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C∗-Algebraic Covariant Structures

H. Bustos and M. Măntoiu∗

Abstract

We introducecovariant structures{(A , κ), (a, α), (ã, α̃)} formed of a separableC∗-algebraA , a measurable
twisted action(a, α) of the second-countable locally compact groupG , a measurable twisted action(ã, α̃) of an-
other second-countable locally compact groupG̃ and a strictly continuous functionκ : G× G̃ → UM(A ) suitably
connected with(a, α) and (ã, α̃) . Natural notions of covariant morphisms and representations are considered,
leading to a sort of twisted crossed product construction. VariousC∗-algebras emerge by a procedure that can
be iterated indefinitely and that also yields new pairs of twisted actions. Some of theseC∗-algebras are shown
to be isomorphic. The constructions are non-commutative, but are motivated by Abelian Takai duality that they
eventually generalize.

Introduction

Let A be a separableC∗-algebra with automorphism groupAut(A ), multiplier algebraM(A ) and unitary group
UM(A ) and letG, G̃ be two second contable locally compact groups, with unitse andε and left Haar measuresdx
anddξ respectively. Let also(a, α) be a measurable twisted action ofG onA and(ã, α̃) a measurable twisted action
of G̃ onA . Motivated by duality issues, we are going to investigate this pair of twisted actions in the presence of a
”coupling function”κ : G× G̃→ UM(A ), supposed strictly continuos.

The simple motivating example is given by the setting involved in the well-known (Abelian) Takai duality result
[17, 18, 13, 19]. In this caseG is supposed to be commutative,G ≡ Ĝ is its Pontryagin dual andκ(x, ξ) := ξ(x) is
obtained by applying the characterξ to the elementx . The theory starts with a single actiona of the groupG (let
us assume it untwisted), used to construct [3, 4, 9, 19] the crossed productB := A ⋊aG . On this newC∗-algebra
there is a canonical action̂b0 of the dual group given on elementsf of the dense∗-subalgebraL1(G;A ) by

[
b̂0ξ(f)

]
(x) := f(x)ξ(x) = f(x)κ(x, ξ) , ∀x ∈ G , ξ ∈ Ĝ .

Takai’s duality result states that the second generation crossed product(A ⋊aG)⋊b̂0 Ĝ is isomorphic to the tensor
productA ⊗ K[L2(G)] between the initialC∗-algebraA and theC∗-algebra of compact operators on the Hilbert
spaceL2(G) ; this isomorphism is equivariant with respect to the canonial bi-dual action on(A ⋊aG)⋊b̂0 Ĝ and a
natural product action onA ⊗K[L2(G)] .

On the other hand, this dual action is not enough if one wants to fully connect theC∗-algebraB with the initial
C∗-dynamical system(A , a,G) . There is also a natural strictly continuous group morphismλ : G → UM(B)
(basicallyλx = δx ⊗ 1 in a suitable picture of the multiplier algebra ofB) and the covariance relation

b̂0ξ(λx) = κ(x, ξ)λx

holds for eachx ∈ G andξ ∈ Ĝ . The couple(b̂0, λ) plays an important role [8, 9] in Landstad’s characterizations
of theC∗-algebras that are isomorphic to a crossed product with group G . But λ can also be seen as defining an
action

b := adλ : G→ Aut(B) , bx(f) = adλx
(f) ≡ λx ⋄ f ⋄ λ

⋄
x ,

where⋄ denotes the composition law and⋄ the involution in the (multiplier algebra of the) crossed product. Finally
B comes equipped with the two actionsb of the groupG andb̂0 of the group̂G . If the initial actiona is twisted by
a2-cocycleα , thenλ will no longer be a group morphism andb will also aquire a2-cocycle

β : G× G→ UM(B) , β(x, y) := λx ⋄ λy ⋄ λ
⋄
xy .
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In addition, if initially there is also a twisted action(â, α̂) of the dual group̂G on A , this can be converted in a
modification ofb̂0 into

[b̂ξ(f)](x) := âξ[f(x)]κ(x, ξ)

and this formula also requires a2-cocycleβ̂(·, ·) := 1⊗ α̂(·, ·) on Ĝ .
The conclusion is that, for the Pontryagin couple(G, Ĝ) , a pair of twisted actions

(
(a, α,G), (â, α̂, Ĝ)) on A

generates a pair of twisted actions
(
(b, β,G), (b̂, β̂, Ĝ)) on the twisted crossed product [2, 10, 11]B := A ⋊

α
aG . A

different but similar pair of twisted actions
(
(c, γ,G), (̂c, γ̂, Ĝ)) arises in the same way on the other twisted crossed

productC := A⋊
α̂
âĜ . Thus two newC∗-algebras are available:(A⋊

α
aG)⋊

β̂

b̂
Ĝ and(A⋊

α̂
âĜ)⋊

γ
cG . A very particular

case of results of our section 6 says that they are isomorphicin a canonical very explicit way, and this implies easily
an extension of Takai’s result that is recovered forâ = id , α = 1 andα̂ = 1 .

The article is dedicated to extend this picture in a non-commutative setting (but since coactions are not involved,
we do not obtain non-commutative versions of Takai duality [6, 12, 14]). Hopefully we are going to develop and
apply this elsewhere.

The first section recalls some basic facts about twisted crossed products and their unitary multipliers.
In the second section we introducecovariant structures{(A , κ), (a, α), (ã, α̃)} formed of a separableC∗-

algebraA , a measurable twisted action(a, α) of the second-countable locally compact groupG , a measurable
twisted action(ã, α̃) of the second-countable locally compact groupG̃ and a strictly continuous functionκ : G×G̃→
UM(A ) . We insist on the fact thatA ,G, G̃ can be non-commutative and the two groupsG andG̃ are very weakly
connected. At the begining we worked under rather strong assumptions:κ was supposed to be a bi-character, the
two ”actions” a and ã were supposed to commute and each cocycle was taken to have values in the fixed-point
algebra associated to the other action. Then we succeeded toisolate a much more general compatibility assumption
connecting the five objectsκ, a, α, ã, α̃ , that is quite meaningful and allows all the subsequent developments.

In section 3, this compatibility assumption is used to associate to the covariant structure{(A , κ), (a, α), (ã, α̃)}
two (exterior equivalent) twisted actions(−→a ,−→α ) and(←−a ,←−α ) of the product groupG× G̃ onA .

In section 4 we define the (twisted crossed)bi-productof a covariant structure{(A , κ), (a, α), (ã, α̃)} by an
universal property involvingcovariant morphisms; these are triples(r, u, v) such that(r, u) is a covariant morphism
of the twistedC∗-dynamical system(A , a, α,G) , (r, v) is a covariant morphism of the twistedC∗-dynamical
system(A , ã, α̃, G̃) and the commutation betweenux andvξ is ruled by the coupling functionκ . Since such
covariant morphisms are rigidly related to usual covariantmorphisms of the twisted action(−→a ,−→α ) , existence of
bi-products follows easily from the theory of twisted crossed products; one can seeA ⋊

−→α
−→a
(G × G̃) as one of its

possible realizations.
The remaining part of the paper is dedicated to other realizations, involving iterated twisted crossed products;

this will make the connection with the first half of the Introduction.
In section 5, associated to a covariant structure{(A , κ), (a, α), (ã, α̃)} , we introduce the first generation co-

variant structures
{
(A ⋊

α
a G, k), (b, β),

(
b̃, β̃

)}
and

{
(A ⋊

α̃
ã G̃, k̃), (c, γ), (c̃, γ̃)

}
and then the second generation

twisted crossed products(A⋊
α
aG)⋊

β̃

b̃
G̃ and(A⋊

α̃
ã G̃)⋊

γ
cG . Checking the axioms relies heavily on the compatibility

assumption betweenκ, a, α, ã, α̃ .
The main result is contained in section 6. It is shown that thefollowing isomorphisms hold

A ⋊
−→α
−→a (G× G̃) ∼= A ⋊

←−α
←−a (G× G̃) ∼= (A ⋊

α
a G)⋊

β̃

b̃
G̃ ∼= (A ⋊

α̃
ã G̃)⋊

γ
c G . (0.1)

This is obtained both by studying the covariant representations of all the structures involved and (for explicitness)
by comparing the concrete form of the composition laws. All the four algebras above can be regarded as realizations
of the bi-product attached to the covariant structure{(A , κ), (a, α), (ã, α̃)} . The isomorphisms in (0.1) even hold
in the category of covariant structures.

Some examples are presented in section 7. In particular, it is shown how a twisted version of the Abelian duality
result can be deduced from the last isomorphism in (0.1).
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1 Twisted actions

Definition 1.1. A twisted actionof the locally compact groupG on theC∗-algebraA is a pair (a, α) composed of
mappingsa : G→ Aut(A ) andα : G× G→ UM(A ) such that

ae = idA , ax ◦ ay = adα(x,y) ◦ axy , ∀x, y ∈ G ,

α(x, e) = 1 = α(e, x) , ∀x ∈ G ,

α(x, y)α(xy, z) = ax[α(y, z)]α(x, yz) , ∀x, y, z ∈ G .

If a is strongly measurable andα is strictly measurable we speak ofa measurable twisted action. If a is strongly
continuous andα is strictly continuous we speak ofa continuous twisted action.

To a measurable twisted action(a, α) of the groupG on theC∗-algebraA one associates [2, 10] the Banach
∗-algebraL1

a,α(G;A ) ≡ L1(G;A ) (cf. [19, App. B]) and its envelopingC∗-algebra, the twisted crossed product
A ⋊

α
a G . The norm onL1(G;A ) is ‖f ‖1 :=

∫
G
dx‖f(x)‖A . The composition laws are

(f ⋄ g)(x) :=

∫

G

dy f(y) ay
[
g(y−1x)

]
α(y, y−1x) ,

f⋄(x) := ∆G(x)
−1α(x, x−1)∗ax[f(x

−1)∗] .

We recall that the non-degenerate representations ofA ⋊
α
a G are in one-to one correspondence with covariant

representations of the twistedC∗-dynamical system(A , a, α) . These are triples(H, π, U) whereH is a Hilbert
space,π : A → B(H) a non-degenerate representation ofA by bounded operators inH andU : G → U(H) a
strongly measurable map whose values are unitary operatorsin H , satisfying

UxUy = π[α(x, y)]Uxy , ∀x, y ∈ G ,

Uxπ(A)U
∗
x = π[ax(A)] , ∀x ∈ G , A ∈ A .

The representationπ⋊U corresponding to(H, π, U) (its integrated form) acts onf ∈ L1(G;A ) as

(π⋊U)f :=

∫

G

dxπ[f(x)]Ux .

