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Abstract. We study radial solutions of the problem

�u + up + uq = 0, u > 0 in R
N ,

where N ≥ 3 and
N

N − 2
< p <

N + 2
N − 2

< q.

We show that if p is close to N/(N −2), q is close to (N +2)/(N −2), and a certain
relation holds between them, then the problem has slowly decaying solutions.

1 Introduction

Let N ≥ 3. We are interested in finding radially symmetric solutions u(r), r = |x|,
of

(1.1) �u + up + uq = 0, u > 0, in R
N ,

where

(1.2) ps < p < p∗ < q,

where here and throughout the paper p∗ = (N + 2)/(N − 2) and ps = N/(N − 2).

Solutions u of (1.1) such that lim|x|→+∞ u(x) = 0 are called ground states. A
ground state u such that lim|x|→+∞ |x|N−2u(x) exists and is positive is said to have
rapid decay, and a ground state u such that lim|x|→+∞ |x|2/(p−1)u(x) = � > 0, is
said to have slow decay. For a solution with slow decay, the constant � depends
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on p and N only and is given by

Kp :=
(

2
p − 1

(
N − 2 − 2

p − 1

))1/(p−1)

.

When p = q in equation (1.1), the existence of ground states is well under-
stood. In the subcritical case p < p∗, there are no solutions [8], whereas ground
states exist in the supercritical case p ≥ p∗. In the critical case p = p∗, all
solutions are radial around some point [7]. Radial ground states in the critical or
supercritical case are parametrized by u(0) and are unique up to the natural scal-
ing of the equation. In the critical case, the ground state is explicit and has rapid
decay; whereas in the supercritical case, the radial ground state has slow decay.

Lin and Ni [9] considered equation (1.1) to provide a counterexample to the
Nodal Domain Conjecture and found slowly decaying ground states when q =
2p − 1 given explicitly by

(1.3) u(x) = a(b + |x|2)− 2
q−1 = a(b + |x|2)−1/p−1

with a = Kp and b = 1
p

(
(N − 2) − 2/(p − 1)

)2.
Ni then asked whether there exist radial ground states under condition (1.2).

Bamón, Flores, and del Pino [1] addressed this question and discovered a complex
picture of solutions. First they found an increasing number of rapidly decaying
ground states if one of the exponents is fixed and the other one is sufficiently close
to p∗. More precisely, they proved that for ps < p < p∗ and an integer k ≥ 1,
(1.1) has at least k radial ground states with rapid decay if q > p∗ is close enough
to p∗. They also showed that for fixed q > p∗ and k ≥ 1 integral, (1.1) has at
least k radial ground states with rapid decay if p < p∗ is sufficiently close to p∗

Furthermore, for q > p∗ fixed, there exists p0 > ps such that there are no radial
ground states if 1 < p < p0. They obtained their results using dynamical systems
arguments. Recently, Campos [2] gave a different proof of the same main result.

Our main interest is the existence of slowly decaying radial solutions. Such
solutions, if they exist, are unique. Indeed, an Emden-Fowler change of variables,
following [1, p. 555] (see also [6]), transforms (1.1) into a first order 3-dimensional
system of ODEs. Slowly decaying solutions correspond to trajectories contained
in the 1-dimensional stable manifold of a stationary point, which implies unique-
ness. But regular slowly decaying solutions also lie in the 2-dimensional unstable
manifold of another stationary point, which suggests that their existence is non-
generic in the parameters p, q.

The only indication of existence of regular slowly decaying radial solutions is a
result in [1], which states that for ps < p < p∗, there exists a sequence of exponents
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{q j }, such that q j > p∗, q j → p∗, for which there exists a radial solution with slow
decay; but it is unknown whether these solutions are regular or singular.

We conjecture that slowly decaying singular solutions either do not exist, or
exist at most for a finite number of pairs (p, q). The reason is that such solutions
must satisfy the two constraints

(1.4) lim|x|→0
|x|2/(q−1)u(x) = Kq and lim|x|→∞ |x|2/(p−1)u(x) = Kp.

If one could discard the existence of slowly decaying singular solutions, the re-
sult of [1] would imply the existence of slowly decaying radial regular solutions
associated to the sequence of exponents {q j }.

In this work, we prove the existence of slowly decaying radial regular solutions
if p is close to ps, q is close to p∗, and p and q are related by some equation. More
precisely, we prove the following theorem.

Theorem 1.1. For each integer k ≥ 2, there exist δ0(k) > 0 and a function
εk(δ ) > 0,

εk(δ ) =
k
2
δ + o(δ ) as δ → 0,

such that for 0 < δ ≤ δ0(k) and exponents given by

(1.5) q = p∗ + δ p = ps + εk(δ ),

there exists a radial slowly decaying solution u of (1.1). Moreover, there exist

constants α1, . . . αk, depending on N and k, such that

u(x) = γN

k∑
j =1

(
1

1 + (α jδ
−( j+ N−4

2 ))4/N−2|x|2
)1/(p−1)

δ−( j+ N−4
2 )α j (1 + o(1)) ,

where γN = (N (N − 2))(N−2)/4 and o(1) → 0 uniformly on R
N as δ → 0.

The constants α1, . . . , αk have explicit formulas in terms of numbers �∗
j given

in (2.8) below, from which it follows that α1 = limδ→0
γN

Kp
δ 1/(p−1). This is consis-

tent with the second constraint in (1.4)

Solutions of (1.1) corresponding to k = 1 are the explicit ones found by Lin
and Ni, given in (1.3). In this case, q = 2p − 1, which corresponds to the relation
δ = 2ε. It is likely that when p is close to ps and q is close to p∗, the solutions we
construct in Theorem 1.1 are the same as those detected in [1].

The existence of slowly decaying solutions is interesting because of the fol-
lowing result of Flores [6]. If for some p, q in the range (1.2) there exists a radial
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Figure 1. Bifurcation diagram for (1.1) based on numerical computations with
N = 5. Points on the curves are pairs (p, q) for which we have found regular
slowly decaying solutions.

ground state with slow decay, and p > pc := N+2
√

N−1
N+2

√
N−1−4

, then there exist infinitely
many radial ground states with rapid decay.

Figure 1 shows a bifurcation diagram for (1.1) based on numerical computa-
tions. It is likely that for p close to ps and q close to p∗, these solutions are those
constructed in Theorem 1.1 for curves q = qk(p), k = 1, 2, 3, . . .. The curve shown
for k = 1 is the line q = 2p − 1, and the curves for k = 2 and k = 3 start at p = ps

and have derivative consistent with Theorem 1.1. They bend slightly upwards. Our
numerical computations show that these curves can be continued even for p > p∗.
Hence, we see, at least numerically, that solutions with slow decay exist for p > pc

and q = qk(p), and therefore the result of Flores [6] applies.

