The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces

Mario F. Gutiérreza,b, Pamela Malaquiasa, Viviane Hassc,d, Thalita P. Matosa, Lucas Lourençoa, Alessandra Reise, Alessandro D. Logueriec,e, Paulo Vitor Faragof

a School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
b Institute for Research of Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
c Undergraduate and Post-Graduate Department, University CEUMA, São Luís, MA, Brazil
d Post-Graduate Department, State University of West Paraná, Cascavel, PR, Brazil
e Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
f Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, PR, Brazil

ARTICLE INFO

Keywords:
Adhesive system
Copper nanoparticles
Antimicrobial activity
Knoop microhardness
Degree of conversion
Resin-dentine bond strength
Nanoleakage

ABSTRACT

Objectives: To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL).

Methods: Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1 wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8 mm²), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α = 0.05).

Results: The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1 wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.% and increases of nanoleakage were observed for copper containing adhesives compared to the control group.

Conclusion: Copper nanoparticles addition up to 0.5 wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations.

1. Introduction

Failure of composite restorations by secondary caries is considered the major reason for restoration replacement, which results in millions of dental care dollars spent annually [1–7]. The higher accumulation of dental biofilm around composite resin restorations than other materials or intact enamel are likely responsible for the faster degradation of these restorations [8–13]. Furthermore, composite resin undergoes volumetric contraction during polymerization, which have a great impact on their sealing ability. This can result in the formation of gaps between the adhesive resin and the dental structure [14].

In the oral environment, water, enzymes, occlusal stresses (generated during mastication and especially during parafunctional activities), temperature and microorganisms derived from plaque biofilms challenge the resin-dentine interface [14–16]. S. mutans and other bacterial species can then bond to this suitable biofilm and, in the presence of gaps and weakened interface, may invade the inner area of teeth and allow for the development of caries adjacent to tooth-restorative margins [16,17]. There seems to be an association between failure of the resin-dentine interface and increased levels of cariogenic...
bacteria at the perimeter of resin composite restorations [14,16]. Production of acids [18] and esterases [19] may also accelerate the degradation of the hybrid layer, being an important factor in the premature failure of moderate-to-large composite restorations [14,16].

Although biofilm cannot be eliminated [20], one can reduce the pathogenicity of biofilm and make the restorative interface less prone to caries adjacent to restorations [16,17]. This can be achieved by developing dental materials with antibacterial properties to reduce biofilm formation at the tooth-restoration margins, without compromising the mechanical properties of the adhesive formation [21–23].

Among the most promising agents with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity and biocide effectiveness [24]. The antibacterial activity of copper [25–27] and silver nanoparticles [28,29] has been extensively investigated. Copper nanoparticles showed higher antibacterial activity compared with silver nanoparticles against *Escherichia coli*, *Bacillus subtilis* and *Staphylococcus aureus* [30,31]. In addition to superior antimicrobial activity, copper is cheaper than silver, easily available and the synthesis of copper nanoparticles is cost effective [32]. An additional advantage of copper nanoparticles is that they are easily oxidizable in air or aqueous media producing copper oxide nanoparticles. Copper oxide has an effective bactericidal action and can be easily blended with polymers or macromolecules producing stable polymers in regards to chemical and physical properties [33–36].

In dentistry, silver nanoparticles incorporation in resin cement and dental adhesives showed high antimicrobial activity and also improved mechanical and adhesive properties [37,38]. Incorporation of copper was also evaluated in several dental materials, such as glass ionomer [39], dental adhesive [40,41] and even dental implant [42,43]. In dental adhesives, only two recent studies used copper nanoparticles to test the effectiveness of these materials against *S. mutans* [40,41]. However, none of these studies evaluated the mechanical properties of the adhesive, and hence the effect of different copper concentrations on them. In terms of bond strength, only Sabatini et al. [40] evaluated the immediate strength of the adhesive interface, and no study so far addressed the effects of copper addition on the long-term resin-dentine interface. Additionally, the literature still lacks information about the optimal copper concentration that can be added to an adhesive system to express its antimicrobial activity without jeopardizing other mechanical properties.

