—S,. Givensmall 6 > Oand &, . .., & satisfying (2.6) and (2.7), choose

¢ > 0 such that ZI;- -1 5j +Sa =0, which is equivalent to

k k
(4.3) 0 =4pnB(f — @)D ™ 4 f (ST e )
j=1 j=1

By (2.6), at main order (in ¢ and ¢), this equation has the form
dynB(B — a)e—(a—zﬁ)é + yﬁle—(a—Z/)’)pfl =0,

so that we have the asymptotic expansion (4.1). The estimate (4.2) also follows
from (4.3).
We claim that

(4.4) IEll. < C3'7%
for small 6 > 0. To prove this, consider separately the regions ¢t > £;/2 and
t < &1/2. Using the formula for §;, we have

Ej - O(e(a—2ﬁ—2)(t—¢'j)) + O(EU,Je((a—2/>’)P—2)(t—¢'j)) + O(effqte(a—Z/)’)Q(t—afj))
for t > & /2, from which we see that

sup |E~vj|e(a+r)(t—¢f|) < C51—1/2+0((5) < Cél_r
1>¢1/2
for small 6 > 0.
We now estimate in the interval ¢ < &, /2, in which

~ @+2=&)) e+ H(—=¢;))
E; = —4ynpla+ 1)(1 +e20=Enypr T AN+ 1)(1 + 252
ap(t—C&;) aq(t—<&;)
(4.5) + 60’”)’7\/ e ! + eaqtyzl € !

(1 + 20Dy (1 + 2=y
=000)(1+t] + |§j|)e—(a+0(5))lt—g’_,-|’
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where O(J) here designates a quantity bounded by a constant times J. From (4.5),

we have
(4.6) supeV™l|E;| < C5 fori=1,...,k,
1<g
and
4.7 sup e(a+f)|f—§1||Ej| < sl
&1t /2

for small 6 > 0. Using (4.6), (4.7), we deduce (4.4).
Similarly, we estimate A first in the interval ¢ > & /2. In this interval, A =
A— Sy =A1 +A,, where

p
ko p—@=2p);

P

k

— P ,0pl (a—2p)pt _ —(a—=2p);

Ay =yyee z:l (1 + e2&=0)p z:le
J= J=

and

ko o—@=2pp¢;

k

— _ P ,0pl (a—2p)pt _ —(a—=2p)pé;

Ar yyere 2 (1 + e2E=0)pp z;e
J= J=

Thus, (1 + s> =)=#=1 = O(1); so, by the Mean Value Theorem,

k
|A;| < Ce%'e*—2Pwt Ze_(“_zﬁ)gf”ez(gf_t) fort > & /2.
i=1

We then compute

sup e(a+T)(l—§1)|A1| < C52_T/2+0(6).

1>¢1/2

Similarly,
sup e(a+r)(t—¢f|)|A2| < Céz_f/2+0(5),
124 /2 N

and we deduce

4.8) sup e(a+r)(t—q“1)|A| < C§21/2+00)
12¢/2 N

In the region & <t < &;/2, we have

k k
JAl < Ce™" | UG —EpUaE =&Y~ +> Ut —&) |,

j=2 Jj=2
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which gives

4.9) sup e(a+T)(l—§1)|A| < C§21/2+00)
S1<1<81/2

We now estimate the term A for ¢t < &;. Using the fact that e%’ < C5'*9© in this
interval, we see that

(4.10) supe’=<lA] < €699 fori =1,... k.

1<)

Hence, by (4.8), (4.9) and (4.10), we find that ||A||, < C§!*0©),
Finally, we estimate ||B||.. We claim that there exists > 1/2 such that

(4.11) IBll. < C5°
for 0 > O sufficiently small. Indeed, leti =1, ...,k — 1 and estimate
sup (evlt—fml + evlt—fil)lBl_
Ci+1 SISG

Let A € (0, 1/2), to be fixed later. Consider the three intervals

I =[&iv1, (1 — )it + 4G,
L =[(1 = )it + A&, A& + (1 — A&,
I =i+ (1 — &, &

The worst term in each sum of B is either U(t — &;,1)? or U(t — &;)4. We estimate

sup e”lf—fil Ut — fi)q <C sup ev(ﬁi—l)e—aq(ﬁi—l) < Ce(U—aq)ﬁi sup e(aq—v)t
tel tel tely

= CsMa—v/a)

Since ¢ > 1, we may choose v > 0 small so that ¢ — v/a > 1. Then take
A € (0, 1/2) such that