A dual phenomenon to the existence of bounded solutions with slow decay is
the existence of singular solutions with rapid decay. Bamón, Flores, and del Pino
[1] showed that for q > p∗, there exists a sequence of exponents {p j } such that
p j < p∗, p j → p∗, for which there is either a rapidly decaying singular solution or
a slowly decaying singular solution.

Numerically, we have found a family of curves relating p ∈ (ps, p∗) and q > p∗

for which singular rapidly decaying solutions exist; see Figure 2. These curves are
asymptotic to the line p = p∗ as q → ∞.

Noting that singular solutions satisfy lim|x|→0 |x|2/(q−1)u(x) = Kq, and using
formal asymptotic expansions, we arrive at the following conjecture.
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Figure 2. Bifurcation diagram for (1.1) showing singular rapidly decaying solu-
tions for N = 5.

Conjecture 1.2. Let k ≥ 1 be an integer and p = p∗ − ε. Then there exist
ε0 > 0 and a function qk(ε) > 0 such that for 0 < ε < ε0, there exists a radial sin-
gular rapidly decaying solution u of (1.1). Moreover, there exist positive constants
β1, . . . βk, depending on N and k, such that

(1.6) u(x) = Kq|x|− 2
q−1

⎡
⎣γN

k∑
j =1

(
1

|x|2 + (β jε( j−1))
4

N−2

) N−2
2 − 1

q−1

ε( j−1)β j (1 + o(1) )

⎤
⎦ ,

and qk(ε) satisfies

(
1

qk(ε) − 1

)N/2

= cNkε + o(ε) as ε → 0,

where

γN =
(
N (N − 2)

)(N−2)/4
, cN =

1
2

(
N − 2

2

)(N+2)/2 
(N/2)

(N )

and o(1) → 0 uniformly on R
N as δ → 0. Here, β1 = γ−1

N .

2 Scheme of the proof of Theorem 1.1

The Emden-Fowler change of variables r = et, v(t) = rαu(r), where α =
(N − 2)/2, shows that the equation �u + up + uq = 0 in R

N is equivalent to

(2.1) v ′′ − α2v + eσptvp + eσqtvq = 0 in R,
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where σp = α + 2 − αp and σq = α + 2 − αq. Equation (2.1) is the Euler-Lagrange
equation of the functional

(2.2) I (v) =
∫ ∞

−∞

(
1
2
(v ′)2 +

α2

2
v2 − eσpt |v |p+1

p + 1
− eσqt |v |q+1

q + 1

)
dt.

When p and q are given by (1.5), σp = 1−αε and σq = −αδ . In the sequel, for
δ > 0, we always work with ε in the range δ/C ≤ ε ≤ Cδ , for some fixed C > 1.

For small ε, δ > 0 a first approximation to a solution of (2.1) is given by

(2.3) U0(t) = γN2−α cosh(t)−α, t ∈ R,

where

(2.4) γN = (N (N − 2))(N−2)/4;

U0 satisfies
U ′′

0 − α2U0 + U
N+2
N−2
0 = 0.

In the original variables, this function is the standard bubble

u0(x) = γN
1

(1 + |x|2)(N−2)/2

and satisfies
�u0 + u

N+2
N−2
0 = 0, u0 > 0 in R

N .

Thus U0 corresponds to a function with rapid decay. The translate U0(t − ξ ) be-
comes a good approximation of (2.1) as ξ → −∞ and ε, δ → 0. To achieve an
approximation with slow decay, we set β = 1/(p − 1) and define

U(t) = γN
eαt

(1 + e2t)β
, in R.

If q = 2p−1, U is solution of (2.1) with one bump. As in [3] and [2], one can find
a multibump solution of (2.1) starting with

(2.5) V (t) =
k∑

j =1

U(t − ξ j ),

where ξ j ∈ R are parameters to be adjusted. After a change of variables, V is, at
main order, the solution in the statement of Theorem 1.1.

The location of the points ξ j , j = 1, . . . k, can be determined by an expansion
of I (V ). Indeed, assuming they are sufficiently separated, we have

I (V ) = −c1

k∑
j =1

eξ j − c2

k−1∑
j =1

eα(ξ j+1−ξ j ) + c3δ
k∑

j =1

ξ j + kc0 + Aδ + o(δ ),
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where c1, c2, c3,A, c0 are constants; see Proposition 3.1, where the values of these
constants are given. Note that c1, c2, c3 > 0. To yield a solution, ξ1, . . . , ξk must
be close to a critical point of the above functional. To see this more clearly, write

ξ1 = log δ − log�1,

ξ j+1 = ξ j +
1
α

log δ − log � j+1 for j = 1, . . . , k − 1,
(2.6)

where

(2.7)
1
M

≤ � j ≤ M for all j = 1, . . . , k,

and M > 1 is a constant to be fixed later. Note that

ξ j =
(

1 +
j − 1

α

)
log δ −

j∑
i =1

log�i for j = 1, . . . , k.

With this choice of the points ξ j , I (V ) takes the form

− c1δ�−1
1 − c2δ

k∑
j =2

�−α
j

− c3δ
k∑

j =1

(k − j + 1) log� j + c3k
(

1 +
k − 1

α

)
δ log δ + kc0 + Aδ + o(δ ).

Note that

ϕ(�1, . . . ,�k) =
c1

�1
+ c3k log �1 +

k∑
j =2

(
c2�

−α
j + (k − j + 1)c3 log � j

)

has a unique critical point �∗ = (�∗
1, . . . ,�

∗
k ), given by

(2.8) �∗
1 =

c1

kc3
, �∗

j =
(

c2α

c3(k − j + 1)

)1/α

, j = 2, . . . , k,

and that this critical point is a nondegenerate minimum. In the sequel, we fix the
number M in (2.7) so that �∗

i ∈ (1/2M, 2M ), i = 1, . . . k.

