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Ensemble-free configurational temperature for spin systems
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An estimator for the dynamical temperature in an arbitrary ensemble is derived in the framework of the
conjugate variables theorem. We prove directly that its average indeed gives the inverse temperature and that
it is independent of the ensemble. We test this estimator numerically by a simulation of the two-dimensional
XY model in the canonical ensemble. As this model is critical in the whole region of temperatures below the
Berezinski-Kosterlitz-Thouless critical temperature TBKT, we use a generalization of Wolff’s unicluster algorithm.
The numerical results allow us to confirm the robustness of the analytical expression for the microscopic estimator
of the temperature. This microscopic estimator has also the advantage that it gives a direct measure of the
thermalization process and can be used to compute absolute errors associated with statistical fluctuations. In
consequence, this estimator allows for a direct, absolute, and stringent test of the ergodicity of the underlying
Markov process, which encodes the algorithm used in a numerical simulation.
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I. INTRODUCTION

The concept of dynamical or configurational temperature
was made explicit for Hamiltonian systems in the micro-
canonical ensemble by Rugh [1]. Given a particle system
governed by a Hamiltonian H(�q, �p), under the hypothesis of
ergodicity, a microscopic functional that depends only on the
position �q is found to be an efficient estimator for the inverse
temperature β = 1/kBT . Further discussion of this idea and a
generalization of the original arguments can be found in [2–4].
Applications and testing in molecular dynamics simulations
can be found in [5,6].

An interesting generalization of the concept of dynamical
temperature to classical Heisenberg spin systems was achieved
by Nurdin and Schotte [7]. As the fundamental variables
in spin systems are not the standard canonical conjugate �q
and �p variables but the three components of the spin vector
�S, which is a constraint quantity, they used the generalized
Hamilton dynamics formalism introduced by Nambu [8].
Using spin dynamics, the proposed numerical estimator for
the microcanonical temperature is successfully tested in a
paramagnetic spin chain.

Further application of dynamical temperature to spin
systems is reported in Ref. [9]. In that article, the XY

model in one dimension (chain) as well as in a fcc lattice
is numerically studied by using an overrelaxation algorithm
in the microcanonical ensemble. The microscopic estimator
for the temperature gives quite reliable results and allows
one to perform a severe finite-size analysis in the fcc lattice
close to the first-order phase transition as well as in the
three-dimensional spin system close to the second-order phase
transition. It is also pointed out that the estimators for
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temperature and other observables are not unique, which has
useful and practical consequences when computing thermal
averages.

In light of the previous results, it would be desirable to have
such temperature estimators for other ensembles, in addition
to the microcanonical one. Interestingly, a generalization
and extension of the concept of dynamical temperature can
be obtained in the framework of Bayesian statistics and
the maximum entropy principle. One of the more attractive
features of the Bayesian interpretation of statistical mechanics,
proposed long ago by Jaynes [10], is that it provides a
general framework for setting up the probability distribution
by maximizing the information entropy S(F1,F2, . . . ,Fm),
based on partial macroscopic knowledge represented by the Fi

quantities. This maximization of the entropy, constrained by
the given set of Fi , leads to different probability distributions
known as different statistical ensembles.

In order to address the issue of defining an estimator
for the temperature independence of the statistical ensemble,
we use the concept of conjugate variables introduced by
Davis and Gutiérrez [11]. The main idea is to derive some
general relations among expectations of microscopic functions
connected with the Lagrange multipliers λi . These relations are
derived from the so-called conjugate variable theorem. Useful
generalized relations for the macroscopic quantities λi are
obtained by choosing suitable “trial” microscopic functions.
These microscopic quantities correspond to estimators of the
macroscopic ones and the relations obtained correspond to
generalized hypervirial identities.

