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Abstract

If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime,

these would induce the existence of small scale-dependent features imprinted in the pri-

mordial spectra, with their shapes and sizes revealing information about the physics that

produced them. Small sharp features could be suppressed at the level of the two-point

correlation function, making them undetectable in the power spectrum, but could be

amplified at the level of the three-point correlation function, offering us a window of

opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show

that sharp features may be analyzed using only data coming from the three point corre-

lation function parametrizing primordial non-Gaussianity. More precisely, we show that

if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral,

folded, squeezed), these must reappear in every other configuration according to a spe-

cific relation allowing us to correlate features across the non-Gaussian bispectrum. As

a result, we offer a method to study scale-dependent features generated during inflation

that depends only on data coming from measurements of non-Gaussianity, allowing us to

omit data from the power spectrum.

http://arxiv.org/abs/1604.03533v2


1 Introduction

Despite of the fact that the simplest models of cosmic inflation [1–4] predict primordial

curvature perturbations distributed according to a nearly Gaussian statistic parametrized by

a scale independent set of spectra [5,6], there are good reasons to consider scenarios in which

scale-dependent features are generated during inflation. If cosmic inflation experienced tiny

time-dependent deviations from the slow-roll regime, these would show up in the primordial

spectra in the form of small scale-dependent features, with their shapes and sizes revealing

important information about the physics that produced such deviations in the first place.

Moreover, these features would consistently appear in every n-point correlation function,

leading to correlated features in the primordial spectra.

Indeed, during the past few years, several works [7–31] have emphasized the fact that if

features are present in the power spectrum P(k), they should consistently reappear in the

bispectrum B(k1, k2, k3), and any other higher correlation function. Specifically, it is possible

to deduce a general expression relating features appearing in the fNL-function (parametrizing

departures from pure Gaussianity∗) with those appearing in the power spectrum P, given by

fNL(k1, k2, k3) =

[

f2
d2

d ln k2
∆P
P0

(k) + f1
d

d ln k

∆P
P0

(k) + f0
∆P
P0

(k)

]

k=(k1+k2+k3)/2

, (1.1)

where ∆P ≡ P −P0 (with P0 corresponding to the featureless power spectrum). In the pre-

vious expression, the functions fi ≡ fi(k1, k2, k3) represent known functions† of the triangle

configuration determined by the scales k1, k2 and k3, but that are scale independent (i.e. they

are invariant under rescalements ki → k′i = γ ki). Equation (1.1) links features appearing in

the power spectrum evaluated at the given scale k with features in the bispectrum evaluated

at the 2-dimensional surface given by k1 + k2 + k3 = 2k. The relative values of the scales k1,

k2 and k3 determine the triangle configuration in momentum space, whereas k1+k2+k3 gives

us the size of the triangle. In the case of the squeezed configuration, where one of the three

momenta is much smaller than the other two (e.g. k3 ≪ k1, k2), one finds that f2, f0 ≪ 1,

and so we recover the non-Gaussian consistency relation [6, 32], where f1 → −5/12.

The correlation shown in eq. (1.1) was first derived in ref. [11], where features in the

spectra were studied as a consequence of time-variations of the sound speed cs of primordial

perturbations away from the canonical value cs = 1. It was later deduced in ref. [23] for

the case in which features are generated by time-variations of the Hubble expansion rate H

alone (implying time-variations of the slow-roll parameters ǫ and η). Then, it was generalized

in ref. [29] to the case in which features are generated when both classes of time-variations

happen simultaneously. In the latter case, the coefficients f2, f1 and f0 depend on a single

parameter that quantifies the mixing between both types of time variations (sound speed cs
vs Hubble expansion rate H). These coefficients constitute predictions from inflation, and in

∗In this work we use a version of the fNL-parameter that is useful to parametrize non-Gaussianity at

different triangle configurations. The definition is provided in eq. (2.12).
†Please see refs. [11,23,29] for explicit expressions valid in different circumstances, depending on the source

that generated the time-deviations from the slow-roll regime.
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principle may be tested by Cosmic Microwave Background (CMB) and Large Scale Structure

(LSS) observations.

1.1 Main idea

If the small time-dependent deviations from the slow-roll regime happen at a fast rate com-

pared to the inverse of the Hubble expansion rate H during inflation, then the features in the

power spectrum ∆P become sharp, in the sense that higher order derivatives with respect

to ln k dominate.‡ This implies that in the sharp feature limit, and as long as we examine

the bispectrum away from the squeezed configuration, the correlation of eq. (1.1) becomes

dominated by the term proportional to f2, leading to a simpler version of it, given by

fNL(k1, k2, k3) = β(k1, k2, k3)
d2

d ln k2
∆P
P0

(k)

∣

∣

∣

∣

k=(k1+k2+k3)/2

, (1.2)

where, for simplicity, we have substituted β ≡ f2. As a consequence, if features are present

in the power spectrum but with a small amplitude (i.e. ∆P/P0 ≪ 1), their sharpness will

nevertheless enhance the amplitude of features appearing in the bispectrum fNL(k1, k2, k3). In

this way, one could even imagine to measure features in the bispectrum before observing them

in the power spectrum. However, most likely this will not be the case. As first pointed out

in [33], and then worked out much further in [34,35], by the very nature of the EFT framework,

the signal-to-noise ratio is in general larger in the power spectrum than in the bispectrum.

