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STOCHASTIC THERMODYNAMICS FOR OPEN QUANTUM SYSTEMS IN THE
REAPEATED INTERACTION SCHEME

Usamos la teoría de termodinámica estocástica para estudiar sistemas cuánticos cuya dinámica
es descrita por mapas completamente positivos que preservan la traza (CPTP en inglés) de-
bido a su interacción con un baño térmico. Estudiamos una clase más amplia de mapas
con equilibrio, entre los cuales los mapas termales son solo un caso especial. En general,
para mapas CPTP las cantidades termodinámicas tales como la producción de entropía y
el trabajo realizado sobre el sistema dependen del estado combinado del sistema más baño.
Mostramos que para mapas con equilibrio estas cantidades pueden ser escritas en términos
de propiedades del sistema únicamente. Las relaciones que obtenemos son válidas para una
intensidad de acoplamiento arbitraria entre el sistema y el baño termal. Estudiamos las
fluctuaciones de las cantidades termodinámicas en el esquema de medición de dos puntos.
Derivamos teoremas de fluctuación detallados para la producción de entropía y el trabajo y
obtemos algunas simplificaciones para el caso de los mapas con equilibrio. Ilustramos nue-
stros resultados considerando un espín en un ciclo termodinámico y una cadena de espines
1/2 acopladas a un baño por uno de sus bordes. Conectamos además la condición de balance
detallado cuántico para ecuaciones maestras de Lindblad con la propiedad de equilibrio de
los mapas CPTP que, al iterarlos y en un límite particular, generan la ecuación maestra.
Mostramos cómo obtener una concatenación de mapas que genera una ecuación de Lind-
blad forzada por los bordes dada apriori, como una forma de construir una termodinámica
consistente para la dinámica de Lindblad.
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STOCHASTIC THERMODYNAMICS FOR OPEN QUANTUM SYSTEMS IN THE
REAPEATED INTERACTION SCHEME

We use the theory of stochastic thermodynamics to study quantum systems whose dynamics
are described by completely positive trace preserving (CPTP) maps due to its interaction with
a thermal bath. We study a broader class of equilibrium maps, of which thermal maps are just
a special case. These have an invariant state for which the entropy production vanishes when
they act over these states. In general, for CPTP maps the thermodynamic quantities such as
entropy production or work performed on the system depend on the combined state of the
system plus its environment. We show that these quantities can be written in terms of system
properties for equilibrium maps. The relations we obtain are valid for arbitrary strength
coupling between the system and thermal bath. We study the fluctuations of thermodynamic
quantities in a two-point measurement scheme. We derive detailed fluctuation theorems for
the entropy production and work and obtain some simplifications for equilibrium maps. We
illustrate our results considering a single spin in a thermodynamic cycle and a spin 1/2 chain
coupled to a bath by one of its boundaries. We further connect the condition of quantum
detailed balance for Lindblad master equations to the equilibrium property of CPTP maps
that when iterated and in a particular limit generates the master equation. We show how
to obtain a concatenation of CPTP maps that generates an apriori given boundary driven
Lindblad equation as a way to construct a consistent thermodynamic framework for the
Lindblad dynamics.
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Introduction

In the last decades experiments have been dealing with increasingly smaller systems in which
thermal and quantum fluctuations play a major role, thus it is necessary a thermodynamic
description that is capable of dealing with far from equilibrium systems and at the same time
account for non-classical features.

The theory of stochastic thermodynamics has been increasingly useful in describing far
from equilibrium processes. It studies the relations between energy, heat, work and entropy
at small scales in systems driven arbitrarily far from equilibrium. In the past decades it
has had an important development mainly due to the discovery of the integral and detailed
fluctuation theorems for work and entropy production [1, 2, 3, 4]. The integral fluctuation
theorem is a consequence of the detailed fluctuation theorem, which relates the probabilities of
creating and annihilating a certain amount of entropy or producing and dissipating a certain
amount of work in processes which can be far from equilibrium. In the early beginnings the
theory draw the interest of the people due to its ability to obtain equilibrium thermodynamic
quantities even when the system one is studying is far from equilibrium. But now, because
It is even possible to derive from it the second law of thermodynamics for a system in
contact with a thermal bath, some suggest to consider it stronger and more fundamental
than the second law itself. These theorems have been vastly verified in a variety of contexts:
numerical simulations, polymers, biomolecules like RNA or DNA, protein folding, colloidal
particles driven by time-dependent lasers, etc. [4, 5, 6, 7]. Later works have extended these
relations to quantum dynamics [8, 9, 10] and they have also been verified in the laboratory
in this context [11, 12].

For many systems of interest, the coupling energy between the system and bath can be ne-
glected in comparison with their energies. In this case, a thermodynamic framework normally
referred to as “in the weak coupling" is very successful. In particular, work is performed in the
system by externally modifying a control parameter of the system Hamiltonian, for instance
by changing a field that varies the system energy levels. In this case, from the stochastic
thermodynamics quantities, which are defined in terms of trajectories (in phase space for
classical dynamics and in the space of measurement outcomes in quantum dynamics), one
can recover the ensemble thermodynamics quantities of [13, 14, 15]. These quantities are
local in the sense that they can be written in terms of variables of the system of interest,
without needing knowledge of the bath besides its temperature.

There are other systems of interest which cannot be described as driven system weakly
coupled to a thermal bath. Among other reasons this might be because the baths are prepared
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in non-equilibrium states, there is information processing which must be taken into account
like in the various examples of “Maxwell demons", or the coupling is controlled in an active
way. The later has been studied in [16], where a quantum system interacts sequentially with
many identical copies of an external probe by its boundaries. In this work, we have in mind
such a setup and with the purpose of studying thermodynamic processes, we consider the
simple situation in which the external probe is prepared in a thermal state. Thus we shall
refer to the probe as the bath, even though we are not assuming it is macroscopic. The
experimenter controls the coupling at some work cost, and a certain amount of heat will
also flow between the system and the bath. These thermodynamic quantities are in this
case completely determined by the coupling energy. An appropriate formalism to analyse
these quantum evolutions and the thermodynamic behavior is that of completely positive
trace preserving (CPTP) maps [17]. In particular, one would like to account for the coupling
between the system and the bath non-perturbatively. The thermodynamic properties of
systems strongly coupled to a bath are not yet well understood although they have been
considered in [18, 19, 20, 21].

We study the quantum stochastic thermodynamics of CPTP maps as formulated in [18,
22, 23, 24] where one considers that the system plus environment evolve unitarily during
the process from an uncorrelated initial state and therefore the change in the system due to
this process is given by a CPTP map. In this formulation, the strength of the coupling is
arbitrary and thus the thermodynamic quantities such as the work performed on the system,
the total heat exchange between the system and the bath and the total entropy production
are non-local quantities, this means, they are expressed in terms of the total system-bath
density matrix at the beginning and end of the process. In the limit where the strength
of the coupling vanishes one recovers the expressions obtained in the weak coupling regime
which are local, i.e., they depend only on system’s operators. In our study, we make use of
the theory of stochastic thermodynamics through a two-point measurement scheme [25]. The
thermodynamic quantities are defined for every stochastic trajectory in the outcome space of
these measurements in such a way that upon averaging the standard definitions for the mean
quantities are recovered. The fluctuation theorems for this repeated interaction scheme has
been studied in [22, 24], where a system is driven by a time dependent protocol. Here we
derive these relations but emphasize on a process where the system itself is not driven but
the interaction with the bath is externally controlled.

A process may involve several interactions with a bath, each one described as a CPTP
map, and thus a sequence of different maps may act on the system. In particular, repeating
the same sequence may bring the system to a stationary or invariant state. In general, an
invariant state of a CPTP map represents a non-equilibrium steady state (NESS) in the sense
that the entropy production due to the action of the map over the state is strictly positive. We
call them maps with NESS. We define maps with equilibrium as maps such that the entropy
production associated to the action of the map on the invariant state vanishes. From the
point of view of thermodynamics, maps with equilibrium have the interesting property that
the thermodynamic quantities depend only on system properties even in the strong coupling
regime. These maps generalize thermal maps [26] and they are related to the existence of
conserved quantities. We also obtain simplifications on the stochastic fluctuations of the
thermodynamic quantities.
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In a particular limit it is possible to obtain a Lindblad master equation from a repeated
interaction scheme or concatenation of CPTP maps. We connect the principle of quantum
detailed balance in these master equations to the equilibrium property of the CPTP maps.
It has been recently proposed [27] a unifying thermodynamic framework based on repeated
interactions to treat systems which cannot be described in the conventional weak coupling
regime. We further argue that repeated interactions can be engineered to produce boundary
driven Lindblad master equations which might be useful for quantum machines or quantum
information processing. This would give a non-trivial consistent thermodynamic framework
where the first and second law would work as a guide on the accessibility of states and
efficiency of processes, just as the classical first and second laws do for classical heat engines.

This work is organized as follows. In Chapter 1 we write the quantum thermodynamic
quantities we will be using, introduce the repeated interaction scheme and apply the special
limit in which a Lindblad master equation is obtained. In Chapter 2 we introduce stochastic
thermodynamics for CPTP maps, we define CPTP maps with equilibrium and study their
main properties and then we prove a fluctuation theorem for the work and entropy production
for CPTP maps with and without equilibrium. We also apply our results to a single spin in
a thermodynamic cycle and a spin 1/2 chain driven by its boundaries. Finally, in Chapter 3
we relate the detailed balance condition for Lindblad master equations with the equilibrium
of CPTP maps, and we show with two examples how to start from a Lindblad equation and
derive a repeated interaction that generates it. We conclude afterwards.
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Chapter 1

Ensemble thermodynamics

1.1 Thermodynamic quantities

In the thermodynamics of quantum systems it is necessary to define properly heat, work
and entropy production, if one wants to have useful quantum thermodynamics laws as in the
classical regime. These are fundamental to be able to talk about equilibrium, irreversibility
and efficiency. Here we present systematic definitions based on ideas developed in [18]. We
remark that there are other valid and consistent definitions which might be more suitable for
other contexts [28].