Therefore, we designed this *in vitro* study to investigate the effect of addition of copper nanoparticles at different concentrations into a simplified etch-and-rinse adhesive system on the antimicrobial activity, Knoop microhardness, *in vitro* and *in situ* degree of conversion, as well as the immediate and 2-year resin-dentine bond strength and nanoleakage.

2. Materials and methods

2.1. Formulation of the experimental adhesives and characterization of the copper nano-powder by FE-SEM and EDX

We formulated experimental adhesives using the simplified etch-and-rinse adhesive system (Ambar [AM], FGM Prod. Odont. Ltda, Joinville, SC, Brazil). All adhesives were formulated by adding different concentrations of copper nanoparticles (99.9% pure, SkySpring Nanomaterials, Inc., Houston, TX, USA; www.ssnano.com) (wt%): 0% (control, commercial material), 0.0075%, 0.015%, 0.06%, 0.1%, 0.5% and 1.0%. The copper nanoparticles used for production of the experimental adhesives were characterized by field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray (EDX) analysis. The incorporation to the adhesive solution was done in a dark room with a motorized stirrer.

2.2. Antimicrobial activity

After isolating a metallic matrix (5.8 mm diameter, 1.0 mm thick) with a very thin layer of petroleum jelly, we dispersed the adhesive until completely fill the mold. All visible air bubbles trapped in the adhesives specimens were carefully removed with a microbrush (Microbrush International, Grafton, WI, USA). An air stream was applied for solvent evaporation for 40 s at a distance of 10 cm.

Under a plastic matrix strip, the adhesive specimens were light-cured for 40 s with a LED light source at 1200 mW/cm² (Radii-cal, SDI, Baywater, Victoria, Australia), in close contact with each disc-like specimen. After polymerization, the specimens were removed from the mold, and polished with 600-grit SiC paper in order to remove the adhesive excesses and the oxygen-inhibition layer. Five adhesive discs of each group were made.

All specimens were stored in a dark vial for 24 h and each side of the specimen was disinfected by ultraviolet light with a 30 min exposure. They were placed on brain heart infusion (BHI) agar plates (Kasvi Ltda, Curitiba, PR, Brasil) containing a freshly prepared lawn of *S. mutans* (ATCC 25175). *S. mutans* was cultured microaerophilically in brain heart infusion broth (Difco Laboratories, Detroit, MI, USA) for 72 h at 37 °C. Then, 100 µL of the bacterial suspension was swabbed onto BHI to create the lawn [44,45] and the BHI agar plates were stored in an anaerobic jar. The inhibition zones (mm) were measured after 96 h with a digital caliper to the nearest 0.1 mm (Absolute Digimatic, Mitutoyo, Tokyo, Japan).

2.3. Knoop microhardness

Five adhesive discs of each group were produced as described for microbiological test. After preparation, specimens were stored in a dark vial for 24 h or after 2 year of water storage before microhardness measurement. Specimens were then taken to a HMV-2 microhardness tester (Shimadzu; Tokyo, Japan) equipped with a Knoop indenter. Five measurements were performed of each specimen with a load of 10 g for 15 s. The first measurement was performed in the center of the adhesive disc. The other four measurements were performed 100 µm and 200 µm to the left and right of the first one. Values obtained for the same specimen were averaged for statistical purposes [46].

2.4. In vitro degree of conversion

Ten new adhesive discs of each group were produced as described for microbiological tests. Specimens were stored in wet environment for 24 h at 37 °C prior to performing the DC readings. The DC measurements were performed in a micro-Raman spectrometer (Bruker Optik GmbH, Ettlingen, Baden-Württemberg, Germany).