In this paper, based on the conjugate variable theorem [11],
we extend the concept of dynamical temperature to an arbitrary
ensemble for both particle and spin systems. In the latter case
we build an explicit estimator and in the canonical ensemble
we test its performance in a Monte Carlo simulation of the
two-dimensional XY model. The paper is organized as follows.
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In Sec. II an ensemble-independent microscopic estimator
for the inverse temperature is deduced using the framework
of Bayesian statistics and the maximum entropy principle.
In Sec. III the explicit analytical expression for the inverse
temperature is derived for the two-dimensional XY model.
The numerical results of the Monte Carlo simulation for this
model are presented in Sec. IV, which includes a consistency
check of the statistical independence of the data obtained and
a binning analysis. Finally, some essential consequences of
having an ensemble-free microscopic estimator for the inverse
temperature are discussed in Sec. V.

II. TEMPERATURE ESTIMATOR INDEPENDENT OF THE
STATISTICAL ENSEMBLE

Let us consider a statistical microscopic system whose con-
figurations are defined by the set of N variables (x1,x2, . . . ,xN )
or in compact notation �x, on a region � ∈ RN . The aim of
the statistical mechanics is to find the probability distribution
of the configurations P (�x) and the physical properties in
equilibrium of many microscopic states, compatible with a
given set of macroscopic constraints F1,F2, . . . ,Fm. As it is
well known, the solution to this problem can be expressed
in terms of the maximization of the Shannon-Jaynes entropy,
in which the constraints are included by the method of the
Lagrange multipliers. The formal solution is given by the
expression

P (�x) = exp(−�λ · �f )

Z(�λ)
, (1)

where Z(�λ) is the partition function defined by

Z(�λ) =
∫

�

d �x exp(−�λ · �f ). (2)

The vector �f is the microscopic counterpart of the macroscopic
quantity �F in the sense that its expectation value with respect
to the distribution P (�x) is precisely �F , i.e., 〈 �f (�x)〉 = �F .
The Lagrange multipliers are obtained implicitly through
derivatives of the entropy S,

�λ = ∂S( �F )

∂ �F , (3)

where the entropy is obtained as the Legendre transform of
ln(Z), S = ln Z + �λ · �F .

Now, equipped with the probability distribution given by
Eq. (1), the expectation value of an arbitrary scalar quantity
A(�x) is given by the integral

〈A(�x)〉 = 1

Z

∫
�

d �x A(�x) exp(−�λ · �f ). (4)

By making the particular choice A(�x) = �∇ · �v and demanding
that the probability distribution vanish on the boundary of its
support, i.e., P (�x) = 0 for �x ∈ ∂� = �, a straightforward use
of the divergence theorem leads to the relation

〈 �∇ · �v(�x)〉 = −〈�v · �∇ ln P (�x)〉, (5)

which is called the conjugate variable theorem in Ref. [11].
Note that this identity, as written above, is valid not only for
P (�x) given by Eq. (1), but for an arbitrary distribution [12].

Now we consider the particular case in which P depends
on the configurations �x through the Hamiltonian of the system
H: P (�x) = ρ(H(�x)), which leads to the identity

〈 �∇ · �v(�x)〉ρ = 〈B(H(�x))�v · �∇H〉ρ, (6)

where B(H) = −(d/dE) ln ρ(E)|E=H(�x) and 〈·〉ρ represents
an average over the ensemble characterized by ρ. Making the
suitable choice �v = �ω/( �ω · �∇H), the above equation becomes

〈B〉ρ =
〈
�∇ · �ω

�ω · �∇H

〉
ρ

, (7)

which is the key equation for our analysis.
There are two subtle physical implications arising from

Eq. (7). First, B defines a microscopic estimator of the inverse
of temperature �∇ · �ω

�ω· �∇H , which is not unique as �ω can be
chosen arbitrarily. Second, this estimator is independent of the
particular ensemble ρ(H(�x)) used to describe the system. We
will shortly prove both assertions.