To find a solution v of (2.1) close to V , we perform a Lyapunov-Schmidt re-
duction, i.e., we look for a solution v of the form v = V + φ, where φ is a lower
order correction. We find the following equation for φ:

(2.9) Lφ + E + N (φ) = 0 in R,
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where

Lφ = φ′′ − α2φ + (peσptV p−1 + qeσqtV q−1)φ,(2.10)

N (φ) = eσpt
(
(V + φ)p − Vp − pVp−1φ

)
+ eσqt

(
(V + φ)q − Vq − qVq−1φ

)
,

E = V ′′ − α2V + eσptV p + eσqtV q.(2.11)

The perturbation φ : R → R is small in an appropriate norm, defined by ‖φ‖∗ =
supt∈R |φ(t)|/w(t) , where

(2.12) w(t) =

⎧⎨
⎩e−(α+τ)(t−ξ1) if t ≥ ξ1,∑k

i =1 e−ν|t−ξi | if t ≤ ξ1

for small τ > 0 and 0 < ν < min(2, α). To motivate this choice of norm, we
remark that the exponential decay of φ between the points ξ j is expected because
away from these points, the dominant terms in (2.1) are the linear ones φ′′ − α2φ.
Bounded solutions then have exponential decay away from the ξ j of the form
e−ν|t−ξi | with 0 < ν < α. In general, for t ≥ ξ1, one can expect the same behavior.
However, the solution we are looking for has slow decay as t → +∞ in the sense
that it behaves like e(α−2β)t as t → +∞, where β = 1/(p − 1).

We want to use the contraction mapping principle to solve our nonlinear prob-
lem. For this, we need for φ to decay more rapidly than e−αt as t → +∞. To see
this, observe that

eσpt
(
(V + φ)p − Vp − pVp−1φ

) ∼ eσptV p−2φ2 ∼ eσpt+(α−2β)(p−2)tφ2,

where β = 1/(p − 1). Also σp + (α − 2β)(p − 2) = 2β − α = α + O(ε). Hence,
if there exists a constant A such that φ satisfies |φ(t)| ≤ Ae−m|t−ξ1| for t ≥ ξ1, the
first term in N (φ) is of the form

CA2e(α+O(ε))ξ1e(α+O(ε)−2m)(t−ξ1) t ≥ ξ1.

The contraction principle then applies if m satisfies α+O(ε)−2m ≤ −m for small
ε, which leads to the choice m = α + τ for some τ > 0.

Having introduced a suitable norm for application of the contraction mapping
principle, let us look at the error E defined by (2.11). Note that E contains a
term of the form Se(α−2β)t, where S is a function of ε, δ,�1, . . . ,�k, which we
call the slowly decaying part, and other terms, which decay more rapidly. Since
β = α + O(ε), ‖E‖∗ = +∞ unless S = 0. In Proposition 4.1, we prove that there
exists a function εk(δ,�1, . . . ,�k) > 0 such that S = 0 if ε = εk(δ,�1, . . . ,�k),
and then also ‖E‖∗ ≤ Cδθ for some θ > 1/2 and all δ > 0 small. The function
εk(δ,�1, . . . ,�k) is at main order of the form Cδ/�1 for some constant C.
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Using the contraction mapping principle and a suitable right inverse of L, con-
structed in Section 5, which preserves the norm ‖ ‖∗, we prove in Section 6 that
for small enough δ > 0 and ε = εk(�, δ ), there exists a solution φ of the nonlinear
projected problem

Lφ + E + N (φ) =
k∑

i =1

ciZ̃i

which satisfies ‖φ‖∗ ≤ Aδθ for a suitable constant A > 0. Here, the Z̃i are defined
in (5.2). Finally, to find a solution of (2.9), it remains to verify that there exists
� = (�1, . . . ,�k) such that the constants ci all vanish. We do this in Section 6.

3 Expansion of the energy

Proposition 3.1. Let M > 1, and k > 2 be an integer. Let ξ1, . . . , ξk be given

by (2.6), � = (�1, . . . ,�k) ∈ [1/M,M ]k, and V be given by (2.5). If 0 < ε = O(δ )
as δ → 0, the functional I of (2.2) satisfies

I (V ) = −δϕ(�) + kc0 + Aδ + Bδ log δ + δ�δ (�),

where

ϕ(�1, . . . ,�k) =
c1

�1
+ c3k log�1 +

k∑
j =2

(
c2�

−α
j + (k − j + 1)c3 log � j

)
,

and �δ → 0 in C1 norm on [1/M,M ]k as δ → 0. The constants are given by

c0 =
1
2

∫ ∞

−∞

(
(U ′

0)
2 + α2U2

0

)− 1
2∗

∫ ∞

−∞
U2∗

0 ,

c1 =
N − 2
2N − 2

∫ ∞

−∞
etU

2N−2
N−2

0 dt(3.1)

c2 =
γN

2

∫ ∞

−∞
U0(t)

2∗−1eαtdt(3.2)

c3 =
α

2∗

∫ ∞

−∞
U2∗

0 dt,(3.3)

A =
k

(2∗)2

∫ ∞

−∞
U2∗

0 − k
2∗

∫ ∞

−∞
U2∗

0 log U0,

B =
α

2∗ k
(

1 +
k − 1
2α

)∫ ∞

−∞
U2∗

0 ,

where 2∗ = 2N/(N − 2).

These constants can be explicitly computed using the identity∫ ∞

−∞
cosh (s)−q e−μ s ds = 2q−1 
( q−μ

2 )
( q+μ
2 )


(q)



376 JUAN DÁVILA AND IGNACIO GUERRA

for all μ ∈ R and q > max{μ,−μ}. Note that c1, c2, c3 > 0.

Proof. We write I = I1 + I2 + I3 + I4 + I5, where

I1(v) =
∫ ∞

−∞

(
1
2
(v ′)2 +

α2

2
v2 − |v |2∗

2∗

)
,

I2(v) =
1
2∗

∫ ∞

−∞
(|v |2∗ − |v |q+1) +

(
1
2∗ − 1

q + 1

)∫ ∞

−∞
eσqt|v |q+1,

I3(v) =
∫ ∞

−∞

(
1 − eσqt

) |v |q+1

2∗ ,

I4(v) = −
∫ ∞

−∞
eσpt |v |p+1

p + 1
,

following the computation in [3, Lemma 1.3]. Let us start with the computation
of I2(V ). Since q = p∗ + δ , recalling that U depends on ε and ε = O(δ ), we have

1
2∗

∫ ∞

−∞
(V 2∗ − Vq+1) = − δ

2∗

∫ ∞

−∞
V 2∗

logV + o(δ ) = −kδ
2∗

∫ ∞

−∞
U2∗

log U + o(δ )

= −kδ
2∗

∫ ∞

−∞
U2∗

0 log U0 + o(δ ),

The second term in I2(V ) is

δ

(2∗)2

∫ ∞

−∞
eσqtV q+1 + o(δ ) =

δ

(2∗)2

∫ ∞

−∞
eσqtV 2∗

+ o(δ ) =
δk

(2∗)2

∫ ∞

−∞
U2∗

0 + o(δ ).