The micro-Raman spectrometer was first calibrated for zero and then for coefficient values using a silicon specimen. Specimens were analyzed using the following micro-Raman parameters: 20-mW Neon laser with 532-nm wavelength, spatial resolution of ≈3 µm, spectral resolution ≈5 cm⁻¹, accumulation time of 20 s with 6 co-additions, and magnification of 20X (Olympus UK, London, UK) to beam diameter of ≈1 µm [47,48]. The spectra were taken at three different sites for each specimen and the values averaged for statistical purposes. Spectra of uncured adhesives were taken as reference. Post-processing of spectra was performed using the dedicated Opus SpectroscoPy Software version 6.5 (Bruker Optik GmbH, Ettlingen, Baden- Württemberg, Germany).

The ratio of double-bond content of monomer to polymer in the adhesive was calculated according to the following formula: DC (%) = (1–R_{cured/Runcured}) x 100, where R is the ratio of aliphatic and aromatic peak areas at 1639 cm⁻¹ and 1609 cm⁻¹ in cured and uncured adhesives.
2.5. Teeth preparation and bonding procedures

The University Ethics Committee approved this part of the experiment under protocol number 1.065.446. Thirty-five caries-free extracted human third molars, collected from patients with age ranging from 18 to 35 years old, were randomly distributed among 7 groups by lottery. The teeth were collected after the patient’s informed consent. Teeth were disinfected in 0.5% chloramine, stored in distilled water and used within 3 months after extraction. A flat dentine surface was exposed on each tooth after wet grinding the occlusal enamel with 180-grit SiC paper. The enamel-free, exposed dentine surfaces were further polished with 600-grit silicon-carbide paper for 60 s to standardize the smear layer.

The adhesives were applied as per manufacturers’ instructions. The dentine surfaces were acid etched with 37% phosphoric acid for 15 s, water rinsed for 15 s and dried with absorbent paper keeping the dentine surface slightly wet. Two adhesive coats were vigorously applied by rubbing the adhesive for 20 s (10 s each coat). Then, gently air stream of 10 s was applied for solvent evaporation and the adhesive layer was light cured with a LED light curing unit for 10 s at 1200 W/cm² (Radi-cal, SDI, Bayswater, Victoria, Australia). Resin composite blocks (Opallis, FGM) were buildup on the bonded surfaces in 3 increments of 1.0 mm thick each and each one was individually light activated for 40 s. A single operator carried out all bonding procedures in an environment with controlled temperature and humidity. Five teeth were used for each experimental group.

After storage of the bonded teeth in distilled water at 37 °C for 24 h, they were longitudinally sectioned in both “x” and “y” directions across the bonded interface with a diamond saw in a cutting machine (IsoMet 1000; Buehler, Lake Bluff, USA), under water cooling at 300 rpm to obtain resin-dentine beam-like specimens with a cross-sectional area of approximately 0.8 mm².

The number of premature failures (PF) per tooth during specimen preparation was recorded. The cross-sectional area of each beam-like specimen was measured with the digital caliper to the nearest 0.01 mm and recorded for subsequent calculation of the microtensile bond strength (μTBS) values (Absolute Digimatic, Mitutoyo, Tokyo, Japan). The resin-dentine beam-like specimens originated from the same tooth were randomly divided and assigned to be tested immediately or after 2-year storage in distilled water at 37 °C. The storage solution was not changed and its pH was monitored monthly. The resin-dentine beam-like specimens from each tooth were then divided as follow:

- Two beam-like specimens at each storage period were used for nanoleakage evaluation.
- Two beam-like specimens were used to measure the immediate in situ degree of conversion.
- Two beam-like specimens at each storage period were used for identification of the presence of copper in the hybrid layer.
- The remaining beam-like specimens were submitted to μTBS test at each storage period.

2.6. Microtensile bond strength testing

Each beam-like specimens was attached to a modified device for microtensile bond strength test with cyanoacrylate resin (Super Bonder, Loctite, São Paulo, SP, Brazil) and subjected to a tensile force in a universal testing machine (Kratos, São Paulo, SP, Brazil) at 0.5 mm/min. The failure mode was evaluated at 40x (HMV-2, Shimadzu, Tokyo, Japan) and classified as cohesive in dentine (failure exclusive within cohesive dentine – CD); cohesive in resin (failure exclusive within cohesive resin – CR); adhesive (failure at resin/dentine interface – A), or mixed (failure at resin/dentine interface that included cohesive failure of the neighboring substrates, M). The number of premature failures (PF) was recorded and it was not included in the average mean bond strength.