We consider first the microcanonical ensemble defined by
the probability density function (PDF)

Pmc(�x) = δ(E − H(�x))
�(E,N,V )

, (8)

where the normalization factor �(E,N,V ) corresponds to
the phase-space energy density. Now kBβ, the inverse of
the temperature, is defined as the derivative of the entropy
kB ln �(E,N,V ) with respect to the energy, keeping the
number of particles N and the volume V fixed,

βmc(E) = d

dE
ln �(E), (9)

where we have simplified the notation by writing �(E) instead
of �(E,N,V ). Now let us consider an arbitrary ensemble
defined through the relation Pρ(�x) = ρ(H(�x)). The Gibbs-
Shannon entropy associated with this PDF is given by the
well known expression (see, for instance, [13])

Sρ = −kB

∫
d �x Pρ(�x) ln Pρ(�x). (10)

Since Pρ(�x) depends on the integration variables �x through the
Hamiltonian, one can compute the above integral over energy
shells of thickness dE, which leads to the expression

Sρ = −kB

∫
dE �(E)ρ(E) ln Pρ(E) = −kB〈ln ρ(E)〉ρ,

(11)

where the ensemble average is computed by using the
probability density function Pρ(E) = ρ(E)�(E), which arises
directly from its definition

Pρ(E) =
∫

d �x Pρ(�x)δ(E − H(�x)) = ρ(E)�(E). (12)

In order to define the concept of temperature, we have
to expand the above expression for the entropy around a
minimum value E0, which represents an equilibrium energy
of the system, which gives

Sρ ≈ −kB

〈
ln ρ(E0) + (E − E0)

d

dE
ln ρ

∣∣∣∣
E=E0

〉
ρ

(13)
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or, equivalently,

Sρ ≈ −kB[ln ρ(E0) + (〈E〉 − E0)B(E0)], (14)

with B(E) = −(d/dE) ln ρ(E)|E=E0 . Now for the ensemble
defined by ρ(H), the inverse of the temperature can be obtained
as the derivative of the entropy [see Eq. (14)] with respect to
the average energy 〈E〉 as

1

T
:= 1

kB

dSρ

d〈E〉 = B(E0) ≈ 〈B(E)〉ρ. (15)

However, this is precisely 〈B(E)〉ρ of the left-hand side of
Eq. (7), which can be measured from the estimator given on
its right-hand side.

It is worth mentioning that if we restrict our analysis to
the microcanonical ensemble, we see that Pmc has the form
Pρ(�x) = ρ(H(�x)), so the analysis right above Eq. (7) holds.
For this case, Rickayzen and Powles [4], in a generalization of
Rugh’s result [1], previously showed that〈

�∇ · �ω
�ω · �∇H

〉
E

= βmc(E). (16)

In this equation βmc(E) was defined as usual in the micro-
canonical ensemble [see Eq. (9)] and hence it is consistent
with the interpretation of 〈B〉ρ as the inverse temperature in
an arbitrary ensemble.

Finally, we will show that the microscopic estimator defined
by Eq. (7) indeed holds independently of the particular
ensemble ρ(H(�x)). For the sake of simplicity, we will explicitly
show that this microscopic estimator holds in the canonical
ensemble and extend this analysis to the grand-canonical
ensemble to finally explain why this proof can be extended
to an arbitrary ensemble.

For the canonical ensemble

Pc(�x) = exp[−βH(�x)]

Z(β)
(17)

the probability distribution depends on the Hamiltonian as
well and therefore the expression (7) holds. Now, using the
particular choice �ω = �∇H, one obtains an equation for the
inverse temperature as an average of the microscopic estimator
in the canonical ensemble, which turns out to be the same
expression obtained in the microcanonical ensemble:

β =
〈
�∇ ·

�∇H
‖ �∇H‖2

〉
β

. (18)

It is not difficult to show that this expression can be
extended for other ensembles such as the grand-canonical and
isothermal-isobaric ensembles [13], in which the dependence
on the phase-space variables is, as always, through the
Hamiltonian H(�x), but there are additional variables. In order
to illustrate this claim we will focus on the grand-canonical
ensemble, whose joint probability density for the phase space
�x and number of particles N is given by

Pg(�x,N ) = exp[−βH(�x,N ) + βμN]

Q(β,μ)
. (19)

Now, in the subsequent application of Eq. (5), the gradient has
to be taken as

�∇ =
(

∂

∂ �x ,
∂

∂N

)
.