Typically, in situations where bispectrum features are more significant than power spectrum

ones, these take place at energies close to (or beyond) the cut-off, i.e. energy scales where

one stops to trust the EFT approach. (See however [36] for an instructive counterexample,

in which collective symmetry breaking ensures that breaking of scale invariance takes place

at the same order in perturbation theory for any N -point function.)

At any rate, bispectrum features may become large in the sharp feature limit, and will

manifest itself in different shapes. This observation motivates us to consider the development

of additional theoretical tools allowing us to analyze the presence of features in the bispectrum

alone, without the need of using information coming from features in the power spectrum.

In fact, eq. (1.2) already gives us a hint of how one could study features in the bispectrum

alone. For example, if we examine the equilateral configuration, where k1 = k2 = k3 = K/3

(in such a way that k1 + k2 + k3 = K) we obtain from eq. (1.2) that:

fNL(K/3,K/3,K/3) =

[

β(eq) d2

d ln k2
∆P
P0

(k)

]

k=K/2

. (1.3)

On the other hand, in the folded configuration, where k1 = k2 = K/4 and k3 = K/2 (or

‡We note that eq. (1.1) in principle contains higher derivatives of ∆P as well. However, these are slow-roll

suppressed [29]. The highest unsuppressed term is the one containing the second derivative of the power

spectrum.

2



cyclic permutations of k1, k2 and k3) we deduce from eq. (1.2) that:

fNL(K/4,K/4,K/2) =

[

β(fold) d2

d ln k2
∆P
P0

(k)

]

k=K/2

. (1.4)

Then, combining these two expressions we are able to deduce a relation linking features

appearing in the equilateral configuration with those appearing in the folded configuration

of the bispectrum. The result is simply given by:

fNL(K/3,K/3,K/3) =

(

β(eq)

β(fold)

)

fNL(K/4,K/4,K/2). (1.5)

Here, the ratio β(eq)/β(fold) is a number that is independent of the scale K, but that de-

pends on the specific type of time-deviation from slow-roll that generated the feature during

inflation. Equation (1.5) relates features appearing in different triangle configurations with

a common scale k0 (which characterizes the size of the triangle). Thus, eq (1.5) gives us

valuable information about how features appear in the bispectrum across different triangle

configurations, and may be extended to a relation linking a specific configuration with any

other desired configuration.

The aim of this article is to deduce an expression that generalizes eq. (1.5), and that

correlates features at different triangle configurations of the bispectrum. Our main result is

given by eq. (3.8), which constitutes the desired generalization of eq. (1.5). In principle, that

expression follows directly from eq. (1.1), in the same way eq. (1.5) was deduced. Neverthe-

less, in this paper we want to formally show that one can indeed compute the correlation

between two bispectrum configurations without ever considering the associated feature in the

power spectrum. To deduce it, we will use the effective field theory of inflation formalism

to parametrize the interactions leading to the appearance of features in the non-Gaussian

bispectrum.

Our article is organized as follows: in Section 2 we briefly cover the necessary background

material developed in refs. [11, 23, 29] necessary to study features in the primordial spectra.

Then, in Section 3 we compute the correlation between two generally (but not squeezed)

triangle configurations in momentum space. The inclusion of the squeezed limit is dealt with

in Section 4. In the Appendix, we repeat the computations of Sections 3 and 4 for a different

parametrization of the momentum triangles, that some readers may find useful.

1.2 Notation and conventions

Before commencing the main part of our work, let us list our notation and conventions. We

shall work with a background space-time metric given by the standard Friedman-Robertson-

Walker metric of the form:

ds2 = −dt2 + a2(t)dx2, (1.6)

where x represent comoving coordinates and a(t) is the scale factor describing the expansion

of spatially flat slices. The Hubble expansion parameter is given by H = ȧ/a, where the dot

3



represents derivatives with respect to cosmic time t. We will also work with conformal time

τ , which is related to cosmic time trough the relation dτ = dt/a. We will reserve primes to

distinguish derivatives with respect to τ .

2 Preliminaries

Our starting point is the effective field theory of inflation formalism [37, 38]. Here, the

evolution of primordial curvature perturbations is parametrized by two families of parameters.

