TABLA DE CONTENIDO

CAPÍTULO 1 - INTRODUCCIÓN	1
1.1. Presentación	1
1.2. Objetivos	5
1.2.1. Generales	5
1.2.2. Específicos	5
1.3. Hipótesis de trabajo	5
1.4. UBICACIÓN Y ACCESOS	5
1.5. TRABAJOS ANTERIORES	6
CAPÍTULO 2 - METODOLOGÍA	9
2.1. INVESTIGACIÓN BIBLIOGRÁFICA Y RECOPILACIÓN GEOLÓGICA	9
2.2. TRABAJO EN TERRENO	9
2.3. TRABAJO EN LABORATORIO	9
CAPÍTULO 3 - MARCO GEOLÓGICO	. 12
3.1. Generalidades	. 12
3.2. Geología regional	. 12
3.2.1. Unidades litoestratigráficas	12
3.2.2. Unidades intrusivas	15
3.2.3. Unidades cuaternarias	16
3.2.4. Estructuras	16
3.3. GEOLOGÍA LOCAL	. 17
3.3.1. Unidades litoestratigráficas	17
3.3.2. Unidades intrusivas	17
3.3.3. Estructuras	19
3.3.4. Mineralización y alteración	20
CAPÍTULO 4 - GEOLOGY AND GEOCHRONOLOGY OF THE EL ROMER	AL
DEPOSIT, CHILE: NEW CONSTRAINTS ON THE GENESIS OF IRON OXII)E-
APATITE DEPOSITS	. 23
4.1. INTRODUCTION	. 24
4.2. GEOLOGICAL BACKGROUND	25
4.3. Deposit Geology	26
4.4. SAMPLES AND METHODS	. 28
4.4.1. Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-El	DS)
analysis	28
4.4.2. ${}^{40}Ar/{}^{39}Ar \ dating$	29
4.4.3. U-Pb zircon dating	29
4.4.4. Sulfur isotopes	30
4.5. Results	. 30
4.5.1. Ore Mineralogy	30

4.5.2.	Gangue Mineralogy	
4.5.3.	Actinolite ⁴⁰ Ar/ ³⁹ Ar ages	
4.5.4.	Hydrothermal biotite ⁴⁰ Ar/ ³⁹ Ar age	
4.5.5.	Zircon U-Pb ages	
4.5.6.	Sulfur isotopes analyses	
4.6. Dis	SCUSSION	
4.6.1.	Ore-forming process and paragenetic sequence	
4.6.2.	Sulfur provenance using $\delta^{34}S$ signature	
4.6.3.	Geodynamic model for the deposit formation	
4.7. Co	NCLUSION	
CAPÍTUL	O 5 - NEW CONTRIBUTIONS TO THE UNDERSTANDING O	F KIRUNA-
TYPE IR	ON OXIDE-APATITE DEPOSITS REVEALED BY MAGNETITI	E ORE AND
GANGUE	MINERALS GEOCHEMISTRY AT THE EL ROMERAL DEPOSI	T. CHILE67
5.1. INT	RODUCTION	
5.2. Ge	OLOGICAL BACKGROUND	69
5.3. AN	ALYTICAL METHODS	
5.3.1.	Scanning electron microscope (SEM)	
5.3.2.	Electron microprobe analyses (EMPA)	
5.3.3.	Micro-Raman Spectroscopy	
5.3.4.	Magnetite precipitation modeling	72
5.4. Re	SULTS	
5.4.1.	Magnetite textures, chemistry and mineral inclusions	
5.4.2.	Sulfide trace and minor elements composition	74
5.4.3.	Gangue mineral geochemistry	
5.5. DIS	SCUSSION	
5.5.1.	A magmatic hydrothermal origin of magnetite at the El Romeral	76
5.5.2.	Silicate phases and formation conditions	79
5.5.3.	Late magmatic stage of apatite formation	80
5.5.4.	Hydrothermal sulfide stage	82
5.5.5.	Late magnetite mineralization event	83
5.5.6.	Effect of pressure in Fe solubility	
5.5.7.	A magmatic-hydrothermal process	86
5.6. Co	NCLUSIONS	87
CAPÍTUL	O 6 - CONCLUSIÓN	128
BIBLIOG	RAFIA	131
ANEXOS		