We still have the choice of the direction of the vector field
�v(�x,N ), which in general lies in the extended configuration
space (�x,N ) and can be decomposed as

�v(�x,N ) =
∑

i

x̂ivi(�x,N ) + N̂ξ (�x,N ). (20)

Setting ξ (�x,N ) = 0, we recover Eq. (6) with B(H) = β a
constant function and �∇ taking only derivatives on �x, that
is,

〈 �∇ · �v(�x,N )〉β,μ = β〈�v(�x,N ) · �∇H(�x,N )〉β,μ. (21)

Therefore, with the same suitable choice that leads to Eq. (7),
we see that

β =
〈
�∇ · �ω

�ω · �∇H

〉
β,μ

(22)

also holds for the grand-canonical ensemble. The fact that
additional variables appear, in the ensemble and in the
Hamiltonian, is irrelevant for the derivation, because we can
always choose which derivatives the �∇ operator actually
performs by choosing the direction of the vector field.

Two comments are in order about these results. First, Eq. (7)
represents a generalization of Rugh’s idea of measuring the
temperature of a Hamilton dynamical system, restricted to the
microcanonical ensemble, allowing one to perform numerical
simulations in any arbitrary statistical ensemble, Second,
Eq. (18) represents, for the particular case of the canonical
ensemble, a direct measure of the temperature. It is obtained by
computing a configuration average of this estimator weighted
by the Gibbs factor, which contains precisely the inverse
temperature. In practice, one can have a computer simulation in
the canonical ensemble (Monte Carlo, for example), obtaining
β as a thermal average of the microscopic estimator

β̂ = �∇ ·
�∇H

‖ �∇H‖2
. (23)

Moreover, this relation allows for a direct computation of the
absolute errors associated with the numerical computation
of thermal averages, i.e., the efficiency of the simulation
algorithm, and gives also information about the thermalization
process. We will illustrate these features in the case of a spin
system.

III. INVERSE TEMPERATURE ESTIMATOR
FOR THE XY MODEL

The important feature of having an ensemble-free micro-
scopic estimator will be shown by performing a canonical
Monte Carlo simulation of the two-dimensional XY model.
This model is defined by the Hamiltonian

H = −J
∑
〈i,j〉

�Si · �Sj , (24)

where the angle variables θi describe the orientation of the
unit vectors �Si defined on a periodic square lattice of lattice
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size La and J > 0 is the ferromagnetic interaction constant
between nearest neighbors denoted by 〈i,j 〉. From now on
we set J = 1 and a = 1, which sets the energy and length
scales of the system. Our idea is to compare the input inverse
temperature βI , which is used as an entry value in the Monte
Carlo simulation, with the measured inverse temperature βM ,
obtained as the thermal average of the microscopic estimator,
given by Eq. (23).

It is well known that the XY model has a topological phase
transition at the Berezinski-Kosterlitz-Thouless temperature
TBKT [14,15]. Above this value, the relevant physical excita-
tions are the pairs of vortex-antivortex degrees of freedom,
which destroy the quasiorder of the low-temperature region,
and the correlation function decays exponentially with the
correlation length. Below TBKT the relevant degrees of freedom
are the spin waves and a renormalization-group analysis
shows that the theory is critical in the whole range of
temperature T < TBKT, as the correlation length diverges
in the thermodynamic limit. This particular feature of the
model in d = 2, which leads to the so-called critical slowing
down effect in algorithms of local update, motivates the use
of cluster algorithms such as the one implemented in the
present paper (for a comprehensive discussion of this issue
see Ref. [16]). Nevertheless, as cluster algorithms generally
lose their efficiency at very low temperatures, other algorithms
such as the overrelaxation Monte Carlo method should be used
[17]. Thus, this model is a demanding test for our purpose to
check that the microscopic estimator works.