First, we have the standard slow-roll parameters which parametrize the evolution of the quasi-

de Sitter spacetime described by the Hubble expansion rate H. These are given by:

ǫ = − Ḣ

H2
, η =

ǫ̇

ǫH
. (2.1)

The second class of quantities parametrizes deviations from canonical inflation. The most

important parameter performing this task is the sound speed cs at which primordial perturba-

tions propagate during inflation. When the action describing perturbations during inflation

is written in terms of the curvature perturbation in co-moving gauge, R, the parameter cs
appears at different orders in the perturbative expansion. The total action S describing the

evolution of R, up to cubic order, is found to be:

S =

∫

d4x a3ǫ

[

1

c2s
Ṙ2 − 1

a2
(∇R)2

]

+ S(3), (2.2)

where the cubic contribution S(3) is given by [39]

S(3) =

∫

d4x a3ǫ

[

1

c4s

[

3(c2s − 1) + ǫ− η
]

RṘ2 +
1

c2sa
2

(

(1− c2s) + η + ǫ− 2ċs
Hcs

)

R(∇R)2

+
1

H

(

1− c2s
c4s

− 2λ

ǫH2

)

Ṙ3 +
1

4a4
(∂χ)2∇2R− 4− ǫ

2ǫa4
∇2χ∂iR∂iχ+

f

ǫa3
δS(2)

δR

]

, (2.3)

where χ is given by the constraint equation ∇2χ = a2ǫṘ/c2s. In addition, the parameter λ in

eq. (2.3) parametrizes the strength of the operator Ṙ3, and it is usually found to depend on

cs according to a relation determined by the specific model in question. Finally, the quantity

f multiplying the linear classical equation of motion δS(2)/δR is a given quadratic function

of R, whose specific form will turn out to be irrelevant for the present discussion.

In this work we shall analyze small departures of the sound speed from the canonical

background value cs = 1. For this reason, it is useful to define the parameter θ given by:

θ ≡ 1− c2s. (2.4)

By definition, one has θ ≥ 0. In addition, we are interested in rapid variations of the

parameters ǫ, η and cs (and any other parameters depending on them). To be specific, by

rapid variations we mean that the following hierarchical relation applies
∣

∣

∣
τ
dA

dτ

∣

∣

∣
≫ |A|, (2.5)
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where τ is conformal time and the quantity A can be either ǫ, η or θ. If a quantity A respects

this relation, then its time variation is characterized by a timescale much smaller than H−1.

In fact, in our previous work [29] we proposed a relation linking both η and θ, given by

η = −α

2
τθ′, (2.6)

where α is a slowly varying quantity (a constant for all practical purposes) that parametrizes

the specific class of model of inflation in which these rapid variations happen. While we

have not found a proof of the general validity of this relation, we have verified that it is

always satisfied in a large variety of non-canonical models of inflation, as long as θ ≪ 1 and

the hierarchy of eq. (2.5) is satisfied. The parameter α can indeed be approximated to a

constant, its numerical value depending on the parameter input of the model. Moving on

with the discussion, after assuming that ǫ ≪ 1 and θ ≪ 1 and that these quantities respect

a hierarchy of the form given in eq. (2.5), the cubic contribution to the action becomes:

S
(3)
int = −

∫

d4x a3ǫ0

{

(3θ + η)RṘ2 +
1

a2
(τθ′ − η)R(∇R)2

}

. (2.7)

An important additional assumption that allowed us to arrive at eq. (2.7) is that the co-

efficient in front of the operator Ṙ3 (containing λ) is proportional to (1 − c2s)
2. This is in

fact true for every known single field effective field theory representation of non-canonical

models of inflation. Moreover, in ref. [40] it was recently conjectured that every operator (in

the effective field theory of inflation expansion) parametrizing departures from non-canonical

models of inflation must be proportional to powers of 1 − c2s. This assumption implies that

this term is subleading with respect to those that were preserved in the final expression for

the cubic contribution to the action.

Our main goal is to compute the effect of sharp features on the three point correlation

function. To accomplish this, it is convenient to use the in-in formalism to compute n-

point correlation functions of R(x, t) at the end of inflation. In particular, the three point

correlation function B(k1,k2,k3) is defined in the following way

〈R̂k1
R̂k2

R̂k3
〉 = (2π)3δ(k1 + k2 + k3)B(k1,k2,k3), (2.8)

where R̂k1
are the curvature perturbations in Fourier space evaluated at the end of inflation.

To characterize features, the bispectrum can be written as B = B0 + ∆B, where B0 is

the featureless part and ∆B represents the part that contains features. By using the in-in

formalism to compute n-point correlation functions during inflation, it is straightforward to

derive that ∆B is given by

∆B(k1,k2,k3)=
2ǫ0
iH2

0

R1(0)R2(0)R3(0)

∫ 0

−∞

dτ
(3θ + η

τ2
[

R1(τ)R′
2(τ)R′

3(τ) + sym
]∗

+ c.c.

−τθ′ − η

τ2
[k2 · k3R1(τ)R2(τ)R3(τ) + sym]∗ + c.c.

