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OPTIMAL STOPPING IN MECHANISM DESIGN

En este trabajo estudiamos un par de problemas de la teoría de paradas óptimas, y
mostramos cómo aplicar estos resultados en el diseño de mecanismos. Consideramos dos
versiones modi�cadas de la famosa desigualdad del profeta [10, 16, 17]: una no-adaptativa
donde la regla de parada debe ser decidida de antemano, y una adaptativa � que corre-
sponde a la con�guración clásica de la desigualdad del profeta �, pero en el caso restringido
cuando las distribuciones de las variables aleatorias están idénticamente distribuidas [13].
Para la primera situación, encontramos un factor de garantía para la regla de parada con
respecto al máximo esperado de la secuencia de variables aleatorias y demostramos que es
la mejor posible; para el segundo, probamos que una conjetura sobre cuál es el mejor factor
posible es verdadera [14]. Cerramos esta tesis extendiendo estos resultados para resolver el
problema de un vendedor que enfrenta a muchos compradores potenciales y debe diseñar una
subasta secuencial para maximizar sus ingresos. El tipo de mecanismos que consideramos
para estudiar este problema de pricing son los mecanismos posted price, y los resultados que
obtenemos toman la forma de factores de aproximación con respecto al valor de la subasta
óptima [19].
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OPTIMAL STOPPING IN MECHANISM DESIGN

In this work we study a pair of problems in optimal stopping theory, and show how to apply
these results in mechanism design. We consider two modi�ed versions of the famous prophet
inequality [10, 16, 17]: a non-adaptive where the stop rule must be decided beforehand, and
an adaptive one � which corresponds to the classical prophet inequality setting �, but when
the distributions of the random variables are identical [13]. For the �rst set-up, we �nd a new
factor guarantee with respect to the expected maximum of the random variables sequence
and prove it is the best possible; for the second, we prove that a conjecture about the best
possible factor achievable is true [14]. We close this dissertation by extending these results to
solve the problem of a seller that faces many potential buyers and must design a sequential
auction in order to maximize its revenue. The type of mechanisms we consider to study this
pricing problem are the posted price mechanisms, and the results we get are in the form of
approximation factors guarantees with respect to the optimal auction [19].
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Chapter 1

Introduction

Optimal stopping theory is concerned with the problem of choosing a time to take a particular
action, in order to maximize an expected reward or minimize an expected cost. A key example
of an optimal stopping problem are the prophet inequalities, whose study was initiated by
Gilbert and Mosteller in the sixties [10]. The classic prophet inequality states that, when
faced to a �nite sequence of non-negative independent random variables, a gambler who
knows their distribution and is allowed to stop the sequence at any time, can obtain, in
expectation, at least half as much reward as a prophet who knows the values of each random
variable and can choose the largest one. The fraction 1/2 is also best possible [16, 17].

Independently, in 1982 Myerson [19] gave a characterization of the optimal auction, in the
context of what today is known as mechanism design. The auction he studied modeled the
problem faced by a monopolist who sells a single item to a set of known potential buyers,
whose value for the item are random variables. The objective was to design a mechanism
maximizing the revenue of the seller. Although Myerson's solution is, in some situations, a
remarkably simple mechanism, for reasons that will be clari�ed later in this work, in many
others the mechanism is hard to implement. An alternative are the simple posted price
mechanisms, where prices are o�ered to each customer in a sequential order. As it will be
discussed in the last chapter, this mechanism shares a lot of features with some optimal
stopping problems.

The contributions of this work are twofold. In one hand, we �nd new results in the area
of optimal stopping for two di�erent settings that resemble the prophet inequality problem.
In the other hand, we provide new theoretical guarantees for posted price mechanisms using
the previous results, trough a mathematical tool that allows us to reduce any problem in
optimal stopping based on thresholds to a posted price strategy in the pricing problem. We
remark that most of the contents of this work can be found in [8].

Before starting, we need to introduce some notation. For a random variable X we will
usually denote by F (x) = P(X ≤ x) its cumulative distribution function. If SX represents
the support of X, then F−1(y) = inf{x ∈ SX | F (x) ≥ y} is the generalized inverse of
F . All functions considered will be Lebesgue-measurable functions. Finally, we denote by
[n] := {1, . . . , n} the set of the �rst n natural numbers.
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Chapter 2

Non-adaptive Stopping Rule

In this chapter we study the existence of non-adaptive threshold to solve the problem of
selecting a value given by a uniformly random sequence of independent random variables.
We provide a constructive proof of a rule that achieves a factor of e−1

e
over the expected

maximum, an algorithm to implement this rule, and an example that shows that these results
are tight. Along the way, we prove a basic result about Bernoulli random variables that we
believe can be of independent interest.

2.1 Preliminaries

In its simpler form, the problem we consider can be described as follows. Suppose you can
choose one of n prizes whose values are random variables X1, . . . , Xn distributed according
to n possibly di�erent independent distribution F1, . . . , Fn. The prizes arrive in random
order, and, upon arrival, we must decide whether we keep that prize, or simply discard it
and wait for the next. The goal is to maximize the expected value of the selected prize.
We are interested in a non-adaptive setting, i.e., we look for an acceptance criterion that is
set beforehand, and only based on the distributions. In particular, we will investigate the
performance of a threshold rule were we accept the �rst random variable whose value is above
a certain threshold.

This problem resembles the already well known problems as the famous prophet inequality,
the secretary problem, or the more recently prophet secretary problem [9], although the non-
adaptive nature of our setting changes the analysis and the results, and can use to interpret
a di�erent kind of scenarios, as we will see in the last chapter.

2.2 Bernoulli Selection Lemma

We begin by proving an intermediate result that will be the key to our analysis.

2



Lemma 2.1 (Bernoulli Selection Lemma) Given n independent Bernoulli random variables
X1, . . . , Xn, where Xi = 1 with probability qi and 0 otherwise, and associated prizes b1, . . . , bn.
The following inequalities hold:

e

e− 1
max
S⊆[n]

E
[∑

i∈S biXi∑
i∈S Xi

]
≥ max

zi≤qi

{∑
i∈N

bizi

∣∣∣ ∑ zi ≤ 1

}
≥ E[max{b1X1, . . . , bnXn}].

Here, when evaluating the leftmost term, we de�ne 0/0 = 0.

The result states that if we are given a set of nonhomogeneous independent Bernoulli ran-
dom variables with associated prizes, then there is a subset of variables so that the expected
average prize of the successes is at least a factor 1− 1/e of the expectation of the maximum
prize over all random variables.

The second inequality of Lemma 2.1 is trivial, as the expectation of the maximum is a
sum over all values bi weighed by the probability with which that value is the maximum.
Since these probabilities sum to at most one, the inequality follows.

The proof for the �rst inequality has two main ingredients. First, we reformulate the
left hand side in an appropriate way, and lower bound it by another function using KKT-
conditions. Then, we show that this function is bounded from below by 1− 1/e.

Proof. We start the proof by rewriting the optimization problem:

max
S⊆[n]

{
E
[∑

i∈S biXi∑
i∈S Xi

]}
. (P)

Instead of choosing a subset of [n], we set for each i ∈ [n] a value χi ∈ [0, 1], which represents
the probability with which we actually choose i. Now, let πi = χiqi denote the probability of
i being picked and having Xi = 1. So we can consider the following maximization problem,
with decision variables π, as a relaxation of (P):

max
0≤πi≤qi

∑
S⊆[n]

(
b(S)

|S|

(∏
i∈S

πi

)(∏
i/∈S

(1− πi)

))
,

where b(S) =
∑

i∈S bi. Note that the previous objective is linear in each variable so that
there is an extreme optimal solution [7]. Thus, the previous problem is in fact equivalent to
(P). Now, by changing the order of the summations, we obtain

max
0≤πi≤qi

∑
i∈[n]

biπi

∑
S⊆[n]\{i}

1

1 + |S|
∏
j∈S

πj
∏

j∈[n]\(S∪{i})

(1− πj) . (2.1)

With (P) in this equivalent form, we now proceed to guess a feasible solution. To this
end, consider an optimal solution z∗ to

max

∑
i∈[n]

bizi

∣∣∣ ∑
i∈[n]

zi ≤ 1, zi ≤ qi for all i ∈ [n]

 ,
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and set πi =
2z∗i

2+(e−2)z∗i
,12 such that 1 − πi =

2−(4−e)z∗i
2+(e−2)z∗i

. Note that this is a feasible choice of

πi for all i ∈ [n], since for this choice πi ≤ z∗i ≤ qi. We plug this back into (2.1), and obtain
that (P) is lower bounded by

∑
i∈[n]

2biz
∗
i

∏
j∈[n]

1

2 + (e− 2)z∗j

 ∑
S⊆[n]\{i}

2|S|

1 + |S|
∏
j∈S

z∗j
∏

j∈[n]\(S∪{i})

(2− (4− e)z∗j ) . (2.2)

We proceed to lower bound this quantity, where we use the following technical result.

Proposition 2.2 Consider the problem minx∈RM
+
{fM(x) :

∑
i∈M xi ≤ a}, where a ≤ 1 and

fM(x) =

(∏
j∈M

1

2 + (e− 2)xj

)∑
S⊆M

2|S|

1 + |S|
∏
j∈S

xj
∏

j∈M\S

(2− (4− e)xj) .

An optimal solution satis�es that all nonzero variables have to be equal and
∑

i∈M xi = a.

Proof. Consider an optimal solution x∗, and assume its support is M ′ ⊆ M . Let y∗ be
the restriction of x∗ to M ′. Then, fM(x∗) = fM ′(y

∗) and y∗ minimizes fM ′ . Consider the
function f(y1, y2) as the function fM ′ restricted to the �rst two variables, while the others
are �xed to y∗i . Clearly, y

∗
1, y
∗
2 minimize f(y1, y2) subject to the constraints that y1, y2 > 0,

and y1 + y2 ≤ a−
∑

i∈M ′\{1,2} y
∗
i . Now f(y1, y2) can be written as

f(y1, y2) =
A+By1 +By2 + Cy1y2

(2 + (e− 2)y1)(2 + (e− 2)y2)
,

where
A = 4

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|

1+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j ) ,

B = e−4
2
A+ 2

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|+1

2+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j ) ,

C = (e−4)2

4
A+ e−4

2
B +

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|+2

3+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j ) ,

with [n]′ = M ′ \ {1, 2}. Since the constraint y1 + y2 ≤ a −
∑

i∈[n]′ y
∗
i is the only active

constraint and it is symmetric with respect to y1 and y2, the KKT conditions dictate that a
minimum of f(y1, y2) satis�es

∂f(z∗1 , z
∗
2)

∂z∗1
=
∂f(z∗1 , z

∗
2)

∂z∗2
. (2.3)

1Because of the choice of πi, we actually prove the slightly stronger bound where we maximize over
zi ≤ 2qi

2−(e−2)qi
.