Consider a system initially prepared at time t = 0 in an arbitrary state ρS(0) and possibly
many baths prepared in the canonical thermal state (Gibbsian state) ρr(0) = ωβr(Hr) ≡
e−βrHr/Zr. Here βr, Hr and Zr = Tr e−βrHr are the inverse temperature, Hamiltonian and
canonical partition function of the bath r, respectively. We assume that the system and
baths are initially uncorrelated. This assumption is strictly necessary for the positivity of
the entropy production definition we give below, i.e., for a consistent second law. The initial
total density matrix is

ρ(0) = ρS(0)⊗ ρB(0) = ρS(0)
⊗
r

ρr(0). (1.1)

ρ denotes the total density matrix of the full system, i.e., the system we are interested in
plus all the baths, and ρB(0) =

⊗
r ρr(0) is the density matrix of all the baths. The unitary

dynamics of the full system is generated by the total Hamiltonian

H(t) = HS(t) +
∑
r

Hr + V (t), (1.2)

and can be written as

∂tρ(t) = −i[H(t), ρ(t)] (~ = 1 throughout the text), (1.3)

where HS(t) is the possibly time dependent system Hamiltonian and V (t) is the coupling be-
tween the system and the baths. The time dependence of these Hamiltonians indicates
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the presence of an external driving. Defining the time ordered unitary operator Ut =
T+ exp(−i

∫ t
0
dsH(s)), the total density matrix at time t is

ρ(t) = Utρ(0)U †t . (1.4)

This density matrix is generally not a product state like ρ(0). This means that if we partially
trace the total density matrix to obtain the reduced density matrix of the system, ρS(t) =
TrB[ρ(t)], and of the bath, ρB(t) = TrS[ρ(t)], we have that ρ(t) 6= ρS(t)⊗ ρB(t).

At a time t the energy of the total system is given by E(t) = Tr[H(t)ρ(t)]. Derivating
with respect to time and noting that Tr[H(t)ρ̇(t)] = 0 because of Eq.(1.3), we obtain Ė =
Tr[Ḣ(t)ρ(t)]. This can be identified as the work (power) due to the fact that it can only be
non-zero if there is an external driving in the total Hamiltonian. We thus write Ė(t) = Ẇ (t),
which is the first law of thermodynamics for a isolated system. Integrating in time we have

W (t) =
〈
H(t)

〉
t
−
〈
H(0)

〉
0

=

t∫
0

ds
d

ds
Tr[H(s)ρ(s)] =

t∫
0

ds (ḢS(s) + V̇ (s))ρ(s), (1.5)

where 〈•〉t ≡ Tr[ρ(t) •].

To construct a definition of entropy production we use the von Neumann entropy which
for the full system is given at time t by

S(t) ≡ −Tr ρ(t) ln ρ(t), (1.6)

and for the system (X = S) or baths (X = B) is

SX(t) ≡ −TrX ρX(t) ln ρX . (1.7)

The total von Neumann entropy does not change when the evolution is unitary, thus we have
S(t) = S(0), which reads

−Tr ρ(t) ln ρ(t) = −Tr ρ(0) ln ρ(0) = −TrS ρS(0) ln ρS(0)− TrB ρB(0) ln ρB(0)

= −TrS ρS(0) ln ρS(0)−
∑
r

Trr ρr(0) ln ρr(0), (1.8)

where Trr denotes the partial trace over the Hilbert space of the bath r. Using this we can
write the entropy change of the system, ∆SS(t) = SS(t)− SS(0), in the following way:

∆SS(t) = −TrS ρS(t) ln ρS(t) + TrS ρS(0) ln ρS(0)

= Tr ρ(t) ln ρ(t)− TrS ρS(t) ln ρS(t)−
∑
r

Trr ρr(0) ln ρr(0)

= Tr ρ(t) ln ρ(t)− Tr ρ(t)[ln ρS(t) +
∑
r

ln ρr(0)] +
∑
r

Trr[(ρr(t)− ρr(0)) ln ρr(0)]

= Tr ρ(t)

ln ρ(t)− ln

(
ρS(t)

⊗
r

ρr(0)

)+
∑
r

Trr[(ρr(t)− ρr(0)) ln ρr(0)],

(1.9)
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where ρr(t) is the density matrix of the bath r at time t which is the partially traced ρ(t) over
all degrees of freedom except those of the bath r. Note that we have added and subtracted the
same term in the third line, Tr[ρ(t)

∑
r ln ρr(0)] =

∑
r Trr ρr(t) ln ρr(0)]. The first term in the

last line is the Kullback-Leibler distance or relative entropy, D[a||b] ≡ Tr a ln a−Tr a ln b ≥ 0,
which zero only when a = b. The second term, using the particular form of ρr(0), can be
rewritten as the inverse temperatures times the heats entering the system∑

r

βrQr =
∑
r

βr(〈Hr〉0 − 〈Hr〉t). (1.10)

Note that the heats are minus the energy changes of the baths.

The entropy change of the system is separated into to two contributions, ∆SS(t) =
∆iS(t) + ∆eS(t), the entropy production

∆iS(t) = D[ρ(t)||ρS(t)
⊗
r

ρr(0)], (1.11)

and the entropy flow entering the system in the form of heat,

∆eS(t) =
∑
r

βrQr(t). (1.12)

Now we should unambiguously say that we consider the baths to be useless after the inter-
action with the system has ended and that they eventually thermalize with the environment
(ideal infinite bath). This is clearer if we rewrite the entropy production, Eq.(1.11), as

∆iS(t) = D[ρ(t)||ρS(t)
⊗
r

ρr(t)] +
∑
r

D[ρr(t)||ωβr(Hr)]. (1.13)

The first term can be interpreted as the entropy increase due to the correlation built up
between the system and the baths, and the second as the dissipation that occurs in the
relaxation process ρr(t)→ ωβr(Hr) [29] (or in connection with quantum information, as the
lack of information about the state of the bath after the interaction [27]).

The splitting of the entropy change of the system in two contributions and the non-
negativity of the entropy production, Eq(1.11), corresponds to the second law of thermody-
namics for an open system. Now, for this open system the work is still given by Eq.(1.5).
In order to be consistent with the heats definitions, Eq.(1.10), we must define the internal
energy as the energy of the system and the coupling, i.e., as U(t) =

〈
HS(t) + V (t)

〉
t
. The

change ∆U(t) = U(t)− U(0) is

∆U(t) =
〈
HS(t) + V (t)

〉
t
−
〈
HS(0) + V (0)

〉
0
. (1.14)

We thus have the first law, ∆U(t) = W (t) +Q(t).

We remark that the definition of entropy production, Eq.(1.11), and its positivity holds
for any bath size.

In the following we use time independent system Hamiltonians to emphasize that work
can be done by just manipulating the coupling V (t), driving the system out of equilibrium.
At the moment this might seem obvious, but later on we will obtain Lindblad equations
widely used in the literature [30, 31, 32, 16, 33] in which this active driving origin is hidden.
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1.2 Repeated interaction

We now introduce the repeated interaction scheme where a system of interest interacts se-
quentially with other systems.

Consider a finite system with time independent Hamiltonian HS and possibly many baths,
each one consisting of a set of identical non-interacting finite systems with Hamiltonians
Hn
r . This means that the bath r has Hamiltonian Hr =

⊕
nH

n
r . We shall call Hn

r the
nth copy of the rth bath. The system and baths are initially uncorrelated, as in Eq.(1.1),
where ρr(0) =

⊗
n ρ

n
r (0) =

⊗
n ωβr(H

n
r ). The interaction between the system and the baths

is divided into N steps of time τ from t = 0 to t = T = Nτ . In the nth time step
the system-bath coupling is a time-independent V n =

∑
r V

n
r , this means that there is a

different unitary evolution operator Un for each step. At t = 0+ the first copy of each
bath starts to interact with the system until time t = τ , when the total density matrix is
ρ(τ) = U1(ρS(0)⊗ρ1)U †1 ⊗ρ2⊗ρ3⊗· · · , where ρn =

⊗
r ρ

n
r (0) contains the nth copy of every

bath. From time t = τ+ to t = 2τ the second copy of each bath interacts with the system and
the total density matrix becomes ρ(2τ) = U2

(
U1(ρS(0)⊗ ρ1)U †1 ⊗ ρ2

)
U †2 ⊗ ρ3 · · · . Tracing

out the baths a recurrence for the system density matrix is found:

ρS(nτ) = TrB[UnρS((n− 1)τ)⊗ ρnU †n]. (1.15)

The unitary operators are Un = e−iτ(HS+
∑
r H

n
r +V nr ) and Un = Un

n−1∏
m=1

e−iτ
∑
r H

m
r (hereinafter

~ = 1). Note that the time dependence of the coupling, V (t) = V n if t ∈ ((n − 1)τ, nτ ],
corresponds to turning off the interaction with a copy and turning on the interaction with
the next copy. In Fig. 1.1 a picture of the repeated interaction scheme is shown.

During the nth time interval, according to the definitions in the previous section, heat
and work are∑

r

∆Qnτ
r = Trr[H

n
r (ρn − ρ′n)],

∑
r

∆W nτ
r = −Tr[V n

r UnρS((n− 1)τ)⊗ ρnU †n], (1.16)

where ρ′n = TrS[UnρS((n − 1)τ) ⊗ ρnU
†
n] corresponds to the nth copies of the baths after

the interaction. We have written ∆ to emphasize that these are the heat and work in only
one interval. The heat expression is obtained straightforwardly. For the work expression,
note that HS does not depend on time and V (t) only changes at the end of the interval.
In Eq.(1.5) one integrates in the small interval (nτ − ε, nτ + ε), which is when V changes,
and takes the limit ε → 0 afterwards. Then, the expression Tr[(V n+1 − V n)ρ] is simplified
assuming that Trr[V

n
r ωβr(H

n
r )] = 0 (this is a common assumption and it is always possible

to redefine the Hamiltonians of a given total system so that it is satisfied). Heat and work
in the whole process is obtained summing over every interval the previous expressions.

According to Eqs.(1.11) or (1.13), the entropy production during the nth time interval is

∆iS
nτ = D[UnρS((n− 1)τ)⊗ ρnU †n||ρS(nτ)⊗ ρ′n] +D[ρ′n||ρn]. (1.17)

(Again here ∆ indicates this is the entropy production in just one interval.)
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Figure 1.1: Depiction of the first two interactions between a spin chain system (considered
in our examples in Sec. 2.6) and the copies of the bath.