)

, (2.9)

5



where Ri(τ) ≡ R(ki, τ) is the wave function for comoving curvature perturbations in Fourier

space, given by:

Rk(τ) = i
H0

2
√
ǫ0k3

(1 + ikτ) e−ikτ . (2.10)

In the previous expression, H0 and ǫ0 correspond to the featureless components of H and ǫ,

and may be regarded as constants. Finally, by inserting eq. (2.10) back into eq. (2.9), and

using eq. (2.6) to eliminate η in favour of θ we finally obtain [29]

∆B =
2π4P2

0

(k1k2k3)3

∫ ∞

−∞

dτ i ei(k1+k2+k3)τ

{

6θ − ατθ′

2

[

i(k1k2k3)τ(k1k2 + k3k1 + k2k3)− (k1k2)
2 − (k3k1)

2 − (k2k3)
2

]

−(2 + α)θ′

4τ
(k21 + k22 + k23)(1 − ik1τ)(1− ik2τ)(1− ik3τ)

}

, (2.11)

where P0 = H2
0/8π

2ǫ0 is the featureless contribution to the power spectrum. It is useful to

parametrize non-Gaussianity with the help of the dimensionless fNL-parameter, which may

be conveniently defined as:

fNL ≡ 10

3

k1k2k3
k31 + k32 + k33

(k1k2k3)
2

(2π)4P2
0

∆B. (2.12)

In the following sections we will use eq. (2.11) to analyze the presence of features in the

primordial bispectrum. Before moving on to that discussion, let us briefly review how eq. (1.1)

is derived. This will allow us to cover the procedure to correlate different configurations of

the bispectrum in a much simpler way.

2.1 Previous work: power spectrum - bispectrum correlation

It is clear that variations of the background quantities ǫ and cs will induce the existence of

features in both, the power spectrum and bispectrum. The dimensionless power spectrum

P(k) parametrizes the two-point correlation function of curvature perturbations at the end

of inflation as:

〈RkRk′〉 ≡ (2π)3δ(k+ k
′)
2π2

k3
P(k). (2.13)

We may now split the power spectrum into two parts as

P(k) = P0(k) + ∆P(k), (2.14)

where P0(k) is the piece containing the main featureless contribution, which is determined

by the averaged quasi-de Sitter background, and ∆P(k) is the piece containing the features

which result from the small but rapid variations of the background quantities. By using the

in-in formalism to compute both pieces, one deduces:

k3
∆P
P0

(k) = −1 + α

16

∫ 0

−∞

dτ θ′′′′ sin(2kτ) . (2.15)
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To derive this relation, we have assumed the hierarchy of eq. (2.5) and the validity of eq. (2.6)

introducing the parameter α linking η with θ. Notice that the end of inflation happens

essentially at τ = 0, which corresponds to t → +∞. We may now use the trick of extending

the domain of integration from (−∞, τ) to (−∞,+∞) by assuming that θ is odd under the

reparametrization τ → −τ . This allows us to rewrite eq. (2.15) as:

k3
∆P
P0

(k) = −1 + α

32i

∫ +∞

−∞

dτ θ′′′′ e2ikτ . (2.16)

This last equation can now be Fourier inverted to obtain a formal expression for θ in terms

of ∆P. The result is:

θ =
1

1 + α

2

πi

∫ +∞

−∞

dk

k

∆P
P0

(k) e−2ikτ . (2.17)

Finally, we plug this expression for θ back into eq. (2.11). The result of doing this is precisely

an equation of the form given in eq. (1.1). However, because of the hierarchy assumption of

eq (2.5), the result is strictly valid in the sharp feature limit, so we obtain eq. (1.2), with β

given by

βα(k1, k2, k3) =
5

12

1

1 + α

k1k2k3
k31 + k32 + k33

[

α+ 2
k21 + k22 + k23

(k1 + k2 + k3)2

]

. (2.18)

In the case α = 0, we recover the relation deduced in ref. [11] valid for features generated

as a result of sound speed time variations. On the other hand, if |α| → ∞, we recover the

result deduced in ref. [23] valid for features that result from rapid variations of the slow roll

parameters ǫ and η. It is clear that this function βα can handle any configuration function

as long as all three ki are nonzero. In the squeezed limit (k1 = 0, k2 = k3 = k), we get

βα = 0. Then, the largest contribution to fNL comes then from a term proportional to the

first derivative of the power spectrum (and independent of the parameter α):

f
(sq)
NL = − 5

12

[

d

d ln k

∆P
P0

(k)

]

k=(k1+k2+k3)/2

, (2.19)

consistent with Maldacena’s consistency relation. Given the hierarchy of derivatives in the

features that we are studying (see eq. 2.5), we understand that for such sharp features, the

squeezed configuration is suppressed with respect to the other configurations: f sq
NL involves

one less derivative on the power spectrum feature than the non-linearity parameter for any

other configuration, such as the equilateral (k1 = k2 = k3 = K/3) and folded (k1 = k2 =

K/4, k3 = K/2) one.