2.7. Nanoleakage evaluation

All resin-dentine beam-like specimens selected for this test were coated with two layers of nail varnish applied up to within 1 mm of the bonded interfaces. The resin-dentine beam-like specimens were immersed in 50 wt% ammoniacal silver nitrate solution in total darkness for 24 h, rinsed thoroughly in distilled water, and immersed in photo developing solution for 8 h under a fluorescent light to reduce silver ions into metallic silver grains within voids along the bonded interface.

Specimens were mounted on aluminium stubs, polished with 1000-, 1500-, 2000- and 2500-grit SiC paper and 1 and 0.25 μm diamond paste (Buehler Ltd., Lake Bluff, IL, USA). Then, they were ultrasonically cleaned, air dried and gold sputter coated (MED 010, Balzers Union, Balzers, Liechtenstein). The interfaces were observed in a scanning electron microscope in the backscattered mode at 15 kV (VEGA 3 TESCAN, Shimadzu, Tokyo, Japan).

In a way to standardize image acquisition, three pictures were taken of each beam-like specimen. The first picture was taken in the center of the resin-dentine beam-like specimens. The other two pictures were taken 0.3 mm to the left and right of the first one. As two resin-dentine beam-like specimens per tooth were evaluated and a total of five teeth were used for each experimental condition, a total of 30 images were evaluated per group [49]. A technician who was blinded to the experimental conditions under evaluation took them all. The relative percentage of nanoleakage within the adhesive and hybrid layer areas was measured in all pictures using the public domain Image J software, a Java-based image processing software package developed at the National Institutes of Health (NIH) [50].

Before performing the nanoleakage test a pilot test was conducted to evaluate if the presence of copper in the adhesive could impair the visualization of silver nitrate uptake. For this purpose, we performed scanning electron microscopy (SEM) images of resin-dentine interfaces of all groups without immersion in silver nitrate. Even in adhesive interfaces with the highest copper concentration (1%), copper nanoparticles were not observed using the same parameters described above. And thus, the results of nanoleakage test reflect the amount of silver uptake into unpolymerized areas and/or nanospaces not infiltrated by the resin adhesive but not the presence of copper in the hybrid layer.

2.8. In situ degree of conversion within adhesive/hybrid layers

All resin-dentine beams selected for this test were wet polished using 1500; 2000; 2500 and 4000-grit SiC paper for 30 s each. The specimens were ultrasonically cleaned for 10 min and positioned into micro-Raman equipment. The DC measurements were performed in a micro-Raman spectrometer (Bruker Optik GmbH, Ettlingen, Baden-Württemberg, Germany). The micro-Raman spectrometer was first calibrated for zero and then for coefficient values using a silicon specimen. Specimens were analyzed using the following micro-Raman parameters: 20-mW Neon laser with 532-nm wavelength, spatial resolution of ≈3 μm, spectral resolution ≈5 cm⁻¹, accumulation time of 30 s with 6 co-additions, and magnification of 100X (Olympus UK, London, UK) to beam diameter of ≈1 μm [47,48,51]. The spectra were taken at the resin-dentine interface, in the middle of the hybrid layer within the intertubular dentine, at three different sites for each specimen and the values averaged for statistical purposes. Spectra of uncured adhesives were taken as reference. Post-processing of spectra was performed using the dedicated Opus Spectroscopy Software version 6.5 (Bruker Optik GmbH, Ettlingen, Baden-Württemberg, Germany). The ratio of double-bond content of monomer to polymer in the adhesive was calculated according to the formula described earlier in the materials and methods section in the item in vitro degree of conversion.
2.9. Identification of copper within adhesive itself and in the adhesive/hybrid layers by EDX

For the first analysis, three adhesive discs of each group were produced as described for the microbiological test. After preparation, specimens were stored in a dark vial for 24 h and vertically sectioned in the middle with a diamond saw in a cutting machine (IsoMet 1000; Buehler, Lake Bluff, USA), under water cooling (at 300 rpm). Then, 05 areas of this cross-sectional interface were evaluated under EDX.