1.2.1 Continuous limit

If the couplings between the system and the baths scale as V n = vn/
√
τ , in the limit τ → 0

and n→∞ such that t = nτ , one can obtain a continuous equation for the evolution of the
system density matrix [34, 35, 16]. Expanding ∆ρS ≡ ρS((n+ 1)τ)− ρS(nτ) to first order in
τ one obtains

∆ρS = −iτ [HS, ρS] + τ TrB[vnρS(nτ)⊗ ρBvn]− 1

2
τ TrB{(vn)2, ρS ⊗ ρB}+O(τ 3/2), (1.18)

where ρB =
⊗

r ρr(0), and [•, •] and {•, •} denotes the commutator and anticommutator,
respectively. It was used that TrB[HB, ρB] = 0 and TrB[vnρB] = 0. Dividing by τ , taking the
limits and splitting the coupling one obtains

ρ̇S = −i[HS, ρS] +
∑
r

Dr(ρS), (1.19)

where the dissipators are Dr(ρS) = Trr[vrρS ⊗ ωβrvr] − 1
2

Trr{v2
r , ρS ⊗ ωβr}. For the heat of

the rth bath, expanding the unitary operator up to order τ and taking the limits we obtain
the heat flow

Q̇r(t) = lim
n→∞

lim
τ→0

∆Qnτ
r

τ
= −Tr

[(
vrHrvr −

1

2
{v2

r , Hr}
)
ρS(t)⊗ ωβr .

]
(1.20)
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Note that V n
r appears in the work in Eq.(1.16), thus to obtain the work in the continuous

limit we need to expand the unitary operator up to order τ 3/2. We get for each bath a power

Ẇr(t) = lim
n→∞

lim
t→0

∆W nτ
r

τ
= Tr

[(
vr(HS +Hr)vr −

1

2
{v2

r , HS +Hr}
)
ρS(t)⊗ ωβr

]
. (1.21)

Note that using the permutation invariance of the trace we get that the first law is satisfied,∑
r(Q̇r + Ẇr) = Tr[HS ρ̇S].

The dissipator of Eq.(1.19) can be expanded in the bath energy basis, { |εi〉} and one
obtains

ρ̇S = −i[HS, ρS] +
∑
rij

γrij(LijρSL
r†
ij −

1

2
{Lr†ijLrij, ρS}), (1.22)

where γij = e−βεi/ZB and Lrij = 〈εj| vr |εi〉. This master equation is of Lindblad form [15].

1.2.2 Lindblad limit for the XX and XY spin chains

Later on we will apply our results to a few examples, mainly the XX and XY spin 1/2
chains. For this reason, we now develop the Lindblad form of the continuous limit of the
previous subsection for these particular systems and point out some of the main results in
[16] regarding the thermodynamics of these systems.

Consider a system Hamiltonian

HXY =
h

2

N∑
i=1

σzi −
N−1∑
i=1

(Jxi σ
x
i σ

x
i+1 + Jyi σ

y
i σ

y
i+1). (1.23)

where σx,y,zi are the Pauli matrices of the site i. This is the Hamiltonian of the XY one-
dimensional spin 1/2 chain of N spins. For the XX spin chain Hamiltonian, HXX , the
coupling in both directions are equal, Jxi = Jyi .

For simplicity and because it is sufficiently interesting for the analysis we want to do,
we will choose to connect only one bath (with inverse temperature βL) to the system at
its boundary, at the left hand side of the spin chain. Each bath copy is a 1/2 spin with
Hamiltonian HL = hL

2
σzL, where L indicates that the bath is coupled to the system by the

left, next to the n = 1 spin of the chain. The coupling between a copy of the bath and the
system is

V = J(σxLσ
x
1 + σyLσ

y
1). (1.24)

Note that we have dropped the superscript n in the coupling, since no confusion will arise:
the coupling is the same for each bath copy.

Scaling the system-bath coupling coefficient J =
√
λ/τ and replacing everything in

Eq.(1.19) one obtains a dissipator

D(ρS) =
∑
k=±

γk

(
LkρSL

†
k −

1

2
{L†kLk, ρS}

)
, γ± =

√
2λ(1∓ tanh(βLhL/2) (1.25)
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with Lindblad operators L± = σ±1 , where σ±1 = (σ+
1 ± iσy1)/2. Note that this dissipater

does not depend in the system Hamiltonian, thus is the same for the XX and XY systems.
Note also that it corresponds to a boundary driven Lindblad equation in which the Lindblad
operators are not eigenoperators of the complete system Hamiltonian, but only of a part
of the system Hamiltonian. We will come back to this point in Section 3 where conserved
quantities in the Lindblad limit are discussed.

In [16] there are two important results regarding the XX and XY systems coupled to one
bath that we will need:

1. Uf hL = h, the XX spin chain reaches equilibrium, i.e., heat flow, power and entropy
production rate vanish. The equilibrium state is not Gibbsian (e−βHS/ZS), but it is
a state given by e−βH0/Z0 with H0 = h/2

∑
i σ

z
i a conserved quantity of the system,

[HS, H0] = 0, and Z0 the normalization.
2. The XY spin chain coupled to one bath reaches a non-equilibrium steady state (NESS),

i.e., entropy production rate is positive, and a heat flux is dissipated due to the driving
power, Ẇ = −Q̇ > 0.

It is important to mention that these results are not only valid in the continuous limit, but
also in the time-discrete repeated interaction scheme, Eqs.(1.16, 1.17).

The formalism of repeated interaction in the Lindblad limit was used to establish a consis-
tent relation between boundary driven Lindblad equations and thermodynamics, a relation
which has been questioned before.

11
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Chapter 2

Stochastic thermodynamics in the
quantum regime

2.1 CPTP maps

The formalism of quantum operations is a very important tool in the context of quantum
information processing (see e.g. [17]), since it can describe changes in the state of a open
quantum system without explicitly paying attention to the time that is needed nor to all
the information of the environment. In the first respect, this is very different from the usual
description of open quantum systems, which are master equations as the Lindblad form
discussed above.

Completely positive trace preserving (CPTP) quantum maps are an important class of
quantum operations. They can be used to describe the dynamics of thermal relaxation,
decoherence and measurement, among others. Any CPTP quantum map ρS → ρ′S ≡ E(ρS)
allows the following Kraus representation (or operator-sum representation)

E(ρS) =
∑
k

MkρSM
†
k , (2.1)

where linear operators {Mk} are called Kraus operators (or operation elements) and satisfy
the completeness relation

∑
kM

†
kMk = 1, which is necessary to ensure the trace preserving

property. Note that the choice of Kraus operators for a given map is not unique, since
any unitary transformation of {Mk} fulfils the same requirements. However, as we will see
next, one can gain important insight into the dynamics with an appropriate choice of Kraus
operators.

13



2.2 Quantum trajectories

Any system that couples to an environment and the composite system has unitary dynamics
for a time interval, for instance Eq.(1.15), has an evolution that is a CPTP map:

ρ′S = E(ρS) = TrB[UρS ⊗ ρBU †]

=
∑
i

pi TrB[UρS ⊗ |i〉 〈i|U †]

=
∑
ij

pi 〈j|U |i〉 ρS 〈i|U † |j〉

=
∑
ij

MijρSM
†
ij,

(2.2)

where
Mij =

√
pi 〈j|U |i〉 (2.3)

is an operator in the system space with {|i〉} and {pi} the states and probabilities that
diagonalize ρB =

∑
i pi |i〉 〈i|. If {ij} is taken to be just one label, this is a CPTP map like

the one in Eq.(2.1) and fulfils the completeness relation.

We can split the map as E(·) =
∑

k Ek(·), where Ek(·) = Mk ·M †
k . During the evolution one

of the operations Ek occurs with probability pk = Tr[Ek(ρS)]. If somehow one is able to register
that the kth operation has occurred, the final state of the system would be ρ′k = Ek(ρS)/pk,
whereas if one is not able to record it, the final state would be ρ′S =

∑
k pkρ

′
k = E(ρS). This

suggests the interpretation that one measures selectively or non-selectively the occurrence of
the element Mk.

Suppose an arbitrary initial density matrix of the system is prepared measuring non-
selectively a non-degenerate operator A in the system’s Hilbert space. We shall denote ρini

S

the arbitrary initial density matrix and ρS =
∑

n pi(n) |an〉 〈an| the density matrix after the
non-selective measurement of A, where {|an〉} are the eigenstates of A. Then, the system
evolves through the map E . After the evolution we perform a non-selective measurement
of a non-degenerate operator B in the Hilbert space of the system, leaving the state ρ′S in
ρ̄′S =

∑
b pf (m) |bm〉 〈bm|, where {|bm〉} are the eigenstates of B. A trajectory is defined as

the sequence of possible values an, k and bm that would be obtained if the measurements
were done selectively, and is denoted γ = {n, k,m}. Its probability is given by

p(γ) = pi(n) 〈bm| Ek(|an〉 〈an|) |bm〉 = pi(n)| 〈bm|Mk |an〉 |2, (2.4)

this is, the probability of measuring bm given that the operation k has occurred and that an
was initially measured. Note that the probabilities sum one, in fact

∑
γ p(γ) = Tr[E(ρS)] = 1.

As we mentioned before, an appropriate choice of Kraus operators can give us an interest-
ing insight. If Mk=ij =

√
pi 〈j|U |i〉, the register of k is the register of a jump |i〉 → |j〉 in the

bath. Thus, to observe a particular trajectory one can use a two-point measurement scheme,
i.e., one measures the system and baths before and after the interaction, obtaining values
{n, k,m} = {n, i, j,m}. In the case of our repeated interaction model, the Hamiltonian of
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the bath is a two-level system thus one could easily perform a two-point measurement of the
energy and determine precisely a transition between states. However, if one is interested in
more general models where baths have many degrees of freedom, it is unrealistic to assume
that energy transitions could be directly measured in the bath. An alternative then would
be to let a quantum prove interact with the bath. Measuring the prove one would be able to
identify energy changes in the bath, which is very useful for the stochastic thermodynamics.