We also recall thata covariant morphismof (A , a, α) [11, Sect. 1] is composed of aC∗-algebraB , a non-
degenerate morphismr : A → M(B) and a strictly measurable mapu : G → UM(B) satisfying forx, y ∈ G

andA ∈ A the relations
uxr(A)u

∗
x = r[ax(A)] , uxuy = r[α(x, y)]uxy .

Remark 1.2. Defining the twisted crossed product as the envelopingC∗-algebra of theL1 Banach algebra will be
convenient in the setting of our article. Occasionally we are going to use the fact that this enveloping algebra has
universal properties (cf. [10, Sect. 2] and [11, Sect. 1]), which can be used as alternative definitions.

Some considerations about unitary multipliers of twisted crossed products will be needed. It is true [1, Prop.
4.19] that all the unitary multipliers ofL1

a,α(G;A ) have the formδz ⊗m , whereδz is the Dirac measure inz ∈ G

andm ∈ UM(A ) . One can find in [1] many other results about the interpretation of multiplier-valued regular
measures onG with bounded variation as (left or bi-sided) multipliers onL1

a,α(G;A ) . Since we only need simple
facts, and since the connection between the multipliers of aBanach∗-algebra and the multipliers of its enveloping
C∗-algebra can be murky even in simple situations [7], we are going to give an independent treatment.

If z ∈ G andm is a multiplier ofA the meaning ofδz ⊗m as a measure with values inM(A ) is obvious. To
it we associate the operators(δz ⊗m)l, (δz ⊗m)r : L1(G;A )→ L1(G;A ) given by

[(δz ⊗m)lg](x) ≡ [(δz ⊗m) ⋄ g](x) := m az
[
g(z−1x)

]
α(z, z−1x) , (1.1)
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[(δz ⊗m)rf ](x) ≡ [f ⋄ (δz ⊗m)](x) := f(xz−1) axz−1(m)α(xz−1, z) . (1.2)

One checks easily that{(δz ⊗m)l, (δz ⊗m)r} is a double centralizer of the Banach∗-algebraL1
a,α(G;A ) , i.e.

f ⋄ [(δz ⊗m)lg] = [(δz ⊗m)rf ] ⋄ g , ∀ f, g ∈ L1(G;A ) . (1.3)

The particular casez = e is worth mentioning:

[(δe ⊗m) ⋄ f ⋄ (δe ⊗ n)](x) = mf(x) ax(n) . (1.4)

From now on we assume thatm is a unitary multiplier ofA . To show thatδz ⊗m extends to a multiplier of the
full twisted crossed product, one has to examine its behavior under the integrated formΠ := π⋊U of an arbitrary
covariant representations(π, U,H) . One has

Π [(δz ⊗m)lg] =

∫

G

dxπ
{
m az[g(z

−1x)]α(z, z−1x)
}
Ux

= π(m)Uz

∫

G

dxπ[g(z−1x)]U∗z π
[
α(z, z−1x)

]
Ux

= π(m)Uz

∫

G

dy π[g(y)]U∗z π[α(z, y)]Uzy

= π(m)Uz

∫

G

dy π[g(y)]Uy = π(m)Uz π(g) .

Then, sinceUz andπ(m) are unitary operators, one gets

‖Π [(δz ⊗m)lg]‖B(H)= ‖Π(g)‖B(H)

so(δz⊗m)l extends to an isometry of the envelopingC∗-algebraA⋊
α
a G . A similar statement holds for(δz⊗m)r ,

based on the identityΠ [(δz ⊗m)rf ] = Π(f)π(m)Uz . Then, by continuity and density, the two extensions form a
double centralizer ofA ⋊

α
a G .

A shorter way to express the two computations above is to write (π⋊U)(δz ⊗m) = π(m)Uz . One can deduce
from this (or from many other arguments) the algebra of theseunitary multipliers:

(δy ⊗ n) ⋄ (δz ⊗m) = δyz ⊗ [nay(m)α(y, z)] , (1.5)

(δz ⊗m)⋄ = δz−1 ⊗
[
α(z−1, z)∗az−1(m∗)

]
. (1.6)

Later on we are going to need the particular case

(δe ⊗m)⋄ = δe ⊗m
∗. (1.7)

We close this section with two remarks that will be useful later.

Remark 1.3. Let G, G̃ be two locally compact groups and(c, γ) a twisted action ofG × G̃ on theC∗-algebraA .
Definec† andγ† respectively byc†(ξ,x) := c(x,ξ) andγ†

(
(ξ, x), (η, y)

)
:= γ

(
(x, ξ), (y, η)

)
. Then(c†, γ†) is a

twisted action of the group̃G × G on A . The twisted crossed productsA ⋊
γ
c (G × G̃) andA ⋊

γ†

c†
(G̃ × G) are

isomorphic and at the level ofL1-elements the isomorphism is just composing with the flip(x, ξ)→ (ξ, x) .

Remark 1.4. We say that the two twisted actions(b, β) and(b′, β′) areexterior equivalent[10] if there exists a
strictly measurable map (a normalized1-cochain)q : G→ UM(A ) such thatq(e) = 1 and

b′x = adqx ◦ bx , ∀x ∈ G ,

β′(x, y) = qxbx(qy)β(x, y)q
∗
xy , ∀x, y ∈ G .

In such a situation we are going to write(b, β)
q
∼ (b′, β′) . It is easy to see that∼ is an equivalence relation.

Let us suppose that(b, β)
q
∼ (b′, β′) . Then [10, Lemma 3.3] the twisted crossed productsA ⋊

β
bG andA ⋊

β′

b′ G

are canonically isomorphic. At the level ofL1(G;A ) the isomorphism acts as[ιq(f)](x) := f(x)q∗x .
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2 Covariant structures

Two second countable locally compact group are given:G with elementsx, y, z , unit e and Haar measuredx andG̃
which has elementsξ, η, ζ , unit ε and Haar measuredξ . The next definition is provisory; the really useful concept
is that of Definition 2.4.

Definition 2.1. A semi-covariant structure{(A , κ), (a, α), (ã, α̃)} is given by a separableC∗-algebraA endowed
with two measurable twisted action(a, α) of G and(ã, α̃) of G̃ respectively, and with a strictly continuous map

G× G̃ ∋ (x, ξ) 7→ κ(x, ξ) ∈ UM(A )

satisfying the normalization conditions

κ(e, ξ) = 1 = κ(x, ε) , ∀x ∈ G , ξ ∈ G̃ .

When extra regularity properties (as continuity) of the twisted actions will be present, this will usually be speci-
fied. One could callκ the coupling function.

Definition 2.2. We callcovariant morphism of the semi-covariant structure{(A , κ), (a, α), (ã, α̃)} a quadruplet
(B, r, u, v) where

1. (B, r, u) is a covariant morphism of the twistedC∗-dynamical system(A , a, α) with groupG ,

2. (B, r, v) is a covariant morphism of the twistedC∗-dynamical system(A , ã, α̃) with groupG̃ ,

3. the commutation relationuxvξ = r[κ(x, ξ)]vξux holds for every(x, ξ) ∈ G× G̃ .

If B = K(H) for some Hilbert spaceH (thusM(B) = B(H)) we speak ofa covariant representationand we use
notations as(H, π, U, V ) .

Let us investigate under which assumptions convenient covariant morphisms exists. For a hypothetical one
(B, r, u, v) with faithful r and forA ∈ A , x ∈ G , ξ ∈ G̃ one has

(vξux)r(A)(vξux)
∗ = vξr[ax(A)]v

∗
ξ = r{ãξ[ax(A)]}

but also
vξuxr(A)(vξux)

∗ = r[κ(x, ξ)∗]uxvξ r(A) v
∗
ξu
∗
x r[κ(x, ξ)]

= r[κ(x, ξ)∗]uxr[ãξ(A)]u
∗
x r[κ(x, ξ)]

= r
{
κ(x, ξ)∗ax[ãξ(A)]κ(x, ξ)

}
.

it follows that for allx, ξ one must have

ax ◦ ãξ = adκ(x,ξ) ◦ ãξ ◦ ax , (2.1)

soadκ(·,·) measures the non-commutativity of the actions. Ifκ is center-valued the actions do commute.
Now, for arbitraryx, y ∈ G , ξ, η ∈ G̃ let us computevξuxvηuy in two ways. First

vξuxvηuy = vξr[κ(x, η)]vηuxuy

= r{ãξ[κ(x, η)]} vξvηuxuy

= r{ãξ[κ(x, η)]} r[α̃(ξ, η)]vξη r[α(x, y)]uxy

= r
{
ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)]

}
vξηuxy .
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But on the other hand

vξuxvηuy = r[κ(x, ξ)∗]uxvξ r[κ(y, η)
∗]uyvη

= r[κ(x, ξ)∗]uxr{ãξ[κ(y, η)
∗]}vξuyvη

= r[κ(x, ξ)∗]r{(ax ◦ ãξ)[κ(y, η)
∗]}uxr[κ(y, ξ)

∗]uyvξvη

= r[κ(x, ξ)∗]r{(ax ◦ ãξ)[κ(y, η)
∗]}r{ax[κ(y, ξ)

∗]}uxuyvξvη

= r
{
κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)

∗] ax[κ(y, ξ)
∗]
}
r[α(x, y)]uxyr[α̃(ξ, η)]vξη

= r
{
κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)

∗] ax[κ(y, ξ)
∗]α(x, y)} r{axy[α̃(ξ, η)]

}
uxyvξη

= r
{
κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)

∗] ax[κ(y, ξ)
∗]α(x, y) axy[α̃(ξ, η)]κ(xy, ξη)

}
vξηuxy .

The conclusion, valid for everyx, y, ξ, η is

ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)] = κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)
∗] ax[κ(y, ξ)

∗]α(x, y) axy[α̃(ξ, η)]κ(xy, ξη) . (2.2)

The cohomological interpretation of (2.2) will be seen in Remark 3.2. This relation is sometimes hard to use, so we
will reduce to it to a pair of simpler ones (also having a cohomological meaning). By takingy = e one gets

ax[α̃(ξ, η)] = κ(x, ξ)ãξ[κ(x, η)] α̃(ξ, η)κ(x, ξη)
∗ (2.3)

and by takingη = ε one gets

ãξ[α(x, y)] = κ(x, ξ)∗ax[κ(y, ξ)
∗]α(x, y)κ(xy, ξ) . (2.4)

Lemma 2.3. Assume that(a, α) is a twisted action ofG and (ã, α̃) is a twisted action of̃G , satisfying (2.1) for
everyx, ξ . Then (2.2) holds for everyx, y, ξ, η if and only if (2.3) and (2.4) hold for everyx, y, ξ, η .