In the second part, two beam-like specimens at each storage period previously obtained during specimens sectioning (item 2.5) were used for identification of the presence of copper in the hybrid layer. The analysis of the copper content in each selected beam was performed by field emission scanning electron microscope (FE-SEM) (MIRA 3 TESCAN, Shimadzu, Tokyo, Japan) coupled with a energy-dispersive X-ray spectrometer (EDX). The bonding area was observed and the analysis was focused to the middle of the hybrid layer. One site, randomly determined, per beam-like specimens was examined.

2.10. Statistical analysis

Data for microbiological test (mm), in vitro degree of conversion and in situ degree of conversion (%) were subjected to a one-way ANOVA. Data for microhardness (KNH) was subjected to a two-way ANOVA. For μTBS and nanoleakage, the experimental unit was the tooth with half being tested immediately and the other half after 2 years of water storage. The μTBS and nanoleakage values of all beam-like specimens from the same hemi-tooth were averaged for statistical purposes. The μTBS (MPa) and nanoleakage (%) data of each adhesive were subjected to two-way repeated measures ANOVA. The repeated measure was the tooth at the two-evaluation period. Tukey’s post hoc test was used for pair-wise comparisons (α = 0.05) using the Statistica for Windows software (StatSoft, Tulsa, OK, USA).

3. Results

The FE-SEM (Fig. 1) revealed that the copper particles have a nanometer size, ranging from 63 to 154 nm. As demonstrated in the EDX spectrum of a representative specimen (Fig. 2), the sample has a high percentage of copper atoms, without contamination by other elements.

3.1. Antimicrobial activity

Unfortunately, the 2-year specimens did not present any antibacterial response (data not shown). Thus, only the results from the immediate period will be described. Significant differences among groups were detected (Table 1; p = 0.001). All experimental copper-containing adhesives showed higher antibacterial properties against *Streptococcus mutans* than the control adhesive. The highest antimicrobial effect was observed in adhesives with the highest copper concentration (0.1, 0.5 and 1%).

3.2. Knoop microhardness, in vitro and in situ degree of conversion

The cross-product interaction of the two-way repeated measures ANOVA was statistically significant for microhardness (Table 2; p = 0.0001). Adhesive formulations with copper concentrations equal to or higher than 0.06% showed higher microhardness values than control and low-filled copper adhesives (Table 2). After 2 years of water storage, the control group showed the same microhardness, however, all copper containing-adhesives showed significant improvement of the microhardness (Table 2).

For in vitro and in situ DC, one-way ANOVA showed significant differences among experimental groups (Table 2; p < 0.03). Only the adhesive with 1 wt% copper concentration was significant different than the other formulations (p = 0.02 and p = 0.03 respectively).

3.3. Microtensile bond strength (μTBS) testing and nanoleakage

The number premature failures are shown in Table 3. The cross-product interaction was statistically significant for microtensile bond strength (p = 0.003) and nanoleakage (p = 0.002) tests. A significant

![Fig. 1. Field emission scanning electron microscopy (FE-SEM) of the copper nanoparticles, demonstrating nanometer size.](image1)

![Fig. 2. EDX spectrum (a) from selected area of the copper nanoparticles powder sample outlined by a magenta rectangle in (b). The figure table summarizes the elemental composition of the sample area outlined.](image2)

<table>
<thead>
<tr>
<th>Copper (%)</th>
<th>0 (control)</th>
<th>0.0075</th>
<th>0.015</th>
<th>0.060</th>
<th>0.1</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition halo sizes (mm)</td>
<td>4.87 A</td>
<td>7.59 B</td>
<td>8.25 B</td>
<td>9.12 B</td>
<td>10.92C</td>
<td>11.51C</td>
<td>11.87C</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.41</td>
<td>0.98</td>
<td>0.94</td>
<td>0.65</td>
<td>0.93</td>
<td>0.79</td>
<td>0.52</td>
</tr>
</tbody>
</table>