2.3 Stochastic thermodynamics

For the definition of trajectory made above, we will now study the thermodynamic quantities
associated with it. Suppose the operators A and B of the previous section are the Hamiltonian
of the system, HS. We assume, as in Section 1.2, that the system and bath Hamiltonians
are time independent. If ρB is Gibbsian (canonical), then the states {|i〉} are the energy
eigenstates of the bath Hamiltonian HB with eigenvalues {εi}. With this in mind, in a
particular trajectory γ = {n, i, j,m} a stochastic work

wγ = ∆ε− qγ (2.5)

is done on the system, where

∆εγ = εm − εn and qγ = εi − εj (2.6)

are the stochastic energy change of the system and the stochastic heat entering the system
(which is minus the stochastic energy change of the bath), respectively. This is the first law
of stochastic thermodynamics [36, 37]. Averaging over the trajectories one obtains

∆E ≡
〈
∆εγ

〉
γ

=
∑
γ

∆εγ p(γ) = Tr[HS(ρ′S − ρS)] = Tr[HS(ρ′S − ρini
S )], (2.7)

Q ≡
〈
qγ
〉
γ

=
∑
γ

qγ p(γ) = Tr[HB(ρB − ρ′B)], (2.8)

W ≡
〈
wγ
〉
γ

=
∑
γ

wγ p(γ) = Tr[(HS +HB)(ρ′ − ρ)] = Tr[(HS +HB)(ρ′ − ρini)].(2.9)

(Note that in the last step of the energy change and work we have used that ρS and ρ
are diagonal in the basis of HS and HS + HB, respectively, thus Tr[HSρS] = Tr[HSρ

ini
S ] and

Tr[(HS+HB)ρ] = Tr[(HS+HB)ρini].) These equations satisfy the first law of thermodynamics.
We remark that we have implicitly considered that the system and bath Hamiltonians, HS

and HB, are time-independent and thus their eigenvalues and eigenstates are the same in
the first and second measurements. In the same spirit of Section 1.2 work can on average be
done on the system by applying a map. Turning on and off a system-bath coupling is also
an application of consecutive maps. We will discuss these in Section 2.5.

If the unitary dynamics of Eq.(2.2) are generated by a total time-independent Hamiltonian
H = HS +HB +V , where V is the system-bath coupling as usual, we have that our averaged
stochastic work is equal to −Tr[V (ρ′ − ρ)], since Tr[H(ρ′ − ρ)] = 0 due to the fact that
[H,U ] = 0. If we make the already mentioned assumption TrB[V ρB] = 0, we get W =
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−Tr[V ρ′]. This is just the ensemble average Eq.(1.16) in the repeated interaction scheme
in the case of just one iteration. The average of the stochastic energy change and heat are
clearly the same as their ensemble average counterparts.

Information about stochastic entropy change can also be obtained with the measurements
choosing different operators A and B. Although it is absolutely non-trivial from an experi-
mental point of view, measuring the system density matrix at the beginning and at the end
of the process, A = ρS and B = ρ′S, one can construct the stochastic entropy change of the
system, ∆sγ = − ln pf (m) + ln pi(n). It is in principle possible to completely reconstruct a
density matrix through quantum state tomography, but the number of measurements needed
for this procedure scales exponentially with the system size. Anyhow, with ∆sγ and the heat
qγ, which is known due to the measurements on the bath, one obtains the stochastic entropy
production

∆isγ = ∆sγ − βqγ. (2.10)

Averaging over the trajectories one obtains

∆S ≡
〈
∆sγ

〉
γ

=
∑
γ

∆sγ p(γ) = −Tr[ρ′S ln ρ′S] + Tr[ρS ln ρS] (2.11)

∆iS ≡
〈
∆isγ

〉
γ

= D[ρ′||ρ′S ⊗ ρB]. (2.12)

In the second expression we have used that ln ρB = −βHB − lnZB and that Tr[ρ′ ln ρ′] =
Tr[ρ ln ρ] = Tr[ρS ln ρS] + Tr[ρB ln ρB] (the unitary dynamics do not modify the total von
Neumann entropy). Note that this averaged stochastic entropy production is the same as the
ensemble entropy production of Eq.(1.11).

We remark that for the evaluation of these thermodynamic quantities, in particular for
the work, Eq.(2.9), and entropy production, Eq.(2.12), we need to know the full state ρ′.
In contrast, in the weak coupling limit where V (t) can be neglected in comparison to HS

and HB the thermodynamic quantities depend only on the states ρ′S and ρS of the system of
interest [15]. We will show below, that this simplification can occur for the strongly coupled
systems defined below.

2.3.1 Maps with thermodynamic equilibrium and conserved quan-
tities

Let us assume that the CPTP map E of Eq.(2.2) has an invariant state π = E(π) that is
a stationary state, i.e., limN→∞ EN(ρS) = π ∀ρS. According to Eq.(2.2) an invariant state
satisfy π = TrB[U(π ⊗ ρB)U †], thus from Eqs.(2.7) and (2.11) we see that it has no energy
nor entropy change, ∆E = ∆S = 0. We shall now distinguish two kinds of invariant states.
If the action of the map E over π produces entropy, ∆iS > 0, we say that the invariant
state is a non-equilibrium stationary state (NESS). In that case we get a dissipated heat
Q = −β−1∆iS < 0 sustained by a work W = β−1∆iS > 0 done over the system by an
external agent that implements the map on the system. If instead the action of the map does
not produce entropy, ∆iS = 0, we call the invariant sate π an equilibrium state. According
to Eq.(2.12), an equilibrium state is only possible if π ⊗ ωβ(HB) = U(π ⊗ ωβ(HB))U †, thus
from Eqs.(2.8) and (2.9) we see that it has no average heat or work.
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The equilibrium state is associated with conserved quantities. To see this suppose there
is a system operator H0 in the system Hilbert space HS with the property [U,H0 +HB] = 0.
We recall that the initial state of the bath is Gibbsian, ρB = ωβ(HB) = e−βHB/ZB, thus if
π = ωβ(H0) then it is a equilibrium state since U(ωβ(H0)⊗ ωβ(HB))U † = ωβ(H0)⊗ ωβ(HB).
If H0 is a part of the system Hamiltonian, HS = H0 +HI , like the case of the XX spin chain
we study in the applications at the end of this chapter, the equilibrium condition means that
the energy change between H0 and the bath is conserved.

It follows from [U,H0 +HB] = 0 that

TrS[(ρ′S − ρS) lnωβ(H0)] = TrB[(ρB − ρ′B) lnωβ(HB)]. (2.13)

This is obtained noting that TrS[(ρ′S − ρS) lnωβ(H0)] + TrB[(ρ′B − ρB) lnωβ(HB)] = Tr[(ρ′ −
ρ) ln(ωβ(H0) ⊗ ωβ(HB))] = 0 because of [U, ln(ωβ(H0) ⊗ ωβ(HB)] = 0. This is true for any
initial states ρS and ρB. In particular, for ρB = ωβ(HB), the thermodynamics quantities,
Eqs.(2.8), (2.9) and (2.12) can be rewritten in the following way:

Q = TrB[H0(ρ′S − ρS)], (2.14)
W = TrS[(HS −H0)(ρ′S − ρS)], (2.15)

∆iS = D(ρS||ωβ(H0))−D(ρ′S||ωβ(H0)). (2.16)

These expressions are exact and are determined by the system states ρ′S and ρS only, even
in the strong coupling regime (since no assumption on the coupling has been made).

2.3.2 Stochastic thermodynamics of thermal maps

If H0 = HS the map is called thermal [38, 39, 40, 26]. In this case the equilibrium state is the
Gibbs canonical thermal state ωβ(HS) = e−βHS/ZS. Thermal maps are supposed to describe
the passive coupling between a system and bath because it requires no external agent. This
is not only evidenced in that the average work vanishes, but also in that there are no work
fluctuations. To see this note that if a trajectory is possible (p(γ) ∼ | 〈εm, εj|U |εn, εi〉 |2 6= 0),
then due to [U,HS +HB] = 0 the energy must be conserved, εm + εj = εn + εi. Therefore, for
a thermal map, Eq.(2.5) gives wγ = 0 for any trajectory γ with p(γ) 6= 0 and for any initial
state ρini

S .

If a thermal map brings the system to the equilibrium, the entropy production, Eq.(2.16),
reduces to just the first term, ∆iS = D(ρS||ωβ(HS)). This is a well known expression [29]
and is interpreted as the dissipation occurring in the relaxation process ρS → ωβ(HS).

Suppose now that the system starts in equilibrium, ρS = ρ′S = ωβ(HS). According to
Eq.(2.16), in this case the entropy production vanishes. Also there are no entropy pro-
duction fluctuations because ∆sγ = β∆eγ and according to what have been said about its
work fluctuations, we have that qγ = ∆eγ, thus ∆isγ = 0 (see Eq.(2.10)) for every possible
trajectory, p(γ) 6= 0.

Note that for thermal maps in the equilibrium state work an entropy production fluctu-
ations can be considered simultaneously since [HS, ωβ(HS)] = 0, or in words, measuring the
energy or the density matrix is the same.
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2.3.3 Stochastic thermodynamics of non-thermal maps with equi-
librium

If H0 6= HS is a conserved quantity we have called it a map with a (non-thermal) equilibrium
state. We will restrict ourselves to this case, where [HS, H0] = 0. This is the situation we
will encounter in the examples we use and we argue that it will often be the case if the
system Hamiltonian is constant in time, HS(t) = HS, and the coupling is a step function,
i.e., V (t) = V if 0 < t < τ and V (t) = 0 otherwise, as in the examples of the boundary driven
XX and XY spin 1/2 chains in the repeated interaction scheme discussed in Section 1.2. In
fact, the equilibrium property [U,H0 +HB] = 0 implies that [HS, H0] = 0 for most systems,
with the exception of some very particular cases in which [V,H0 + HB] = [H0, HS] ⊗ 1B.
Anyhow, if [HS, H0] = 0 the first interesting observation is that, since HS is assumed non-
degenerated (otherwise there would be problems defining a trajectory), the eigenbasis {|εn〉}
of HS is also an eigenbasis of H0, i.e., H0 |εn〉 = ε0n |εn〉. Then, from the equilibrium property,
[U,H0+HB] = 0, one finds that ε0m+εj = ε0n+εi if p(γ) ∼ | 〈εm, εj|U |εn, εi〉 |2 6= 0. Therefore,
we can write Eq.(2.5) as wγ = εm − ε0m − (εn − ε0n) and replace it inside the delta function of
the work distribution p(w) =

∑
γ δ(w − wγ)pγ, obtaining

p(w) =
∑
n,m

δ(w − [(εm − ε0m)− (εn − ε0n)])pi(n) 〈εm| E(|εn〉 〈εn|) |εm〉 . (2.17)

It is completely determined by system quantities and the map E without the need of measur-
ing the bath. The average of the work with this distribution corresponds to Eq.(2.15). Note
that since we are considering [HS, H0] = 0 it is always possible to write HS = H0 +HI with
some HI that commutes with the system Hamiltonian, [HS, HI ] = 0, and shares the same
eigenbasis. Thus, we can split the eigenenergy εn = ε0n+αn with αn the eigenvalue of HI . The
stochastic work is then wγ = αm − αn and its average, Eq.(2.15), is W = TrS[HI(ρ

′
S − ρS)].