Therefore,

(3.4) I2(V ) = Aδ + o(δ ).

Regarding I3(V ), we have

I3(V ) =
αδ

2∗

∫ ∞

−∞
tV (t)q+1dt + o(δ ) =

αδ

2∗
k∑

i =1

∫ ∞

−∞
tU(t − ξi )

q+1 dt + o(δ )

=
αδ

2∗
k∑

i =1

ξi

∫ ∞

∞
U2∗

0 + o(δ ).

Since ξi are given by (2.6),

I3(V ) =
αδ

2∗

∫ ∞

∞
U2∗

0

[
k
(

1 +
k − 1
2α

)
log δ −

k∑
i =1

(k − i + 1) log�i

]
+ o(δ ).(3.5)
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For I4(V ), we see that

I4(V ) = − 1
p + 1

∫ ∞

−∞
eσptV p+1 = − 1

p + 1

∫ ∞

−∞
eσptU(t − ξ1)

p+1 + o(δ )

= − eσpξ1

p + 1

∫ ∞

−∞
eσptU(t)p+1 + o(δ ) = −δ�−1

1

p + 1

∫ ∞

−∞
eσptU(t)p+1 + o(δ )

= − δ

�1

N − 2
2N − 2

∫ ∞

−∞
etU0(t)

2N−2
N−2 dt + o(δ ).(3.6)

Finally, we compute I1(V ). Writing Ui(t) = U(t − ξi), we have

I1(V ) =
∫ ∞

−∞

(
1
2

(∑
i

U ′
i

)2

+
α2

2
(
∑

i

Ui )
2 − 1

2∗

(∑
i

Ui

)2∗)

= kIU +
1
2

∑
i �= j

∫ ∞

−∞
(−U ′′

i + α2Ui )Uj − 1
2∗

∫ ∞

−∞

[(∑
i

Ui

)2∗

−∑
i

U2∗
i

]
,

where we have set

IU =
1
2

∫ ∞

−∞

(
(U ′)2 + α2U2)− 1

2∗

∫ ∞

−∞
U2∗

.

Note that

(3.7) IU = c0 + o(δ ) as δ → 0.

Indeed, IU is a function of ε, and

d
dε

IU =
∫ ∞

−∞
(−U ′′ + α2U − U2∗−1)

∂U
∂ε

,

so that d
dε

IU = 0 at ε = 0. Let Fi(t) = F (t − ξi ), where F = −U ′′ + α2U − U2∗−1.
Then, by (3.7),

I1(V ) =
1
2

∑
i �= j

∫ ∞

−∞
(U2∗−1

i + Fi)Uj − 1
2∗

∫ ∞

−∞

[(∑
i

Ui

)2∗

−∑
i

U2∗
i

]
+ kc0 + o(δ ).

Letting

t1 = 0, t j =
(

1 +
j − 1/2

α

)
log δ, j = 2, . . . , k − 1, tk = −∞,

we can write

I1(V ) = −1
2

k∑
i =1

∑
j �=i

∫ ti−1

ti
U2∗−1

i U j + kc0 + R,
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where R is given by

R =
1
2

k∑
i =1

∑
j �=i

∫ ti−1

ti
FiU j +

1
2

k∑
i =1

∑
j �=i

∫
R\[ti ,ti−1]

U2∗−1
i U j +

1
2∗

k∑
i =1

∑
j �=i

∫ ti−1

ti
U2∗

j

− 1
2∗

k∑
i =1

∫ ti−1

ti

[(
Ui +

∑
j �=i

U j

)2∗
− U2∗

i − 2∗U2∗−1
i

∑
j �=i

U j

]
+ o(δ ).

If |i − j | ≥ 2, then
∫ ti−1

ti
U2∗−1

i U j = o(δ ). We have the expansions

U(t) = γNeαt(1 + O(e2t)) as t → −∞,

U(t) = γNe(α−2β)t(1 + O(e−2t)) as t → +∞.

Therefore, for i = 1, . . . , k − 1 and j = i + 1,∫ ti−1

ti
U2∗−1

i U j =
∫ ti−1−ξi

ti−ξi

U(t)
N+2
N−2 U(t − (ξi+1 − ξi)) dt

= γN

∫ ti−1−ξi

ti−ξi

U(t)
N+2
N−2 e(α−2β)(t−(ξi+1−ξi ))(1 + O(e2(t−(ξi+1−ξi ))))dt

= γN δ
2β−α

α �
α−2β
i+1

∫ ti−1−ξi

ti−ξi

U(t)
N+2
N−2 e(α−2β)t(1 + O(e2(t−(ξi+1−ξi )))

)
dt

= γN δ�−α
i+1

∫ ∞

−∞
U0(t)

N+2
N−2 e−αtdt + o(δ ).

A similar calculation shows that if i = 2, . . . , k and j = i − 1, then∫ ti−1

ti
U2∗−1

i U j = γN δ�−α
i

∫ ∞

−∞
U0(t)

N+2
N−2 eαt dt + o(δ ).

Now R = o(δ ) as δ → 0. Indeed,∫ ti−1

ti

[
(Ui +

∑
j �=i

U j )
2∗ − U2∗

i − 2∗U2∗−1
i

∑
j �=i

U j

]
≤ C

∫ ti−1

ti
U2∗−2

i

∑
j �=i

U2
j

≤ C
∫ 1

2α | log δ |

0
e−α 4

N−2 te−2α( 1
α | log δ |−t) dt

≤ Cδ 2
∫ 1

2α | log δ |

0
e2α N−4

N−2 tdt,

which is O(δ1+ 2
N−2 ) if N ≥ 5, O(δ 2| log δ |) if N = 4, and O(δ 2) if N = 3. The

other terms in R can be handled similarly. Therefore,

(3.8) I1(V ) = −δγN

∫ ∞

−∞
U0(t)

N+2
N−2 eαt dt

k∑
j =2

�−α
j + kc0 + o(δ ).
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Combining (3.4), (3.5), (3.6), and (3.8), we arrive at

I (V ) = −δϕ(�) + kc0 + Aδ + Bδ log δ + o(δ ) as δ → 0

for some constants A,B , with o(δ ) uniformly in the region �i ∈ [1/M,M ],
i = 1, . . . , k. A similar calculation shows that this expansion is also valid in
the C1 norm with respect to � = (�1, . . . ,�k). �

4 Error estimate

Proposition 4.1. Let k ≥ 2 be an integer and M > 1. Let ξ1, . . . , ξk be

given by (2.6), � = (�1, . . . ,�k) ∈ [1/M,M ]k, and E be given by (2.11). For
sufficiently small ν > 0 and τ > 0 in (2.12), there exist δ0 > 0, θ > 1/2, and a

function εk(δ,�1, . . . ,�k) > 0 such that

‖E‖∗ ≤ Cδθ

for 0 < δ ≤ δ0 and ε = εk(δ,�1, . . . ,�k), with the constant C independent of δ .