Proof. We only need to deduce (2.2) from (2.3) and (2.4). One transforms the r.h.s.

κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)
∗] ax[κ(y, ξ)

∗]α(x, y) axy[α̃(ξ, η)]κ(xy, ξη)

(2.3)
= κ(x, ξ)∗(ax ◦ ãξ)[κ(y, η)

∗] ax[κ(y, ξ)
∗]α(x, y)κ(xy, ξ) ãξ[κ(xy, η)] α̃(ξ, η)

(2.1)
= (ãξ ◦ ax)[κ(y, η)

∗]κ(x, ξ)∗ ax[κ(y, ξ)
∗]α(x, y)κ(xy, ξ) ãξ[κ(xy, η)] α̃(ξ, η)

(2.4)
= (ãξ ◦ ax)[κ(y, η)

∗] ãξ[α(x, y)] ãξ[κ(xy, η)] α̃(ξ, η)

= ãξ{ax[κ(y, η)
∗]α(x, y)κ(xy, η)} α̃(ξ, η)

(2.4)
= ãξ{κ(x, η) ãη[α(x, y)]} α̃(ξ, η)

= ãξ[κ(x, η)] (ãξ ◦ ãη)[α(x, y)] α̃(ξ, η)

= ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)]

and we are done.

Now we have at least one motivation for our main notion; see also Remarks 3.3 and 6.3 and the constructions of
the next sections.

Definition 2.4. A covariant structureis a semi-covariant structure{(A , κ), (a, α), (ã, α̃)} for which relations (2.1),
(2.3) and (2.4) are satisfied for all elementsx, y ∈ G , ξ, η ∈ G̃ .

Example 2.5. Suppose that for everyx, ξ the multiplierκ(x, ξ) is central and a fixed point for botha andã (this
happens ifκ(x, ξ) ∈ T for instance). Also assume that it is ”bilinear” (multiplicative in the second variable and
anti-multiplicative in the first). Then (2.1), (2.3) and (2.4) simplify a lot: the two actions commute and the cocycles
of each twisted action are fixed points of the other action.A sub-particular case is one of the motivations of all our
constructions:G is an Abelian locally compact group,G̃ := Ĝ is its Pontryagin dual andκ(x, ξ) := ξ(x) is obtained
by applying the characterξ to the elementx .
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Example 2.6. Obviously a twisted action ofG (or of G̃) can be completed by trivial objects to get a covariant
structure. One might call{(A , 1), (id, 1), (ã, α̃)} aG-trivial covariant structureand{(A , 1), (a, α), (id, 1)}might
be calleda G̃-trivial covariant structure. Similar examples with some non-trivialκ are also available.

Example 2.7. We outline now an example that will play an important role below. Let(ã, α̃) be a measurable twisted
action ofG̃ on theC∗-algebraA and letρ be a1-cochain onG with values inUM(A ) , i.e. a mapρ : G→ UM(A )
satisfyingρe = 1 . The family{(A , κ), (ρ), (ã, α̃)} will be calleda G-particular covariant structureif for x ∈ G

andξ ∈ G̃ one hasthe covariance condition

ãξ(ρx) = κ(x, ξ)∗ρx . (2.5)

If G is commutative,̃G is its dual,κ(x, ξ) := ξ(x) , α̃ = 1 (soã is a true action) andρ is a group morphism,(A , ρ, ã)
is traditionally calledG-product; then the condition (2.5) plays an important role in Landstad duality theory [8, 9].

Lemma 2.8. A G-particular covariant structure can be turned into a covariant structure.

Proof. If {A , (ρ), (ã, α̃)} is a particular covariant structure, let us set

ax := adρx
and α(x, y) := ρxρyρ

∗
xy .

Clearly(a, α) is a twisted action ofG onA . It is easy to check that it is measurable ifρ is strictly measurable and
continuous ifρ is strictly continuous.

To check (2.1), forx ∈ G , ξ ∈ G̃ one computes

ãξ ◦ adρx
= adãξ(ρx)◦ ãξ = adκ(x,ξ)∗ρx

◦ ãξ = adκ(x,ξ)∗ ◦ adρx
◦ ãξ .

We now verify (2.4):

κ(x, ξ)∗ax[κ(y, ξ)
∗]α(x, y)κ(xy, ξ) = κ(x, ξ)∗ρxκ(y, ξ)

∗ρ∗x ρxρyρ
∗
xy κ(xy, ξ)

= κ(x, ξ)∗ρx κ(y, ξ)
∗ρy ρ

∗
xy κ(xy, ξ)

= ãξ(ρx) ãξ(ρy) ãξ(ρxy)
∗ = ãξ[α(x, y)] .

The relation (2.3) reads now

ρxα̃(ξ, η)ρ
∗
x = κ(x, ξ)ãξ[κ(x, η)] α̃(ξ, η)κ(x, ξη)

∗ . (2.6)

Rewriting (2.5) in the formκ(x, ξ)∗ = ãξ(ρx)ρ
∗
x , the r.h.s of (2.6) can be transformed

κ(x, ξ)ãξ[κ(x, η)] α̃(ξ, η)κ(x, ξη)
∗ = ρxãξ(ρ

∗
x) ãξ[ρxãη(ρ

∗
x)] α̃(ξ, η) ãξη(ρx)ρ

∗
x

= ρx ãξ[ãη(ρ
∗
x)] α̃(ξ, η) ãξη(ρx)ρ

∗
x

= ρx α̃(ξ, η) ãξη(ρ
∗
x) ãξη(ρx)ρ

∗
x

= ρxα̃(ξ, η)ρ
∗
x .

Example 2.9. By analogy, one defines̃G-particular (measurable) covariant structures{(A , κ), (a, α), (ã, α̃)}
where, by definition, the twisted action(a, α) is arbitrary, but one has̃aξ := adρ̃ξ

and α̃(ξ, η) := ρ̃ξρ̃ηρ̃
∗
ξη for

some measurable1-cochainρ̃ : G̃→ UM(A ) satisfyingax(ρ̃ξ) = κ(x, ξ)ρ̃ξ for all x, ξ .
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Example 2.10. We close this section giving an example of covariant representation of a given covariant structure
{(A , κ), (a, α), (ã, α̃)} . Let̟ : A → B(H) be a faithful representation in a separable Hilbert spaceH . We can
inflate̟ to a representation ofA in the Hilbert spaceH := L2(G× G̃;H) ∼= L2(G× G̃)⊗H by

[π(A)Ω](x, ξ) := ̟
[
(ãξ ◦ ax)(A)

]
Ω(x, ξ) . (2.7)

One also defines
(UzΩ)(x, ξ) := ∆G(z)

1/2̟
{
ãξ[α(x, z)]

}
Ω(xz, ξ) , (2.8)

(VζΩ)(x, ξ) := ∆
G̃
(ζ)1/2̟

{
ãξ[κ(x, ζ)]α̃(ξ, ζ)

}
Ω(x, ξζ) . (2.9)

It is quite straightforward to show that(H , π, U, V ) is indeed a covariant representation; we say thatit is induced
by̟ . Let us only indicate the most difficult of the relevant computations:

(UzVζΩ)(x, ξ) = ∆G(z)
1/2̟

{
ãξ[α(x, z)]

}
(VζΩ)(xz, ζ)

= ∆G(z)
1/2̟

{
ãξ[α(x, z)]

}
∆

G̃
(z)1/2̟

{
ãξ[κ(xz, ζ)]α̃(ξ, ζ)

}
Ω(xz, ξζ)

= ∆G(z)
1/2∆

G̃
(ζ)1/2̟

{
ãξ[α(x, z)κ(xz, ζ)]

}
̟[α̃(ξ, ζ)]Ω(xz, ξζ)

(2.4)
= ∆G(z)

1/2∆
G̃
(ζ)1/2̟

{
ãξ
[
ax
(
κ(z, ζ)

)
κ(x, ζ) ãζ

(
α(x, z)

)]}
̟[α̃(ξ, ζ)]Ω(xz, ξζ)

= ∆G(z)
1/2∆

G̃
(ζ)1/2̟

{
(ãξ ◦ ax)[κ(z, ζ)]

}
̟
{
ãξ[κ(x, ζ)](ãξ ◦ ãζ)[α(x, z)]α̃(ξ, ζ)

}
Ω(xz, ξζ)

= ̟
{
(ãξ ◦ ax)[κ(z, ζ)]

}
∆G(z)

1/2∆
G̃
(ζ)1/2̟

{
ãξ[κ(x, ζ)]α̃(ξ, ζ)ãξζ [α(x, z)]

}
Ω(xz, ξζ)

= ̟
{
(ãξ ◦ ax)[κ(z, ζ)]

}
∆

G̃
(ζ)1/2̟

{
ãξ[κ(x, ζ)]α̃(ξ, ζ)

}
∆G(z)

1/2̟{ãξζ [α(x, z)]}Ω(xz, ξζ)

= π[κ(z, ζ)](VζUzΩ)(x, ξ) .

3 The twisted action attached to a covariant structure

Let us set forx, y ∈ G andξ, η ∈ G̃
−→a (x,ξ) := ãξ ◦ ax , (3.1)

−→α
(
(x, ξ), (y, η)

)
:= ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)] . (3.2)

Proposition 3.1. (−→a ,−→α ) is a measurable twisted action ofG × G̃ on A . If the two twisted actions(a, α) and
(ã, α̃) are continuous, then(−→a ,−→α ) is continuous.

Proof. Using the assumptions and relations asΨ ◦ adB = adΨ(B) ◦Ψ andadA ◦ adB = adAB one computes

−→a (x,ξ) ◦
−→a (y,η) = ãξ ◦ ax ◦ ãη ◦ ay

= ãξ ◦ adκ(x,η) ◦ ãη ◦ ax ◦ ay

= adãξ[κ(x,η)] ◦ ãξ ◦ ãη ◦ ax ◦ ay

= adãξ[κ(x,η)] ◦ adα̃(ξ,η) ◦ ãξη ◦ adα(x,y) ◦ axy

= adãξ[κ(x,η)] ◦ adα̃(ξ,η) ◦ adãξη[α(x,y)] ◦ ãξη ◦ axy

= ad−→α
(
(x,ξ),(y,η)

) ◦ −→a (xy,ξη) .