2The choice of πi suggests that the random variables are not picked deterministically, but with probability
less than 1, since πi < z∗i if z∗i > 0. However, as noted in the beginning of the proof, because of linearity of
the objective in each variable, there is always an extreme optimal solution where the random variables are
picked deterministically.
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Taking the derivatives

∂f(y1, y2)

∂y1

=
2B + 2y2C − (e− 2)A− (e− 2)y2B

(2 + (e− 2)y1)2(2 + (e− 2)y2)
,

∂f(y1, y2)

∂y2

=
2B + 2y1C − (e− 2)A− (e− 2)y1B

(2 + (e− 2)y1)(2 + (e− 2)y2)2
,

we see that (2.3) holds if and only if(
(4C − (e− 2)2A) + (2(e− 2)C − (e− 2)2B)(y2 + y1)

)
(y2 − y1) = 0 .

So either y1 = y2, or at least one is strictly positive and

y1 + y2 =
(e− 2)2A− 4C

2(e− 2)C − (e− 2)2B
.

We evaluate the right-hand side of the latter, using the formulae for A, B, and C. Note �rst
that A ≥ 0, and observe that

B = e−4
2
A+ 2

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|+1

2+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j )

≤ 0 + 4
∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|

2+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j )

≤ A .

Finally, we have

C = (e−4)2

4
A+ e−4

2
B +

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|+2

3+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j )

≥ (e−4)2

4
A+ e−4

2
B +

∏
j∈[n]′

1
2+(e−2)y∗j

∑
S⊆[n]′

2|S|+1

2+|S|
∏
j∈S

y∗j
∏

j∈[n]′\S
(2− (4− e)y∗j )

≥ (e−4)2

4
A+ e−4

2
B + 1

2
B − (e−4)

4
A ≥

(
(e−4)2

4
+ e−4

4
+ 1

2

)
A ≥ 1

2
A .

Thus, (e − 2)2A − 4C ≤ 0 and 2(e − 2)C − (e − 2)2B ≥ 0. Therefore, y∗1 + y∗2 is negative
which contradicts the constraint y1, y2 > 0. As the choice of the index {1, 2} is arbitrary we
conclude that all coordinates of y∗ have to be equal.

To �nish the proof, we still need to show that in an optimal solution, the constraint∑
i∈M x∗i =

∑
i∈M ′ y

∗
i ≤ a is tight. As all coordinates of y∗ are equal, we know that y∗i = ȳ,

for some ȳ. Let k denote the number of nonzero variables in x∗, i.e., k = |M ′|. Then, abusing
notation, we let

fM ′(ȳ) =
∏
j∈M ′

1

2 + (e− 2)ȳ

∑
S⊆M ′

2|S|

1 + |S|
∏
j∈S

ȳ
∏

j∈M ′\S

(2− (4− e)ȳ)

= (2 + (e− 2)ȳ)−k
k∑
`=0

(
k

`

)
2`

1 + `
ȳ`(2− (4− e)ȳ)k−`

=
(2 + (e− 2)ȳ)k+1 − (2− (4− e)ȳ)k+1

(2 + (e− 2)ȳ)k · 2ȳ(k + 1)
.

5



We claim that fM ′(ȳ+ε) ≤ fM ′(ȳ), for small ε > 0 and ȳ < a
k
. Hereto, we take the derivative

of fM ′(ȳ) w.r.t. ȳ, and show that this is nonpositive for ȳ ≥ 0, from which the claim follows.
We see that

∂fM ′(ȳ)

∂ȳ
=

(2 + (e− 2)ȳ)−(k+1)

(k + 1)ȳ2

(
(2− (4− e)ȳ)k(2 + (e− 2)ȳ + 2kȳ)− (2 + (e− 2)ȳ)k+1

)
.

As ȳ ≥ 0, it is easy to see that the sign of the derivative is equal to the sign of (2 − (4 −
e)ȳ)k(2+(e−2)ȳ+2kȳ)− (2+(e−2)ȳ)k(2+(e−2)ȳ). Therefore, to show that the derivative
is nonpositive for ȳ ≥ 0, we need to show that

(2 + (e− 2)ȳ)k+1 ≥ (2− (4− e)ȳ)k(2 + (e− 2)ȳ + 2kȳ) . (2.4)

We will prove this inequality by induction on k. For k = 1, we have

(2 + (e− 2)ȳ)2 = (2− (4− e)ȳ)(2 + (e− 2)ȳ + 2ȳ) + 4ȳ2

≥ (2− (4− e)ȳ)(2 + (e− 2)ȳ + 2ȳ) .

Assume that (2.4) is true for given k. Then,

(2 + (e− 2)ȳ)k+2 ≥ (2− (4− e)ȳ)k(2 + (e− 2)ȳ + 2kȳ)(2− (4− e)ȳ + 2ȳ)

= (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ + 2kȳ)

+ (2− (4− e)ȳ)k(2− (4− e)ȳ + 2(k + 1)ȳ)2ȳ

≥ (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ + 2kȳ) + (2− (4− e)ȳ)k+12ȳ

= (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ + 2(k + 1)ȳ) ,

where the �rst inequality is due to the induction hypothesis. Hence, (2.4) is true. For each
k ≥ 1 and ȳ ≥ 0, the derivative is nonpositive, and fM ′(ȳ) is minimized for ȳ as large as
possible, that is,

∑
i∈M ′ ȳ = a.

Using Proposition 2.2, we lower bound (2.2) as follows. Consider the term ∏
j∈[n]\{i}

1

2 + (e− 2)z∗j

 ∑
S⊆[n]\{i}

2|S|

1 + |S|
∏
j∈S

z∗j
∏

j∈[n]\(S∪{i})

(2− (4− e)z∗j ) .

Note that this is equal to fN\{i}(z∗−i).
3 So, Proposition 2.2 can be applied with a = 1 − z∗i .

Thus,
fN\{i}(z

∗
−i) ≥ fN\{i}(x

∗) ,

with x∗ the optimal solution to min
x∈RN\{i}

+
{fN\{i}(x) :

∑
j∈N\{i} xj ≤ a}.

Proposition 2.2 states that x∗j = (1 − z∗i )/k, where k ≤ n − 1 is the number of nonzero
variables in x∗. Conditioning on the cardinality of the set S, and using the Binomial Theorem,
it is straightforward to show that

f[n]\{i}(x
∗) =

2k + (e− 2)(1− z∗i )

2(k + 1)(1− z∗i )

(
1−

(
1− 2(1− z∗i )

2k + (e− 2)(1− z∗i )

)k+1
)
.

3x−i denotes the vector x with coordinate i eliminated.

6



As this quantity only depends on k and z∗i , we may de�ne

ϕk(z
∗
i ) =

2

(2 + (e− 2)z∗i )
f[n]\{i}(x

∗) ,

to conclude that expression (2.2) (and in turn (P)) is lower bounded by∑
i∈[n]

biz
∗
i ϕk(i)(z

∗
i ) .

where the index k(i), denoting the number of nonzero variables in x∗, is always at least 1,
yet may vary, depending on i.

The remainder of the proof establishes that ϕk(i)(z
∗
i ) ≥ 1 − 1

e
. Indeed, we show that, for

all y ∈ [0, 1] and for all n ≥ 1, we have that ϕn(y) ≥ 1 − 1
e
. To prove it, We start with a

lemma that rephrases this claim.

Lemma 2.3 Let

fn(x) :=
1

n+ 1
− (1− x)n+1

n+ 1
− e− 1

2
x+

(e− 1)(e− 2)n

e(2− (e− 2)x)
x2 .

Then ϕn(y) ≥ 1− 1
e
for all y ∈ [0, 1] and all n ≥ 2 if and only if fn(x) ≥ 0 for all n ≥ 1 and

x ∈ [0, x̄], where x̄ = 1/(n− 1 + e/2).

Proof. Consider the variable change

x =
2(1− y)

2(n− 1) + (e− 2)(1− y)
=⇒ y =

2− (2(n− 1) + e− 2)x

2− (e− 2)x
.

As y ranges from 0 to 1, x ranges from 0 to 1
n−2+e/2

. Note that

2

2 + (e− 2)y
=

2(2− (e− 2)x)

e(2− (e− 2)x)− 2(e− 2)(n− 1)x
.

Substituting this, we see that ϕn(y) ≥ e−1
e

for all y ∈ [0, 1] and n ≥ 2 is equivalent to

1

n
(1− (1− x)n) ≥ e− 1

e
x

e(2− (e− 2)x)− 2(e− 2)(n− 1)x

2(2− (e− 2)x)
,

for all x ∈ [0, 1
n−2+e/2

] and n ≥ 2. Moving the index of n by 1, the result follows.

To prove fn(x) ≥ 0, we use the following result.

Proposition 2.4 If c ∈ [0, 1
2
] then f(x) =

(
1− 1

x+c

)x
is a non-decreasing function of x in

(1,∞).

Proof. De�ne g(x) = ln(f(x)) = x ln
(
1− 1

x+c

)
. We prove f(x) is nondecreasing by proving

that g′(x) ≥ 0. Note that

g′(x) = ln

(
x+ c− 1

x+ c

)
+

x

(x+ c− 1)(x+ c)
,
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which is nonnegative if and only if

x

(x+ c− 1)(x+ c)
≥ ln

(
1 +

1

x+ c− 1

)
.

We substitute 1
x+c−1

= z. Then, the left-hand side becomes

x

(x+ c− 1)(x+ c)
=

1
z
− c+ 1
1
z

+ 1
z =

1 + z − cz
1 + z

z =
z

1 + z
(1 + (1− c)z) .

We expand ln(1 + z) = z − z2

2
+ z3

3
− z4

4
± . . ., so it is su�cient to prove

z

1 + z
(1 + (1− c)z) ≥ z − z2

2
+
z3

3
− z4

4
± . . . .

We multiply both sides by 1+z
z

to retrieve

1 + (1− c)z ≥ 1 +
z

2
− z2

6
+
z3

12
− z4

20
± . . . .