The function εk is C1 and satisfies

εk(δ,�1, . . . ,�k) =
γ

p−1
N

4α3�1
δ + o(δ ) as δ → 0,(4.1)

∂εk

∂�i
(δ,�1, . . . ,�k) = O(δ ) as δ → 0,(4.2)

where o(δ ), O(δ ) are uniform in the region � ∈ [1/M,M ]k.

Proof. Let us write Uj (t) = U(t−ξ j ), V =
∑k

j =1 Uj , and E =
∑k

j =1 Ej +A+B ,
where

Ej = U ′′
j − α2Uj + eσptUp

j + eσqtUq
j ,

A = eσpt
(

Vp −
k∑

j =1

Up
j

)
, and

B = eσqt
(

Vq −
k∑

j =1

Uq
j

)
.

Let β = 1/(p − 1) = α − εα2 + O(ε2). Then a computation shows that

U ′′
j − α2Uj + eσptUp

j =
[
eσpξ j γp

N + 4γNβ(β − α)
] e(α+2)(t−ξ j )

(1 + e2(t−ξ j ))β+1

− 4γNβ(β + 1)
e(α+2)(t−ξ j )

(1 + e2(t−ξ j ))β+2
.
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Note that the terms U ′′
j − α2Uj + eσptUp

j of Ej have slow decay, i.e.,

U ′′
j − α2Uj + eσptUp

j ∼ e(α−2β)t as t → ∞.

Define the slowly decaying part of Ej as

S j = χ[t≥ξ1/2]

(
4γNβ(β − α)e−(α−2β)ξ j + γp

N e−(α−2β)pξ j

)
e(α−2β)t,

where χ[t≥ξ1/2] is the indicator function of the set [ξ1/2,+∞) and Ẽ j = Ej − S j .
The term A also has a slowly decaying part,

SA = χ[t≥ξ1/2]γ
p
N

⎡
⎣( k∑

j =1

e−(α−2β)ξ j

)p −
k∑

j =1

e−(α−2β)pξ j

⎤
⎦ e(α−2β)t.

Set Ã = A−SA. Given small δ > 0 and ξ1, . . . , ξk satisfying (2.6) and (2.7), choose
ε > 0 such that

∑k
j =1 S j + SA = 0, which is equivalent to

(4.3) 0 = 4γNβ(β − α)
k∑

j =1

e−(α−2β)ξ j + γp
N

( k∑
j =1

e−(α−2β)ξ j

)p
.

By (2.6), at main order (in ε and δ ), this equation has the form

4γNβ(β − α)e−(α−2β)ξ1 + γ
p
N e−(α−2β)pξ1 = 0,

so that we have the asymptotic expansion (4.1). The estimate (4.2) also follows
from (4.3).

We claim that

(4.4) ‖Ẽ j‖∗ ≤ Cδ 1−2τ

for small δ > 0. To prove this, consider separately the regions t ≥ ξ1/2 and
t ≤ ξ1/2. Using the formula for S j , we have

Ẽ j = O(e(α−2β−2)(t−ξ j )) + O(eσpte((α−2β)p−2)(t−ξ j )) + O(eσqte(α−2β)q(t−ξ j ))

for t ≥ ξ1/2, from which we see that

sup
t≥ξ1/2

|Ẽ j |e(α+τ)(t−ξ1) ≤ Cδ 1−τ/2+O(δ ) ≤ Cδ 1−τ

for small δ > 0.
We now estimate in the interval t ≤ ξ1/2, in which

Ẽ j = −4γNβ(α + 1)
e(α+2)(t−ξ j )

(1 + e2(t−ξ j ))β+1
+ 4γNβ(β + 1)

e(α+4)(t−ξ j )

(1 + e2(t−ξ j ))β+2

+ eσptγ
p
N

eαp(t−ξ j )

(1 + e2(t−ξ j ))βp
+ eσqtγ

q
N

eαq(t−ξ j )

(1 + e2(t−ξ j ))βq

= O(δ )(1 + |t| + |ξ j |)e−(α+O(δ ))|t−ξ j |,

(4.5)
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where O(δ ) here designates a quantity bounded by a constant times δ . From (4.5),
we have

sup
t≤ξ1

eν|t−ξi ||Ẽ j | ≤ Cδ for i = 1, . . . , k,(4.6)

and

sup
ξ1≤t≤ξ1/2

e(α+τ)|t−ξ1||Ẽ j | ≤ Cδ 1−2τ(4.7)

for small δ > 0. Using (4.6), (4.7), we deduce (4.4).
Similarly, we estimate Ã first in the interval t ≥ ξ1/2. In this interval, Ã =

A − SA = A1 + A2, where

A1 = γp
N eσpte(α−2β)pt

⎡
⎣
⎛
⎝ k∑

j =1

e−(α−2β)ξ j

(1 + e2(ξ j−t))β

⎞
⎠

p

−
⎛
⎝ k∑

j =1

e−(α−2β)ξ j

⎞
⎠

p⎤
⎦

and

A2 = −γp
N eσpte(α−2β)pt

⎡
⎣ k∑

j =1

e−(α−2β)pξ j

(1 + e2(ξ j−t))βp
−

k∑
j =1

e−(α−2β)pξ j

⎤
⎦ .

Thus, (1 + se2(ξ j −t))−β−1 = O(1); so, by the Mean Value Theorem,

|A1| ≤ Ceσpte(α−2β)pt
k∑

j =1

e−(α−2β)ξ j pe2(ξ j−t) for t ≥ ξ1/2.

We then compute

sup
t≥ξ1/2

e(α+τ)(t−ξ1)|A1| ≤ Cδ 2−τ/2+O(δ ).

Similarly,

sup
t≥ξ1/2

e(α+τ)(t−ξ1)|A2| ≤ Cδ 2−τ/2+O(δ ),

and we deduce

(4.8) sup
t≥ξ1/2

e(α+τ)(t−ξ1)|Ã| ≤ Cδ2−τ/2+O(δ ).