One computes with a huge pacience

−→α
(
(x, ξ), (y, η)

)−→α
(
(xy, ξη), (z, ζ)

)

= ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)] ãξη[κ(xy, ζ)] α̃(ξη, ζ) ãξηζ [α(xy, z)]

= ãξ
{
κ(x, η)ãη[α(x, y)κ(xy, ζ)]

}
α̃(ξ, η) α̃(ξη, ζ) ãξηζ [α(xy, z)]

(2.4)
= ãξ

{
κ(x, η)ãη[ax(κ(y, ζ))κ(x, ζ)ãζ (α(x, y))]

}
α̃(ξ, η) α̃(ξη, ζ) ãξηζ [α(xy, z)]

= ãξ
{
κ(x, η)ãη[ax(κ(y, ζ))κ(x, ζ)]

}
(ãξ ◦ ãη ◦ ãζ)[α(x, y)] α̃(ξ, η) α̃(ξη, ζ) ãξηζ [α(xy, z)]

= ãξ
{
κ(x, η)ãη[ax(κ(y, ζ))κ(x, ζ)]

}
α̃(ξ, η) α̃(ξη, ζ) ãξηζ [α(x, y)] ãξηζ [α(xy, z)]

= ãξ
{
κ(x, η)ãη[ax(κ(y, ζ))κ(x, ζ)]

}
ãξ[α̃(η, ζ)] α̃(ξ, ηζ) ãξηζ

{
ax[α(y, z)]α(x, yz)]

}
.
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On the other hand

−→a (x,ξ)

[−→α
(
(y, η), (z, ζ)

)]−→α
(
(x, ξ), (yz, ηζ)

)

= (ãξ ◦ ax)
{
ãη[κ(y, ζ)]α̃(η, ζ)ãηζ [α(y, z)]

}
ãξ[κ(x, ηζ)]α̃(ξ, ηζ) ãξηζ [α(x, yz)]

= ãξ
[
ax{ãη[κ(y, ζ)]α̃(η, ζ)ãηζ [α(y, z)]}κ(x, ηζ)

]
α̃(ξ, ηζ) ãξηζ [α(x, yz)]

= ãξ
{
(ax ◦ ãη)[κ(y, ζ)] ax[α̃(η, ζ)] (ax ◦ ãηζ)[α(y, z)]κ(x, ηζ)

}
α̃(ξ, ηζ) ãξηζ [α(x, yz)]

(2.1)
= ãξ

{
κ(x, η)(ãη ◦ ax)[κ(y, ζ)]κ(x, η)

∗ ax[α̃(η, ζ)]κ(x, ηζ)(ãηζ ◦ ax)[α(y, z)]
}
α̃(ξ, ηζ) ãξηζ [α(x, yz)]

= ãξ
{
κ(x, η)(ãη ◦ ax)[κ(y, ζ)]κ(x, η)

∗ ax[α̃(η, ζ)]κ(x, ηζ)
}
(ãξ ◦ ãηζ){ax[α(y, z)]}α̃(ξ, ηζ) ãξηζ [α(x, yz)]

= ãξ
{
κ(x, η)(ãη ◦ ax)[κ(y, ζ)]κ(x, η)

∗ ax[α̃(η, ζ)]κ(x, ηζ)
}
α̃(ξ, ηζ)ãξηζ{ax[α(y, z)]} ãξηζ [α(x, yz)]

(2.3)
= ãξ

{
κ(x, η)(ãη ◦ ax)[κ(y, ζ)]ãη[κ(x, ζ)]α̃(η, ζ)

}
α̃(ξ, ηζ)ãξηζ{ax[α(y, z)]} ãξηζ [α(x, yz)]

= ãξ
{
κ(x, η)(ãη ◦ ax)[κ(y, ζ)]ãη[κ(x, ζ)]

}
ãξ[α̃(η, ζ)]α̃(ξ, ηζ)ãξηζ{ax[α(y, z)]} ãξηζ [α(x, yz)] ,

the two expressions coincide and thus the2-cocycle condition is verified. The normalization of−→α is obvious.
The continuity and the measurability are easy.

Remark 3.2. Relation (2.2) can be rephrased, also using (2.1)

κ(x, ξ) (ãξ ◦ ax)[κ(y, η)] {ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)]} = ax[κ(y, ξ)
∗]α(x, y) axy[α̃(ξ, η)] . (3.3)

The r.h.s. of (3.3) defines a2-cocycle←−α onG× G̃ with respect to←−a (x,ξ) := ax ◦ ãξ and (2.2) can be rewritten

κ(x, ξ)−→a (x,ξ)[κ(y, η)]
−→α

(
(x, ξ), (y, η)

)
κ(xy, ξη)∗ =←−α

(
(x, ξ), (y, η)

)
. (3.4)

Relations (2.1) and (3.4) tell that the twisted actions(−→a ,−→α ) and(←−a ,←−α ) are exterior equivalent (Remark 1.4 and
[10]) through the1-cochainκ . Rephrasings in terms of the groupH′ := G̃×G , based on Remark 1.3, are left to the
reader.

Remark 3.3. Now that we have introduced all the notations, it may be useful for the reader to recall the definition
of a covariant structure{(A , κ), (a, α), (ã, α̃)}: It is defined by a twisted action(a, α) of the groupG , a twisted
action(ã, α̃) of the groupG̃ and a normalized strictly continuous mapκ : G × G̃ → UM(A ) such that for all
X,Y ∈ G× G̃

←−aX = adκ(X) ◦
−→aX and κ(X)−→aX [κ(Y )]−→α

(
X,Y

)
κ(XY )∗ =←−α

(
X,Y

)
.

Using a notation of Remark 1.4, this can be written(−→a ,−→α )
κ
∼ (←−a ,←−α ) .

Proposition 3.4. There are one-to-one correspondences between:

1. Covariant morphisms(B, r, u, v) of the covariant structure{(A , κ), (a, α), (ã, α̃)} (cf. Def. 2.2) .

2. Covariant morphisms(B, r, w) of the twistedC∗-dynamical system(A ,−→a ,−→α ) with groupH := G× G̃ .

3. Covariant morphisms(B, r, w′) of the twistedC∗-dynamical system(A ,←−a ,←−α ) with groupH := G× G̃ .

Proof. If (B, r, u, v) is given, one defines

w : G× G̃→ UM(B) , w(x, ξ) := vξux = r[κ(x, ξ)∗]uxvξ . (3.5)
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We show that(B, r, w) is a covariant morphism of(A ,−→a ,−→α ) . If (x, ξ), (y, η) ∈ G× G̃ one has

w(x, ξ)w(y, η) = vξuxvηuy

= vξr[κ(x, η)]vηuxuy

= r{ãξ[κ(x, η)]} vξvηuxuy

= r{ãξ[κ(x, η)]} r[α̃(ξ, η)]vξη r[α(x, y)]uxy

= r{ãξ[κ(x, η)]} r[α̃(ξ, η)] r{ãξη[α(x, y)]} vξηuxy

= r
{
ãξ[κ(x, η)] α̃(ξ, η) ãξη[α(x, y)]

}
w(xy, ξη)

= r
[−→α

(
(x, y), (ξ, η)

)]
w
(
(x, ξ)(y, η)

)
.

On the other hand, for(x, ξ) ∈ G× G̃ andA ∈ A one gets

w(x, ξ)r(A)w(x, ξ)∗ = vξuxr(A)u
∗
xv
∗
ξ

= vξr[ax(A)]v
∗
ξ

= r
{
ãξ
[
ax(A)

]}

= r
[−→a (x,ξ)(A)

]
.

Now assume that(B, r, w) is a covariant representation of the twistedC∗-dynamical system(A ,−→a ,−→α ) . Defin-
ing u : G→ UM(B) andv : G̃→ UM(B) by

ux := w(x, ε) , vξ := w(e, ξ) (3.6)

one gets a quadruple(B, r, u, v) satisfying the conditions specified at1 . We leave the easy verifications to the
reader. Among others one uses the relations

−→α
(
(x, ε), (y, ε)

)
= α(x, y) , −→α

(
(e, ξ), (e, η)

)
= α̃(ξ, η) ,

−→α
(
(x, ε), (e, η)

)
= κ(x, η) , −→α

(
(e, ξ), (y, ε)

)
= 1 .

So we made explicit the correspondence between 1 and 2 . The correspondence between 1 and 3 is analogous; just
put

w′(x, ξ) := uxvξ for (x, ξ) ∈ G× G̃ .

4 The bi-product of a covariant structure

Definition 4.1. Let{(A , κ), (a, α), (ã, α̃)} be a given covariant structure.A (twisted crossed) bi-productis a uni-
versal covariant morphism

(
C , ιA , ιG, ιG̃

)
. Universality means that if(B, r, u, v) is another covariant morphism,

there exists a unique non-degenerate morphisms : C →M(B) such that

u = s ◦ ιG , v = s ◦ ι
G̃
, r = s ◦ ιA . (4.1)

Rather often we will callbi-productonly theC∗-algebraC , especially when the mappings
(
ιA , ιG, ιG̃

)
are

obvious or not relevant. It could be denoted generically byC ≡ A
(α,α̃)
(a,ã) , but it also depends onκ ; its existence and

(essential) uniqueness will be proved now.

Proposition 4.2. Every covariant structure possesses a (twisted crossed) bi-product, that is unique up to a canonical
isomorphism.
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Proof. By an easy abstract argument, if a bi-product exists, it is unique up to a canonical isomorphism. The meaning
of this and the proof are the standard ones.

To prove existence, we rely on Proposition 3.4 and on the universality of the usual twisted crossed products. If
{(A , κ), (a, α), (ã, α̃)} is a covariant structure, we construct as above the twistedC∗-dynamical system(A ,−→a ,−→α )
with groupG× G̃ . Let

(
C , ιA , ιG×G̃

)
be a corresponding twisted crosed product. Recalling (3.6)we set

ιG : G→ UM(C ) , ιG(x) := ι
G×G̃(x, ε) , (4.2)

ι
G̃
: G̃→ UM(C ) , ι

G̃
(ξ) := ι

G×G̃(e, ξ) . (4.3)

From Proposition 3.4 we already know that
(
C , ιA , ιG, ιG̃

)
is a covariant morphism; one must show its universality.

So let(B, r, u, v) be another covariant morphism and let us definew as in (3.5) . Since(B, r, w) is a covariant
morphism of(A ,−→a ,−→α ) , there exists a uniqueC∗-algebraic morphisms : C →M(B) such that

w = s ◦ ι
G×G̃ , r = s ◦ ιA . (4.4)

Then we have
(s ◦ ιG)(x) = s[ιG(x)] = s

[
ι
G×G̃(x, ε)

]
= w(x, ε) = u(x)

and
(s ◦ ι

G̃
)(ξ) = s

[
ι
G̃
(ξ)

]
= s

[
ι
G×G̃(e, ξ)

]
= w(e, ξ) = v(ξ)

and we are done.