As c ≤ 1
2
, it su�ces to prove − z2

6
+ z3

12
− z4

20
± . . . ≤ 0, i.e.,

∞∑
i=2

(−1)izi

i(i + 1)
≥ 0 .

We rewrite this as

∞∑
i=2

1

z

(−1)izi+1

i(i + 1)
=
∞∑

i=2

1

z

∫ z

0

(−1)iti

i
dt =

1

z

∫ z

0

∞∑
i=2

(−1)iti

i
dt .

However,
∞∑

i=2

(−1)iti

i
= −

∞∑
i=1

(−1)i+1ti

i
+ t = − ln(1 + t) + t ≥ 0 ,

where the last inequality follows from t ≥ ln(1 + t) for t ≥ 0.

Lemma 2.5 fn(x) ≥ 0 for all n ≥ 1 and x ∈ [0, x̄].

Proof. We break the proof in the following parts which together imply the result. All
derivatives are with respect to x.

(i) fn(0) = 0 for all n ≥ 1,

(ii) fn(x̄) ≥ 0 for all n ≥ 1,

(iii) f ′n(0) > 0 for all n ≥ 1,

(iv) f ′n(x̄) < 0 for all n ≥ 1,

(v) f ′′′n (x) > 0 for all x ∈ [0, x̄] and n ≥ 1.

8



First we show how the lemma follows from these parts. We prove fn(x) ≥ 0 by contradiction.
Assume that for some n there exists an x1 ∈ [0, x̄] such that fn(x1) < 0. As fn(x) is
di�erentiable and fn(x̄) ≥ fn(0) = 0, there exists an x1 such that f ′n(x1) = 0. Since the
function increases from a negative value in x1 to a nonnegative value in x̄, there exists some
x2 ∈ (x1, x̄) such that f ′n(x2) > 0. However, as f ′n(x̄) < 0 and f ′n(x2) > 0, there exists an
x3 ∈ (x2, x̄) with f ′′n(x3) = 0. By symmetry, the same analysis holds in the interval (0, x1)
and therefore there also exists an x4 < x1 with f ′′n(x4) = 0. However, this contradicts (v) as
f ′′ is strictly increasing in x.

To prove the statements, we compute the �rst three derivatives of f with respect to x.

f ′n(x) = (1− x)n − e− 1

2
+
n(e− 1)(e− 2)

e

(
4x− (e− 2)x2

(2− (e− 2)x)2

)
,

f ′′n(x) = n

(
−(1− x)n−1 +

8(e− 1)(e− 2)

e(2− (e− 2)x)3

)
,

f ′′′n (x) = n

(
(n− 1)(1− x)n−2 +

24(e− 1)(e− 2)2

(2− (e− 2)x)4

)
.

We �nish the proof by proving the �ve statements.

(i) fn(0) = 0 for all n ≥ 1 by a direct calculation.

(ii) fn(x̄) ≥ 0 for all n ≥ 1 is equivalent to ϕn(z∗i ) ≥ 1− 1/e for z∗i = 0 and all n ≥ 2. By
direct evaluation, we see this is true for n = 2, 3, 4. Thus, we need to prove that for all
n ≥ 5,

n− 1 + e−2
2

n

(
1−

(
1− 1

n− 1 + e−2
2

)n)
≥ 1− 1

e
,

or equivalently, that for all n ≥ 4,

n− 1 + e
2

n+ 1

(
1−

(
1− 1

n− 1 + e
2

)n+1
)
≥ 1− 1

e
.

We write this as(
1− 1

n− 1 + e
2

)n+1

≤ 1−
(n+ 1)(1− 1

e
)

n− 1 + e
2

=
n+1

e
+ e

2
− 2

n− 1 + e
2

,

and multiplying by (1− 1/(n− 1 + e/2))(e−5)/2 yields(
1− 1

n− 1 + e
2

)n+ e
2
− 3

2

≤
n+1

e
+ e

2
− 2

n− 2 + e
2

(
1− 1

n− 1 + e
2

) e
2
− 3

2

=
(n+1

e
+ e

2
− 2)(n− 1 + e

2
)
3−e
2

(n− 2 + e
2
)
5−e
2

.

By invoking Proposition 2.4 in the left-hand side, we see that this is a non-decreasing
function in n with limit 1/e. For the right-hand side, note that the limit for n to in�nity
is also 1/e, and its derivative with respect to n is

4
3− e

e
(1− (3− e)n)

(2n+ e− 2)
1−e
2

(2n+ e− 4)
7−e
2

,
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which is negative for n ≥ 4. The proof of (ii) is complete.

(iii) f ′n(0) = 1− (e− 1)/2 > 0.

(iv) For n = 1 and n = 2, direct evaluation of f ′1(x̄) and f ′2(x̄) gives negative values. For
n ≥ 3, proving that

f ′n(x̄) =

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)((e− 2)2 + 2n(e− 4))

4en
< 0 ,

is equivalent to proving that

e

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)(e− 2)2

4n
<

(e− 1)(4− e)

2
.

By taking the limit of, and invoking Proposition 2.4 for the �rst term, and using n ≥ 3
for the second term, we get

e

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)(e− 2)2

4n
< 1 +

(e− 1)(e− 2)2

12
<

(e− 1)(4− e)

2
.

(v) Since 0 ≤ x ≤ x̄ < 1 for all n, f ′′′n (x) consists of sums, products, and quotients of only
strictly positive terms.

From Lemmata 2.3 and 2.5 we conclude that ϕn(z∗i ) ≥ 1− 1
e
, ∀z∗i ∈ [0, 1], n ≥ 2.

2.3 Main Theorem

Consider n random variables X1, . . . , Xn with corresponding distributions F1, . . . , Fn. Let
F−1

i (q) = inf{x ≥ 0 | F (x) ≥ q} be the generalized inverse of Fi and τi(q) = F−1
i (1 − q) be

the threshold function.

Note that for values of q for which τ(·) is not constant (i.e., where F is continuous), τ(q) is
such that P(X > τ(q)) = q. Thus, we can interpret τ(q) as a value for which the acceptance
probability equals q (i.e., the probability of X being above τ(q) equals q). In general, τ(q)
may have mass and one can only assert that P(X ≥ τ(q)) ≥ q ≥ P(X > τ(q)).

We will construct the threshold rule choosing a priori the probability of acceptance qi for
every random variable Xi, i = 1, . . . , n. Therefore, when facing a random variable Xi, we will
select it whenever Xi > τi(qi), so the acceptance probability is at most qi. If τi(qi) has mass,
there might be no value that accomplish the previous condition. We circumvent this allowing
our rule to randomize its decision: with probability si the rule will choose the random variable
if Xi ≥ τi(qi), and with probability 1−si, if Xi > τi(qi), where si = [qi−P(Xi > τi(qi)]/P(Xi =
τi(qi)). In this way, the probability of selecting a certain random variable, conditioned in this
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variable being faced, is �xed to be equal to the probability of acceptance that de�nes the
corresponding threshold.

We now derive the main theorem of this section using the Bernoulli Selection Lemma.

Theorem 2.6 Given n independent non-negative random variables X1, . . . , Xn, there exist
thresholds τ1, . . . , τn such that

E [max{X1, . . . , Xn}] ≤
e

e− 1
E
[∑

i∈RXi

|R|

]
,

where R = {i ∈ [n] | Xi > τi} is the set of random variables above their corresponding
thresholds.

Furthermore, the bound of e/(e− 1) is the best possible.

Note that the quantity on the right exactly corresponds to the expected value of the �rst
Xi above τi, when the Xi's are ordered uniformly at random.

Before proving the theorem, we state and prove the following technical result.

Lemma 2.7 Let X1, . . . , Xn be non-negative random variables with corresponding distribu-
tion function F1, . . . , Fn. Set qi = P(Xi = maxj∈[n] Xj) and αi a value for which 1−Fi(αi) =
qi. Then,

E[Xi | Xi = max
j∈[n]

Xj] ≤ E[Xi | Xi > αi].

If F−1
i ({1− qi}) is empty for some i = 1, . . . , n, the result still holds via randomization.

Proof. For x > αi, we have

P(Xi > x | Xi > αi) =

∫ ∞
x

1

qi

dFi(t) ,

while, if x ≤ αi, the previous probability equals 1. On the other hand,

P(Xi > x | Xi = max
j∈[n]

Xj) =

∫ ∞
x

∏
j 6=i Fj(t)

qi

dFi(t) .

From this, it follows that P(Xi > x | Xi > αi) ≥ P(Xi > x | Xi = maxj∈[n] Xj) for all x ≥ 0.
Thus, Xi | (Xi > αi) stochastically dominates Xi | (Xi = maxj∈[n] Xj), and the conclusion
follows.

When some Fi are not continuous, it could be the case that there is no αi such that
1 − Fi(αi) = qi or that

∑
qi > 1. If the former happens, the result still holds provided αi is

chosen randomly between the biggest and lowest values which distribution is closer to 1− qi.
The latter case is solved by slightly perturbing the support of the random variables in a way
that the probability that two or more are the maximum simultaneously is negligible.

In the remaining of the chapter, we will consider that the random variables are slightly
perturbed such that the probability of two or more being the maximum simultaneously is
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negligible. As well, to simplify notation and the understanding of the proof, whenever τi(q)
has mass , we will not condition on the decision of the threshold rule. We will refer to
the threshold rule as to stop every time a random variable is strictly above its correspond-
ing threshold. In virtue of Lemma 2.7, all arguments will still apply to the case when we
randomize between strict inequality and weak inequality.

Proof of Theorem 2.6. If E[Xi] = ∞ for some i, the result is trivial. Otherwise, let qi be
the probability that Xi = maxj∈[n] Xj. Consider bi = E[Xi | Xi > τi(qi)] and the Bernoulli
random variables Z1, . . . , Zn where Zi has parameter qi. We apply the Bernoulli Selection
Lemma to this instance, and thus let S ⊆ [n] be a set for which the inequality of the lemma
holds.