In the same manner as with thermal maps, we can study simultaneously the work and
entropy production fluctuations in the equilibrium state of these equilibrium maps because
HS commutes with ωβ(H0). One analogously finds here that there are no entropy fluctuations,
∆isγ = 0 ∀γ with p(γ) 6= 0, i.e., p(∆is) =

∑
γ δ(∆is−∆isγ)p(γ) = δ(∆is), but there might

be work fluctuations (in general p(w) given by Eq.(2.17) is different from δ(w)) even though
the average vanishes, W = 0.

2.4 Fluctuation theorems

2.4.1 Fluctuations of entropy production

A central result from stochastic thermodynamics is the detailed fluctuation theorem for
the stochastic entropy production ∆is. Consider the probability distribution p(∆is) =∑

γ δ(∆is−∆isγ)p(γ) of a given ∆is value obtained according to the A = ρS and B = ρ′S two-
point measurement procedure. The detailed fluctuation theorem for the entropy production
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is

ln
p(∆is)

p̃(−∆is)
= ∆is, (2.18)

where p̃(∆is) refers to the distribution of the entropy production in a reverse process to
be specified later. This equality is derived from the time reversal properties of the system.
For the type of systems we study it was derived in [22] for driven Hamiltonians. Here we
derive it to emphasize that the fluctuation theorem is also valid for systems driven by other
mechanisms, for instance, by the coupling to the bath.

The time reversal operator [41] Θ is anti-unitary, i.e., Θi = −iΘ, Θ† = Θ−1. This operator
is defined in the full Hilbert spaceHS⊗HB and is of the form ΘS⊗ΘB. The unitary evolution
U depends on the time dependence of the coupling that at least is switched on and off. This
time dependence is referred to as the protocol. If one performs the protocol in the time
inverted sequence, i.e., one considers V (τ − t) the unitary dynamics will be called Ũ . The
micro-reversibility principle for non-autonomous systems [42, 43] relates the forward and
backward dynamics by Θ†ŨΘ = U †. Thus if the unitary operator maps |φ〉 to |φ′〉, i.e.,
|φ′〉 = U |φ〉, the time reversed state Θ|φ′〉 is mapped to the time reversed state Θ|φ〉 by
the time reversed unitary Ũ . We denote reverse states as |̃·〉 = Θ|·〉. We remark that the
anti-linearity of Θ implies that 〈̃·| = 〈Θ ·| 6= 〈·|Θ†.

For the time reversed dynamics consider the initial state ρ̃S =
∑
p̃f (m)|b̃m〉〈b̃m| which

is chosen arbitrarily for the system and thermal for the bath ρ̃B =
∑

e−βεj

ZB
|j̃〉〈j̃|. Then,

for the system the corresponding time reversed map ρ̃′S = Ẽ(ρ̃S) has the representation
Ẽ(·) =

∑
ij M̃ji · M̃ †

ji in terms of reversed Kraus operators

M̃ji =

√
e−βεj

ZB
〈̃i|Ũ |j̃〉. (2.19)

Micro-reversibility implies that they satisfy (see Appendix A)

M̃ji = ΘS

√
eβ(εi−εj)M †

ijΘ
†
S. (2.20)

We can now relate the probability p(γ) = |〈bm|Mk=ij|an〉|2pi(n) for a trajectory γ = {n, k,m} =
{n, i;m, j} to the probability p̃(γ̃) = |〈ãn|M̃k=ji|b̃m〉|2p̃f (m) of its time reversal γ̃ = {m̃, k̃, ñ} =

{m̃, j̃; ñ, ĩ}. From Eq.(2.20) we have p̃(γ̃) = eβ(εi−εj)|〈an|M †
k=ij|bm〉|2p̃f (m) and therefore

p(γ)

p̃(γ̃)
= e−β(εi−εj) pi(n)

p̃f (m)
. (2.21)

If the initial state of the backward process p̃f (m) is the final state of the forward process,
i.e., p̃f (m) = pf (m) we have p(γ) = e∆isγ p̃(γ̃). Using this equality we now evaluate

p(∆is) =
∑
γ

p(γ)δ(∆is−∆isγ) = e∆is
∑
γ̃

p̃(γ̃)δ(∆is+ ∆isγ̃) = e∆isp̃(−∆is)

where we have also used the fact that ∆isγ̃ = −∆isγ.
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If the reversed process is identical to the forward process, p̃(∆is) = p(∆is), the fluctuation
theorem for the entropy production, Eq.(2.18), can be written just with the distribution of
the forward process, p(∆is) = e∆isp(−∆is). This is the case in the systems we consider if
the driving is time symmetric, {HS(t), V (t)} = {HS(τ − t), V (τ − t)} for 0 ≤ t < τ . A
constant HS and (step) V fulfills this condition. Also it is necessary that the operator that
is measured is invariant under the time reversal transformation, guaranteeing a one-to-one
correspondence between the forward and backward trajectories, in which there is the same
trajectory present in both processes. See Appendix B.

The detailed fluctuation theorem for the entropy production implies the integral fluctu-
ation theorem 〈e−∆is〉 = 1. This in turns implies that if the average entropy production
∆iS = 〈∆is〉 = 0 vanishes, then 〈e−∆is〉 = e〈−∆is〉 and due to the convexity of the exponen-
tial this is possible only if p(∆is) = δ(∆is), i.e., the stochastic entropy production does not
fluctuate. This was already noticed when we discussed maps with equilibrium states and
the fluctuation properties in these states. On the other hand, it implies the opposite for
non-equilibrium steady state, that is, fluctuations of the stochastic entropy production are
necessary to have a positive average entropy production ∆iS = 〈∆is〉 > 0.

2.4.2 Fluctuations of work

Consider now the case where the initial states of the forward and backward processes are
canonical, pi(n) = e−βεn/ZS and p̃f (m) = e−βεm/ZS, then Eq.(2.21) gives

p(γ)

p̃(γ̃)
= e−β(εi−εj)e−β(εn−εm) = eβwγ . (2.22)

One can prove that, if the reversed process is identical to the forward process (see Appendix
B), the probability of performing a work w between the initial time with the system in the
state e−βHS/ZS and an arbitrary time (possible after infinite time, when the system reaches
the steady state) at which the energy of the system is measured satisfies the fluctuation
relation

p(w) = p(−w)eβw. (2.23)

If instead, the reversed process is not the same as the forward process, the work fluctuation
theorem reads p(w) = p̃(−w)eβw. For thermal maps, whose stationary state is the canonical
thermal state, we saw that p(w) = δ(w) and thus Eq.(2.23) is trivially satisfied. For other
maps the canonical thermal state is not necessarily invariant. Thus one can consider the
evolution of the system initially prepared in the canonical thermal state towards it’s steady
state and perform the two-point measurement of the system Hamiltonian to find that the
work statistics follows Eq.(2.23). We illustrate later this equality in two interesting situations,
a system that undergoes a cyclic process and a system in a non-equilibrium steady state.
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2.5 Concatenation of maps

In the previous sections of Chapter 2 we have considered that the process ρS → ρ′S is given
by a single CPTP map ρ′S = E(ρS) =

∑
kMkρSM

†
k with a particular choice for the Kraus

operators Mk that allows a thermodynamic interpretation. We will show that the results of
the previous sections can be extended to concatenations of maps, providing a richer setup
for the study of thermodynamic processes.

One can concatenate CPTP maps acting over a system to describe a sequence of coupled
evolution of a system to a heat bath for given lapses of time, as in the repeated scheme of
Section 1.2. We generalize the concept of quantum trajectory to concatenations of N maps
E(·) = E (N) · · · E (1)(·). Each

E (n)(·) =
∑
k

M
(n)
k ·M

(n)†
k (2.24)

is a CPTP map and for each we measure a corresponding kn associated to the process
|in〉 → |jn〉 between eigenstates of the bath. Note that with each map E (n) a new fresh bath
is brought to interaction with the system (see Fig. 1.1 in Section 1.2). For instance, as before
we consider the unitary evolution operator Un = e−iτn(HS+Hn

b +V n) with V n representing the
energy coupling between the system and the nth copy of the bath (with Hamiltonian Hn

b )
in the time interval [

∑
l<n τl,

∑
l≤n τl]. We consider V n constant in this time interval and

V n = 0 outside. The Kraus operators are

Mn
ij =

√
e−βεin

Zb
〈jn|Un|in〉, (2.25)

where {εin , |in〉} is the spectrum of Hn
b and Zb = Tr e−βH

n
b . This concatenation of maps is

equivalent to the recursion, Eq. (1.15), that is obtained in the repeated interaction scheme.
The stochastic heat flow from the bath to the system in this process is given by minus the
energy change of the baths qγ =

∑
n(εin − εjn).

As before, we perform a measurement of a system operator A at the beginning and another
B at the end of the process. The trajectory is γ = {n, k1, . . . , kN ,m} and its probability
p(γ) = p(m, k1, . . . , kN |n)pi(n) is

p(γ) = |〈bm|M (N)
kN
· · ·M (1)

k1
|an〉|2pi(n) (2.26)

or explicitly in terms of Eq.(2.24) and Eq.(2.25) the probability of a trajectory

γ = {an; i1, j1; . . . ; iN , jN ; bm} (2.27)

is

p(γ) = |〈bm, j1 · · · jN |UN · · ·U1|i1 · · · iN , an〉|2
e−β

∑N
n=1 εin

ZN
b

pi(n) (2.28)

With this, the detailed fluctuation theorem can be extended to concatenations of maps. If
in the forward process the sequence E (N) · · · E (1) acts on an initial state, the backward process
is the reversed concatenation of the reversed maps, i.e., Ẽ (1) · · · Ẽ (N), and for a given trajectory
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γ = {n, k1 · · · kN ,m} the corresponding backward trajectory is γ̃ = {m̃, k̃N · · · k̃1, ñ}. The
probability of the forward path is given by Eq.(2.26) while for the backward path is given by

p̃(γ̃) = |〈ãn|M̃ (1)
k1
· · · M̃ (N)

kN
|b̃m〉|2p̃f (m) (2.29)

Because every Kraus operator involved in Eq.(2.29) satisfies Eq.(2.20) one gets

p(γ)

p̃(γ̃)
= e−βqγ

pi(n)

p̃f (m)
(2.30)

and as before, considering the initial state of the backward process p̃f (m) as the final state
of the forward process, i.e., p̃f (m) = pf (m) we have p(γ) = e∆isγ p̃(γ̃). Finally, if the initial
states of the forward and backward processes are canonical, pi(n) = e−βεn/ZS and p̃f (m) =

e−βεm/ZS, then Eq.(2.30) gives p(γ)
p̃(γ̃)

= e−βqγe−β(εn−εm) = eβwγ .