In the region ξ1 ≤ t ≤ ξ1/2, we have

|A| ≤ Ceσpt

⎡
⎣ k∑

j =2

U(t − ξ j )U(t − ξ1)
p−1 +

k∑
j =2

U(t − ξ j )
p

⎤
⎦ ,
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which gives

(4.9) sup
ξ1≤t≤ξ1/2

e(α+τ)(t−ξ1)|A| ≤ Cδ 2−τ/2+O(δ ).

We now estimate the term A for t ≤ ξ1. Using the fact that eσpt ≤ Cδ 1+O(δ ) in this
interval, we see that

(4.10) sup
t≤ξ1

eν|t−ξi ||A| ≤ Cδ 1+O(δ ) for i = 1, . . . , k.

Hence, by (4.8), (4.9) and (4.10), we find that ‖Ã‖∗ ≤ Cδ 1+O(δ ).

Finally, we estimate ‖B‖∗. We claim that there exists θ > 1/2 such that

(4.11) ‖B‖∗ ≤ Cδθ

for δ > 0 sufficiently small. Indeed, let i = 1, . . . , k − 1 and estimate

sup
ξi+1≤t≤ξi

(eν|t−ξi+1| + eν|t−ξi |)|B|.

Let λ ∈ (0, 1/2), to be fixed later. Consider the three intervals

I1 = [ξi+1, (1 − λ)ξi+1 + λξi ],

I2 = [(1 − λ)ξi+1 + λξi, λξi+1 + (1 − λ)ξi ],

I3 = [λξi+1 + (1 − λ)ξi, ξi ].

The worst term in each sum of B is either U(t − ξi+1)q or U(t − ξi)q. We estimate

sup
t∈I2

eν|t−ξi |U(t − ξi )
q ≤ C sup

t∈I2
eν(ξi−t)e−αq(ξi−t) ≤ Ce(ν−αq)ξi sup

t∈I2
e(αq−ν)t

= Cδλ(q−ν/α).

Since q > 1, we may choose ν > 0 small so that q − ν/α > 1. Then take
λ ∈ (0, 1/2) such that

(4.12) λ(q − ν/α) >
1
2
.

We also have

sup
t∈I2

eν|t−ξi+1|U(t − ξi+1)
q ≤ Cδλ(q−ν/α).

This gives

sup
t∈I2

|B|
w(t)

≤ Cδλ(q−ν/α)+O(δ ).
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We now compute

sup
t∈I3

eν|t−ξi |eσqt
[( k∑

j =1

U(t − ξ j )
)q

−
k∑

j =1

U(t − ξ j )
q
]
.

In this interval, U(t − ξi ) is dominant, so

( k∑
j =1

U(t − ξ j )
)q

= U(t − ξi )
q
(

1 +
k∑

j �=i

U(t − ξ j )
U(t − ξi )

)q

= U(t − ξi )
q +

k∑
j �=i

O(U(t − ξ j )U(t − ξi )
q−1).

Hence

sup
t∈I3

eν|t−ξi |eσqt

∣∣∣∣
( k∑

j =1

U(t − ξ j )
)q

−
k∑

j =1

U(t − ξ j )
q

∣∣∣∣
≤ C sup

t∈I3
eν|t−ξi |eσqt

[ k∑
j �=i

U(t − ξ j )U(t − ξi)
q−1 +

k∑
j =1

U(t − ξ j )
q
]
.

The worst case is j = i + 1 in the first sum

sup
t∈I3

eν|t−ξi |eσqtU(t − ξi+1)U(t − ξi )
q−1

≤ Ceνξi e−(α−2β)ξi+1e−αξi (q−1) sup
t∈I3

e−νteσqte(α−2β)teα(q−1)t

If the sup is attained at t = ξi ,

sup
t∈I3

eν|t−ξi |eσqtU(t − ξi+1)U(t − ξi)
q−1 = Ceα(ξi+1−ξi )+O(δ | log δ |) ≤ Cδ.

If the sup is attained at t = λξi+1 + (1 − λ)ξi ,

sup
t∈I3

eν|t−ξi |eσqtU(t − ξi+1)U(t − ξi)
q−1 ≤ Cδ (q−1−ν/α)λδ (2β−α)/α(1−λ)eδ | log δ |

≤ Cδ (q−ν/α)λ+1−2λ.

Since λ ∈ (0, 1/2), (q − ν/α)λ + 1 − 2λ > 1/2, by (4.12).

By similar estimates in the remaining intervals, we obtain the validity of (4.11)
with θ = λ(q − ν/α) > 1/2. �
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5 The linearized equation

In this section, given ξ1, . . . , ξk ∈ R satisfying (2.6) and (2.7) for some fixed
M > 1, we study the linear problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L(φ) = h +

k∑
i =1

ciZ̃i in R,

lim
t→±∞ φ(t) = 0,

(5.1)

where L is the operator defined in (2.10) and Z̃i is defined by

(5.2) Z̃i (t) = U ′
0(t − ξi )η(t − ξi),

where η ∈ C∞(R) is an even cut-off function, η ≥ 0, such that supp (η) = [−R,R]
and R > 0 is a fixed constant. We also write Zi(t) = U ′

0(t − ξi).

The main result in this section is the following.

Proposition 5.1. Let M > 1 and k > 2 be an integer. Let ξ1, . . . , ξk ∈ R

satisfy (2.6) and (2.7). Then there exist δ0,C > 0 such that for 0 < δ ≤ δ0 and
0 < ε ≤ Cδ , there exists a linear operator T from ‖ · ‖∗ to (‖ · ‖∗,Rk) such that

T (h) = (φ, c1, . . . , ck) solves (5.1) for all h with ‖h‖∗ < ∞. Moreover,

t‖φ‖∗ ≤ C‖h‖∗ and |ci | ≤ C‖h‖∗, i = 1, . . . , k.

For τ > 0, 0 < ν < α, and φ : R → R, define

(5.3) ‖φ‖1 = sup
t≥ξ1

(e(α+τ)(t−ξ1)|φ(t)|) + sup
t≤ξ1

(eν(ξ1−t)|φ(t)|).

Lemma 5.2. Let τ > 0 and 0 < ν < α. For each h such that ‖h‖1 < +∞,
there exist a unique φ with ‖φ‖1 < +∞ and c1 ∈ R such that

(5.4) φ′′ − α2φ + 2∗U0(t − ξ1)
2∗−1φ = h + c1Z̃1 in R.