Now de�ne τi = τi(qi) for i ∈ S and τi =∞ otherwise, and consider the random variables
Yi as the indicator of the event {Xi > τi}. Note that for i 6∈ S, we have Yi = 0 almost surely,
and for i ∈ S, we have P(Xi > αi) = P(Yi = 1) = qi. It follows that

E
[∑

i∈RXi

|R|

]
= E

[∑n
i=1 XiYi∑n

i=1 Yi

]
=
∑
i∈S

E

[
XiYi∑
j∈S Yj

]

=
∑
i∈S

E[Xi | Yi = 1]E

(1 +
∑

j∈S\{i}

Yj)
−1

∣∣∣∣∣∣Yi = 1

P(Yi = 1)

=
∑
i∈S

E[Xi | Xi > αi]E

[
Yi∑
j∈S Yj

]

= E
[∑

i∈S E[Xi | Xi > αi]Zi∑
i∈S Zi

]
≥ e− 1

e
max
zi≤qi

{
n∑

i=1

E[Xi | Xi > αi]zi

∣∣∣ n∑
i=1

zi ≤ 1

}

≥ e− 1

e

n∑
i=1

E[Xi | Xi > αi]qi ,

where the second to last inequality follows from the Bernoulli Selection Lemma, while the
last holds since

∑n
i=1 qi = 1. Now note that E [max{X1, . . . , Xn}] =

∑n
i=1 E[Xi | Xi =

maxj∈[n] Xj]qi. Lemma 2.7 leads to conclude.

Note that since the expected reward of the strategy is linear for each probability of ac-
ceptance, it is always the case that at least one of the choices of the threshold rule (whether
apply strict inequality or weak inequality) reports a conditional expected value larger or
equal to E(Xi | Xi = maxj∈[n] Xj), and thus if we can determine which decision is better, no
randomization in the threshold rule decision is needed.
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Tightness

We now provide a family of instances that show that the 1 − 1/e bound in the Bernoulli
Selection Lemma is actually best possible. Since the context of the lemma is a particular
case for the hypothesis of Theorem 2.6, this example is also a lower bound for the general
case and proves the tightness of our result.

Consider n2 independent identically distributed Bernoulli random variables with parame-
ter 1/n and prizes b1 = n/(e−2) and bi = 1 for 2 ≤ i ≤ n2. The expectation of the maximum
prize is given by

E
[
max
i∈[n]
{biXi}

]
=

1

e− 2
+

(
1− 1

n

)(
1−

(
1− 1

n

)n2−1
)
−→ 1

e− 2
+ 1 .

In this particular setting, where the Bernoulli random variables are i.i.d., the best strategy
is to sort by prize and take some subset with those of higher prize. This means to choose the
�rst random variable and a subset of size k − 1 of the rest for some 1 ≤ k ≤ n2. This yields
an expected average value that can be upper bounded by(

1−
(

1− 1

n

)k) n
e−2

+ k − 1

k
≤

(
1−

(
1− 1

n

)k)(
n

k(e− 2)
+ 1

)
.

This in turn is less or equal to

max
0≤x≤n

(1− e−x)

(
1

x(e− 2)
+ 1

)
,

where x = k
n
. To solve this maximization problem, ee compute the �rst two derivatives of

the objective:

f ′(x) =
−ex + (e− 2)x2 + x+ 1

(e− 2)x2
e−x ,

f ′′(x) =
2ex − ((e− 2)x3 + x2 + 2x+ 2)

(e− 2)x3
e−x .

We see that f ′(1) = 0. To show that x = 1 is a global maximum, we prove that f ′(x) > 0
for x < 1 and f ′(x) < 0 for x > 1. To see this, �rst note that f ′′(x) has the same sign as the
function

g(x) = 2ex −
(
(e− 2)x3 + x2 + 2x+ 2

)
.

Note further that g(0) = 0. Since this is an exponential function with a positive coe�cient
minus a polynomial with only positive coe�cients, g(x) �rst decreases until some point
because of the polynomial, after which it is increasing, because of the exponential term that
starts to dominate the polynomial. So there exists some x∗ > 0 such that g(x) < 0 for
x < x∗, g(x∗) = 0 and g(x) > 0 for x > x∗. Because g(1) = e − 3 < 0, we know x∗ > 1.
Therefore, f ′′(x) < 0 up to x∗ > 1 and f ′′(x) > 0 afterwards, and hence, f ′(x) is decreasing
up to x∗ > 1 and increasing afterwards.

Since f ′(1) = 0 and f ′(x) is decreasing for x ≤ 1, we know f ′(x) > 0 for x < 1. Further-
more, f ′(x) < 0 for 1 < x ≤ x∗, since f ′(1) = 0 and f ′(x) is decreasing for 1 < x < x∗. Since
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limx→∞ f
′(x) = 0 and f ′(x) is increasing from x∗ onwards, we know f ′(x) < 0 for x > x∗,

and hence, f ′(x) < 0 for all x > 1. Therefore, x = 1 is a global maximum. This yields the
value

(1− e−1)

(
1

e− 2
+ 1

)
= (1− 1/e)E

[
max
i∈N
{biXi}

]
.

Algorithm

Although Theorem 2.6 states only the existence of thresholds that accomplish the result,
the proof is constructive and provides a way to compute their values as a function of the
probability distribution function of the random variables. When distributions are continuous
(and after proper perturbations of the support) the algorithm takes the following form:

Algorithm 2.1: Non-adaptive thresholds rule
Input: Distributions F1, . . . , Fn, values X1, . . . , Xn draw from the corresponding

distribution.
1 Initialize R = ∅, j = 0, X0 = 0
2 for i = 1 to n do

3 Compute qi = P(Xi = maxj∈[n] Xj)

4 Set threshold τi =

{
F−1(1− qi) w.p. 2

2+(e−2)qi

∞ otherwise.
5 if Xi > τi then

6 R← R ∪ {i}
7 end if

8 end for

9 if R 6= ∅ then
10 Select j uniformly at random from R
11 end if

12 return Xj

In the general case, it su�ces to change the condition Xi > τi by the randomized version of
the threshold rule, where with some probability the condition changes to Xi ≥ τi. Of course,
we can derandomized if we can assert which of the two conditions reports larger value.

Remark 2.1 Notice that with probability 1− 2qi
2+(e−2)qi

random variable Xi is never selected.
Therefore, the probability that the algorithm does not chose any of the random variables
(and get value zero) can be lower bounded by

n∏
i=1

(
1− 2qi

2 + (e− 2)qi

)
≥
(

1− 2

e

)n
≥ 1− 2

e
.

In consequence, the probability of actually accomplish a non-zero value is at most 2/e ≈ 0.74.
The intuition to this is that if we shoot for an algorithm that selects too frequently, we risk
ending up with a value too low.

14



Chapter 3

Prophet Inequality for I.I.D.

Distributions

In this chapter we study the existence of thresholds to solve the problem of selecting a
value given by a uniformly random sequence of independent identically distributed random
variables. We provide a constructive proof of a rule that achieves a factor of approximately
0.745 over the expected maximum, an algorithm to implement this rule, and an example that
shows that these results are tight. By doing so, we answer a more than 30 years old open
problem in the area of optimal stopping.

3.1 Preliminaries

For �xed n > 1, let X1, . . . , Xn be non-negative, independent and identically distributed
random variables and Tn their set of stopping rules. In 1982, Hill and Kertz [13] proved that

E(max{X1, . . . , Xn}) ≤ an sup{E(Xt) : t ∈ Tn},

where an is a constant depending on n and such that for all n > 1, 1.1 < an < 1.6. Although
they proved the constant an is tight for every n, 1.6 is not the best bound. Kertz [14]
conjectured that the best upper bound for any n was β∗ ≈ 1.341, where β∗ is the unique
solution to

1 +

∫ 1

0

1

y(ln(y)− 1)− (β − 1)
dy = 0, (3.1)

and furthermore proved that an → β∗.

More recently, Abolhassan et al. [1] improved this bound to 1.355, getting closer to the
answer, but leaving the question still open. In this part of the work, we prove that β∗ is
actually the best possible bound, closing the by now 30 year old conjecture. To accomplish
this result, we consider, as in [20], a threshold rule, where we choose to stop the �rst time
we see a variable above certain value. Unlike them, however, where the same threshold is
set for all the variables, we de�ne a decreasing sequence of threshold for every one of the
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variables Xi, i = 1, . . . , n. Since any threshold rule de�nes a stopping time, our result answers
positively the three decades conjecture.

This type of inequalities are commonly called prophet inequalities, since the factor repre-
sents the odds a player aiming to get the largest value must be paid when betting against a
prophet who knows exactly which the largest value is.

3.2 Properties of the Threshold Rule

For X1, . . . , Xn non-negative i.i.d. random variables, we take F as their probability distribu-
tion function and for simplicity, we will often refer to X as a random variable with the same
common distribution. As in the previous chapter, let F−1 be the generalized inverse of F
and τ(q) = F−1(1− q).

Again, we can interpret τ(q) as a value for which the acceptance probability equals q. In
general, τ(q) may have mass and one can only assert that P(X ≥ τ(q)) ≥ q ≥ P(X > τ(q)).

We will construct the threshold rule choosing the probability of acceptance on every step,
in the same way in Section 2.3. For a random variable X, we select a proper acceptance
probability q and will choose to stop if X > τ(q). If τ(q) has mass, we randomize. Again,
the probability of stopping in a certain step, conditioned in having reached that step, is �xed
to be equal to the probability of acceptance that de�nes the corresponding threshold.

LetR(q)/q be the expected value of the random variableX given the threshold rule decided
to stop when its acceptance probability was at most q. Note that if q = P(X > τ(q)), then
R(q) = E(X | X > τ(q))q.

We begin with the following lemma:

Lemma 3.1

E(max{X1, . . . , Xn}) = n

∫ 1

0

(n− 1)(1− q)n−2R(q)dq. (3.2)

Proof. Let q̄ = P(X > τ(q)) and note that τ(q̄) = τ(q). It is straightforward to check that if
q = q̄, then R(q) = E(X | X > τ(q))q =

∫ q
0
τ(θ)dθ. Otherwise (which may occur when τ(q)

has mass), we have that

R(q) = s

∫ ∞
0

P(X > t,X ≥ τ(q))dt+ (1− s)
∫ ∞

0

P(X > t,X > τ(q))dt

= s

∫ ∞
0

P(X > t,X = τ(q))dt+

∫ ∞
0

P(X > t,X > τ(q))dt

= s

∫ τ(q)

0

P(X = τ(q))dt+

∫ ∞
0

P(X > t,X > τ(q̄))dt

= (q − q̄)τ(q) +R(q̄)
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=

∫ q

q̄

τ(θ)dθ +

∫ q̄

0

τ(θ)dθ

=

∫ q

0

τ(θ)dθ.