ÍNDICE DE TABLAS

Tabla 1. Coordenadas y longitud de los sondajes utilizados en este estudio	11
Table 2. Results of actinolite ⁴⁰ Ar/ ³⁹ Ar dating.	62
Table 3. Results of biotite ⁴⁰ Ar/ ³⁹ Ar dating.	63
Table 4. LA-ICP-MS-MC U-Pb data on zircons from the Romeral Diorite (sample ROM-10	9).64
Table 5. LA-ICP-MS-MC U-Pb data on zircons from the Punta de Piedra Batholith (sample	
ROM-Gd)	65
Table 6. Delta-34S values of selected samples.	66
Table 7. Different magnetite types described at the El Romeral deposit	123
Table 8. Representative EMPA analyses for different magnetite grains (Type I and II) from	drill
cores PRP-0702 and PRP-0733.	124
Table 9. EMPA measurements of Co, Ni and Cu from pyrite crystals from drill cores PRP-0	853
and DDH-5008	125
Table 10. Representative EMPA analyses for actinolite crystals (Types I, II and III) from dri	ill
cores PRP-0702, PRP-0733 and DDH-5008.	126
Table 11. Halogen contents (formula values) in apatite from drill cores PRP-0702 (~300 m d	depth
for sample 042) and PRP-0853 (~50 m depth for sample 147)	127

ÍNDICE DE FIGURAS

Figura 1. Mapa en donde se presentan los depósitos tipo IOCG y magnetita-apatito	2
Figura 2. Ubicación y acceso a la mina El Romeral	6
Figura 3. Imagen satelital con la ubicación de los sondajes estudiados.	11
Figura 4. Mapa geológico regional	22
Figure 5. Map showing the location of iron oxide-apatite (IOA) and iron oxide-gold (IO	OCG)
deposits in the Cretaceous Chilean Iron Belt	48
Figure 6. Geologic map of Minas El Romeral district	49
Figure 7. Cross-section (AA') of the Cuerpo Principal mineralization	50
Figure 8 Hand samples from different units observed in El Romeral.	51
Figure 9. Photomicrographs (A, C, D, E and F) and backscattered electron images (B) of the	e first
ore mineralization event.	52
Figure 10. Photomicrographs (A, C, D, E and F) and backscattered electron image (B) of ga	ingue
and sulfide mineralization.	53
Figure 11. Paragenetic sequence showing the two defined events	54
Figure 12. ⁴⁰ Ar/ ³⁹ Ar dating of sub-sample URM-115t with errors plot as 2-sigma	55
Figure 13. Results of ⁴⁰ Ar/ ³⁹ Ar dating in biotite with errors plot as 2-sigma	56
Figure 14. U-Pb ages for zircons of the Romeral Diorite	57
Figure 15. Punta de Piedra Batholith U-Pb zircon ages.	58
Figure 16. Diagram showing stable sulfur isotope values from IOCG and IOA deposits i	n the
Chilean Iron Belt.	59
Figure 17. Schematic east-west paleogeographic sections for the Andean I and the beginni	ng of
the Andean II (Peruvian Phase).	61
Figure 18. Map showing the location of major iron oxide-apatite (IOA) and iron oxide-co	pper-
gold (IOCG) deposits from the Cretaceous Chilean Iron Belt.	. 101
Figure 19. Geological map of the El Romeral district	. 102
Figure 20. Back-scattered electron images of magnetite textures.	. 103
Figure 21. EDX elemental map of a representative mineral inclusion hosted in magnetite (Туре
I) from the massive dike orebody	. 104
Figure 22. Back-scattered electron images of mineral inclusions in Type I magnetite	. 105
Figure 23. Representative micro-Raman spectra for A. clinochlore, B. Ti-pargasite and C. quinchusions	uartz
Figure 24 Elemental WDS mans for representative sample from massive magnetite orabedy	, 100 , 107
Figure 24. Elemental WDS maps for sample shown in Fig. 2P (Type III magnetite)	1.107
Figure 25. Elemental wDS maps for sample shown in Fig. 5B (Type in magnetic)	. 100
Figure 20. Dack-scattered electron images of pyrite from two different events of milleralization	ation. 100
Figure 27 Back scattered electron images of gangue minerals from two different mineralize	. 109
events	11011 /
Figure 28 Back-scattered electron images of anatite grains	111
righte 20. Buck-seattered election images of apartic granis.	

Figure 29. Al+Mn vs. Ti+V discrimination diagram proposed by Dupuis and Beaudoin (2011)
and modified by Nadoll et al. (2014a) 112
Figure 30. Ti vs V concentration plot after Nadoll et al. (2014b) with igneous and hydrothermal
fields proposed by Knipping et al. (2015b) 113
Figure 31. Discriminant diagram with concentrations of Cr vs V (Knipping et al., 2015b) 114
Figure 32. Compositional trends obtained by electron microprobe analysis of primary actinolite
crystals within magnetite (type II) and later pegmatitic actinolite intergrown with massive
iron ore
Figure 33. Ternary compositional diagram of Z-site species in apatite
Figure 34. The concentration of Co and Ni vs Fe in total weight percent (wt.%) 117
Figure 35. Co vs Ni correlation diagram showing chemical analysis of pyrite from the El
Romeral deposit
Figure 36. Log of fugacity ratios vs T [K] plots from a hydrothermal fluid in equilibrium with
biotite from the late event
Figure 37. Molality of FeCl ₂ vs T[°C] plots obtained by geochemical modeling
Figure 38. Schematic magmatic-hydrothermal model