In order to measure inverse temperature, we need to express
the Rugh estimator for the inverse temperature (23) in terms of
the spin variables �Si . In the case of the two-dimensional XY

model, each spin is constrained to move in a circle, so the full
state of the system can be expressed in terms of a vector of
N planar angles θ = (θ1, . . . ,θN ). The Hamiltonian written in
terms of these angles has the form

H(θ ) = −J
∑
〈i,j〉

cos(θi − θj ) (25)

and for this Hamiltonian the computation of Eq. (23) is
straightforward. Moreover, we will avoid the use of the Nurdin
estimator [7], which is written in terms of derivatives of the
Cartesian spin coordinates and involves the differential opera-
tor �S × �∇ in order to implement the geometric constraints.

An explicit computation of the derivatives appearing in
Eq. (23) yields

∂H
∂θi

= J
∑
〈j 	=i〉

sin(θi − θj ) (26)

for the gradient of the Hamiltonian and

∂2H
∂θi∂θj

=
⎧⎨
⎩

J
∑

〈k 	=i〉 cos(θi − θk) if i = j

−J cos(θi − θj ) if i and j are nearest neighbors
0 otherwise

(27)

TABLE I. Comparison of input values of temperature and
averages of the estimator β̂ for n = 1 × 107 Monte Carlo steps.

βI βM = 〈β̂〉 Absolute error (%)

10.000000 10.001192 0.007395
5.000000 5.000141 0.005751
4.450002 4.450225 0.005660
4.000000 4.000208 0.005387
3.333333 3.333091 0.005116
3.000030 2.999870 0.005054
2.500000 2.499854 0.004678
2.000000 1.999990 0.004396
1.666667 1.666558 0.004485
1.428571 1.428484 0.004429
1.250000 1.250058 0.004150
1.111111 1.111117 0.004567
1.000000 1.000063 0.005505
0.909091 0.909065 0.011031
0.833333 0.833320 0.019836
0.769231 0.769018 0.023217
0.714286 0.714686 0.028197
0.666667 0.666893 0.032786
0.625000 0.625210 0.037673
0.588235 0.587817 0.042746
0.555556 0.555349 0.046284
0.526316 0.526175 0.049962
0.500000 0.500110 0.050039
0.476190 0.476198 0.054856
0.454545 0.454362 0.058008
0.434783 0.435149 0.059603
0.416667 0.416707 0.069333
0.400000 0.399700 0.066258

for the Hessian matrix of the Hamiltonian. We finally obtain,
for the estimator of β,

β̂(θ ) = 1

| �∇H|2

⎡
⎣∑

i

∂2H
∂θ2

i

− 2

| �∇H|2
∑
i,j

(
∂H
∂θi

∂H
∂θj

∂2H
∂θi∂θj

)⎤
⎦,

(28)

which satisfies 〈β̂(θ )〉β = β. By introducing the notation

gi = ∂H
∂θi

, hij = ∂2H
∂θi∂θj

, G =
∑

i

g2
i , (29)

we can write the microscopic estimator in Eq. (28) in a form
more suitable for direct implementation in computer code as

β̂ = 1

G

(∑
i

hii − 2
∑

i,j gigjhij

G

)
. (30)

IV. RESULTS AND CONSISTENCY TESTS

We perform a canonical Monte Carlo simulation with the
Wolff unicluster algorithm [18] for several values of βI ,
corresponding to temperature T between 0.1 and 2.5, with
n = 1 × 107 Monte Carlo steps each. We have measured the
inverse temperature by using the corresponding estimator β̂

given by Eq. (30). The errors were estimated by using its
standard deviation.
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FIG. 1. Measured value βM as a function of βI . The inset shows
a typical error bar, of order 10−4, which is not observable in the main
plot.