4.12) AMg—v/a) > ;

We also have
sup e”lt_lelU(t — &)l < csta—v/a)

tel,
This gives

sup [B] < C5Ma—v/aw0@G)
tel U)(I) B
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We now compute

k k
supeull—fileﬂql [(Z Ut — éj)>q — Z Ut — é])q:| .
j=1

tels j=1

In this interval, U(t — &) is dominant, so

. ‘ LUl -
ZU(t—f-)> = U(z—@'i(l +> ! )
<J.=1 ! S UGa—&)
k
=U@E—&)+) 0 —ENUE—&)h.
J#
Hence
k q k
SUIP eult—&leaqt <Z U(r — f])> _ Z Ut — fj)q
1€l j=1 j=1

k k
< Csupe'l=ileod! {Z Ut —EHUa—¢E)r + Z Ui — fj)q}

rels j#i j=1
The worst case is j =i + 1 in the first sum

sup e’ le% Ut — &)Ut — &)1

tel;
< Cevgie—(a—2ﬁ)§i+1 e~ %¢iq=D sup e~V gl p(@=2P)1 yalg—1)t

telz

If the sup is attained at 7 = &,

Sup €U|t_ii|eath(t — §i+1)U(t — fi)q_l - Cea(ﬁiﬂ_é)"'o(&ll()g(sl) S C5
tels

If the sup is attained at t = A&, + (1 — A&,

sup evlt—fileath(t _ é:,'.'.])U(f _ é:i)q—l < Cé(q—l—v/a)15(2ﬁ—a)/a(1—1)e($|10g5|

telz

< Cé(q—v/a)/1+l 21 .

Since 1 € (0,1/2), (g —v/a)A+1—24 > 1/2, by (4.12).
By similar estimates in the remaining intervals, we obtain the validity of (4.11)
with @ = A(g—v/a) > 1/2. O
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S The linearized equation

In this section, given &, ..., & € R satisfying (2.6) and (2.7) for some fixed
M > 1, we study the linear problem

k
Lp) =h+ > c¢iZ; inR,
(5.1) z:l:

lim ¢(1) =0,

t— =400

where L is the operator defined in (2.10) and Z; is defined by
(5.2) Zi(1) = Uyt — &t — &),

where 7 € C*°(R) is an even cut-off function, # > 0, such that supp (#7) = [—R, R]
and R > 0 is a fixed constant. We also write Z;(¢) = U)(t — &).
The main result in this section is the following.

Proposition 5.1. Let M > 1 and k > 2 be an integer. Let &y, ...,& € R
satisfy (2.6) and (2.7). Then there exist dy, C > 0 such that for 0 < 6 < dy and
0 < & < C6, there exists a linear operator T from || - ||, to (|| - ||+, R¥) such that

T(h) = (¢, c1, ..., cp) solves (5.1) for all h with ||h||, < co. Moreover,
toll« < Clhll. and |c;| < Cllalls, i=1,...,k.

Forz> 0,0 <v <a,and ¢ : R - R, define

(5.3) gl = sup(e® =V |p@)]) + sup(e”“ | (1)]).

1> 1<)

Lemma 5.2. Let 7 > 0and 0 < v < a. For each h such that ||h|; < +o0,
there exist a unique ¢ with ||¢||1 < +oo and ¢y € R such that

(5.4) ¢ —alPp+2"Up(t — &N g =h+ciZ; inR.
Moreover, there exists C > 0 such that

(5.5) ¢l < Cllally - and 1] < CliAll:.

Proof. Translating, if necessary, we may assume that &; = 0.
Let Uy be the function defined by (2.3). Then z; = U] satisfies

(5.6) z1(1) = —yn2"%a cosh(r) ™V sinh(7)
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and the initial value problem
(5.7) 7' —a*z+2*U5 'z =0 inR,
200 =0 and Z'(0) = —2"%ayy.
Let z, be the solution of (5.7) satisfying the initial conditions
z(0) =1 and Z/(0) =0.

To prove uniqueness, observe that if 7 = 0, multiplication of (5.4) by z; gives
c1 =0. Then ¢ must be a linear combination of z; and z; and, since ||¢||; < +00,
¢ = cz) for some c. But again, because ||¢||; < +o0, ¢ =0.

To prove existence, suppose that ||4]|; < oo and f_oooo hz; = 0. The function

20( o0 o0
(5.8) (1) = <Z1(t) / 22($)h(s)ds — z2(1) / Zl(s)h(s)ds)
YN t t
is a solution of the linear problem
¢ —a’lp+2°UF "'¢p =h inR.
Moreover,
(5.9 ¢l < Clihall.