* Means identified with the same letter are statistically similar. (Tukey’s test, p ≥ 0.05).
Means and standard deviations of microtensile bond strength (μTBS, MPa) and nanoleakage (NL, %), obtained in each experimental condition.*

<table>
<thead>
<tr>
<th>Adhesive</th>
<th>Immediate μTBS</th>
<th>2-year μTBS</th>
<th>in vitro DC</th>
<th>in situ DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (control)</td>
<td>37.3 ± 2.5C</td>
<td>21.2 ± 2.5E</td>
<td>16.3 ± 3.0 a</td>
<td>30.4 ± 4.2 d</td>
</tr>
<tr>
<td>0.0075%</td>
<td>38.2 ± 2.2C</td>
<td>29.5 ± 1.0 D</td>
<td>12.1 ± 2.6 a,b,c</td>
<td>12.9 ± 4.7 a,b</td>
</tr>
<tr>
<td>0.015%</td>
<td>42.4 ± 3.0 B,C</td>
<td>31.8 ± 2.6 D</td>
<td>9.2 ± 3.1 b,c</td>
<td>12.1 ± 4.6 a,b</td>
</tr>
<tr>
<td>0.060%</td>
<td>41.7 ± 2.2 B,C</td>
<td>34.7 ± 3.2 C,D</td>
<td>11.4 ± 2.5 a,b,c</td>
<td>14.6 ± 2.3 a,b</td>
</tr>
<tr>
<td>0.1%</td>
<td>40.8 ± 2.0 B,C</td>
<td>34.2 ± 3.1 C,D</td>
<td>9.3 ± 2.3 b,c</td>
<td>8.9 ± 3.1 b,c</td>
</tr>
<tr>
<td>0.5%</td>
<td>48.2 ± 4.1 A,B,C</td>
<td>43.3 ± 1.3 B,C</td>
<td>5.2 ± 3.1 c</td>
<td>8.3 ± 3.2 b,c</td>
</tr>
<tr>
<td>1%</td>
<td>36.3 ± 3.3C</td>
<td>42.3 ± 3.2 B,C</td>
<td>4.3 ± 2.4 c</td>
<td>8.3 ± 3.2 b,c</td>
</tr>
</tbody>
</table>

* Comparisons are valid only within test. Means identified with the same capital or lowercase letters are statistically similar (Tukey's test, p = 0.05).
adhesive specimens and showed that the mechanism behind the copper release in the first 28 days was governed by Fickian diffusion and biexponential equation. According to this equation, the time interval to attain a 50% release of the copper content is longer than one year [62]. In this study, we observed that the presence of copper after 2-year in bonded adhesive interfaces is dependent on the copper concentration. Copper was only found in adhesive interfaces that contained concentrations of copper equal to or higher than 0.06%, which is a promising finding. Considering that copper concentration equal to or higher than 0.06% was capable to produce higher inhibition halo against S. mutans higher than the control adhesive, one may speculate that this slow release over time may supplement antimicrobial activity of the adhesive apart from the expected sealing and retention. This however, should be seen as a hypothesis since the mechanism and amount of copper release from disc specimens are rather different that of thin layers bonded to the dentin substrate. Although the presence of copper was observed after two years by EDX in adhesive interfaces bonded with copper in concentrations equal to or higher than 0.06% we do not know whether this interface is capable to exert the same antimicrobial activity than disc-like specimens of adhesives. Indeed, even the disc-like specimens after 2 years did not show any antimicrobial activity probably due to the high and fast release of copper in the aqueous environment [62].

Microhardness test is usually used as an indirect measurement of the degree of conversion of polymeric materials [63]. The increased microhardness values observed with adhesives containing copper concentrations equal to or higher than 0.06% can be explained by the increased fraction of filler particles by addition of copper nanoparticles. There is a positive correlation between the volume fraction of filler and the Knoop hardness of composites [64] since filler particles are harder than the organic phase of the material.