Where the second to last inequality follows because F−1(1 − θ) is constant in the interval
(q̄, q). Then,

E(max{X1, . . . , Xn}) =

∫ ∞
0

1− F n(t)dt

=

∫ 1

0

F−1( n
√
z)dz

= n

∫ 1

0

(1− q)n−1τ(q)dq

= n

∫ 1

0

(n− 1)(1− q)n−2

(∫ q

0

τ(θ)dθ

)
dq

= n

∫ 1

0

(n− 1)(1− q)n−2R(q)dq .

Note that the second inequality is justi�ed by Fubini's Theorem.

In the remaining of the chapter, to simplify notation and the understanding of the proof,
whenever τ(q) has mass, we will not condition on the decision of the threshold rule. We
will refer to the threshold rule as to stop every time a random variable is strictly above its
corresponding threshold. In virtue of Lemma 3.1, all arguments will still apply to the case
when we randomize between strict inequality and weak inequality. Adittionally, as we will
see later, it is always the case that at least one of the choices of the threshold rule (whether
apply strict inequality or weak inequality) reports a conditional expected value R(q) larger or
equal to

∫ q
0
τ(θ)dθ, and thus if we can determine which decision is better, no randomization

in the threshold rule decision is needed.

Our proof not only assures the existence of thresholds for which a constant of β∗ is achieved,
but also provides an algorithm to compute the values of these threshold in terms of the
probability distribution function. The intuition behind the threshold rule is to start with a
high threshold and decrease it for the remaining variables, such to mitigate the risk of not
stopping.

We partition the interval A = [0, 1] into n intervals Ai = [εi−1, εi], with 0 = ε0 < ε1 <
. . . < εn−1 < εn = 1. To implement this idea we use Expression (3.2) as a guide and construct
the the threshold for variable i by drawing a qi from the interval Ai according to probability
density function fi(q) = ψ(q)

αi
, where ψ(q) = (n − 1)(1 − q)n−2 and αi is a normalization

parameter equal to αi =
∫
q∈Ai

ψ(q)dq. This qi is meant to be the acceptance probability of
variable Xi, so that under the assumption of F being continuous with positive density, the
corresponding threshold at step i is τi = τ(qi).

With the thresholds set, we next establish the factor guarantee. To this end, let r :=
min{i ∈ {1, . . . , n} : Xi > τi}. We prove in Lemma 3.2 that the expected value of the �rst
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random variable above its threshold, Xr, satis�es

E(Xr) =
n∑

i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)qdq,

where ρ1 = 1
α1

and ρi+1 = ρi
αi+1

∫ εi
εi−1

ψ(q)(1− q)dq for i = 1, . . . , n− 1.

By choosing the values of ε1, . . . , εn−1 in such a way that ρ1 = ρ2 = . . . = ρn, we have
E(max{X1, . . . , Xn}) ≤ nα1E(Xr), and thus we wrap-up by proving that the term nα1 is
bounded by β∗. For the latter we set up a recursion whose solution determines α1 and then
approximate the recursion with an ordinary di�erential equation.

Relating the maximum and the threshold rule

Lemma 3.2 Let ρ1 = 1
α1

and ρi+1 = ρi
αi+1

∫ εi
εi−1

ψ(q)(1 − q)dq for i = 1, . . . , n − 1. Then the

expected value of the value of the �rst random variable above its threshold, Xr, satis�es

E(Xr) =
n∑

i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)qdq .

Proof. Let qi denote the drawn acceptance probability for customer i. The expected value
obtained in step i correspond to the expected value of Xi given it is above its threshold times
the probability this occurs. This is is exactly R(q)q.

Now, for j = 1, . . . , n − 1, let qj denote the drawn acceptance probability of customer
j. Then, the probability that we actually get to step i is equal to

∏i−1
j=1 1 − qj. Hence, the

expected value of Xr, the �rst variable above its threshold is

E(Xr) =
n∑

i=1

E(R(qi))
i−1∏
j=1

E(1− qj)

=
n∑

i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq

∏i−1
j=1

∫ εj
εj−1

ψ(q)(1− q)dq∏i
j=1 γi

=
n∑

i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq .

If we denote q̄i = P(X ≥ τ(qi)) and q
i

= P(X > τ(qi)), then F−1(1 − q) is constant in
[q

i
, q̄i]. Thus, R(q) =

∫ q
0
F−1(1− θ)dθ is linear in that interval, implying that E(Xr) is linear

as a function of qi when τ(qi) has mass. This means that one of the following, the strategy
that stops in step i whenever X ≥ τ(qi), or the strategy that does so when X > τ(qi), attains
a larger expected reward than E(Xr). Thus, if we can assert which of the two gives higher
expected reward, then we can derandomize this step.
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By choosing ε1, . . . , εn−1 appropriately, we can express the expected value of the thresholds
rule in terms of that of the maximum.

Lemma 3.3 If we choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn, then

E(max{X1, . . . , Xn}) = nα1E(Xr) .

Proof. If we choose ε1, . . . , εn−1 such that ρi = ρ1 = 1
α1

for all i, then by Lemmatta 3.1 and
3.2 we can express the expected value of the maximum by

E(max{X1, . . . , Xn}) = n

∫ 1

0

(n− 1)(1− q)n−2R(q)q dq

= nα1ρ1

n∑
i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)q dq

= nα1

n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)q dq

= nα1E(Xr).

Bounding through a recursion

Since ρi+1 = ρi
αi+1

∫ εi
εi−1

ψ(q)(1−q)dq for all i, choosing ε1, . . . , εn−1 such that all ρi are the same

amounts to choosing them such that αi+1 =
∫ εi
εi−1

ψ(q)(1− q)dq for all i. By the de�nition of
αi+1 and ψ(q), this is equivalent to choosing them such that for all i∫ εi

εi−1

ψ(q)(1− q) dq =
n− 1

n
((1− εi−1)n − (1− εi)

n)

is equal to ∫ εi+1

εi

ψ(q) dq = (1− εi)
n−1 − (1− εi+1)n−1 .

Now, substitute xi = 1− εi. Then, from Lemma 3.3, we obtain the following recursion on xi:

xi−1
n

n
− xi

n

n
=
xi
n−1

n− 1
− xi+1

n−1

n− 1
, (3.3)

where x0 = 1 and xn = 0. Moreover,

α1 =

∫ ε1

0

ψ(q) dq = 1− x1
n−1 .

Combining this with Lemma 3.3, we see that if n(1− x1
n−1) ≤ β, for some β ≥ 1, then the

expected value of the maximum is at most the expected value of the threshold rule times β.
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Note that n(1−x1
n−1) ≤ β implies that x1 ≥ (1− β

n
)1/(n−1). Thus, if we �nd the minimum

value for β such that x1 < (1 − β
n
)1/(n−1) implies xn < 0, we know that x1 ≥ (1 − β

n
)1/(n−1)

for that value of β.

Hence, we proceed by showing an upper bound on the value of xn. For this, we use the
following lemma.

Lemma 3.4 For values x0, x1, . . . , xn satisfying (3.3) and x0 = 1 and xn = 0, we have for
i = 1, . . . , n− 1,

xi+1 =

(
n− 1

n
xi
n + x1

n−1 − n− 1

n

)1/(n−1)

. (3.4)

Proof. We prove this lemma by induction. For i = 1 equation (3.3) gives

x2 =

(
x1

n−1 +
n− 1

n
x1

n − n− 1

n

)1/(n−1)

.

Now, suppose the claim is true for i = 1, . . . , j. From (3.3), we know that

xj+1
n−1 = xj

n−1 +
n− 1

n
xj
n − n− 1

n
xj−1

n

=
n− 1

n
xj−1

n + x1
n−1 − n− 1

n
+
n− 1

n
xj
n − n− 1

n
xj−1

n

=
n− 1

n
xj
n + x1

n−1 − n− 1

n
,

where the second equality is due to the induction hypothesis.

In the following, we show that each of the terms xi in the recursion can be bounded with a
function y(t) : [0, 1]→ R, de�ned through the following di�erential equation. All derivatives
of y are with respect to t.

y′ = y(ln(y)− 1)− (β − 1) ,

y(0) = 1 .
(ODE)

Furthermore, we de�ne y(1) = limt↑1 y(t) as the continuous extension of y(t).

Later on, we will choose β = β∗ ≈ 1.34. For this β, we have y ∈ [0, 1], so we restrict our
analysis of (ODE) to this interval. We assume β > 1.25 and y ∈ [0, 1]. We validate these
assumptions at the end of our analysis.

Lemma 3.5 Di�erential equation (ODE) has a unique solution y(t), which is a decreasing
and strictly convex function on the interval [0, 1]. Furthermore, y′′′(t) > 0 for y ∈ (0, 1).

Proof. Note that y′(0) = −β < 0 because y(0) = 1. For y ∈ (0, 1], we know ln(y) ≤ 0. Also,
as β > 1, we conclude y′(t) < 0. Furthermore, y(t) is convex as for y ∈ [0, 1),

y′′ = y′(ln(y)− 1) + y
y′

y
= y′ ln(y) > 0 ,
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and y′′ = 0 for y = 1. Finally,

y′′′ = y′′ ln(y) + y′
y′

y
= y′ ln2(y) +

(y′)2

y
= y′

(
ln2(y) + ln(y)− 1− β − 1

y

)
.

We show that ln2(y) + ln(y) − 1 − β−1
y

< 0 for y ∈ (0, 1) or, equivalently, that g(y) =

y ln2(y) + y ln(y) − y − β + 1 < 0 for y ∈ (0, 1). To determine the maximum value of g(y),
observe that

dg(y)

dy
= ln2(y) + 2y ln(y)

1

y
+ ln(y) + y

1

y
− 1

= ln2(y) + 3 ln(y) = ln(y) (ln(y) + 3) .

Note that dg(y)
dy
≥ 0 on y ∈ (0, e−3) and g′(y) < 0 on y ∈ (e−3, 1). Hence, since g(y) is

continuous, its maximum is attained at y = e−3, and g(e−3) = 5e−3 − β + 1 < 0 as β > 1.25.

Moreover, note that if y ∈ (0, 1), then |y′′| is bounded, and hence y′ is Lipschitz continuous.
Therefore, by the Picard-Lindelöf Theorem [18], y(t) is unique on (0, 1). As y(0) is given, and
we de�ned y(1) as the continuous extension of y(t), the solution y(t) is unique on [0, 1].

We now proceed to prove that the solution of (ODE) dominates the terms of the recurrence.
Before continuing, we require a technical result.