Indeed, from (5.6), we have z;(¢) = ce”*"+o(e~*") as t — 400 for some constant
c . Furthermore, one can also prove that z5(f) = ¢’e*l + o(e®") as t — oo for
some constant ¢’ # 0. Then (5.9) follows from (5.8) and the behaviors of z;, z, at
+o0.

In the general case, when # is not necessarily orthogonal to z;, define

_ ffooo hz,

¢ = .
: 2. Zizy

and apply the previous construction to / + ¢, Z;. (|

For ¢ : R — R, define the norm

k -1
(5.10) 112 = sup (Ze—“"—ff'> 0.
1eR V=

Lemma 5.3. Let O < v < a in (5.10). Then there exist 6y, C > 0 such that
for0 < 0 < Jg and ||h|l2 < oo, there exist ca, ..., c; € R and a unique solution ¢
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with ||pll2 < +00 of
k k
¢ —a’p+2"Y Upt =&)Y g =h+> ¢iZ; inR
(5.11) i=2 i=2
/¢Z,- =0, i=2,...,k
R

Moreover,
(5.12) @l < Cllall2, el < Clihallz, i =2,...,k
The proof is similar to that of [2, Proposition 1].

Lemma 5.4. Let 0 < v < min(2, ) and © > 0. Then there are dy, C > 0
such that for 0 < 6 < &, there exists a linear operator Ty from || - ||« to (|| - ||«, R¥)
such that To(h) = (¢, c1, . . ., Cx) solves

k k
(5.13) ¢ —a’p+2"> Ut =& "'p =h+ Y ciZ;inR
i=1 i=1

for each h with ||h||. < oo, Moreover,

(5.14) ¢l < Cliall.  and cil < Clhll., i=1,....k

Proof. Define
(5.15) Wi(t) =2*Uo(t — &)* "
Let #1, 2 € C*°(R) be such that 0 < 5y, 7, < 1, and
nm = lin(—oo, (1+ ) )logs], n =0in[(1+, )logd, co)
m = 1lin(—oo,(1+ })logdl, n=0in[(1+, )logd, oo).

We look for a solution of (5.13) of the form ¢ = ¢ + ¢r#,. It suffices for ¢, ¢, to
satisfy the system

k
(5.16) [ — o+ Wiy =(1 — m)h+c1Zy — (1 — ) > _ Wiy,

i=2
— 2¢51> — b2

K k k
(5.17) ¢y —a’po+ > Wigp =mh+ > ciZi —mWigo — 1 »_ Wighy in R.
i i i2
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Define ¢ = T(h) to be the solution of (5.4) (Lemma 5.2) and ¢ = T»(h) to be the
solution of (5.11) obtained in Lemma 5.3. To find a solution of (5.16), (5.17) with
the correct bounds, we are then led to the system

k
(5.18) $ =T [(1 —nh — (1 —n2) Y Wiy — 24511 — s |,
i2
k
(5.19) ¢ =T [mh —mWig, —m Z Wi¢1}
i=

We solve this system in the Banach space E consisting of pairs (¢, ¢,) of func-
tions ¢; : R — R such that ¢, is Lipschitz continuous and the norm

(b1, pDNE = il + lpall2 + 15112

is finite, where || ||; is defined by (5.3) and || |2 by (5.10). We verify that the
operator T : E — E defined by the right hand side of (5.18), (5.19) is a contraction
on E. For this we use (5.5) to obtain the estimate

k
IT\[=(1 = 72) Y Wight — 2¢515 — o5l

i=2

k
< CI(1 =12 > Wil + llgaralla + ligans 1)

i=2

Computation shows that

k
1= 72) > Wi lly < Co« bl

i=2

!’/ C /
<
lpamalli < llog 5| #2112,
Y C
< .
927501 < |15l

Using (5.12), we have

K k
ITol=m Wig — m Y Wignlll2 < C(||771W1¢2||2 +lm Y Wi ||2>-

i=2 i=2

Another computation yields

A

1 Wigalla < C3'%%|¢all2,
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and .
‘ my Wigi|| < CoC gyl
i=2 2

if v > 1, while

k

‘ my_ Wig|| < C8"*|ill

i=2 2

if v < 1. It follow that if v < 3, T is a contraction in E. O

Proof of Proposition 5.1. First, let us prove existence of a solution. Let
W; be defined by (5.15), and rewrite equation (5.1) in the form

k
(520) ¢ =T |:h + <Z W; _peaptvp—l _ qeaqtvq—l>¢:| ,

i=1
where T is the operator defined in Lemma 5.4. Let X the Banach space of contin-
uous functions ¢ : R — R such that ||¢]||. < oo, equipped with the norm || ||.. By
(5.14),

k
To K > W —per'viT! — qe"‘”Vq‘l) 4 ¥

i=1

k
Z Wi _peaptvp—l _ qeaqtvq—l

i=l

<C P11

L>(R)