A. Performance of the inverse temperature estimator

The input inverse temperature βI and the average of the
estimator β̂, which is the measured inverse temperature βM ,
are shown in Table I together with the absolute error. It can
be observed that they agree up to an error less than 0.07%.
The plot of Fig. 1 shows the measured values of βM given by
Eq. (18) for each input value βI used in the simulations, as well
as their standard deviations, which are given by the expression

�β =
√√√√ 1

n − 1

n∑
i=1

(β̂i − 〈β̂〉)2. (31)

The remarkable agreement between βI and the average of its
microscopic estimator lets us conclude that the microscopic
estimator β̂ is indeed a trustable and robust quantity to
check whether the thermal averages indeed correspond to the
equilibrium values of the corresponding observables.

B. Evolution towards thermal equilibrium

An advantage of our approach is that the estimator for
β, given by Eq. (30), can be used to monitor the stochastic
evolution towards equilibrium of the system. In Fig. 2 we show
a typical thermalization process for systems of size L = 16, 32,
and 64 at a temperature T = 0.4. We can see that the average of
our estimator yields the correct inverse temperature associated
with the equilibrium system, which corresponds to the input
value βI . In all cases equilibration occurs quickly, well within
500 Monte Carlo steps. It also holds that the larger the system,
the smaller the fluctuation, as one would expect from finite-size
scaling arguments. As Fig. 2 shows, the thermalization process
turned out to be faster for larger systems at T = 0.4, in spite
of the general statement that larger systems require a larger
number of thermalization sweeps [19,20].

The instantaneous value at every Monte Carlo step could
be interpreted as the evolution of the system towards equi-
librium. This is an interesting feature because, in a standard

FIG. 2. Thermalization path of the dynamical temperature esti-
mator β̂ for system sizes of L = 16, 32, and 64 at T = 0.4.

FIG. 3. Autocorrelation function CO (t) for energy E, magneti-
zation M , and inverse temperature β as a function of log2(t) for
temperature T = 0.2 (top) and T = 0.7 (bottom).
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FIG. 4. Binning analysis for energy E, magnetization M , and
inverse temperature β for T = 0.4 (top) and T = 0.7 (bottom).

simulation, even if the average of some observable reaches a
stationary regime, it does not necessarily correspond to the
true equilibrium average. This may occur, for instance, in
metastable systems, such as nonextensive systems [21]. Our
estimator provides a stringent test that the simulated system
has thermalized, in the sense that the averages are compatible
with the ones computed using the Gibbs distribution.

C. Statistical independence and consistency checks

Due to the fact that the two-dimensional XY model is
critical in the whole region below TBKT, i.e., it has infinite
correlation length in the thermodynamic limit, we have used
a Wolff unicluster algorithm aiming to reduce critical slowing
down. In order to ensure the statistical independence of the
generated configurations, we have implemented different tests
of consistency.

1. Autocorrelation

First, the autocorrelation functions of the magnetization,
energy, and inverse temperature were measured, from which

FIG. 5. Histograms of block averages of β̂ for T = 0.4 (top)
and T = 0.7 (bottom) compared to the corresponding Gaussian
distribution represented by the solid red line.

we have obtained an estimation for the decorrelation time.
For two values of temperature, namely, T = 0.2 and 0.7, we
performed longer simulations, with n = 8 × 107 Monte Carlo
sweeps. We have, for these temperatures, samples of energy,
magnetization, and β that are known to be correlated because
of the intrinsic Markov dynamics implemented in the Monte
Carlo simulation. For every observable O, in our case the
energy E, the magnetization M , and the inverse temperature
β, we computed the autocorrelation function

CO(t) = 〈OiOi+t 〉 − 〈O〉2

〈O2〉 − 〈O〉2
, (32)

which is plotted as a function of t in Fig. 3. We note that, in
all cases, the correlation becomes negligible for t � 210. Also,
the estimator of β takes slightly more time to lose correlation
than the other observables. In this sense, it is a more stringent
estimator for statistical independence of the data.