3 This work: bispectrum-bispectrum correlation

Let us now move on to the main computation of this article, namely, finding an expression

correlating features at arbitrary non-Gaussian triangle configurations. The procedure will be

in fact similar to the one used to correlate the bispectrum with the power spectrum, covered
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in Section 2.1. To start with, let us parametrize the momenta k1, k2 and k3 defining triangle

configurations in the following way:

k1 = xK, k2 = yK, k3 = zK, z ≡ 1− x− y. (3.1)

This parametrization ensures that k is the sum of the three momenta:

K ≡ k1 + k2 + k3. (3.2)

Note that z is not a free parameter, just a shorthand for (1 − x − y) that we use to not

obscure the symmetry in the problem. In this parametrization, the equilateral configuration

is given by the choice x = y = 1/3, whereas the folded configuration is determined by

x = y = 1/4. For completeness, in the appendix A.1 we summarize our results with a

different parametrization, commonly encountered in the literature, in which one fixes one of

the momenta (say k3) and uses the ratios k1/k3 and k2/k3 as free parameters. Now, inserting

the parametrization given in eq. (3.1) back into eq. (2.11), we obtain

∆B =
2iπ4P2

0

x3y3z3K7

∫ ∞

−∞

dτ eiKτ

[6θ − ατθ′

2

(

−[x2z2 + y2z2 + x2y2]K2 + ixyz[xz + yz + xy]K3τ
)

−(2 + α)θ′

4τ
(x2 + y2 + z2)(1− iKτ − [xz + yz + xy]K2τ2 + ixyzK3τ3)

]

. (3.3)

Since we are interested in sharp features, we will have that τθ′ ≫ θ. Moreover, the largest

contribution comes from the terms highest order in K.§ Rearranging and performing one

partial integration to eliminate θ′ in favor of θ yields:

(xyz)2
K3

iπ4P2
0

∆B = −
∫ ∞

−∞

dτ eiKτ τ2θ
(

x2 + y2 + z2 +
α

2

)

. (3.4)

Now, inverting this expression gives

(xyz)2
∫ ∞

−∞

dK
K3

2iπ5P2
0

∆Be−iKτ = −τ2θ
(

x2 + y2 + z2 +
α

2

)

, (3.5)

so we directly have:

θ =
1

τ2
(xyz)2

2[x2 + y2 + z2] + α

∫ ∞

−∞

dK
iK3

π5P2
0

∆Be−iKτ . (3.6)

Notice that this result may diverge for specific configurations if the denominator 2[x2 + y2 +

z2] + α becomes 0, which could be the case if α is negative. This only means that for those

configurations other terms, that have been neglected to go from eq. (3.3) to eq. (3.6), will

§One could perform some integrations by parts to see that terms with a higher number of powers of K are

equivalent to terms with a higher number of time-derivatives on θ. That is why focussing on sharp features

implies that the highest order terms in K dominate the right hand side of eq. (3.3).
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become relevant. For the sake of simplicity, in the present work we omit such terms and focus

on those situations where such divergences do not happen. Nevertheless, we should keep in

mind that a more accurate treatment would include these omitted terms.

Equation (3.6) allows us to compare ∆B for two different configurations. For a given

configuration 1 we have k1 = x1K, k2 = y1K and k3 = z1K, giving us back ∆B1. For

a different configuration 2 we have k1 = x2K, k2 = y2K and k3 = z2K, giving us back

∆B2. As we already mentioned in the introduction, since the feature takes place at one

particular momentum value, the sizes (the sum of the sides) of the two triangles that we are

correlating here are equal. That is, we are looking at manifestations of one and the same sharp

feature into different configuration functions corresponding to the comoving wavelength of

that feature. Now we may use eq. (3.6) to obtain two alternative expressions for θ in terms of

∆B1 and ∆B2 respectively. Then, comparing both expressions we obtain a relation between

∆B1 and ∆B2 found to be given by:

∆B1 =

(

x2y2z2
x1y1z1

)2 2(x21 + y21 + z21) + α

2(x22 + y22 + z22) + α
∆B2. (3.7)

We note that we could equally well have worked in terms of η rather than θ. Indeed, beginning

again from eq. (2.9) and repeating the same steps leads back to eq. (3.7). To continue, using

the definition of fNL given in eq. (2.12) we finally obtain

f
(1)
NL =

x1y1z1
x2y2z2

x32 + y32 + z32
x31 + y31 + z31

2(x21 + y21 + z21) + α

2(x22 + y22 + z22) + α
f
(2)
NL, (3.8)

which is our main result. For |α| ≫ 1, the last term at the right hand side asymptotes to 1,

and we obtain the relation valid for features generated exclusively by deviations from slow-

roll regime through variations of ǫ and η. On the other hand, for α = 0 we obtain the relation

valid for features generated by a variation of the sound speed (parametrizing deviations from

canonical inflation).