Relying on the twisted actions(−→a ,−→α ) and(←−a ,←−α ) we get newC∗-algebras

A
−→α
−→a := A ⋊

−→α
−→a (G× G̃) with laws

(−→
#,
−→
#
)

and
A
←−α
←−a := A ⋊

←−α
←−a (G× G̃) with laws

(←−
#,
←−
#
)
.

They can be viewed as concrete realizations of the bi-product C∗-algebraA (α,α̃)
(a,ã) . Of course they are isomorpic,

being defined by exterior equivalent twisted actions, cf. Remarks 3.2 and 1.4. It will be convenient to regard them as
the envelopingC∗-algebras of the correspondingL1 Banach∗-algebras (but the abstract universal approach could
also be adopted). At theL1-level the isomorphism is given by

−→
F →

−→
F κ∗ . For further use, we record here the

composition laws onA
−→α
−→a

(−→
F
−→
#
−→
G
)
(x, ξ) =

∫

G

∫

G̃

dydη
−→
F (y, η)(ãη ◦ ay)

[−→
G(y−1x, η−1ξ)

]
ãη[κ(y, η

−1ξ)]α̃(η, η−1ξ)ãξ[α(y, y
−1x)] ,

(4.5)

(
−→
F
−→
#)(x, ξ) = ∆G(x

−1)∆
G̃
(ξ−1)α(x, x−1)∗α̃(ξ, ξ−1)∗ ãξ[κ(x, ξ

−1)∗] (ãξ ◦ ax)
[−→
F (x−1, ξ−1)∗

]
(4.6)

and onA
←−α
←−a

(←−
F
←−
#
←−
G
)
(x, ξ) =

∫

G

∫

G̃

dydη
←−
F (y, η)(ay ◦ ãη)

[←−
G(y−1x, η−1ξ)

]
ay[κ(y

−1x, η)∗]α(y, y−1x)ax[α̃(η, η
−1ξ)],

(4.7)

(
←−
F
←−
#)(x, ξ) = ∆G(x

−1)∆
G̃
(ξ−1)α̃(ξ, ξ−1)∗α(x, x−1)∗ ax[κ(x

−1, ξ)] (ax ◦ ãξ)
[←−
F (x−1, ξ−1)∗

]
. (4.8)

By using Remark 1.3, one generates other two twisted actionsof the groupG̃ × G in A as well as other two
twisted crossed productC∗-algebras isomorphic to the previous ones. They can also be seen as concrete realizations
of the bi-productA (ã,α̃)

(a,α) .

The next Corollary is now obvious. Similar statements hold at the level of (covariant) morphisms.

Corollary 4.3. There are one-to-one correspondences between:
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1. Covariant representations(H, π, U, V ) of the covariant structure{(A , κ), (a, α), (ã, α̃)} .

2. Covariant representations(H, π,W ) of the twistedC∗-dynamical system(A ,−→a ,−→α ) with groupG× G̃ .

3. Covariant representations(H, π,W ′) of the twistedC∗-dynamical system(A ,←−a ,←−α ) with groupG× G̃ .

4. Non-degenerate representations of the bi-productA
(α,α̃)
(a,ã) .

5. Non-degenerate representations of theC∗-algebraA
−→α
−→a

.

6. Non-degenerate representations of theC∗-algebraA
←−α
←−a

.

Example 4.4. In Example 2.10, given a representation̟of theC∗-algebraA in the Hilbert spaceH , we con-
structed the corresponding induced covariant representation(π, U, V ) of the covariant structure{(A , κ), (a, α), (ã, α̃)}
in the Hilbert spaceH = L2(G× G̃;H) . Applying to it the construction given in the proof of Proposition 3.4, one
gets exactly the induced covariant representation [10, Def. 3.10](H , π,W ) of the twistedC∗-dynamical system
(A ,−→a ,−→α ) with groupG× G̃ attached to the initial̟ .

5 First and second generation twisted crossed products

Let {(A , κ), (a, α), (ã, α̃)} be a given covariant structure. To associate to it another (particular) covariant structure{
(A α

a , k), (b, β), (b̃, β̃)
}

, we first setA α
a := A ⋊

α
a G with algebraic laws(⋄,⋄ ) . Also set

k : G× G̃→ UM(A α
a ) , k(x, ξ) := δe ⊗ κ(x, ξ) . (5.1)

From (1.1) and (1.2) and from‖·‖A α
a
≤‖·‖1 it follows easily thatk is strictly continuous.

For eachξ ∈ G̃ we definẽbξ : L1(G;A )→ L1(G;A ) by

[
b̃ξ(f)

]
(y) := ãξ[f(y)]κ(y, ξ)

∗ , (5.2)

while for ξ, η ∈ G̃ , based on the preparations made in section 1, we set

β̃(ξ, η) := δe ⊗ α̃(ξ, η) ∈ UM(A α
a ) . (5.3)

Proposition 5.1. The pair(b̃, β̃) defines a measurable twisted action ofG̃ on A α
a . If (ã, α̃) is continuous, then

(b̃, β̃) is also continuous.

Proof. 1. We need to prove that̃bξ is an automorphism ofA ⋊
α
aG . We only show that̃bξ : L1(G;A )→ L1(G;A )

is a∗-isomorphism for the twisted crossed product structure; then the extension to the full twisted crossed product
is automatic. Clearlỹbξ is well-defined and invertible and one hasb̃ε = id .

For the product, using the definitions, (2.1) and (2.4) one gets

[
b̃ξ(f) ⋄ b̃ξ(g)

]
(x) =

∫

G

dy
[
b̃ξ(f)

]
(y) ay

{[
b̃ξ(g)

]
(y−1x)

}
α(y, y−1x)

=

∫

G

dy ãξ[f(y)]κ(y, ξ)
∗ (ay ◦ ãξ)[g(y

−1x)] ay[κ(y
−1x, ξ)∗]α(y, y−1x)

=

∫

G

dy ãξ[f(y)] (ãξ ◦ ay)[g(y
−1x)]κ(y, ξ)∗ ay[κ(y

−1x, ξ)∗]α(y, y−1x)

=

∫

G

dy ãξ[f(y)] ãξ
{
ay [g(y

−1x)]
}
ãξ[α(y, y

−1x)]κ(x, ξ)∗

= ãξ

(∫

G

dy f(y) ay
[
g(y−1x)

]
α(y, y−1x)

)
κ(x, ξ)∗ =

[
b̃ξ(f ⋄

α
a g)

]
(x) .
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For the involution, by (2.1) and (2.3):

[
b̃ξ(f)

]⋄
(x) = ∆G(x

−1)α(x, x−1)∗ ax

[
b̃ξ(f)(x

−1)
]∗

= ∆G(x
−1)α(x, x−1)∗ ax

{
ãξ
[
f(x−1)

]
κ(x−1, ξ)∗

}∗

= ∆G(x
−1)α(x, x−1)∗ ax[κ(x

−1, ξ)] ax
{
ãξ
[
f(x−1)

]}∗

= ∆G(x
−1)α(x, x−1)∗ ax[κ(x

−1, ξ)]κ(x, ξ) ãξ
{
ax
[
f(x−1)

]}∗
κ(x, ξ)∗

= ∆G(x
−1) ãξ[α(x, x

−1)∗] ãξ
{
ax
[
f(x−1)∗

]}
κ(x, ξ)∗

= ãξ
{
∆G(x

−1)α(x, x−1)∗ax
[
f(x−1)∗

]}
κ(x, ξ)∗

= ãξ[f
⋄(x)]κ(x, ξ)∗ =

[
b̃ξ(f

⋄)
]
(x) .

2. Forξ, η ∈ G we show that̃bξ ◦ b̃η = ad⋄
β̃(ξ,η)

◦ b̃ξη . One computes forx ∈ G andf ∈ L1(G;A )

[(
b̃ξ ◦ b̃η

)
(f)

]
(x) = ãξ

[
b̃η(f)(x)

]
κ(x, ξ)∗

= (ãξ ◦ ãη)[f(x)]ãξ[κ(x, η)
∗]κ(x, ξ)∗

= α̃(ξ, η) ãξη[f(x)] α̃(ξ, η)
∗ãξ[κ(x, η)

∗]κ(x, ξ)∗

= α̃(ξ, η) ãξη[f(x)]κ(x, ξη)
∗ax[α̃(ξ, η)

∗]

= α̃(ξ, η)
[
b̃ξη(f)

]
(x) ax[α̃(ξ, η)

∗]

=
(
β̃(ξ, η) ⋄

[
b̃ξη(f)

]
⋄ β̃(ξ, η)⋄

)
(x) .

We used (2.3); to justify the last equality use (1.4), (1.7) .

3. Now we show that̃β is a2-cocycle with respect tõb . The normalization is clear. To check the2-cocycle
identity, from the definition of̃β , (1.5) and the fact (following from (1.1) and (1.2)) thatb̃ξ(δe ⊗m) = δe ⊗ ãξ(m)
one gets

β̃(ξ, η) ⋄ β̃(ξη, ζ) = [δe ⊗ α̃(ξ, η)] ⋄ [δe ⊗ α̃(ξη, ζ)]

= δe ⊗ [α̃(ξ, η)α̃(ξη, ζ)]

= δe ⊗ [ãξ(α̃(η, ζ)) α̃(ξ, ηζ)]

= {δe ⊗ ãξ[α̃(η, ζ)]} ⋄ [δe ⊗ α̃(ξ, ηζ)]

= b̃ξ [δe ⊗ α̃(η, ζ)] ⋄ [δe ⊗ α̃(ξ, ηζ)]

= b̃ξ

[
β̃(η, ζ)

]
⋄ β̃(ξ, ηζ) .

4. Assuming now that(ã, α̃) is continuous, we are going to show that(b̃, β̃) is continuous. We indicate the
rather straightforward arguments, because changes of norms are involved.

To show thatb̃ is strongly continuous, we estimate forf = ϕ ⊗ A in the dense algebraic tensor product
L1(G)⊙A

‖ b̃η(f)− b̃ξ(f)‖A α
a
≤‖ b̃η(f)− b̃ξ(f)‖1≤

∫

G

dx |ϕ(x)|
∥∥ãη(A)κ(x, η)∗ − ãξ(A)κ(x, ξ)

∗
∥∥

A
.