Proposition 3.6 If x ∈ (0, 1] and n ≥ 2, then

x+
x(ln(x)− 1)

n
+
x(ln(x)− 1)− (β − 1)

2n2
ln(x) ≥ n− 1

n
x

n
n−1 .

Proof. Fix a value for n. Since −(β−1) ln(x) is positive, and since x > 0, it su�ces to prove
that

f(x) := 1 +
ln(x)− 1

n
+

ln(x)(ln(x)− 1)

2n2
− n− 1

n
x

1
n−1 ≥ 0 .

As f(1) = 0 for all n, showing that f is nonincreasing completes the proof. All derivatives
are with respect to x. We see that

f ′(x) =
1

nx
+

ln(x)− 1

2n2x
+

ln(x)

2n2x
− 1

n
x

1
n−1
−1 =

1

nx

(
1− x

1
n−1 +

1

2n
(2 ln(x)− 1)

)
.

For x ∈ (0, 1], f ′ has the same sign as g(x) := 1 − x
1

n−1 + 1
2n

(2 ln(x) − 1). We prove that g
has a maximum x∗ ∈ (0, 1] with g(x∗) ≤ 0. This implies that both g and f ′ are nonpositive.
Indeed,

g′(x) =
1

nx
− x

1
n−1
−1

n− 1
,

g′′(x) = − 1

nx2
+

n− 2

(n− 1)2
x

1
n−1
−2 .
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Observe that g′(x∗) = 0 only when x∗ = (n−1
n

)n−1. Furthermore, g′′ has the same sign as

h(x) := − 1
n

+ n−2
(n−1)2

x
1

n−1 , which is an increasing function in x for all n ≥ 2. As h(1) =

− 1
n(n−1)2

< 0, g′′ is negative, g is concave and attains its maximum at x∗. Finally,

g(x∗) = 1− n− 1

n
+
n− 1

n
ln

(
n− 1

n

)
− 1

2n

=
1

2n
+
n− 1

n
ln

(
1− 1

n

)
≤ 1

2n
+
n− 1

n

(
− 1

n

)
=

1

n2
− 1

2n
=

1

n

(
1

n
− 1

2

)
≤ 0 ,

where the last inequality follows from n ≥ 2. This concludes the proof.

Using this proposition, we bound the recurrence by the function y(t) in the following way.

Lemma 3.7 If x1 < (1− β
n
)

1
n−1 , then xi

n−1 < y( i
n
) for i = 1, . . . , n, where y(t) is the unique

solution of (ODE).

Proof. First note that x0 = y(0) = 1, by de�nition. Moreover, we already saw that y′(0) =
−β. As y(t) is strictly convex, we know that y(1/n) > y(0) − 1

n
β > x1

n−1, where the last
inequality follows by assumption. Now assume that xi

n−1 < y( i
n
), then we prove xi+1

n−1 <
y( i+1

n
). First observe that the Taylor expansion of y( i+1

n
) around i

n
is

y( i+1
n

) = y( i
n
) +

1

n
y′( i

n
) +

1

2n2
y′′( i

n
) +

1

6n6
y′′′(ζ) ,

with ζ ∈ [ i
n
, i+1
n

]. As y′′′ > 0, it follows that

y( i+1
n

) > y( i
n
) +

1

n
y′( i

n
) +

1

2n2
y′′( i

n
)

= y( i
n
) +

y( i
n
)(ln(y( i

n
))− 1)− (β − 1)

n
+
y( i

n
)(ln(y( i

n
)− 1)− (β − 1))

2n2
ln(y( i

n
))

≥ n− 1

n
y( i

n
)

n
n−1 − β − 1

n

>
n− 1

n
xni −

β − 1

n
> xn−1

i+1 ,

where the last inequality follows from Lemma 3.4 and the assumption that xn−1
1 < 1− β

n
.

3.3 Main Theorem

We are now ready to prove the main theorem of this chapter.
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Theorem 3.8 For any n > 1 and non-negative i.i.d. random variables X1, . . . , Xn, there
exist thresholds τ1, . . . , τn, such that

E(max{X1, . . . , Xn}) ≤ β∗E(Xr)

where β∗ is the unique solution to (3.1) and r := min{i ∈ {1, . . . , n} | Xi > τi}. If the latter
set is empty, we take Xr = 0. If some of the distribution have mass in their corresponding
thresholds, the de�nition of r must change accordingly.

Proof. Choosing 0 = ε0 < ε1 < . . . < εn−1 < εn = 1 such that
∫ εi
εi−1

ψ(q)(1 − q) dq = αi+1,
we know by Lemma 3.3 that

E(max{X1, . . . , Xn}) ≤ nα1E(Xr) ,

where α1 = 1 − (1 − ε1)n−1 = 1 − xn−1
1 . Hence, we want to show n(1 − xn−1

1 ) ≤ β∗ for
β∗ ≈ 1.3415.

We prove by contradiction and assume xn−1
1 < 1− β

n
. Then Lemma 3.7 yields xn < y(1),

so we choose β such that y(1) = 0 to reach a contradiction with the fact that xn = 0. Note
that this indeed implies y ∈ [0, 1] as we assumed. Hereto, note that y(t) is invertible by
Lemma 3.5. Hence, we can consider t as a function of y, for which we know t(1) = 0, and we
want to choose β such that t(0) = 1. In virtue of the inverse function theorem, we have that

t(1) = t(0) +

∫ 1

0

dt

dy
dy = 1 +

∫ 1

0

1
dy
dt

dy

= 1 +

∫ 1

0

1

y(ln(y)− 1)− (β − 1)
dy .

So β∗ is the value such that the last integral equals −1. This yields β∗ ≈ 1.3415.

We �nish this section by proving that the sequence an de�ned in [13] equals exactly ours
nα1. Our recurrence was given by x0 = 1, xn = 0 satis�ed the relation given in Lemma 3.4
for i = 1, . . . , n:

xi+1 =

(
n− 1

n
xi
n + x1

n−1 − n− 1

n

)1/(n−1)

. (3.5)

Set γn = n− 1− nxn−1
1 . Now, equation (3.5) can be rewritten as

xni =
n

n− 1
xn−1

i+1 +
γn

n− 1
. (3.6)

Consider the variables zi = xnn−i. These new variables satisfy z0 = 0, zn = 1 and the
recurrence

zi+1 =
n

n− 1
z

n−1
n

i +
γn

n− 1
. (3.7)

We recover the Hill-Kertz recursion by noting that z1 = γn
n−1

. Then, our approximation factor
n(xn−1

1 − 1) is equal to theirs 1 + αn. Note here that our α1 does depend on n, though we
have omited this dependency for simplicity of notation. Thus our result implies that an ≤ β∗

and and by the work of Hill and Kertz [13] and Kertz [14] we know that this bound is tight.
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Algorithm

As in the previous chapter, the proof of Theorem 3.8 provides a construction to compute
the thresholds as a function of the probability distribution function of the random variables.
When the distribution is continuous the algorithm takes the following form:

Algorithm 3.1: Adaptive i.i.d. thresholds rule
Input: Distribution F , values X1, . . . , Xn draw from F .

1 Initialize r = 0, X0 = 0
2 partition [0, 1] in n disjoint intervals Ai = [ai−1, ai], i = 1, . . . , n where xi = 1− ai

satisfy (3.3).
3 for i = 1 to n do

4 draw qi from Ai with density proportional to (n− 1)(1− q)n−2

5 set threshold τi = F−1(1− qi)
6 if Xi > τi then

7 r ← i
8 break

9 end if

10 end for

11 return Xr

In the general case, it su�ces to change the condition Xi > τi by the randomized version
of the threshold rule, where with some probability the condition changes to Xi ≥ τi. This
again can be derandomized using the same technique as in Algorithm 2.1.
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Chapter 4

Applications to Mechanism Design

In this chapter we discuss applications of the previous advances in optimal stopping theory in
mechanisms design. In particular, we will use these tools to produce Bayesian near-optimal
solutions to mechanism design problems in the form of approximations algorithms to the
optimal solution. Broadly speaking, we analyze the problem faced by a seller who wishes to
sell an item to potential customers and whose objective is to maximize her revenue. We also
point a direct application in social welfare maximization.

4.1 Preliminaries

The problem we consider is in general labeled as a problem of pricing. A monopolist sells a
single item to a set of n buyers. The seller places no value on the item, while the buyers are
assumed to have independent random valuations V1, . . . , Vn for the item, following continuous
and increasing distributions F1 . . . , Fn (in particular, distributions have positive density over
their support). The main question is to design a mechanism maximizing the revenue of the
seller. In other words, the problem of pricing is to �nd an allocation rule and prices to charge
for all possible values customers declare to have over the item. This question was answered
in a seminal paper by R. Myerson in 1981 [19].

For each customer i ∈ [n], de�ne φi(v) = v− 1−Fi(v)
F ′i (v)

as the virtual value function. We will
say that Fi is a regular distribution if φi is a non-decreasing function. Otherwise, we will
say it is non-regular. In this case, we can transform φi into a non-decreasing function with a
process called ironing. De�ne Gi as the convex hull of the function Hi(q) = −(1− q)F−1

i (θ):

G(q) = min {xH(q1) + (1− x)H(q2) : xq1 + (1− x)q2 = q and x, q1, q2 ∈ [0, 1]} .

The function φ̄i(v) = G′(F (v)) is called the ironed virtual value and is non-decreasing (note
that when φi is non-decreasing, both functions coincide).

Let v̄i be the reserve price of customer i, i.e., a value for which φ̄i(v̄i) = 0. Myerson's
optimal auction allocates the item to the customer with highest (ironed) virtual value, among
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the customers with non-negative virtual value. If the valuation of every customer is below
their reserve price, then the seller keeps the item. Then, it can be proved that the expected
revenue of the optimal auction is given by OPT = E(max{φ̄1(V1), . . . , φ̄n(Vn), 0}). If we
de�ne Xi = φ̄i(Vi)

+ as the positive part of the virtual valuation of customer i, then

OPT = E(max{X1, . . . , Xn}).

This solution to the sellers problem is, in some situations, a remarkably simple mechanism.
However, in many situations it is hard to implement, and the mechanism of choice turns out
to be a simple posted price mechanism. Posted price mechanisms constitute an attractive and
widely applicable way of selling items to strategic consumers. In this context, consumers are
faced with take-it-or-leave-it o�ers, and therefore strategic behaviour simply vanishes. The
setting then is that of a sequential auction: there is an order over the set of customers, and
the o�ers are made according to that order. This type of mechanism has been vastly studied,
particularly in the marketing community [5]. In recent years, there has been a signi�cant
e�ort to understand the expected revenue of the outcome generated by di�erent posted price
mechanisms when compared to that of the optimal auction [2, 4, 6, 21].