Note that for every iteration of the map there is certain amount of average work, heat
and entropy production. These quantities are additive. This means that if we know the
average work, heat and/or entropy production for two maps that are composed, the average
work, heat and/or entropy production for the total map (the composition) is the sum of
the corresponding quantity for each map. For fluctuations this separation is not possible
since a projective measurement in the system between one map and another would change
the system. The averaged stochastic thermodynamic quantities would not correspond to the
mean thermodynamic quantities of the process without measurements.

2.5.1 Thermodynamic cycle

We can illustrate the advantage of considering concatenations of maps by studying a simple
thermodynamic cycle. A system starts in the canonical thermal state ωβ(HS) and then it
is driven by a map such as those considered in Section 2.3 where work is performed on the
system leaving it in a non-equilibrium state ρ′S but with the same Hamiltonian HS. Then we
assume that a thermal map brings the system back to the thermal state ωβ(HS). For such a
cycle we have that

∆E = 0 = Wd +Qd +Qr

where Qd and Wd refer respectively to the heat exchanged with the bath, Eq.(2.8), and the
work performed on the system, Eq.(2.9), during the driving process ωβ(HS)→ ρ′S and Qr is
the heat exchanged during the final relaxation process ρ′S → ωβ(HS). Since this is achieved
with a thermal map one has Wr = 0 and thus Qr = Tr[HS(ωβ(HS) − ρ′S)]. Also one can
check that

∆S = 0 = ∆iSd + ∆iSr + β(Qd +Qr)

where according to Eq.(2.12) and Eq.(2.16), ∆iSd = D(ρ′tot||ρ′S ⊗ ωβ(HB)) and ∆iSr =
D(ρ′S||ωβ(HS)), respectively. It also follows that the total entropy production ∆iSd+∆iSr =
βWd is the dissipated work as expected for a isothermal process starting and finishing in
equilibrium. We also get ∆iSd = −D(ρ′S||ωβ(HS)) + βWd [29].
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Now we consider fluctuations. Note that because the initial and final density matrices are
Gibbsian, work and entropy production fluctuations are the same,

ln
p(γ)

p̃(γ̃)
= ∆isγ = ∆sγ − β(qdγ + qrγ) = β∆εγ − β(qdγ + qrγ) = βwγ. (2.31)

In the last equation, qd,rγ are the driving and relaxation stochastic heat, respectively.

Usually, the thermal state is achieved asymptotically when a system interacts with a
large memoryless heat bath. This thermalization might also be achieved by concatenating
(in theory) an infinite sequence of thermal maps, taking the limit N → ∞ in the process
described with Eqs.(2.24) and (2.25). This composition is also a thermal map. In the first
example of the next section we show that in practice, this can be done much quicker with
just a few maps when the system is small.

2.6 Applications

2.6.1 Single spin in a thermodynamic cycle

Consider a single spin with HS = (h/2)σzS, that interacts with thermal spins ωβ(Hn
b ), with

Hn
b = (h/2)σzb . Here σx,y,zS,b are the Pauli spin 1/2 operators of the system and bath. The

interaction V 1 with the first spin is such that [HS + H1
b , V

1] 6= 0 and thus if the system
spin starts in equilibrium, ρS = ωβ(HS), the interaction with the first spin drives the system
out of equilibrium to a state E (1)(ωβ(HS)). Then for the subsequent interactions we take
V n such that [HS + Hn

b , V
n] = 0 with n ≥ 2 and thus the corresponding {E (n)}n≥2 are

thermal maps that will bring the system back to the thermal ωβ(HS) state. This constitutes
a thermodynamic cycle for the system with a unitary evolution for the spin plus baths total
system. As a consequence, the micro-reversibility principle is valid and Eq.(2.31) is fulfilled
(see the next example for details on the time reversal operator). In the left panel of Fig. 2.1
we plot the (Hilbert-Schmidt) distance DHS(σ, ρ) = ||σ − ρ||2HS = Tr[(σ − ρ)2] between the
state of the system at each step of the concatenation and the thermal state and observe that
indeed as N grows thermalization becomes more effective. In the right panel we show work
and entropy production probability distributions for the cycle considering that at N = 7
thermalization has been achieved (||ρ′S − ωβ(HS)||HS < 10−5). We show in Appendix C that
thermal maps do not contribute to work fluctuations, thus we plot work fluctuations of the
driving part alone as well as of the full cycle, p1 ≡ pcycle(βw) = pdrive(βw) = pcycle(∆is). Note
that this does not apply for entropy production, p2 ≡ pdrive(∆is) 6= p1.

The numerical calculations can be done straightforwardly due to the fact that at every
iteration, the Hilbert space is small: two qubits in this case, one corresponding to the bath
and one to the system. The evolution is carried out multiplying the total system-bath
density matrix with the unitary evolution operators and partially tracing the resulting matrix.
The measurements in the trajectories are simulated numerically, i.e., one do a projective
measurement over the system and bath and record the results obtained to define a trajectory,
then, comparing these one constructs the stochastic thermodynamic quantities.
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Figure 2.1: Left panel) Hilbert-Schmidt distance between the state of the system at each step
of the concatenation and the thermal state. In this concatenation process we take τ1 = 1,
V 1 = (JB + 0.3)σxb σ

x
S + JBσ

y
bσ

y
S, τn = 4, V n = JBσ

x
b σ

x
S + JBσ

y
bσ

y
S for n ≥ 2 and the other

parameters are h = 1, JB = 3, and β = 1. Right panel) Work and entropy production distri-
butions for the full cycle and the driving alone, p1 ≡ pdrive(βw) = pcycle(βw) = pcycle(∆is) 6=
p2 ≡ pdrive(∆is). The parameters for the plot are the same as in the left panel.

2.6.2 Spin 1/2 chains

We recall the example of the spin chain and its properties discussed in Sec. 1.2.2. We consider
a one-dimensional spin 1/2 chain ~σ1 · · ·~σM with Hamiltonian HS interacting through its first
site with a spin 1/2 particle with Hamiltonian Hb = h

2
σzb in a thermal state, ωβ(Hb), where

the interaction is given by
V = JB(σxb σ

x
1 + σybσ

y
1). (2.32)

Here the Pauli operators σx,y,zb belong to the single bath spin and σx,y,z1 to the first spin of
the chain. The unitary evolution for the system plus bath is given by the operator U =
e−iτ(HS+Hb+V ). Micro-reversibility holds if there exist an anti-unitary operator Θ such that
ΘŨΘ† = U †. For the spin systems we consider below Θ = iσxb iσ

y
bΠ

M
n=1(iσxniσ

y
n)K is a time

reversal symmetry operator where K performs the complex conjugation. Note that usually
when a system involves a magnetic field one needs to invert the direction of the magnetic
field and thus the detailed fluctuation theorem in that case will relate the fluctuations of two
different systems. However, for the time reversal operator we consider here that is not the
case [41]. The factor iσx rotates the system in 180◦ in the x direction, leaving the σz terms
invariant (see below the Hamiltonians). Replacing Hb in Eq.(2.3) one obtain four Kraus
operators Mij with i, j = ±, corresponding to transitions in the bath when i 6= j.

Let now the system be an XX spin 1/2 chain with Hamiltonian

HXX =
h

2

M∑
i=1

σzi −
M−1∑
i=1

Jxi (σxi σ
x
i+1 + σyi σ

y
i+1).

The total magnetization is a conserved quantity for the XX spin chain, i.e., [HXX , H0] = 0,
with H0 = h

2

∑M
i=1 σ

z
i the non-interacting part of the Hamiltonian. Considering the Hamil-

tonian of the bath Hb and the interaction between the chain and the bath V one finds that
the unitary evolution U = e−iτ(HXX+Hb+V ) satisfies [U,H0 +Hb] = 0, thus ωβ(H0) is an equi-
librium state of the non-thermal map with equilibrium E . In this example the Hamiltonian
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is of the form HS = H0 + HI with [H0, HI ] = 0. The stochastic thermodynamics for such
a system was discussed in Section 2.3.1. We can see that iterating the map as discussed in
Section 2.5, an initial state ρS(0) converges to the equilibrium state ωβ(H0). This is illus-
trated in Fig. 2.2. The average work, heat and entropy production performed on this process
in each interaction are given by Eqs.(2.15), (2.14) and (2.16). Thus the cumulated work is
W = TrS[HI(ωβ(H0) − ρS(0)] and because TrS[HIωβ(H0)] = 0 in this example it is simply
given by W = −TrS[HIρS(0)]. The cumulated heat is Q = TrS[H0(ωβ(H0) − ρS(0))] and
the cumulated entropy production is ∆iS = D(ρS(0)||ωβ(H0)). These asymptotic values are
indicated in Fig. 2.2, left panel. Concerning the fluctuating properties we showed in Section
2.3.1 that in the equilibrium state ωβ(H0) the entropy production does not fluctuate but
work may fluctuate. This is illustrated in Fig. 2.3, left panel.

Let us now consider the XY spin 1/2 chain with Hamiltonian

HXY =
h

2

M∑
i=1

σzi −
M−1∑
i=1

(Jxi σ
x
i σ

x
i+1 + Jyi σ

y
i σ

y
i+1).

coupled to the bath with Hamiltonian Hb through the same coupling V . For this system the
invariant state ρXY of the map E is not related to any operator H0 such that [U,H0 +Hb] = 0.
Indeed, the state ρXY ⊗ωβ(Hb) is not invariant under the unitary evolution and this indicates
already that the steady state ρXY is a NESS. We can see that iterating the map for the XY
chain a steady state is reached where a constant amount of work is being performed each
time the map is applied and the same for the heat and entropy production. This is illustrated
by the constant slopes in the cumulated thermodynamic quantities in Fig. 2.2, right panel.
These slopes can be computed but not in terms of the system properties only, they are global
quantities. For instance the slope for the entropy production is D(UρXY ⊗ωβ(Hb)U

†||ρXY ⊗
ωβ(Hb)). In this case the map on the XY spin chain is a map with NESS.