Once again we remind the reader that z is not a free parameter, just a shorthand: zi ≡
1 − xi − yi for i = {1, 2}. Inserting x1 = y1 = 1/3 for the equilateral configuration and

x2 = y2 = 1/4 for the folded configuration gives:

f eq
NL

f fold
NL

=
1/27

1/32

5/32

3/27

2/3 + α

3/4 + α
=

20

9

2 + 3α

3 + 4α
. (3.9)

This result is compatible with the result of our previous work [29], given in eq. (1.2) of this

paper. Using the definition for βα in eq. (2.18) that evaluates to

f eq
NL

f fold
NL

=
βeq
α

βfold
α

=
20

9

2 + 3α

3 + 4α
. (3.10)

Therefore, we stress again that the merit and novelty of this section’s computation is not its

final result, but the fact that it has been derived in a more direct way. It is a pure bispectrum

computation, independent of the associated features in the power spectrum.

9



In appendix A.1 we will perform the same computation, but now working in the popular

parametrization x ≡ k1/k3, y ≡ k2/k3, i.e.

k1 = xk̃, k2 = yk̃, k3 = k̃. (3.11)

We verify explicitly that after correct normalization of the triangles in momentum space, we

again get to the result in eq. (3.8).

4 Including the squeezed configuration

The result given in eq. (3.8) suggests that for the squeezed configuration, the vanishing of

one of the momenta leads to a vanishing f sq
NL. However, that is not quite true. To get to the

result in eq. (3.8), we have considered only the terms that were of highest order in k in our

expression in eq. (2.11) for ∆B. In the squeezed limit, those terms vanish, and we should

focus on the highest order in k among the surviving terms. Given the hierarchy of eq. (2.5)

in which the number of derivatives counts as an order parameter, we expect that f sq
NL will

come out an order of magnitude smaller than fgen
NL for a general non-squeezed configuration.

Therefore, let us compare the squeezed configuration

k1 = 0, k2 = K/2, k3 = K/2, (4.1)

with the general configuration:

k1 = xK, k2 = yK, k3 = zk ≡ (1− x− y)K. (4.2)

In other words, in the first (squeezed) configuration we have xsq = 0 and ysq = zsq = 1/2.

The second configuration is general, but we assume that it is far enough from the squeezed

limit for the terms of highest power in K in eq. (2.11) to be the dominant ones.

To proceed, we use eq. (2.11) directly evaluated with the configuration of eq. (4.1), cor-

responding to the squeezed configuration, and focus on the terms that are highest order in

K. This leads to:

(xsqysqzsq)
3K7∆Bsq(k)

iπ4P2
0

= −
∫ ∞

−∞

dτ eiKτ
[

(6θ − ατθ′)
K2

16
+

(2 + α)θ′

4τ

(

1− iKτ − K2τ2

4

)

]

.

(4.3)

Here we have again used eq. (2.6) to eliminate η in favour of θ. The factor (xsqysqzsq)
3

(which evaluates to 0) will be absorbed once we use eq. (2.12) to rewrite ∆Bsq in terms of

f sq
NL. Now, repeating the same steps that we set in the previous section’s computation yields

an expression for θ as a function of ∆Bsq:

θ =
4

τ2
1

1 + α

(xsqysqzsq)
3

iπ5P2
0

∫ ∞

−∞

dK K3

(

∂

∂ lnK
∆Bsq(K)

)

e−iKτ . (4.4)

To obtain this result, we have neglected terms that are subleading with respect to the hierar-

chy of eq. (2.5). Now we can use this expression for θ to plug it back into eq. (3.3) evaluated

10



at the general configuration parametrized in (4.2). Alternatively, we may simply compare

eq. (4.4) with the earlier expression of eq. (3.6). We obtain:

(xyz)2

2[x2 + y2 + z2] + α
∆Bgen(K) = −4(xsqysqzsq)

3

1 + α

∂

∂ lnK
∆Bsq(K). (4.5)

Then, using the definition for fNL in terms of ∆B given in eq. (2.12) we finally find:

fgen
NL (K) = −(2[x2 + y2 + z2] + α)xyz

(1 + α)(x3 + y3 + z3)

∂

∂ lnK
f sq
NL(K). (4.6)

This expression gives us the correlation in momentum space between a squeezed triangle

(parametrized in eq. (4.1)) and any general non-squeezed triangle (parametrized in eq. (4.2))

whose sides add up to the same value of K. We see that f sq
NL is suppressed compared to fgen

NL .

There is a log-derivative in between them, which means a factor of the order parameter for

the sharp features that we are studying. Of course, that is in line with what we have found

in our previous work [29]: f sq
NL is proportional to one derivative less of ∆P than fNL for other

configurations.

5 Discussion and conclusions

While observations are still fully compatible with canonical single-field slow-roll inflation, they

still leave room to study departures in the form of small scale-dependent features. In this

work we have continued our study of sharp features, happening within an efold of inflation.