The objective of this chapter is to apply the techniques developed in Chapters 2 and 3 to
investigate the performance of posted price mechanisms to sell a single item to a given set
of customers who arrive in a random unknown order, with respect to the optimal auction.
We consider two di�erent models which share the property that each customer is o�ered the
item at most once. Upon receiving an o�er, a customer immediately decides whether to buy
the item at that price or to pass and simply not buy.

The non-adaptive model considers the situation in which all o�ers have to be made simul-
taneously, and customers respond in random order, akin to direct mail campaigns, in which
the seller contacts its potential buyers directly and o�ers each one a certain price for the
item. The item is then sold to the �rst consumer who accepts the o�er [5, 7]. The adaptive
model considers a situation in which the seller may adapt the o�er. Here, customers again
arrive in random order. Whenever a customer arrives, she is o�ered the item at a price,
which the seller may base on the customer he is o�ering to, as well as the customers who
already rejected earlier o�ers.

Problem of Welfare

Before discussing the problem of pricing, we brie�y explain an application to welfare max-
imization. Suppose there is a good and n agents with random valuation for the good. A
central planner wishes to allocate the good in order to maximize the expected utilitarian
social welfare.

If the valuations of the agents are given by non-negative random variables Z1, . . . , Zn,
then the expected maximum welfare is exactly the quantity E(max{Z1, . . . , Zn})), which is
achieved when the good is allocated to the agent who values it the most.

Consider a sequential setting where the values of agents are learned in order, and the
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central planner must decide to allocate the good in the moment it learns the valuation of
the agent. It is easy to observe that this setting is equivalent to the ones already discussed
in the previous chapters. This means that guarantees found for the non-adaptive and the
adaptive i.i.d. thresholds rule � and the algorithms to achieve them � also apply for the
central planner trying to approximate the maximum social welfare.

4.2 Reduction to Pricing

The main tool of this chapter will be to derive a general principle to treat a problem of posted
price as a prophet inequality in a wide spectrum of settings. One of the �rst works in this
directions were developed by [11, 3], and particularly well known are the results by [6]. We
provide alternative and novel profs to achieve this reduction, which may shed light about the
applicability of this construction. We recall that all distributions considered in this chapter
are continuous and increasing.

Lemma 4.1 For a non-negative random variable V with regular distribution F , let X be the
positive part of its virtual valuation. Then, for any τ ≥ 0,

E(X | X > τ) = F−1(1− q), with q = P(X > τ).

If the distribution is non-regular, there exist q1, q2, x ∈ [0, 1] such that xq1 +(1−x)q2 = q and

E(X | X > τ) =
xq1F

−1(1− q1) + (1− x)q2F
−1(1− q2)

q
.

Proof. Let c̄ be the ironed virtual value function. Recall that c̄(v) = G′(F (v)), where G is
the convex hull of the function H(θ) = −(1− θ)F−1(θ). Thus,

E(X | X > τ)P(X > τ) =

∫ ∞
τ

c̄(u)dF (u) =

∫ q

0

G′(1− θ)dθ = −G(1− q).

Additionally, when the distribution is regular, G = H and the result follows.

Since the events Xi > τi and Vi ≥ F−1
i (1− qi) are equivalent, it is a direct corollary that

if the virtual value function φ is increasing, then E(X | X > τ) = ϕ−1(τ).

Using Lemma 4.1 we can make a reduction from any threshold rule in a prophet inequality
setting to a posted price guarantee. Consider the traditional setting where a set of random
variables with known distributions are presented in order according some permutation. Sup-
pose there is a threshold rule that when choosing the �rst variable above the corresponding
threshold, we get an expected value of at least α times the expected value of the maximum.
Then, we can get the same guarantee for the expected revenue for a posted price mechanism
with the same permutation, in relation to the value of the optimal auction.
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To see how, let V1, . . . , Vn be the random valuation that the n customers have over the
item. If a posted price mechanism o�ers prices v1, . . . , vn, the expected revenue we get is

n∑
i=1

viP(Vi ≥ vi, i is the �rst above price).

Let X1, . . . , Xn be their respective positive virtual values and consider non-negative thresh-
olds τ1, . . . , τn for every one of them1. If r denotes the �rst random variable whose virtual
value is above its corresponding threshold, the expected virtual value we get in the regular
case can be expressed as

E(Xr) =
n∑

i=1

E(Xi | i = r)P(i = r)

=
n∑

i=1

E(Xi | Xi > τi)P(Xi > τi, i is the �rst above threshold)

=
n∑

i=1

F−1
i (1− qi)P(Vi ≥ F−1

i (1− qi), i is the �rst above threshold)

where qi = P(Xi > τi). Then, the expected value of the threshold rule over the virtual values
equal the expected value of the revenue of a posted price mechanism over the valuations, under
a proper selection of prices. In case some distribution is regular, then we must randomized
between two prices when making the o�er to that customer.

Since Xi is positive for all i = 1, . . . , n, and OPT = E(max{X1, . . . , Xn}), choosing
thresholds for this random variables from a strategy for the secretary problem that accomplish
an α approximation of the maximum, and setting the proper posted prices, gets a revenue of
at least α times the optimal auction. To sum up, what we get is

OPT = E(max{X1, . . . , Xn}) ≤ αE(Xr) = αE(F−1
r (1− qr)).

Remark 4.1 Since any threshold derived from a threshold rule over the non-negative virtual
valuations will be non-negative, all prices induced by these thresholds will be larger or equal
than the reserve price for every one of the customers valuations.

We can thus conclude the following result:

Theorem 4.2 Consider a sequential auction of one item where customers have private val-
uations with known distributions. Suppose there exists a threshold rule for non-negative ran-
dom variables that are presented following the same sequence as the customers in the auction,
achieving an expected value of α times the expected maximum. Then there exists a posted
price mechanism for such auction that achieves a revenue of α timesthe optimal auction.

We remark that this approach has already been taken by many authors (e.g., [6, 9, 15]),
however, to our knowledge, this derivation of the result is new.

1In general, thresholds do not necessary depend (only) on the random variable they are facing, but the
notation is without loss of generality since in the proof we are only interested in the value of the threshold
each random variable faces and not the process by which this value is obtained.
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4.3 Non-adaptive Posted Price Mechanism

Formally stated, the problem we consider is the following. A seller has a single item to sell
to a given set of n customers. We assume that the seller has no value for keeping the item.
Customers have independent random valuations for the item with customer i valuing the
item at Vi, drawn from distribution Fi. The customers arrive in random order, and the goal
of the seller is to maximize his expected revenue, under the restriction that prices vi must be
set beforehand. The seller sets prices vi ≥ 0 for all i ∈ [n], with the goal of maximizing his
expected revenue.

The next result is a corollary of of Theorem 2.6 and Theorem 4.2.

Theorem 4.3 For any given set of potential customers whose valuations are independet,
there exists a non-adaptive posted price mechanism that achieves an expected revenue of at
least a 1− 1/e fraction of that of Myerson's optimal auction.

Algorithm

Note that the non-adaptive algorithm of Chapter 2 (Algorithm 2.1) computes the probabilities
of each random variable being the largest and uses these values to set the thresholds. Since
the optimal auction always allocate the item to the highest virtual value customer above its
reserve price, and positive virtual thresholds reduce in prices above the reserve price, this is
equivalent to compute the probability of each customer winning the optimal auction. When
distributions are regular, the algorithm takes then the following implementation:

Algorithm 4.1: Non-adaptive posted price mechanism
Input: Distributions F1, . . . , Fn, valuations V1, . . . , Vn draw from the corresponding

distribution.
1 Initialize R = ∅, j = 0, v0 = 0
2 for i = 1 to n do

3 Compute qi = probability optimal auction assigns to customer i

4 Set price vi =

{
F−1(1− qi) w.p. 2

2+(e−2)qi

∞ otherwise.
5 if Vi ≥ vi then

6 R← R ∪ {i}
7 end if

8 end for

9 if R 6= ∅ then
10 Select j uniformly at random from R
11 end if

12 return vj

For non-regular distributions, price vi must be set randomly between two di�erent prices
(although this can be derandomized choosing the one reporting larger revenue).
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Alternative Proof

For completeness, we will describe how to derive the same posted price policy using only
the Bernoulli Selection Lemma (Lemma 2.1) and a technical result by [6], for which we also
provide an alternative simple proof.

Lemma 4.4 ([6]) If all value distributions are regular, then the expected value of Myerson's
optimal auction is bounded from above by∑

i∈[n]

F−1
i (1− qi)qi ,

where qi is the probability that the optimal auction assigns the item to customer i.

For every i (with regular or non-regular distribution) there exist two prices pi and pi, with
corresponding probabilities qi and qi, and a number 0 ≤ xi ≤ 1, such that xiqi +(1−xi)qi = qi,
and the expected revenue of Myerson's optimal auction is bounded from above by∑

i∈[n]

xipi qi + (1− xi)pi qi .

Proof. Using Lemma 2.7 we can express the revenue of the optimal auction as

OPT = E(max{X1, . . . , Xn}) =
n∑

i=1

E(Xi | Xi = max
j∈[n]

Xj)qi ≤
n∑

i=1

E(Xi | Xi > αi)qi

with Xi the positive part of the virtual valuation and αi a value for which P(Xi > αi) = qi.
We recall Lemma 4.1 to conclude.

Proof of Theorem 4.3. We prove the regular case �rst. Let qi denote the probability with
which Myerson's optimal auction assigns the item to customer i, and set bi = F−1

i (1 − qi).
The expected revenue of a non-adaptive posted price mechanism, that chooses to sell only to
customers in S ⊆ [n] while o�ering prices bi, is given by∑

i∈S

biP[i = argmin
j∈S

{σ(j) | vj ≥ bj}] =
∑
i∈S

biqiP[i = argmin
j∈S

{σ(j) | vj ≥ bj} | vi ≥ bi]

=
∑
i∈S

biqi

∑
R⊆S\{i}

1

1 + |R|
∏
j∈R

qj
∏

j∈S\(R∪{i})

(1− qj)

=
∑
i∈S

biqiE
[

1
1+

∑
j∈S\{i}Xj

]
= E

[∑
i∈S biXi∑
i∈S Xi

]
,

where {Xi}i∈[n] are Bernoulli random variables with Xi = 1 with probability qi, and σ is a
uniformly random permutation. By the Bernoulli Selection Lemma we can choose the set
S ⊆ [n] to be such that the latter is lower bounded by(

1− 1

e

)
max
zi≤qi

∑
i∈[n]

bizi

∣∣∣ ∑ zi ≤ 1

 ≥
(

1− 1

e

)∑
i∈[n]

F−1
i (1− qi)qi .
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Therefore, Lemma 4.4 leads to the desired conclusion.