By the Dominated Convergence Theorem, the integrability ofϕ and the bound
∥∥ãη(A)κ(x, η)∗ − ãξ(A)κ(x, ξ)

∗
∥∥

A
≤ 2 ‖A‖A ,

it is enough to prove that forx ∈ G the integrant converges to zero whenη → ξ , which is trivial sincẽa is strongly
continuous andκ(x, ·) is strictly continuous.
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Then, using (1.1)
∥∥β̃(ξ′, η′) ⋄ f − β̃(ξ, η) ⋄ f

∥∥
A α

a

≤
∥∥ [δe ⊗ α̃(ξ′, η′)] ⋄ f − δe ⊗ α̃(ξ, η)] ⋄ f

∥∥
1

≤

∫

G

dx |ϕ(x)|‖ α̃(ξ′, η′)A− α̃(ξ, η)A‖A .

Once again it follows that this converges to zero if(ξ′, η′) → (ξ, η), using the Dominated Convergence Theorem,
the integrability ofϕ and the fact that̃α is strictly continuous. Multiplying withf to the left is treated similarly.

5. By using the definition of strong or strict measurability,one is lead to show that a maph defined from a
Hausdorff, second countable locally spaceX endowed with a Radon measureµ to a separable Banach spaceB is
measurable. The next criterion [19, App. B] reduces this to an easier continuity issue:

A functionh : X → B is measurable if and only if for any compact setK ⊂ X and anyǫ > 0 , there exists a
subsetK ′ ⊂ K such thatµ(K \K ′) ≤ ǫ and the restrictionh|K′ is continuous.

Now our measurable case follows rather easily from this and from the previous point 4. To illustrate the case
of the actioñb , we start once again with vectors of the formf = ϕ ⊗ A , whereϕ ∈ L1(G) andA ∈ A . Pick a
compact setK ⊂ G̃ and a strictly positive numberǫ ; for some subsetK ′ ofK for which the Haar measure ofK \K ′

is smaller thanǫ , the restrictions toK ′ of the mapsξ → ãξ(A) andξ → κ(x, ξ) are continuous for allx ∈ G . By
the argument above, the restriction toK ′ of the mapξ 7→ b̃ξ(ϕ ⊗ A) is continuous. This and linearity show that
the mapξ 7→ b̃ξ(f) is measurable for any vectorf belonging to the dense subsetL1(G) ⊙ A of A α

a . Passing to
an arbitrary vector is easy by density, applying aδ/3 trick and the criterion again. The strict measurability ofβ̃ is
treated similarly.

We define now the twisted action ofG on the twisted crossed product. First, forx ∈ G , let us set

λx := δx ⊗ 1 ∈ UM(A α
a ) .

Deducing strict continuity or measurability from similar properties of the twisted action(a, α) is straightforward, if
one takes (1.1) and (1.2) into consideration. A computationrelying on (1.1) leads to the covariance condition

b̃ξ(λx) = [δe ⊗ κ(x, ξ)
∗] ⋄ λx = k(x, ξ)⋄ ⋄ λx , ∀x ∈ G , ξ ∈ G̃ .

Along the lines of Example 2.7, defineb : G→ Aut(A α
a ) by

bx(f) := ad⋄λx
(f) = λx ⋄ f ⋄ λ

⋄
x

andβ : G× G→ UM(A α
a ) by

β(x, y) := λx ⋄ λy ⋄ λ
⋄
xy = δe ⊗ α(x, y) .

All the calculations above conclude by

Theorem 5.2. If {(A , κ), (a, α), (ã, α̃)} is a given measurable (resp. continuous) covariant structure, then
{
(A⋊

α
a

G, k), (b, β), (b̃, β̃)
}

is a measurable (resp. continuous)G-particular covariant structure.

Starting with the same covariant structure{(A , κ), (a, α), (ã, α̃)} , one can also construct ãG-particular covari-

ant structure
{(

A α̃
ã , k̃

)
, (c, γ), (c̃, γ̃)

}
. We setA α̃

ã := A⋊
α̃
ãG̃ , with generic elementsf, g and algebraic laws(⋄̃,⋄̃ ) .

The new coupling function is

k̃ : G× G̃→ UM
(
A

α̃
ã

)
, k̃(x, ξ) := δε ⊗ κ(x, ξ)

∗ .

The two twisted actions are defined similarly as above, by changing suitably the roles of the groupsG and G̃ .
Explicitly one has (here1 is the unit ofM(A ) andf ∈ L1(G̃;A )) :

[cx(f)](ζ) = ax[f(ζ)]κ(x, ζ) , (5.4)
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c̃ξ(f) = (δξ ⊗ 1) ⋄̃ f ⋄̃ (δξ ⊗ 1)⋄̃ ,

γ(x, y) = δε ⊗ α(x, y) , (5.5)

γ̃(ξ, η) = (δξ ⊗ 1) ⋄̃ (δη ⊗ 1) ⋄̃ (δξη ⊗ 1) ⋄̃ = δε ⊗ α̃(ξ, η) .

Similarly as above one proves

Theorem 5.3. If {(A , κ), (a, α), (ã, α̃)} is a given measurable (resp. continuous) covariant structure, then
{(

A⋊
α̃
ã

G̃, k̃
)
, (c, γ), (c̃, γ̃)

}
is a measurable (resp. continuous)G̃-particular covariant structure.

All the 2-cocycles of the first generation are just tensor amplifications of those of the zero generation. At the
level of actions, this is no longer true. But it does hold on certain∗-subalgebras, as shown by the next result.

Lemma 5.4. For everyx ∈ G , ξ ∈ G̃ andm ∈M(A ) we have

bx(δe ⊗m) = δe ⊗ ax(m) , (5.6)

b̃ξ(δe ⊗m) = δe ⊗ ãξ(m) , (5.7)

cx(δε ⊗m) = δε ⊗ ax(m) , (5.8)

c̃ξ(δε ⊗m) = δε ⊗ ãξ(m) . (5.9)

Proof. One has by (1.5) and (1.6)

bx(δe ⊗m) = (δx ⊗ 1) ⋄ (δe ⊗m) ⋄ [δx−1 ⊗ α(x−1, x)∗]

= [δx ⊗ ax(m)] ⋄ [δx−1 ⊗ α(x−1, x)∗]

= δe ⊗
{
ax(m)ax

[
α(x−1, x)∗

]
α(x, x−1)

}

= δe ⊗ ax(m) ,

where the2-cocycle property ofα has been used for the last equality. To prove (5.7) one must show for g ∈
L1(G;A )

b̃ξ[(δe ⊗m) ⋄ g] = [δe ⊗ ãξ(m)] ⋄ b̃ξ(g) and b̃ξ[g ⋄ (δe ⊗m)] = b̃ξ(g) ⋄ [δe ⊗ ãξ(m)] .

This follows straightforwardly from (1.1), (1.2) and the definition of b̃ξ . Proving (5.8) and (5.9) is similar.

Starting from the covariant structure{(A , κ), (a, α), (ã, α̃)} and applying the twisted crossed product construc-

tion, we obtained new (particular) measurable covariant structures
{(

A α
a , k

)
, (b, β), (b̃, β̃)

}
and

{(
A α̃

ã , k̃
)
, (c, γ), (c̃, γ̃)

}
.

With all these objects one can construct (at least) two ”second generation”C∗-algebras (they will be compared in
the next section). First, one has

A
α,β̃

a,b̃
≡

(
A

α
a

)β̃
b̃
:= (A ⋊

α
a G)⋊β̃

b̃
G̃ ,

with elementsF,G and algebraic structure
(
�,�

)
. The second one is

A
α̃,γ
ã,c ≡

(
A

α̃
ã

)γ
c
:= (A ⋊

α̃
ã G̃)⋊γ

c G ,

with composition laws
(
�̃,�̃ ) and elementsF,G . We recall that they also depend on the coupling functionκ .

Remark 5.5. There are other two (less interesting) second generationC∗-algebras

A
α,β
a,b ≡ (A α

a )βb := (A ⋊
α
a G)⋊β

b G and A
α̃,γ̃
ã,c̃ ≡ (A α̃

ã )γ̃c̃ := (A ⋊
α̃
ã G̃)⋊γ̃

c̃ G̃ .
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6 They are isomorphic

The purpose now is to show that the second generation twistedcrossed productsA α,β̃

a,b̃
andA

α̃,γ
ã,c are isomorphic

and constitute realizations of the bi-product associated to a given covariant structure{(A , κ), (a, α), (ã, α̃)} .

Theorem 6.1. There are one-to-one correspondences between:

1. Covariant morphisms of the covariant structure{(A , κ), (a, α), (ã, α̃)} .

2. Non-degenerate morphisms of theC∗-algebraA
α,β̃

a,b̃
.

3. Non-degenerate morphisms of theC∗-algebraA
α̃,γ
ã,c .

Proof. If (B, r, u, v) is given as in Definition 2.2, we are going to construct covariant morphisms

ru,v : A
α,β̃

a,b̃
→M(B) and rv,u : A

α̃,γ
ã,c →M(B) .

Using(B, r, u) we first construct the integrated formru := r⋊u : A
α
a →M(B) . Let us check that(B, ru, v) is

a covariant morphism of(A α
a , b̃, β̃) . First, forf ∈ L1(G;A ) andξ ∈ G̃ one has

vξru(f)v
∗
ξ =

∫

G

dx vξr[f(x)]v
∗
ξ vξuxv

∗
ξ

=

∫

G

dx r[ãξ(f(x))] r[κ(x, ξ)
∗]ux

=

∫

G

dx r
[
(b̃ξf)(x)

]
ux = ru

[
b̃ξ(f)

]
.

Then, since(B, r, v) is a covariant representation of(A , ã, α̃) , for ξ, η ∈ G̃ we havevξvηv∗ξη = r[α̃(ξ, η)].

Therefore it is enough to prove thatru
[
β̃(ξ, η)

]
= r[α̃(ξ, η)] . Forg ∈ L1(G;A ) one computes using (1.1)

ru

[
β̃(ξ, η) ⋄ g

]
=

∫

G

dx r
{
[(δe ⊗ α̃(ξ, η)) ⋄ g](x)

}
ux

=

∫

G

dx r{α̃(ξ, η)g(x)} ux = r[α̃(ξ, η)] ru(g) .

Similarly one getsru
[
g ⋄ β̃(ξ, η)

]
= ru(g) r[α̃(ξ, η)] and this is exactly what we needed to show. Thus the (double)

integrated formru,v := ru⋊v = (r⋊u)⋊v is a non-degenerate morphism ofA
α,β̃

a,b̃
. Analogously,rv,u := rv⋊u =

(r⋊v)⋊u will be a nondegenerate morphism ofA
α̃,γ
ã,c .