Moreover, there exists C > 0 such that

(5.5) ‖φ‖1 ≤ C‖h‖1 and |c1| ≤ C‖h‖1.

Proof. Translating, if necessary, we may assume that ξ1 = 0.

Let U0 be the function defined by (2.3). Then z1 = U ′
0 satisfies

(5.6) z1(t) = −γN2−αα cosh(t)−N/2 sinh(t)
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and the initial value problem

(5.7) z′′ − α2z + 2∗U2∗−1
0 z = 0 in R,

z(0) = 0 and z′(0) = −2−ααγN .

Let z2 be the solution of (5.7) satisfying the initial conditions

z(0) = 1 and z′(0) = 0.

To prove uniqueness, observe that if h = 0, multiplication of (5.4) by z1 gives
c1 = 0. Then φ must be a linear combination of z1 and z2; and, since ‖φ‖1 < +∞,
φ = cz1 for some c. But again, because ‖φ‖1 < +∞, φ = 0.

To prove existence, suppose that ‖h‖1 < ∞ and
∫∞
−∞ hz1 = 0. The function

(5.8) φ(t) =
2α

αγN

(
z1(t)

∫ ∞

t
z2(s)h(s)ds − z2(t)

∫ ∞

t
z1(s)h(s)ds

)

is a solution of the linear problem

φ′′ − α2φ + 2∗U2∗−1
0 φ = h in R.

Moreover,

(5.9) ‖φ‖1 ≤ C‖h‖1.

Indeed, from (5.6), we have z1(t) = ce−α|t|+o(e−α|t|) as t → ±∞ for some constant
c . Furthermore, one can also prove that z2(t) = c′eα|t| + o(eα|t|) as t → ±∞ for
some constant c′ �= 0. Then (5.9) follows from (5.8) and the behaviors of z1, z2 at
±∞.

In the general case, when h is not necessarily orthogonal to z1, define

c1 = −
∫∞
−∞ hz1∫∞
−∞ Z̃1z1

and apply the previous construction to h + c1Z̃1. �
For φ : R → R, define the norm

(5.10) ‖φ‖2 = sup
t∈R

( k∑
i =2

e−ν|t−ξi |
)−1

|φ(t)|.

Lemma 5.3. Let 0 < ν < α in (5.10). Then there exist δ0,C > 0 such that
for 0 < δ ≤ δ0 and ‖h‖2 < ∞, there exist c2, . . . , ck ∈ R and a unique solution φ
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with ‖φ‖2 < +∞ of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ′′ − α2φ + 2∗
k∑

i =2

U0(t − ξi )
2∗−1φ = h +

k∑
i =2

ciZ̃i in R

∫
R

φZ̃i = 0, i = 2, . . . , k.

(5.11)

Moreover,

(5.12) ‖φ‖2 ≤ C‖h‖2, |ci | ≤ C‖h‖2, i = 2, . . . , k.

The proof is similar to that of [2, Proposition 1].

Lemma 5.4. Let 0 < ν < min(2, α) and τ > 0. Then there are δ0,C > 0
such that for 0 < δ ≤ δ0, there exists a linear operator T0 from ‖ · ‖∗ to (‖ · ‖∗,Rk)
such that T0(h) = (φ, c1, . . . , ck) solves

(5.13) φ′′ − α2φ + 2∗
k∑

i =1

U0(t − ξi )
2∗−1φ = h +

k∑
i =1

ciZ̃i in R

for each h with ‖h‖∗ < ∞, Moreover,

(5.14) ‖φ‖∗ ≤ C‖h‖∗ and |ci | ≤ C‖h‖∗, i = 1, . . . , k.

Proof. Define

(5.15) Wi (t) = 2∗U0(t − ξi)
2∗−1.

Let η1, η2 ∈ C∞(R) be such that 0 ≤ η1, η2 ≤ 1, and

η1 ≡ 1 in (−∞, (1 + 1
2α

) log δ ], η1 ≡ 0 in [(1 + 1
4α

) log δ,∞)

η2 ≡ 1 in (−∞, (1 + 3
4α

) log δ ], η2 ≡ 0 in [(1 + 1
2α

) log δ,∞).

We look for a solution of (5.13) of the form φ = φ1 + φ2η2. It suffices for φ1, φ2 to
satisfy the system

φ′′
1 − α2φ1 + W1φ1 =(1 − η2)h + c1Z̃1 − (1 − η2)

k∑
i =2

Wiφ1,(5.16)

− 2φ′
2η

′
2 − φ2η

′′
2

φ′′
2 − α2φ2 +

k∑
i =2

Wiφ2 =η1h +
k∑

i =2

ciZ̃i − η1W1φ2 − η1

k∑
i =2

Wiφ1 in R.(5.17)
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Define φ = T1(h) to be the solution of (5.4) (Lemma 5.2) and φ = T2(h) to be the
solution of (5.11) obtained in Lemma 5.3. To find a solution of (5.16), (5.17) with
the correct bounds, we are then led to the system

φ1 = T1

[
(1 − η2)h − (1 − η2)

k∑
i =2

Wiφ1 − 2φ′
2η

′
2 − φ2η

′′
2

]
,(5.18)

φ2 = T2

[
η1h − η1W1φ2 − η1

k∑
i =2

Wiφ1

]
.(5.19)

We solve this system in the Banach space E consisting of pairs (φ1, φ2) of func-
tions φ j : R → R such that φ2 is Lipschitz continuous and the norm

‖(φ1, φ2)‖E = ‖φ1‖1 + ‖φ2‖2 + ‖φ′
2‖2

is finite, where ‖ ‖1 is defined by (5.3) and ‖ ‖2 by (5.10). We verify that the
operator T̃ : E → E defined by the right hand side of (5.18), (5.19) is a contraction
on E . For this we use (5.5) to obtain the estimate

‖T1[−(1 − η2)
k∑

i =2

Wiφ1 − 2φ′
2η

′
2 − φ2η

′′
2]‖1

≤ C(‖(1 − η2)
k∑

i =2

Wiφ1‖1 + ‖φ′
2η

′
2‖1 + ‖φ2η

′′
2‖1).

Computation shows that

‖(1 − η2)
k∑

i =2

Wiφ1‖1 ≤ Cδ
1
α ‖φ1‖1,

‖φ′
2η

′
2‖1 ≤ C

| log δ |‖φ′
2‖2,

‖φ2η
′′
2‖1 ≤ C

| log δ |2 ‖φ2‖2.