In the non-regular case, the posted price mechanism runs a lottery between two prices
to get the desired bound2. First, for every bidder with positive probability of winning the
optimal auction, set

b′i =
xipi qi + (1− xi)pi qi

qi

,

where the variables are de�ned as in the lemma. Also consider the same Bernoulli random
variables presented in the �rst part of the proof. The non-adaptive posted price mechanism
sells only to a set S ′ of customers (to be de�ned). For every i ∈ S ′, it o�ers a random price
pi equal to pi with probability xi, and pi otherwise. This way, the a priori probability that vi

is above the price o�ered is exactly xiqi + (1 − xi)qi = qi, while the expected revenue of the
mechanism can be evaluated as∑

i∈S′
xipi qiP[i = argmin

j∈S′
{σ(j) | vj ≥ pj} | vi ≥ pi, pi = pi]

+ (1− xi)pi qiP[i = argmin
j∈S′

{σ(j) | vj ≥ pj} | vi ≥ pi, pi = pi]

=
∑
i∈S′

(xipi qi + (1− xi)pi qi)
∑

R⊆S′\{i}

1

1 + |R|
∏
j∈R

qj
∏

j∈S′\(R∪{i})

(1− qj)

=
∑
i∈S′

b′iqiE
[

1
1+

∑
j∈S′\{i}Xj

]
= E

[∑
i∈S′ b

′
iXi∑

i∈S′ Xi

]
.

As before, Lemma 2.1 implies that there exists S ′ ⊆ [n] such that the latter is lower bounded
by (1− 1/e)

∑
i∈[n] b

′
iqi. Lemma 4.4 implies the bound over the optimal auction.

Tight instance with i.i.d. valuations.

We construct a family of instances for the non-adaptive pricing problem with i.i.d. customer
valuations, such that, for all ε > 0, there is an instance from this family for which no
non-adaptive strategy can achieve an expected revenue within a factor (1 + ε)(1 − 1/e) of
the optimal expected revenue. but here we achieve this with i.i.d. valuations. Consider n2

customers whose values are independent identically distributed such that with probability
1
n3 , the value is n

e−2
, with probability 1

n
is 1, and 0 otherwise.

Consider an auction that o�ers the item for price n/(e − 2) − c (with c a small value,
say c = 2) to any bid above that price (and assigns the item at random if more than one
such o�er is received), and if no such bid is received, then it runs a lottery at price 1 among
all the bids above that price. As there are many buyers of value 1, a potential large value
customer will prefer to make a revenue of c rather than risking to lose the item in the lottery.

2This lottery can be derandomized using standard techniques, since each combination of prices o�ered to
the customers is a deterministic mechanism in itself and the random mechanism is simply a lottery over, and
thus a convex combination of, those deterministic mechanisms.
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Therefore the revenue the auction will generate will approach 1/(e − 2) + 1 as n → ∞. Of
course, the revenue of the optimal auction is then at least this quantity. On the other hand,
the best posted price mechanism o�ers a price of 1 to, say, customers 1, . . . , k and n/(e− 2)
to the rest of the customers. The resulting revenue can be computed as a recursion on the
expected revenue of the remaining buyers.

Let V (j) be the expected revenue when there are j customers left, then the total expected
revenue is

V (n2) = (1− p) 1

n3

n

e− 2
+ p

(
1

n
+

1

n3

)
+

(
1− 1

n3
− p

n

)
V (n2 − 1)

=

(
(1− p) 1

n2

1

e− 2
+ p

(
1

n
+

1

n3

)) n2−1∑
i=0

(
1− 1

n3
− p

n

)i

Let p = β
n
for some β ∈ [0, n]. Then, the expected revenue can be bounded by

V (n2) =

(
1− β

n

e− 2
+ β

(
1 +

1

n2

))
1−

(
1− 1

n3 − β
n2

)n2

1
n

+ β

≤
(

1

e− 2
+ β

(
1 +

1

n2

))
1−

(
1− 1

n3 − β
n2

)n2

1
n

+ β
= V̂ (n2) .

Note that β may be a function of n, as long as β ∈ [0, n]. We set β̂ = limn→∞ β and have

lim
n→∞

V̂ (n2) =

(
1

β̂(e− 2)
+ 1

)(
1− e−β̂

)
.

Hence, we know that for any ε > 0, for large enough n we can bound V (n2) by

V (n2) ≤

(
1

β̂(e− 2)
+ 1

)(
1− e−β̂

)
+ ε .

By the proof of tightness in Chapter 2, we know that this function is maximized at β̂ = 1,
yielding a value of

V (n2) ≤
(

1

e− 2
+ 1

)
(1− e−1) + ε = (1− e−1)OPT + ε′ .

4.4 Adaptive I.I.D. Posted Price Mechanism

In the previous section we considered the setting in which the posted price only depends on
the customer, not on the order. In this section we consider the setting in which the posted
price may depend both on the customer and on the customers that arrived before her. We
assume that the valuations of the customers are i.i.d. with distribution F . Again, a direct
corollary of Theorems 3.8 and 4.2 is the following:
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Theorem 4.5 For any given set of potential customers whose valuations are independent
and identically distributed, there exists a non-adaptive posted price mechanism that achieves
an expected revenue of at least a 1/β∗ ≈ 0.745 fraction of that of Myerson's optimal auction,
where β∗ is the unique solution to (3.1).

In opposition to the non-adaptive case, to derive a simple algorithm starting from the
previous characterization is not that straightforward. We will in turn analyze in more detail
how to construct such algorithm. We begin by characterizing the expected optimal revenue.

The expected pro�t of the optimal auction equals its expected virtual surplus (see, e.g.,
[12]), i.e., the largest non-negative virtual value . Note that φ̄ is an increasing function, and
let v∗ be the reserve price: the value at which φ̄(v∗) = 0, or zero, if no such value exists.
Then, the latter can be evaluated as:

OPT =

∫ ∞
v∗

nF (v)n−1φ̄(v)dF (v)

= n

∫ α∗

0

(1− q)n−1G′(1− q)dq

= nG(1)− nG(F (v∗))F (v∗)n−1 − n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq .

Where α∗ = 1− F (v∗). Since φ̄(v∗) = 0, we know that G attains a minimum at F (v∗) and,
therefore, equals H(F (v∗)) at that point. Therefore, we can conclude that

OPT = −nH(F (v∗))F (v∗)n−1 − n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq

= nv∗(1− F (v∗))F (v∗)n−1 − n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq

= n(n− 1)

∫ 1

0

(1− q)n−2Ḡ(1− q)dq,

with

Ḡ(1− q) =

{
−G(1− q) if 1− q > F (v∗) ,

v∗(1− F (v∗)) otherwise .

In the adaptive setting, the price o�ered to a customer also depends on the set of cus-
tomers that declined the o�er. However, as the customers are i.i.d., an adaptive pricing
mechanism only needs to know how many customers have received an o�er and not exactly
which customers.

As we did in Chapter 3, we partition the interval A = [0, 1] into n intervals Ai = [εi−1, εi],
with 0 = ε0 < ε1 < . . . < εn−1 < εn = 1. The pricing mechanism will thus choose a price for
customer i such that the probability that this customer accepts the o�er lies in Ai, making
sure that no customer will ever receive an o�er lower than the reservation price v∗.

First, assume that the item is o�ered to customer i. Let qi denote the drawn acceptance
probability for customer i, drawn from the interval Ai according to the probability density
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(n−1)(1−qi)n−2

αi
with αi the normalization constant. The expected revenue obtained from selling

the item to customer i is Ḡ(1 − qi). To see this, suppose that qi < 1 − F (v∗). Then,
for monotone virtual valuations, the price o�ered to customer i is F−1(1 − qi), and thus
the expected revenue is qiF

−1(1 − qi) = −G(1 − qi) = Ḡ(1 − qi). On the other hand,
if qi > 1 − F (v∗), the price o�ered to customer i is v∗ which is accepted with probability
1−F (v∗). Similar arguments hold when the virtual valuation is not monotone, where it might
be the case that qiF

−1(1− qi) = −H(1− qi) < Ḡ(1− qi), and by o�ering a price F−1(1− qi)
we might not get the best revenue. To circumvent this problem, we can randomize between
two acceptance probabilities qi1 and qi2 such that G(1− qi) = γH(1− qi1) + (1− γ)H(1− qi2)
and qi = γqi1 + (1− γ)qi2.

Following the same reasoning as the analogous part in the proof of Theorem 3.8 (see [8]),
we can bound the expected revenue of this strategy by

n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2Ḡ(1− q)dq (4.1)

where ρ1 = 1
α1

and ρi+1 = ρi
αi+1

∫ εi
εi−1

(n − 1)(1 − q)n−1dq for i = 1, . . . , n − 1. Again, if we

choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn, and solve the recurrence {εi}n−1
i=1 satis�es,

then expression (4.1) equals

1

nα1

OPT ≥ 1

β
OPT ≈ 0.745OPT.

Algorithm

We can now state a very simple algorithm for the adaptive posted price mechanism when
valuations are i.i.d. according to a regular distribution F . Note that when the distribution
is non-regular, it su�ces to set the prices vi as a lottery between two other prices (although
we can derandomize if we can assert which of the two prices gives higher expected revenue).

Algorithm 4.2: Adaptive i.i.d. posted price mechanism
Input: Distribution F , valuations V1, . . . , Vn draw from F .

1 Initialize r = 0, v0 = 0, v∗ = reserve price.
2 Partition [0, 1] in n disjoint intervals Ai = [ai−1, ai], i = 1, . . . , n where xi = 1− ai

satisfy recurrence (3.3).
3 for i = 1 to n do

4 Draw qi from Ai with density proportional to (n− 1)(1− q)n−2.
5 Set price vi = max{v∗, F−1(1− qi)}.
6 if Vi ≥ vi then

7 r ← i
8 break

9 end if

10 end for

11 return vr
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