Now we show that every non-degeneratemorphismR of A α,β̃

a,b̃
in someC∗-algebraB has the formR = (r⋊u)⋊v

with (B, r, u, v) as required . The reasoning for non-degenerate morphismsS of A
α̃,γ
ã,c would be similar.

The general theory, applied to theC∗-dynamical system(A α
a , b̃, β̃) , tells us thatR = R⋊v for some covariant

morphism(B, R, v) . In its turn,R must have the formr⋊u for a covariant morphism(B, r, u) of (A , a, α) . Let

us show that(B, r, v) is a covariant morphism of(A , ã, α̃) . We already know thatvξvη = R
[
β̃(ξ, η)

]
vξη . So, to

prove thatvξvη = r[α̃(ξ, η)] vξη one needs to check thatR
[
β̃(ξ, η)

]
= r[α̃(ξ, η)] . But this has been done above.

On the other hand, by Lemma 5.4, one hasb̃ξ(δe⊗A) = δe⊗ ãξ(A) for everyξ ∈ G̃ andA ∈ A . Thus one has

vξr(A)v
∗
ξ = vξR(δe ⊗A)v

∗
ξ = R

[
b̃ξ(δe ⊗A)

]
= R[δe ⊗ ãξ(A)] = r[ãξ(A)] .

Finally we show the right commutation relations between theunitary multipliersux andvξ . The game is to
deduce this only from the fact that(B, R, v) and(B, r, u) are covariant morphisms.
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Note first that elements of the formϕ⊗ψ⊗A , withA ∈ A , ϕ ∈ L1(G) andψ ∈ L1(G̃) (thus belonging to the

algebraic tensor productL1(G)⊙L1(G̃)⊙A ) are total inA α,β̃

a,b̃
. SinceR = R⋊v = (r⋊u)⋊v , it is easy to check

thatR(ϕ⊗ψ⊗A) = r(A)u[ϕ]v[ψ] , where we used the notationsu[ϕ] :=
∫
G
dxϕ(x)ux andv[ψ] :=

∫
G̃
dξ ψ(ξ)vξ .

Thus,R being nondegenerate, it is enough to show for all the ingredients the identity

vξuxr(A)u[ϕ]v[ψ] = r[κ(x, ξ)∗]uxvξ r(A)u[ϕ]v[ψ] .

Below, we are going to use the notationgx(·) := ϕ(x−1·)ax(A)α(x, x
−1 ·) ∈ L1(G;A ) . Using properties of the

two covariant representations and axioms of the covariant structure, and recalling thatR = r⋊u , we compute

vξux r(A)u[ϕ]v[ψ] = vξr[ax(A)]ux

∫

G

dz ϕ(z)uz v[ψ]

= vξr[ax(A)]

∫

G

dy ϕ(x−1y)r[α(x, x−1y)]uyv[ψ]

= vξ

∫

G

dy r
{
ϕ(x−1y)ax(A)α(x, x

−1y)
}
uyv[ψ]

= vξR(gx)v[ψ] = R
[
b̃ξ(gx)

]
vξv[ψ]

=

∫

G

dy r
{
ϕ(x−1y) ãξ

[
ax(A)α(x, x

−1y)
]
κ(y, ξ)∗

}
uyvξv[ψ]

=

∫

G

dy ϕ(x−1y) r
{
ãξ[ax(A)] ãξ

[
α(x, x−1y)

]
κ(y, ξ)∗

}
uyvξv[ψ]

(2.4)
=

∫

G

dy ϕ(x−1y) r
{
ãξ[ax(A)] κ(x, ξ)

∗ax[κ(x
−1y, ξ)∗]α(x, x−1y)

}
uyvξv[ψ]

(2.1)
= r[κ(x, ξ)∗] r{ax[ãξ(A)]}

∫

G

dz ϕ(z) r
{
ax[κ(z, ξ)

∗]α(x, z)
}
uxzvξv[ψ]

= r[κ(x, ξ)∗] r{ax[ãξ(A)]}

∫

G

dz ϕ(z) r
{
ax[κ(z, ξ)

∗]
}
ux uzvξv[ψ]

= r[κ(x, ξ)∗] r{ax[ãξ(A)]} ux

∫

G

dz ϕ(z) r[κ(z, ξ)∗]uzvξv[ψ]

= r[κ(x, ξ)∗]ux r[ãξ(A)]

∫

G

dz ϕ(z) r[κ(z, ξ)∗]uzvξv[ψ]

= r[κ(x, ξ)∗]ux

∫

G

dz r
{
ϕ(z)ãξ(A)κ(z, ξ)

∗
}
uzvξv[ψ]

= r[κ(x, ξ)∗]ux

∫

G

dz r
{[

b̃ξ(ϕ⊗A)
]
(z)

}
uzvξv[ψ]

= r[κ(x, ξ)∗]uxR
[
b̃ξ(ϕ⊗A)

]
vξv[ψ]

= r[κ(x, ξ)∗]uxvξR(ϕ⊗A)v[ψ]

= r[κ(x, ξ)∗]uxvξr(A)u[ϕ]v[ψ] ,

so we are done.

Then follows straightforwardly

Corollary 6.2. BothA
α,β̃

a,b̃
andA

α̃,γ
ã,c are bi-products of the covariant structure{(A , κ), (a, α), (ã, α̃)} . In partic-

ular, one has isomorphicC∗-algebras

A
−→α
−→a
∼= A

←−α
←−a
∼= A

α,β̃

a,b̃
∼= A

α̃,γ
ã,c .
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Even if Corollary 6.2 can be proved directly, it is interesting and useful to have explicit forms of the isomor-
phisms. Actually one has a commuting diagram of isomorphisms

A
α,β̃

a,b̃
A

α̃,γ
ã,c

A
←−α
←−a A

−→α
−→a

✲
Υ

❄

Φ

❄

Ψ

✲

Γ

We have already specifiedΓ before
[
Γ
(←−
F
)]
(x, ξ) :=

←−
F (x, ξ)κ(x, ξ) ,

as a consequence of exterior equivalence of the twisted actions(−→a ,−→α ) and(←−a ,←−α ) . The actions of the other three
on theL1-Banach algebras are simply

[Υ(F )(x)](ξ) := [F (ξ)](x)κ(x, ξ) ,

[Φ(F )](x, ξ) := [F (ξ)](x) ,

[Ψ(F)](x, ξ) := [F(x)](ξ) ,

and the diagram is already seen to commute. To convince the reader, we are going to exhibit the multiplications and

the involutions of the iterated crossed products, at the level ofL1-elements. InA α,β̃

a,b̃
one has

[(F�G)(ξ)](x) =

{∫

G̃

dη F (η) ⋄ b̃η
[
G(η−1ξ)

]
⋄ β̃(η, η−1ξ)

}
(x)

=

∫

G̃

dη
{
F (η) ⋄ b̃η

[
G(η−1ξ)

]
⋄ [δe ⊗ α̃(η, η

−1ξ)]
}
(x)

=

∫

G̃

dη

∫

G

dy [F (η)](y) ay

[(
b̃η[G(η

−1ξ)] ⋄ [δe ⊗ α̃(η, η
−1ξ)]

)
(y−1x)

]
α(y, y−1x)

(1.2)
=

∫

G̃

dη

∫

G

dy [F (η)](y) ay

(
b̃η[G(η

−1ξ)](y−1x) ay−1x[α̃(η, η
−1ξ)]

)
α(y, y−1x)

=

∫

G̃

dη

∫

G

dy [F (η)](y) ay
(
ãη[G(η

−1ξ)(y−1x)]κ(y−1x, η)∗] ay−1x[α̃(η, η
−1ξ)]

)
α(y, y−1x)

=

∫

G̃

dη

∫

G

dy [F (η)](y) (ay ◦ ãη)[G(η
−1ξ)(y−1x)] ay[κ(y

−1x, η)∗] (ay ◦ ay−1x)[α̃(η, η
−1ξ)]

)
α(y, y−1x)

=

∫

G̃

dη

∫

G

dy [F (η)](y) (ay ◦ ãη)[G(η
−1ξ)(y−1x)] ay[κ(y

−1x, η)∗]α(y, y−1x) ax[α̃(η, η
−1ξ)] ,

which should be compared with (4.7) and
[
F�(ξ)

]
(x) =

{
∆

G̃
(ξ−1) β̃(ξ, ξ−1)⋄ ⋄ b̃ξ

[
F (ξ−1)⋄

]}
(x)

= ∆
G̃
(ξ−1)

{
[δe ⊗ α̃(ξ, ξ

−1)∗] ⋄ b̃ξ
[
F (ξ−1)⋄

]}
(x)

= ∆
G̃
(ξ−1) α̃(ξ, ξ−1)∗ b̃ξ

[
F (ξ−1)⋄

]
(x)

= ∆
G̃
(ξ−1) α̃(ξ, ξ−1)∗ ãξ

[
F (ξ−1)⋄(x)

]
κ(x, ξ)∗

= ∆
G̃
(ξ−1) α̃(ξ, ξ−1)∗ ãξ

{
∆G(x

−1)α(x, x−1)∗ax
[
F (ξ−1)(x−1)

]∗}
κ(x, ξ)∗

= ∆
G̃
(ξ−1)∆G(x

−1) α̃(ξ, ξ−1)∗ ãξ
[
α(x, x−1)∗

]
(ãξ ◦ ax)

[
F (ξ−1)(x−1)∗

]
κ(x, ξ)∗

(2.1)
= ∆

G̃
(ξ−1)∆G(x

−1) α̃(ξ, ξ−1)∗ ãξ
[
α(x, x−1)∗

]
κ(x, ξ)∗ (ax ◦ ãξ)

[
F (ξ−1)(x−1)∗

]

(2.4)
= ∆

G̃
(ξ−1)∆G(x

−1) α̃(ξ, ξ−1)∗ α(x, x−1)∗ ax[κ(x
−1, ξ)] (ax ◦ ãξ)

[
F (ξ−1)(x−1)∗

]
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which should be compared with (4.8). InA α̃,γ̃
ã,γ one has

[(F�̃G)(x)](ξ) =

{∫

G

dy F(y) ⋄̃ cy
[
G(y−1x)

]
⋄̃ γ(y, y−1x)

}
(ξ)

=

∫

G

dy
{
F(y) ⋄̃ cy

[
G(y−1x)

]
⋄̃ [δε ⊗ α(y, y

−1x)
}
(ξ)

=

∫

G

dy

∫

G̃

dη [F(y)](η) ãη
[(
cy[G(y

−1x)] ⋄̃ [δε ⊗ α(y, y
−1x)]