Except from the adhesive with the highest copper concentration (1%), no significant reductions of the degree of conversion were observed in the experimental groups compared to control under the in vitro and in situ degree of conversion methodologies. This means that the addition of copper in concentrations up to 0.5% does not interfere with the well-balanced monomer/solvent blend, which may be due to the good chemical compatibility when added to adhesive systems [40,41]. On the other hand, at 1% concentration, copper may act as a plasticizer within the polymer network. We observed in this group (1% copper) that the adhesive underwent a plasticization process within the bottle, and this preliminary plasticization process within the bottle may have reduced the degree of conversion by preventing monomers from getting closer one another during the initiation and polymerization process and might explain the lower degree of conversion values. More interesting were the microhardness values observed after 2 years of water storage. The significant higher microhardness at 2 years is probably the result of greater degrees of polymerization and dark reaction, forming tough, glassy, low stress homogeneous glassy cross-linked networks [65], less prone to the plasticization of water in the long term as it will be explained in more details in this discussion.

Regarding the durability of the resin-dentin interfaces, we observed a reduction of approximately 43% in the resin-dentin bond strength values and an increase of 86% in nanoleakage values in copper-free control adhesives. The degradation of these adhesive interfaces from the control group can be explained by the collagenolytic and gelatinolytic activity on the partially demineralized dentin after application of simplified ER adhesives by activation of metalloproteinases (MMPs) [66-68] and cysteine-cathepsins (CTs) [69-71]. This results in a self-degradation of partially infiltrated collagen fibrils [72] and yields reductions of bond strength values over time [15].

On the other hand this was not observed in the copper-containing adhesives with concentrations ranging from 0.006 to 1%. However, even for copper-containing adhesives ranging of 0.0075 and 0.0015%, the degradation was much less pronounced (reduction of 22-25% of μTBS and increasing of 5-30% in nanoleakage) than for the control group (reduction of 43% of μTBS and increasing of 86% in NL). This indicates that, copper-containing adhesives produced interfaces capable of minimizing degradation of the resin-dentin bonded interfaces dentin after 2-year of water storage, when compared with copper-free adhesives.

The good resistance of copper-containing adhesives on the long-term properties can be explained because of several factors. It has been showed that copper can increase the strength of the collagen network, one of the component of the hybrid layer, because the collagen crosslinking enzyme, lysyl oxidase (LOX), is copper dependent [73,74], and thus copper has an indirect effect as a cross-linking agent. This cross-linker action of copper may increase the resistance of collagen, fact that indirectly increases the bond strength. By increasing the collagen strength and the adhesive itself, this substrate becomes less susceptible to the effects of proteolytic enzymes such as MMPs and CTs. Sabatini et al. [40] showed that, copper has the ability to inhibit the dentin MMP-2 [75], and the secretion of tissue inhibitors of MMPs (TIMPs) [76], causing lower degradation pattern in the resin/dentine interface.

The present study was capable to demonstrate that the addition of copper nanoparticles to adhesives provided them with immediate antimicrobial properties and although these characteristics were not maintaining after 2-year of water storage, their presence in the adhesive/hybrid layer was enough to preserve the resin-dentin interface from degradation and reduction of bond strength values.
Additionally, copper addition was responsible for an increase in the mechanical properties of the adhesives after long-term water storage. However, further studies are still required to evaluate if copper-containing adhesive interfaces are less prone to degradation under oral conditions and in more challenging conditions such as cariogenic and erosive environments.

5. Conclusion

The addition of copper nanoparticles in concentrations up to 0.5% in the two-step etch-and-rinse adhesive system is a feasible approach and may be an alternative to adhesive interfaces with immediate antimicrobial properties, increased immediate and 2-year bond strength of resin-dentine interfaces, and also the mechanical properties of the adhesive formulations after 2-year of water storage.

Acknowledgements

This study was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 304104/2013-9 and 305588/2014-1.
References