A computation shows that

k
Z Wi _peo'l,tvp—l _ qeo'qtvq—l
i=1

(5.21) =o0(l) aso — 0.

L2(R)

Indeed, let us estimate || VP~ ). We have

k p—1 k p—1
eyPTl = ! ( UG- g)) < Ce™' < D (1 4 Py >
j=1

j=1
k

S Ceo'[,tzea(p—l)(t—fj)(l +62(t—fj))—1.
j=1

Fort > gtj,
AP DU=ED (] 4 Q2U=ENYTT < Cla=2DP=D=E) < Cpll=ae))
since 0, + (@ — 2f)(p — 1) = 0. Since the ¢ satisfy (2.6), (2.7) for some M > 0,

! e P=DI=E) (] 4 2U—ED)=1 < cg(—a(=D/arD) < cyl—as
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fort > ;. Fort < &,
etf,,tea(p—l)(t—é'j)(l +ez(t—¢'j))—1 < Ce' " P=D1=E) < Coot

< Ceo,,é_,- < Céap((j—l)/owl) < Cél—af,“

Therefore,
Ipe™ VP~ || oy < €'

The difference Zle W; — ge®'V49=! in (5.21) can be handled similarly. Thus, if
A« < oo and €, § > O are suitably small, (5.20) has a unique solutionin X . O

6 Proof of Theorem 1.1

Let us fix an integer k > 2. By Proposition 4.1, there exist § > 1/2 and a function
ex(A,0) > 0 such that if ¢ = g, (A, d) and 9 is sufficiently small, then |E||, <
Co?. We claim that for small enough § > 0 and ¢ = (A, ), there exists a
solution ¢ of the nonlinear projected problem

k
(6.1) Lp+E+N(p) = ciZ;
i=1

such that |||, < Ad?, for a suitable constant A > 0. Here, Z; are the functions

defined in (5.2). Indeed, let T be the operator defined in Proposition 5.1. Then we
obtain a solution of (6.1) by solving the fixed point problem

(6.2) $+T(E —N(¢)) =0.

Consider the Banach space X of all continuous functions ¢ : R — R such that
|@ll« < +oo with norm || ||.. Let A > 0. One checks easily that for ¢;, ¢, € E
with [|gi]l. < A8%,i =1,2,

IN(@1) = N(@)ll« < Cad®ligr — 2l

for some @ > 0. We conclude from this estimate and the boundedness of the
operator T that the fixed point problem (6.2) has a unique solution ¢ in the region
loll. < Ad? for some suitably chosen A. We write this solution as ¢(A).

To find a solution of (2.9), it remains to verify that for some A = (Ay, ..., Ag),
the constants ¢; in (6.1) all vanish. Testing equation (6.1) against Z;(¢) = Uj(t—<¢;)
fori =1, ...,k, we obtain

0o 0o 0o 0
—00 —00 —00 —00
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Thus¢; =0,i =1, ...k, is equivalent to

(6.3) /_Z¢LZj+/_ZN(¢)Zj+/_ZEZj =0

for all j. A calculation shows that

/_Z PLZ; + /_O;N(qs)zj = 0(6)

as 0 — 0, where 0(J) a continuous function of A that tends to O is uniformly
in the region considered as  — 0 (for this, it is important that ||¢|, < C5Y with
0> 1/2). Write E(v) = 0" —a’v+e % 'vP+e~%"v4. Since E = &(V)and Z; = &:V,

o0 o
/ EZ; = / EV)orV =0:1(V)
—0Q —0Q

From the expansion for (V) in Proposition 3.1 and the relations (2.6), we see that
the system (6.3) is equivalent to

Vo(A)+o(1) =0,

where the quantity o(1) tends to O uniformly in the region considered for the pa-
rameters A; and depends continuously on them. Recall that the functional ¢ pos-
sesses a unique critical point A*, which is nondegenerate. Therefore, the above
equation has a solution that is close to A* for d > 0 small.
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