Using (5.12), we have

‖T2[−η1W1φ2 − η1

k∑
i =2

Wiφ1]‖2 ≤ C
(

‖η1W1φ2‖2 + ‖η1

k∑
i =2

Wiφ1‖2

)
.

Another computation yields

‖η1W1φ2‖2 ≤ Cδ 1/2α‖φ2‖2,
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and ∥∥∥∥η1

k∑
i =2

Wiφ1

∥∥∥∥
2
≤ Cδ (3−ν)/2α‖φ1‖1

if ν ≥ 1, while ∥∥∥∥η1

k∑
i =2

Wiφ1

∥∥∥∥
2
≤ Cδν/α‖φ1‖1

if ν < 1. It follow that if ν < 3, T̃ is a contraction in E . �

Proof of Proposition 5.1. First, let us prove existence of a solution. Let
Wi be defined by (5.15), and rewrite equation (5.1) in the form

(5.20) φ = T0

[
h +
( k∑

i =1

Wi − peσptV p−1 − qeσqtV q−1
)

φ

]
,

where T0 is the operator defined in Lemma 5.4. Let X the Banach space of contin-
uous functions φ : R → R such that ‖φ‖∗ < ∞, equipped with the norm ‖ ‖∗. By
(5.14),

∥∥∥∥T0

[( k∑
i =1

Wi − peσptV p−1 − qeσqtV q−1
)

φ

]
‖∗

≤ C

∥∥∥∥
k∑

i =1

Wi − peσptV p−1 − qeσqtV q−1
∥∥∥∥

L∞(R)
‖φ‖∗.

A computation shows that

(5.21)

∥∥∥∥
k∑

i =1

Wi − peσptV p−1 − qeσqtV q−1

∥∥∥∥
L∞(R)

= o(1) as δ → 0.

Indeed, let us estimate ‖eσptV p−1‖L∞(R). We have

eσptV p−1 = eσpt
( k∑

j =1

U(t − ξ j )
)p−1

≤ Ceσpt
( k∑

j =1

eα(t−ξ j )(1 + e2(t−ξ j ))−β

)p−1

≤ Ceσpt
k∑

j =1

eα(p−1)(t−ξ j )(1 + e2(t−ξ j ))−1.

For t ≥ ξ j ,

eσpteα(p−1)(t−ξ j )(1 + e2(t−ξ j ))−1 ≤ Ce(α−2β)(p−1)(−ξ j ) ≤ Ce(1−αε)ξ j ,

since σp + (α − 2β)(p − 1) = 0. Since the ξ satisfy (2.6), (2.7) for some M > 0,

eσpteα(p−1)(t−ξ j )(1 + e2(t−ξ j ))−1 ≤ Cδ (1−αε)(( j−1)/α+1) ≤ Cδ 1−αε
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for t ≥ ξ j . For t ≤ ξ j ,

eσpteα(p−1)(t−ξ j )(1 + e2(t−ξ j ))−1 ≤ Ceσpteα(p−1)(t−ξ j ) ≤ Ceσpt

≤ Ceσpξ j ≤ Cδσp(( j−1)/α+1) ≤ Cδ 1−αε.

Therefore,
‖peσptV p−1‖L∞(R) ≤ Cδ 1−αε.

The difference
∑k

i =1 Wi − qeσqtV q−1 in (5.21) can be handled similarly. Thus, if
‖h‖∗ < ∞ and ε, δ > 0 are suitably small, (5.20) has a unique solution in X . �

6 Proof of Theorem 1.1

Let us fix an integer k ≥ 2. By Proposition 4.1, there exist θ > 1/2 and a function
εk(�, δ ) > 0 such that if ε = εk(�, δ ) and δ is sufficiently small, then ‖E‖∗ ≤
Cδθ . We claim that for small enough δ > 0 and ε = εk(�, δ ), there exists a
solution φ of the nonlinear projected problem

(6.1) Lφ + E + N (φ) =
k∑

i =1

ciZ̃i

such that ‖φ‖∗ ≤ Aδθ , for a suitable constant A > 0. Here, Z̃i are the functions
defined in (5.2). Indeed, let T be the operator defined in Proposition 5.1. Then we
obtain a solution of (6.1) by solving the fixed point problem

(6.2) φ + T (E − N (φ)) = 0.

Consider the Banach space X of all continuous functions φ : R → R such that
‖φ‖∗ < +∞ with norm ‖ ‖∗. Let A > 0. One checks easily that for φ1, φ2 ∈ E

with ‖φi‖∗ ≤ Aδθ , i = 1, 2,

‖N (φ1) − N (φ2)‖∗ ≤ CAδ a‖φ1 − φ2‖∗

for some a > 0. We conclude from this estimate and the boundedness of the
operator T that the fixed point problem (6.2) has a unique solution φ in the region
‖φ‖∗ ≤ Aδθ for some suitably chosen A. We write this solution as φ(�).

To find a solution of (2.9), it remains to verify that for some � = (�1, . . . ,�k),
the constants ci in (6.1) all vanish. Testing equation (6.1) against Zj (t) = U ′

0(t−ξ j )
for i = 1, . . . , k, we obtain∫ ∞

−∞
φLZj +

∫ ∞

−∞
N (φ)Zj +

∫ ∞

−∞
EZj = c j

∫ ∞

−∞
Z̃ jZ j .
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Thus ci = 0, i = 1, . . . k, is equivalent to

(6.3)
∫ ∞

−∞
φLZj +

∫ ∞

−∞
N (φ)Zj +

∫ ∞

−∞
EZj = 0

for all j . A calculation shows that

∫ ∞

−∞
φLZj +

∫ ∞

−∞
N (φ)Zj = o(δ )

as δ → 0, where o(δ ) a continuous function of � that tends to 0 is uniformly
in the region considered as δ → 0 (for this, it is important that ‖φ‖∗ ≤ Cδθ with
θ > 1/2). Write E(v) = v ′′−α2v+e−σptvp+e−σqtvq. Since E = E(V ) and Zi = ∂ξi V ,

∫ ∞

−∞
EZi =

∫ ∞

−∞
E(V )∂ξi V = ∂ξi I (V )

From the expansion for I (V ) in Proposition 3.1 and the relations (2.6), we see that
the system (6.3) is equivalent to

∇ϕ(�) + o(1) = 0,

where the quantity o(1) tends to 0 uniformly in the region considered for the pa-
rameters �i and depends continuously on them. Recall that the functional ϕ pos-
sesses a unique critical point �∗, which is nondegenerate. Therefore, the above
equation has a solution that is close to �∗ for δ > 0 small.
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