Whereas our previous study [29], was aimed at correlating features in the bispectrum with

features in the power spectrum we have now proposed to look at bispectrum-bispectrum

correlations, i.e. correlations between different configurations of the momentum triangle.

We have established that if a sharp features show up in some particular momentum space

triangle, we can predict its manifestation in any other configuration function. Once observed

in one configuration, checking the correlation with other configuration functions will be a

very useful tool to find out whether an observed feature can really be explained as resulting

from a rapid time variation of the expansion rate H and/or (dependent on the value of α)

of the speed of sound cs.

In particular, we have indicated that the strength of a non-Gaussian signal (the size of

fNL) caused by a sharp feature in the inflaton’s dynamics depends on the configuration of the

momentum triangle. In other words, while changing this configuration (but leaving the sum

of the three sides unchanged), the amplitude of the predicted non-Gaussian signal changes

as well. In particular, when approaching the squeezed limit, it decreases by an order of

magnitude. We feel that this very basic observation might have considerable consequences for

analyzing non-Gaussianities. Indeed, when looking for non-Gaussian manifestations of sharp

features in the data, one should use templates with a configuration-dependent amplitude.
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A Alternative parametrization

In this Appendix we want to repeat the main text’s computation in a different parametrization

of the momentum space triangles under consideration. Now the ratios k1/k3 and k2/k3 are

our free parameters. We feel that the parametrization used in the main text is somewhat

more transparent, but given the popularity of this other parametrization, this Appendix

might be useful for comparing our results to the literature.

A.1 General configurations

We consider a general configuration function:

k1 = xk, k2 = yk, k3 = k. (A.1)

So for x = y = 1 we should recover the equilateral results, and for x = y = 1/2 we are back

to the folded case. Inserting eq. (2.11) for our general configuration gives (still in terms of

both θ and η):

x3y3

2

k7

iπ4P2
0

∆Bgen =

∫ ∞

−∞

dτei[x+y+1]kτ
[

(3θ + η)
(

−[x2 + y2 + x2y2]k2 + ixy[x+ y + xy]k3τ
)

+
η − τθ′

τ2
1 + x2 + y2

2
(1− i[x+ y + 1]kτ − [x+ y + xy]k2τ2 + ixyk3τ3)

]

.

(A.2)

We focus on the sharpest terms (the ones proportional to k3) and perform three partial

integrations, yielding three factors of ([x+ y + 1]kτ)−1. We obtain:

x3y3

2

k7

iπ4P2
0

∆Bgen =

∫ ∞

−∞

dτ
ei[x+y+1]kτ

2[x+ y + 1]3

[

η′′′xy(1 + x+ y)2

−τθ′′′′xy
[

1 + x2 + y2
]

]

τ. (A.3)

Inverting this relation gives:

x2y2(x+ y + 1)4

2

∫ ∞

−∞

dk
k7

iπ5P2
0

∆Bgene
−i[x+y+1]kτ =

[

η′′′(1 + x+ y)2 − τθ′′′′
[

1 + x2 + y2
]

]

τ.

(A.4)
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Now we use our relation η = −α
2 τθ

′. That gives:

x2y2(x+ y + 1)4

2

∫ ∞

−∞

dk
k7

iπ5P2
0

∆Bgene
−i[x+y+1]kτ = −

(

1 + x2 + y2 +
α

2
(1 + x+ y)2

)

θ′′′′τ2

=

(

(1 + x+ y)2 +
2

α

[

1 + x2 + y2
]

)

η′′′τ.

(A.5)

Now we can express θ and η as functions of ∆B. Isolating θ and performing four integrations

with respect to τ (assuming that the τ -derivative’s dominant effect is on θ, and not on the

factors of τ) gives

θ = − 1

τ2
x2y2

2 + 2x2 + 2y2 + α(1 + x+ y)2

∫ ∞

−∞

dk
k3

iπ5P2
0

∆Bgene
−i[x+y+1]kτ , (A.6)

while for η we get:

η = −1

τ

αx2y2(x+ y + 1)

2 (2 [1 + x2 + y2] + α(1 + x+ y)2)

∫ ∞

−∞

dk
k4

π5P2
0

∆Bgene
−i[x+y+1]kτ . (A.7)

We can now turn to the computation of the ratio of the values for fNL for two different

configurations. For configuration 1 we have k1 = x1k
(1), k2 = y1k

(2) and k3 = k(1). For

configuration 2 we have k1 = x2k
(2), k2 = y2k

(2) and k3 = k(2). Normalization of the

triangles requires

(x1 + y1 + 1)k(1) = (x2 + y2 + 1)k(2). (A.8)

(Note that the advantage of the parametrization used in the main text is that this normaliza-

tion is automatically taken care of.) Using the definition of fNL given in eq. (2.12) expresses

the ratio of the two fNL-values as a ratio of the two bispectrum perturbations:

f
(1)
NL

f
(2)
NL

=
(x1y1)

3(x32 + y32 + 1)

(x2y2)3(x
3
1 + y31 + 1)

(

k(1)

k(2)

)6
∆B1

∆B2
. (A.9)

The ratio of values for ∆B for the two configurations follows from our result eq. (A.6) for θ.