2. Binning analysis and central limit theorem

In order to study the statistical properties of the estimator
β̂, we have performed, as a second independent test, a binning

062113-6



ENSEMBLE-FREE CONFIGURATIONAL TEMPERATURE FOR . . . PHYSICAL REVIEW E 94, 062113 (2016)

analysis according to the method outlined for instance, in
Refs. [22,23], for temperatures T = 0.2 and 0.7. In this
method, we divide the sequence of values of an observable
O into blocks of size k, so the total number of blocks is
NB = I(n/k), where the I function returns the integer part
of its argument. If we denote the average of the values in the
ith block by Ōi , the variance of these block averages is

σB
2(k) = 1

NB − 1

NB∑
i=1

(Ōi − ¯̄O)2, (33)

where ¯̄O is the average of all block averages

¯̄O = 1

NB

NB∑
i=1

Ōi . (34)

Under the assumption of statistical independence between
the different blocks, the variance σB

2(k) should be inversely
proportional to k and therefore σB

2(k)/NB should reach a
constant value. As we increase k, we expect that we approach
the regime where the block averages are really independent of
each other. This gives a practical test for the minimal block
size k that achieves statistical independence. Figure 4 shows
this analysis for the observables E, M , and β. We see that, as
we increase k, around k = 213 = 8192 the quantity σB

2(k)/NB

normalized by σB
2(1) reaches a plateau, which is consistent

with a decorrelation time t ≈ 210 = 1024.
Finally, to test that the sizes of the thermal averages

were large enough to produce independent statistics, we have
computed the probability density function of the set of values
obtained for the average of the magnetization. We checked
the distribution of block averages by constructing histograms
of those averages with block size k = 213, which are shown

in Fig. 5. It can be observed that the histograms approach a
Gaussian distribution as predicted by the central limit theorem.
This criterion gives an estimation for the decorrelation time τ

that is consistent with the one obtained by the binning analysis.

V. CONCLUSION

In this article we have shown how to construct ensemble-
free microscopic estimators for the inverse temperature. We
have demonstrated the practical usefulness of this estimator
by simulating the two-dimensional XY model in the canonical
ensemble. Among other advantages, measuring this estimator
directly as a thermal average over configurations allows one
to monitor the transit to equilibrium of the underlying Markov
process used in the Monte Carlo simulation.

The robustness of the microscopic estimator can be assessed
by comparing the inverse temperatures βI and βM , resulting
in remarkable agreement in the whole region of relevant
temperatures. The error bars turned out to be very small and
they represent absolute errors, which give valuable information
about the efficiency of the algorithm utilized and about the
stochastic dynamics.

The idea of constructing ensemble-free microscopic esti-
mators could be extended to other intensive properties such
as pressure, chemical potential, and magnetic field, which
may be useful to monitor equilibrium properties of metastable
systems.

ACKNOWLEDGMENTS

This work was partially supported by Dicyt-USACH Grant
No. 041531PA. S.D. and G.G. acknowledge partial funding
by CONICYT Grant No. ACT-1115 and FONDECYT Grant
No. 1140514 (S.D.).

[1] H. H. Rugh, Dynamical Approach to Temperature, Phys. Rev.
Lett. 78, 772 (1997).

[2] H. H. Rugh, A geometric, dynamical approach to thermodynam-
ics, J. Phys. A 31, 7761 (1998).

[3] O. G. Jepps, G. Ayton, and D. J. Evans, Microscopic expressions
for the thermodynamic temperature, Phys. Rev. E 62, 4757
(2000).

[4] G. Rickayzen and J. G. Powles, Temperature in the classical
microcanonical ensemble, J. Chem. Phys. 114, 4333 (2001).

[5] B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans, Config-
urational temperature: Verification of Monte Carlo simulations,
J. Chem. Phys. 109, 6519 (1998).