Finally, let us consider some fluctuation properties. In the left panel of Fig. 2.3 we plot the
work distribution for the XX spin 1/2 chain in the equilibrium state, where p(∆is) = δ(∆is),
but as noted before, even though 〈w〉 = 0, the work fluctuates, i.e., p(w) 6= δ(w). The work
fluctuation relation Eq.(2.23) is illustrated in the right panel of Fig. 2.3 for the XY spin
chain.
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Figure 2.2: Left panel) For the homogeneous XX spin 1/2 chain with three sites, cumulated
average work (dashed-black), heat (dashed-red) and entropy production (dashed-blue) as
a function of the iteration number. The corresponding straight lines are the theoretically
computed asymptotic values. Right panel) The same quantities for the homogeneous XY spin
1/2 chain with three sites. In both cases the initial density matrix is the Gibbs state ωβ(HS),
which is a non-equilibrium state. The parameters for the plots are: h = 2, Jxi = JB = 3,
β = 1.2 and τ = 1, and Jyi = 2 in the right panel.
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Figure 2.3: Left panel) Work distribution for the XX spin 1/2 chain in the equilibrium state.
Right panel) Work fluctuation relation Eq.(2.23) for the XY spin 1/2 chain, starting from
the Gibbs state in the forward and backward processes. In both plots we have used a chain
of two sites and one map. The parameters for the plots are: h = 2, Jxi = JB = 3, β = 1.2 and
τ = 1, and Jyi = 2 in the right panel. There are a small number of points on both graphics
due to the fact that the Hilbert space is discrete and small (23), thus work can take some
very specified values and many of them have vanishing probability.
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Chapter 3

Thermodynamics in the Lindblad limit

3.1 Detailed balance and CPTP maps with equilibrium

A central result of classical thermodynamic and statistical mechanic equilibrium is the prin-
ciple of detailed balance, which states that [44]

"In the state of equilibrium, every transformation is balanced by its exact
opposite or reverse".

The condition of quantum detailed balance for Lindblad type master equations whose
stationary state is the equilibrium Gibbs state has been extensively studied [45, 46, 47]. The
condition is satisfied if and only if the Lindblad operators and the rates in the equation
satisfy some specified relations in relation with the equilibrium state. We will now generalize
this condition to the case where the equilibrium state of a Lindblad type master equation is
not Gibbisian but ρ0 = e−βH0/Z0 where Z0 = Tr e−βH0 and H0 commutes with the system
Hamiltonian, [HS, H0] = 0. Then we will connect this generalized detailed balance condition
to the equilbrium property of a concatenation of CPTP maps with equilibrium (as studied
in the previous chapter) in the continuous Lindblad limit.

We consider a Lindblad generator of the form

L(·) = −i[HS, ·] +
∑
r

Dr(·), (3.1)

in a finite dimensional Hilbert space HS, where La(·) ≡ −i[HS, ·] is the unitary part of the
dynamics and Ls(·) ≡

∑
rDr(·) is the dissipation, with

Dr(·) = γr[Lr · L†r −
1

2
{L†rLr, ·}]. (3.2)

We will assume that L has a positive invariant state ρ0 > 0 and that there is no time
dependence in the generator.
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The dual L∗ of the Lindbladian L acts on the observables in the Heisenberg picture. It is
defined by

Tr[AeLt(ρ)] = Tr[eL
∗t(A)ρ]

Tr[AL(ρ)] = Tr[L∗(A)ρ],
(3.3)

for any observable A (we consider only bounded observables). Thus we have that L∗ = L∗a+L∗s
is given by

L∗(·) = i[HS, ·] +
∑
r

L†r · Lr −
1

2
{L†rLr, ·}, (3.4)

with L∗a(·) = i[HS, ·] and L∗s the remaining part.

The generator L satisfies the quantum generalization of the detailed balance condition
[45] with respect to ρ0 if

La(ρ0) = 0 (3.5)
Ls(Aρ0) = L∗s(A)ρ0 (3.6)

for every A.

The property that connects the detailed balance condition as we have stated it above, with
the sentence of Prigogine at the beginning of this chapter is that when H0 is non-degenerated
(and HS as well), the diagonal terms in the energy representation of ρ0 are disconnected from
the coherences, and their evolution can be described with a Pauli equation

d

dt
pl =

∑
k

Wlkpk −Wklpl, (3.7)

where ρ0 =
∑

l pl |εl〉 〈εl|. The coefficients satisfy detailed balance in the classical sense,

Wlke
−βεk = Wkle

−βεl . (3.8)

We will prove the following equivalence only in the right direction (⇒) since the other
way is straightforward.

Theorem. If and only if L is a generator of a Lindblad equation of the form Eq.(3.1)
and satisfies the generalized detailed balance condition with respect to ρ0 = e−βH0/Z0 where
Z0 = Tr[e−βH0 ] and [HS, H0] = 0, then the dissipator is of the form

Ls(·) =
∑
r

γr

[
Lr · L†r −

1

2
{L†rLr, ·}+ ω−1

r

(
L†r · Lr −

1

2
{LrL†r, ·}

)]
(3.9)

and the Lindblad operators are eigenoperators of [H0, ·],

[H0, Lr] = − 1

β
lnωrLr (3.10)

[H0, L
†
r] =

1

β
lnωrL

†
r. (3.11)
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Remark I. If the generalization of the detailed balance is fulfilled, choosing A in Eq. (3.6)
as the identity gives Ls(ρ0) = 0, thus ρ0 is an invariant state. Detailed balance condition is
stronger than just having an invariant state.

Remark II. If Eq.(3.5) is satisfied, we have

La(Aρ0) = La(A)ρ0, (3.12)
La(ρ0A) = ρ0La(A), (3.13)
L∗a(Aρ0) = L∗a(A)ρ0, (3.14)
L∗a(ρ0A) = ρ0L∗a(A). (3.15)

Remark III.

[L(A)]† = L(A†), (3.16)
[L∗(A)]† = L∗(A†) (3.17)

Remark IV.
Tr[L(A)B] = Tr[AL∗(B)]. (3.18)

Remark V. The generalized detailed balance condition can be rewritten in the following
way. Defining the scalar product

〈
A|B

〉
≡ Tr[ρ0A

†B], the condition can be restated as〈
L∗a(A)|B

〉
= −

〈
A|L∗a(B)

〉〈
L∗s(A)|B

〉
=
〈
A|L∗s(B)

〉
.

(3.19)

Proof. From Eq.(3.15) and the definition of L∗a we have that ρ0L∗a(A) = L∗a(ρ0A) = −La(ρ0A).
Thus,〈
L∗a(A)|B

〉
= Tr[ρ0L∗a(A†)B] = −Tr[La(ρ0A

†)B] = −Tr[ρ0A
†L∗a(B)] = −

〈
A|L∗a(B)

〉
.

(3.20)

On the other hand, using Eq. (3.6),〈
L∗s(A)|B

〉
= Tr[ρ0L∗s(A†)B] = Tr[Ls(Bρ0)A†] = Tr[L∗s(B)ρ0A

†] = Tr[ρ0A
†L∗s(B)] =

〈
A|L∗s(B)

〉
.

(3.21)

Note that this could be though as L∗ being an operator in the extended space where
superoperators become operators and operators become states with the scalar product defined
as before. In this way, 〈

L∗aA|B
〉

=
〈
A|L∗†a B

〉
= −

〈
A|L∗aB

〉
(3.22)〈

L∗sA|B
〉

=
〈
A|L∗†s B

〉
=
〈
A|L∗sB

〉
, (3.23)

thus, L∗a = −L∗†a is anti-hermitian and L∗s = L∗†s is hermitian. In general, this can be written
compactly as

L∗†A = (LAρ0)ρ−1
0 . (3.24)
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We define the superoperator Φ : B(HS) → B(HS), Φ(A) = ρ0Aρ
−1
0 . We have that

ΦL∗ = L∗Φ.

Proof: 〈
L∗(Φ(A)), B

〉
= Tr[ρ0L∗(ρ−1

0 A†ρ0)B]

= Tr[L(Bρ0)ρ−1
0 A†ρ0]

= Tr[L∗†(B)A†ρ0]

= Tr[L∗(A†)ρ0B]

= Tr[ρ0ρ
−1
0 L∗(A†)ρ0B]

= Tr[ρ0[ρ0L∗(A)ρ−1
0 ]†B]

= Tr[ρ0[Φ(L∗(A))]†B]

=
〈
Φ(L∗(A)), B

〉
.

(3.25)

Φ has the following properties,

a) Φ† = Φ. Proof: 〈ΦA,B〉 = Tr[ρ0ρ
−1
0 A†ρ0B] = Tr[A†ρ0B] = Tr[ρ0A

†ρ0Bρ
−1
0 ] =

〈A,ΦB〉.
b) Φ > 0. Proof: 〈A,ΦA〉 = Tr[ρ0A

†ρ0Aρ
−1
0 ] = Tr[ρ0AA

†] > 0, ∀A ∈ B(H), A 6= 0. Note
that the last step is due to Tr[ρ0AA

†] =
∑

n pn|cnk|2 > 0, where ρ0 =
∑

n pn |n〉 〈n| with
pn > 0 and cnk = 〈n|A |k〉.

c) ΦA = αA⇒ ΦA† = α−1A†, where α =
〈
A†, A†

〉
/ 〈A,A〉. Proof: Φ(A†) = (ρ−1Aρ0)† =

[Φ−1(A)]† = (α−1A)† = α−1A†. And
〈
A†, A†

〉
= Tr[ρ0AA

†] = Tr[ρ0Aρ
−1
0 ρ0A

†] =
αTr[Aρ0A

†] = α 〈A,A〉.

Proof of the Theorem: First, note that L∗sA = ΦL∗sΦ−1A, thus

L∗s(A) =
∑
r

γr[L
†
rALr −

1

2
{L†rLr, A}] (3.26)

must be equal for every A to

Φ(L∗s(Φ−1(A))) =
∑
r

γr[Φ(L†r)AΦ(Lr)−
1

2
{Φ(L†rLr), A} (3.27)

Comparing both equations we have that Lr is an eigenoperator of Φ. We write ΦLr = ωrLr,
ΦL†r = ω−1

r L†r.