Formally expressing θ as a function of ∆B1 and as a function of ∆B2 and comparing these

two gives:

∆B1

∆B2
=

(

x1 + y1 + 1

x2 + y2 + 1

)4(x2y2
x1y1

)2 2(1 + x21 + y21) + α(1 + x1 + y1)
2

2(1 + x22 + y22) + α(1 + x2 + y2)2
. (A.10)

Of course, expressing η as a function of ∆B1 and as a function of ∆B2, and comparing these

two expressions gives the same result.

Finally we turn to the ratio of the values for fNL that we had found in eq. (A.9)

f
(1)
NL

f
(2)
NL

=

(

x1y1
x2y2

)3 x32 + y32 + 1

x31 + y31 + 1

(

x2 + y2 + 1

x1 + y1 + 1

)6(x1 + y1 + 1

x2 + y2 + 1

)4(x2y2
x1y1

)2

×2(1 + x21 + y21) + α(1 + x1 + y1)
2

2(1 + x22 + y22) + α(1 + x2 + y2)2

=
x1y1
x2y2

x32 + y32 + 1

x31 + y31 + 1

(

x2 + y2 + 1

x1 + y1 + 1

)2 2(1 + x21 + y21) + α(1 + x1 + y1)
2

2(1 + x22 + y22) + α(1 + x2 + y2)2
, (A.11)
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and that is the final result. Inserting x1 = y1 = 1 for the equilateral configuration and

x2 = y2 = 1/2 for the folded configuration gives

f eq
NL

f fold
NL

=
1

1/4

5/4

3

(

2

3

)2 6 + 9α

3 + 4α
=

20

9

2 + 3α

3 + 4α
, (A.12)

as we had already found in eq. (3.9).

A.2 Squeezed configuration

We compare the squeezed configuration

k1 = 0, k2 = k, k3 = k, (A.13)

with the general configuration:

k1 = xk̃, k2 = yk̃, k3 = k̃. (A.14)

In other words, in the first configuration we have xsq = 0 and ysq = 1. The normalization is

as in eq. (A.8):

2k = (x+ y + 1)k̃. (A.15)

Inserting eq. (2.11) we lose the terms that are highest order in k. We get:

(xsqysq)
3k7

∆Bsq(k)

2iπ4P2
0

=

∫ ∞

−∞

dτe2ikτ
[

−(3θ + η)k2 +
η − τθ′

τ2
(1− 2ikτ − k2τ2)

]

. (A.16)

This yields for η and θ

θ =
1

τ

1

1 + α
(xsqysq)

3

∫ ∞

−∞

dkk4
∆Bsq(k)

4π5P2
0

e−2ikτ

=
1

τ2
1

1 + α
(xsqysq)

3

∫ ∞

−∞

dkk3
(

∂

∂ ln k

∆Bsq(k)

8iπ5P2
0

)

e−2ikτ (A.17)

and

η = − α

1 + α
(xsqysq)

3

∫ ∞

−∞

dkk5
∆Bsq(k)

4iπ5P2
0

e−2ikτ

=
1

τ

α

1 + α
(xsqysq)

3

∫ ∞

−∞

dkk4
(

∂

∂ ln k

∆Bsq(k)

8π5P2
0

)

e−2ikτ . (A.18)

Here we have rewritten θ and η such that we can compare them with our earlier expressions

eq. (A.6). Indeed, comparing eq. (refthetafin) and eq. (A.17) leaves us with (upon imposing

the normalization given in eq. (A.15)):

f(α, x, y)

(

2

x+ y + 1

)4

(xy)3∆Bgen(k̃) = − 1

1 + α

1

8
(xsqysq)

3 ∂

∂ ln k
∆Bsq(k), (A.19)
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where we have introduced the function f(α, x, y):

f(α, x, y) =
1

xy

1

2(1 + x2 + y2) + α(1 + x+ y)2
. (A.20)

The same result follows, of course, from comparing the expressions eq. (A.7) and eq. (A.18)

for η. Finally, inserting equation eq. (2.12) now gives us

f(α, x, y)

(

2

x+ y + 1

)4
(

x3 + y3 + 1
) 1

k̃6
fgen
NL (k̃) = − 1

1 + α

1

4

1

k6
∂

∂ ln k
f sq
NL(k), (A.21)

and upon using the normalization eq. (A.15) that gives

f(α, x, y) (x+ y + 1)2
(

x3 + y3 + 1
)

fgen
NL (k̃) = − 1

1 + α

∂

∂ ln k
f sq
NL(k), (A.22)

which is indeed consistent with our result in eq. (4.6). (Note that since fNL is a scale-

independent parameter, it is independent of the used parametrization.)
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