)
(η−1ξ)

]
α̃(η, η−1ξ)

(1.2)
=

∫

G

dy

∫

G̃

dη [F(y)](η) ãη
(
cy[G(y

−1x)](η−1ξ) ãη−1ξ[α(y, y
−1x)]

)
α̃(η, η−1ξ)

=

∫

G

dy

∫

G̃

dη [F(y)](η) ãη
(
ay[G(y

−1x)(η−1ξ)]κ(y, η−1ξ)] ãη−1ξ[α(y, y
−1x)]

)
α̃(η, η−1ξ)

=

∫

G

dy

∫

G̃

dη [F(y)](η) (ãη ◦ ay)[G(y
−1x)(η−1ξ)] ãη[κ(y, η

−1ξ)] (ãη ◦ ãη−1ξ)[α(y, y
−1x)]

)
α̃(η, η−1ξ)

=

∫

G

dy

∫

G̃

dη [F(y)](η) (ãη ◦ ay)[G(y
−1x)(η−1ξ)] ãη[κ(y, η

−1ξ)] α̃(η, η−1ξ) ãξ[α(y, y
−1x)]

which should be compared with (4.5), and
[
F�̃(x)

]
(ξ) =

{
∆G(x

−1) γ(x, x−1)⋄̃ ⋄̃ cx
[
F(x−1)⋄̃

]}
(ξ)

= ∆G(x
−1)

{
[δε ⊗ α(x, x

−1)∗] ⋄̃ cx
[
F(x−1)⋄̃

]}
(ξ)

= ∆G(x
−1)α(x, x−1)∗ cx

[
F(x−1)⋄̃

]
(ξ)

= ∆G(x
−1)α(x, x−1)∗ ax

[
F(x−1)⋄̃(ξ)

]
κ(x, ξ)

= ∆G(x
−1)α(x, x−1)∗ ax

{
∆

G̃
(ξ−1)α̃(ξ, ξ−1)∗ãξ[F(x

−1)(ξ−1)∗]
}
κ(x, ξ)

= ∆G(x
−1)∆

G̃
(ξ−1)α(x, x−1)∗ ax

[
α̃(ξ, ξ−1)∗

]
(ax ◦ ãξ)

[
F(x−1)(ξ−1)∗

]
κ(x, ξ)

(2.1)
= ∆G(x

−1)∆
G̃
(ξ−1)α(x, x−1)∗ax

[
α̃(ξ, ξ−1)∗

]
κ(x, ξ) (ãξ ◦ ax)[F(x

−1)(ξ−1)∗]

(2.3)
= ∆G(x

−1)∆
G̃
(ξ−1)α(x, x−1)∗α̃(ξ, ξ−1)∗ ãξ

[
κ(x, ξ−1)∗

]
(ãξ ◦ ax)

[
F(x−1)(ξ−1)∗

]

which should be compared with (4.6).

Remark 6.3. If one tries to show directly thatΥ is multiplicative, after a short computation using (2.1), he will
realize that this is equivalent to the identity (2.2).

Remark 6.4. Naturally, by the same mechanism, the second generationC∗-algebras can also be inflated to new

covariant structures
{(

A
α,β̃

a,b̃
, k2

)
, (b2, β2), (b̃2, β̃2)

}
and

{(
A

α̃,γ
ã,c , k̃

2
)
, (c2, γ2), (c̃2, γ̃2)

}
. Then the isomorphism

Υ can be upgraded to an isomorphism in a category of covariant structures, that can be easily defined. Similarly,
the twisted crossed productsA

−→α
−→a

andA
←−α
←−a

with product groupG × G̃ also have their natural covariant structures
and the isomorphismsΓ,Φ andΨ have their interpretation in this category. Since many formulas should be written
down and also having in view a subsequent work, we shall not pursue all these here.

7 Takai duality and other examples

Example 7.1. We have seen that one realization of the bi-productA
(α,α̃)
(a,ã) is the twisted crossed productA

−→α
−→a

:=

A ⋊
−→α
−→a

(G × G̃) . Applying to this one known results [15], it follows that thebi-product is commutative if and only

if A ,G, G̃ are commutative,a andã are trivial and−→a is (essentially) symmetric. But−→a is symmetric if and only if
α andα̃ are symmetric andκ = 1 .
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Example 7.2. If κ = 1 the two actionsa andã commute, the elements̃α(ξ, η) are fixed points ofa , the elements
α(x, y) are fixed points of̃a , one hasα(x, y)α̃(ξ, η) = α̃(ξ, η)α(x, y) and the twisted actions(−→a ,−→α ) and(←−a ,←−α )

coincide. The isomorphism betweenA
α,β̃

a,b̃
andA

α̃,γ
ã,c is basically a flip of the variables. The twisted actions(b̃, β̃)

and(c, γ) are non-trivial only in theA -part of the twisted crossed products.

Example 7.3. If the initial two actions are not twisted, i.e.α = 1 andα̃ = 1 , thenκ must verify for allx, y, ξ, η

κ(x, ξη) = κ(x, ξ)ãξ[κ(x, η)] and κ(xy, ξ)∗ = κ(x, ξ)∗ax[κ(y, ξ)
∗] . (7.1)

This means thatκ(x, ·) : G̃→ UM(A ) andκ(·, ξ)∗ : G→ UM(A ) are crossed morphisms. One has

−→α
(
(x, ξ), (y, η)

)
= ãξ[κ(x, η)] ,

←−α
(
(x, ξ), (y, η)

)
= ax[κ(y, ξ)

∗] . (7.2)

The A
−→α
−→a

-realization of the bi-productA (α,α̃)
(a,ã) is still twisted and can be very complicated. The iterated crossed

productsA α,β̃

a,b̃
≡ Aa,b̃ andA

α̃,γ
ã,c ≡ Aã,c are only constructed with untwisted actions, but the actions b̃, c , besides

the initial ã, a also contain the coupling functionκ .

Example 7.4. Even when both twisted actions are trivial, the bi-product remembers theC∗-algebraA and the
”coupling” between the groupsG andG̃ . For{(A , κ), (id, 1), (id, 1)} one gets−→a = id but

−→α
(
(x, ξ), (y, η)

)
= κ(x, η) (7.3)

is still non-trivial. Relations (2.3) and (2.4) become in this case (respectively)

κ(x, ξη) = κ(x, ξ)κ(x, η) and κ(xy, ξ) = κ(y, ξ)κ(x, ξ) .

For AbelianA , twisted crossed productsA ⋊
−→α
id
H with trivial action−→a (but with general2-cocycle−→α ) have been

studied in depth in [15, 16, 5]. It is worth mentioning that our−→α is symmetric only ifκ = 1 . The second generation
iterated twisted crossed products have the form

(A ⋊id G)⋊b̃• G̃ ∼= [A ⊗ C∗(G)]⋊b̃• G̃ and (A ⋊id G̃)⋊c•G ∼= [A ⊗ C∗(G̃)]⋊c•G ,

where essentially[b̃•ξ(f)](x) := f(x)κ(x, ξ)∗ and[c•x(f)](ξ) := f(ξ)κ(x, ξ) .
If κ isT-valued,−→α is a bi-character. It is easy to see that we get

A
(id,1)
(id,1) ≡ A

−→α
id
∼= A ⊗ C∗κ(G× G̃) . (7.4)

We denoted byC∗κ(G × G̃) the twisted group algebra ofH := G × G̃ corresponding to the2-cocycleH × H → T

given by (7.3). More generally, we can consider the covariant structure{(A , κ), (id, α), (id, α̃)} , whereα andα̃
are multipliers (they take values inT) . If κ is alsoT-valued, then

A
(α,α̃)
(id,id)

∼= A ⊗ C∗−→α (G× G̃) . (7.5)

Example 7.5. We shall describe now briefly howa twisted version of Takai’s duality result for Abelian groups

follows from our isomorphismA α,β̃

a,b̃
∼= A

α̃,γ
ã,c , which is written with full notations

(A ⋊
α
a G)⋊

β̃

b̃
G̃ ∼=

(
A ⋊

α̃
ã G̃

)
⋊

γ
c G . (7.6)

Let us suppose that the groupG is commutatative (in additive notations) andG̃ := Ĝ is its Pontryagin dual. As
coupling function we choose the natural dualityκ(x, ξ) ≡ κ0(x, ξ) := ξ(x) . Also assume that the initial twisted
action of Ĝ is trivial: (ã, α̃) = (id, 1) ; then the2-cocycleβ̃ is trivial and the actioñb reduces to the standard
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dual action given by
[
b̂0ξ(f)

]
(x) := ξ(x)f(x) . The purpose is to express the double twisted crossed product

(A ⋊
α
a G)⋊b̂0 Ĝ in a simple familiar form, using the r.h.s. of (7.6).

There are well-known canonical isomorphismsA ⋊
1
id
Ĝ ∼= A ⊗ C∗

(
Ĝ
)
∼= A ⊗ C0(G) , the second one being

given by a partial Fourier transform. The twisted action(c, γ) given by (5.4) and (5.5) is carried to(a ⊗ t, α ⊗ 1) ,
where[tx(ϕ)](y) := ϕ(y + x) is the action ofG onC0(G) by translations. If one finds an isomorphism

[A ⊗ C0(G)]⋊
α⊗1
a⊗t G ∼= A ⊗ [C0(G)⋊tG] , (7.7)

then using the standard isomorphism betweenC0(G)⋊tG and theC∗-algebraK[L2(G)] of all compact operators in
the Hilbert spaceL2(G) one finally gets the desired result

(A ⋊
α
a G)⋊b̂0 Ĝ ∼= A ⊗K[L2(G)] . (7.8)

Using some notational abuse, the isomorphism (7.7) is givenby

[Θ(F )](z, x) := ax[F (z, x)]α(x, z) .

We refer to [19, Sect. 7.1] for a more careful discussion of the caseα = 1 .
The conclusion is that in this case the bi-product associated to the covariant structure{(A , κ0), (a, α), (id, 1)}

is stable equivalent to the initialC∗-algebraA . Recalling the realizationsA
−→α
−→a

andA
←−α
←−a

of this bi-product, we get
more isomorphisms that could be of some interest. In the present given situation, for example, one has

−→a (x,ξ) = ax ,
−→α
(
(x, ξ), (y, η)

)
= η(x)α(x, y) .

For this twisted action one getsA ⋊
−→α
−→a
(G× Ĝ) ∼= A ⊗K[L2(G)] .

All the isomorphisms we described above are shadows of isomorphisms of covariant systems, as indicated in
Remark 6.4.
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