[6] A. Baranyai, On the configurational temperature of simple fluids,
J. Chem. Phys 112, 3964 (2000).

[7] W. B. Nurdin and K. D. Schotte, Dynamical temperature for
spin systems, Phys. Rev. E 61, 3579 (2000).

[8] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7,
2405 (1973).

[9] W. B. Nurdin and K.-D. Schotte, Dynamical temperature
study for classical planar spin systems, Physica A 308, 209
(2002).

[10] E. T. Jaynes, Information theory and statistical mechanics, Phys.
Rev. 106, 620 (1957).

[11] S. Davis and G. Gutiérrez, Conjugate variables in continuous
maximum-entropy inference, Phys. Rev. E 86, 051136 (2012).

[12] S. Davis and G. Gutiérrez, in Proceedings of the 35th Interna-
tional Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering, edited by A. Giffin and
K. H. Knuth, AIP Conf. Proc. No. 1757 (AIP, New York, 2016),
p. 020002.

[13] M. Kardar, Statistical Physics of Particles (Cambridge Univer-
sity Press, Cambridge, 2007).

[14] C. Itzykson and J. M. Drouffe, Statistical Field Theory
(Cambridge University Press, Cambridge, 1989).

[15] M. Le Bellac, Quantum and Statistical Field Theory (Oxford
University Press, New York, 1991).

[16] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,
The Theory of Critical Phenomena and Introduction to the
Renormalization Group (Oxford University Press, New York,
1992).

[17] G. Palma, F. Niedermayer, Z. Rácz, A. Riveros, and
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G. PALMA, G. GUTIÉRREZ, AND S. DAVIS PHYSICAL REVIEW E 94, 062113 (2016)

magnetization distribution in the two-dimensional XY model
at zero temperature, Phys. Rev. E 94, 022145 (2016).

[18] U. Wolff, Collective Monte Carlo Updating for Spin Systems,
Phys. Rev. Lett. 62, 361 (1989).

[19] M. Le Bellac, F. Mortessagne, and G. G. Batrouni, Equilib-
rium and Non-Equilibrium Statistical Mechanics (Cambridge
University Press, Cambridge, 2004).

[20] W. Janke, in Computational Many-Particle Physics, edited by H.
Fehske, R. Schneider, and A. Weiße, Lecture Notes in Physics
Vol. 739 (Springer, Berlin, 2008), pp. 79–140.

[21] A. Pluchino, V. Latora, and A. Rapisarda, Metastable states,
anomalous distributions and correlations in the HMF model,
Physica D 193, 315 (2004).

[22] N. Kawashima, J. E. Gubernatis, and H. G. Evertz, Loop
algorithms for quantum simulations of fermion models on
lattices, Phys. Rev. B 50, 136 (1994).

[23] G. Palma and A. Riveros, Meron-cluster simulation of the
quantum antiferromagnetic Heisenberg model in a magnetic
field in one- and two-dimensions, Condens. Matter Phys. 18,
23002 (2015).

062113-8

https://doi.org/10.1103/PhysRevE.94.022145
https://doi.org/10.1103/PhysRevE.94.022145
https://doi.org/10.1103/PhysRevE.94.022145
https://doi.org/10.1103/PhysRevE.94.022145
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1016/j.physd.2004.01.029
https://doi.org/10.1016/j.physd.2004.01.029
https://doi.org/10.1016/j.physd.2004.01.029
https://doi.org/10.1016/j.physd.2004.01.029
https://doi.org/10.1103/PhysRevB.50.136
https://doi.org/10.1103/PhysRevB.50.136
https://doi.org/10.1103/PhysRevB.50.136
https://doi.org/10.1103/PhysRevB.50.136
https://doi.org/10.5488/CMP.18.23002
https://doi.org/10.5488/CMP.18.23002
https://doi.org/10.5488/CMP.18.23002
https://doi.org/10.5488/CMP.18.23002