Second, we have that L∗s(A) = Ls(Aρ0)ρ−1
0 . Thus, Eq.(3.26) must be equal for every A to

L∗s(Aρ0)ρ−1
0 =

∑
r

γr[LrAΦ(L†r)−
1

2
{L†rLr, A} (3.28)

=
∑
r

γr[ω
−1
r LrAL

†
r −

1

2
{L†rLr, A} (3.29)
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This means there must exist an adjoint term in the summation given by γadj
r [LrAL

†
r −

1/2{LrL†r, A}. We thus have

L∗s(A) =
∑
r

γr[L
†
rALr −

1

2
{L†rLr, A}] + γadj

r [LrAL
†
r −

1

2
{LrL†r, A} (3.30)

= L∗s(Aρ0)ρ−1
0 (3.31)

=
∑
r

γr[LrAΦ(L†r)−
1

2
{L†rLr, A}+ γadj

r [L†rAΦ(Lr)−
1

2
{LrL†r, A}] (3.32)

=
∑
r

γr[ω
−1
r LrAL

†
r −

1

2
{L†rLr, A}+ γadj

r [ωrL
†
rALr −

1

2
{LrL†r, A}]. (3.33)

Comparing we obtain that γadj
r = ω−1

r γr, i.e., Eq. (3.9).

Note that ρ0Lrρ
−1
0 = e−βH0Lre

βH0 = ωrLr is equivalent to Eq.(3.10). In fact, defining the
function

F (x) = e−xβH0Lre
xβH0 =

∞∑
n=0

Fn
n!
xn, (3.34)

with some unknown coefficients Fn in the series expansion, we have that
dF (x)

dx
= −β[H0, F (x)]. (3.35)

Replacing the series expansion in both sides we get
∞∑
n=1

Fn
(n− 1)!

xn−1 =
∞∑
n=0

Fn+1

n!
xn =

∞∑
n=0

−β 1

n!
[H0, Fn]xn. (3.36)

Equating equal powers of x we obtain the recursion Fn+1 = −β[H0, Fn], with F0 = Lr. Now,
since F (x = 1) = ωrLr, we have that∑

n

(−β)n

n!
Commn+1(H0, Lr) = ωrLr, (3.37)

where Comm1(H0, Lr) = [H0, Lr], Comm2(H0, Lr) = [H0, [H0, Lr]], etc. Thus, [H0, Lr] =
− 1
β

lnωrLr. Analogously, for L†r we have [H0, L
†
r] = 1

β
lnωrL

†
r. This ends the proof. We

remark that this is actually an equivalence, but the proof of the implication in the other
direction (⇐) is straightforward. �

Suppose that for a particular generator we do not have a analytic expression for the
invariant state. If the Lindblad operators {Lr} are local (boundary driven Lindblad equa-
tion), in the sense that they act on a subspace D of the N -dimensional Hilbert space, i.e,
Lr = L

loc(D)
r ⊗ 1N−D, it is possible that the generator has detailed balance (checked numer-

ically) with respect to an invariant state different from Gibbs, ρ0 6= e−βHS/Z. If this is the
case and if the invariant state is reached from a positive initial condition, ρini > 0, then ρ0

can be expressed as e−βH0/Z0 since L conserves the positivity. It would be useful to find H0

and β, but unfortunately this is not possible since the only information we have is

[HS, ρ0] = 0 (3.38)
[ρ0, Lr] = ωrLr (3.39)
[ρ0, L

†
r] = ω−1

r L†r, (3.40)
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and even though we know the invariant state can be expressed as ρ0 = e−βH0/Z0 and so we
can rewrite these expressions as

[HS, ln ρ0] = [HS,−βH0] = 0 (3.41)
[ln ρ0, Lr] = [−βH0, Lr] = lnωrLr (3.42)
[ln ρ0, L

†
r] = [−βH0, L

†
r] = − lnωrL

†
r, (3.43)

all we could solve for is the product βH0, since changing β → β′ = β/α and H0 → H ′0 = αH0

with any constant number α gives the same equations. Only when the equilibrium state is
Gibbsian, HS = H0, then the inverse temperature can be obtained from Eqs.(3.42) or (3.43).
We will assume then that β can be fixed arbitrarily, which makes sense if one thinks of it
just as a measure of the scale of the energies.

We will now connect the generalized quantum detailed balance principle for the Lindblad
evolution to the equilibrium property of a CPTP map when a concatenation of them is
considered. To do so, we will first recall the CPTP map E we are interested in, Eq.(2.2), i.e.,

ρ′S = E(ρS) = TrB[UρS ⊗ ωβ(HB)U †], (3.44)

where we know that E is an equilibrium map if there is a stationary state π = e−βH0/Z0 with
[HS, H0] = 0 and [V,H0 + HB] = 0. We first note that scaling the coupling as V = v/

√
τ ,

the map E can be written up to order τ as

Eτ (ρS) = ρS− iτ [HS, ρS]+τ
∑
ij

e−βεi

ZB

(
〈εj| v |εi〉 ρS 〈εi| v |εj〉 −

1

2

{
〈εi| v |εj〉 〈εj| v |εi〉 , ρS

})
,

(3.45)
where HB |εi〉 = εi |εi〉. Writing Mij = 〈εj| v |εi〉 (v is hermitian) we get a dissipator

τ
∑
ij

e−βεi

ZB

(
MijρSM

†
ij −

1

2
{M †

ijMij, ρS}
)

(3.46)

= τ
∑
i<j

e−βεi

ZB

[
MijρSM

†
ij −

1

2
{M †

ijMij, ρS}+ eβ(εi−εj)
(
M †

ijρSMij −
1

2
{MijM

†
ij, ρS}

)]

+ τ
e−βεi

ZB

(
MiiρSM

†
ii −

1

2
{M †

iiMii, ρS}
)
. (3.47)

Since [H0, v] = [v,HB], we have that

[H0,Mij] = (εi − εj)Mij (3.48)

[H0,M
†
ij] = −(εi − εj)Mij. (3.49)

Note that if we consider the the labels {ij} as one label, r = ij, then we can identify the
Lindblad operators Lr = Mij and the coefficients ωr = eβ(εj−εi). The conditions Eqs.(3.10)
and (3.11) are satisfied. Note that the second line of Eq.(3.47) can be rewritten as

τ
1

2

e−βεi

ZB

(
MiiρSM

†
ii −

1

2
{M †

iiMii, ρS}+M †
iiρSMii −

1

2
{MiiM

†
ii, ρS}

)
, (3.50)
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thus Eq.(3.47) is of the form Eq.(3.9) with γr = e−βεi/ZB when i 6= j and γr = e−βεi/2ZB
when i = j. Finally, the equivalence between the equilibrium condition for a repeated
interaction generated by a concatenation of CPTP maps of the form Eq.(3.44) and the
condition for the quantum detailed balance of the Lindblad form is completed noting that
the Lindblad generator can be written in its infinitesimal form as Lτ ≡ 1 + τL = Eτ , where
ρS(t+ τ) = Lτ (ρS(t)).

If our Lindblad equation of interest has detailed balance with a positive invariant non-
Gibbsian equilibrium state, i.e., ρ0 6= ωβ(HS), then it is trivial to find a repeated interaction
that generates that continuous evolution in the Lindblad limit. In this case, the thermo-
dynamic quantities for CPTP maps which are simplified due to an equilibrium, Eqs.(2.14),
(2.15) and (2.16), can be written in the following way in the Lindblad limit, without needing
explicit knowledge of the particular form of HB and the coupling V :

Q̇(t) = Tr[H0L(ρ(t))] (3.51)

Ẇ (t) = Tr[(H −H0)L(ρ(t))] (3.52)

Ṡi(t) = −Tr[L(ρ(t)) ln ρ(t)]− βQ̇. (3.53)

We would like to emphasize that there is no need of actually finding the repeated interaction
that generates a particular Lindblad equation when it has detailed balance. One can just use
Eqs.(3.51), (3.52) and (3.53) to make a consistent thermodynamic analysis of any far from
equilibrium process (note that since L(ρ0) = 0 in the equilibrium state the three thermody-
namic quantities vanish), just with the Lindblad equation. Anyhow, in the following section
we show some examples where we start from Lindblad equations with and without detailed
balance and obtain the repeated interaction scheme that generates them in the Lindblad
limit.

We should finally remark that if the equilibrium state for which detailed balance is valid
is Gibbsian, ρ0 = ωβ(HS) = e−βHS/ZS, like in the standard Lindblad equations in the weak
coupling regime, the Lindblad operators are global (they act on the full system) and our
analysis is still correct. In that case, Ẇ = 0 according to Eqs.(3.52), while Eqs.(3.51) and
Eq.(3.53) give the standard definitions used for the heat flux, Q̇(t) = Tr[HS ρ̇S], and for the
entropy production rate Ṡi(t) = −(d/dt)D[ρ(t)||ωβ(HS)], in the weak-coupling regime.

3.2 Examples

3.2.1 Spin 1/2 chains

We have already investigated the properties of the XX and XY spin chains in the repeated
interaction and took the Lindblad limit to obtain the dissipator Eq.(1.25). We will now show
how to proceed in the reversed way: starting from a Lindblad equation for the spin chain we
obtain a repeated interaction that generates it.

Suppose we know H0 = (h/2)
∑

i σ
z
i is a conserved quantity of the system, [HS, H0] = 0,

and we would like to construct a boundary Lindblad equation with detailed balance with
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respect to ρ0 = ωβ(H0) = e−βH0/Z0. A boundary driven Lindblad equation can be of the
form

∂tρS = −i[HS, ρS] + γ+

[
σ+

1 ρSσ
−
1 −

1

2
{σ−1 σ+

1 , ρS}+ ω−1
+

(
σ−1 ρSσ

+
1 −

1

2
{σ+

1 σ
−
1 , ρS}

)]
,

(3.54)

with HS = HXX = h
2

N∑
i=1

σzi −
N−1∑
i=1

Jxi (σxi σ
x
i+1 + σyi σ

y
i+1) and where σ±i = σxi ± iσ

y
i . We require

for detailed balance that the coefficient ω−1
+ satisfies the following relations:

[H0, σ
+
1 ] = − 1

β
lnω+σ

+
1 (3.55)

[H0, σ
−
1 ] =

1

β
lnω+σ

−
1 . (3.56)

Calculating the commutators we readily obtain that ω+ = e−βh. The other coefficient, γ+,
is arbitrary for the moment but later we will note that it must be bounded. Now we ask
ourselves how must the coupling v between the system and the bath be so that we obtain
the Lindblad operators σ±1 with Mij = 〈εj| v |εi〉. A straightforward solution is

v = σ+
b σ
−
1 + σ−b σ

+
1 (3.57)

for a two level bath, since 〈+| v |−〉 = σ−1 and 〈−| v |+〉 = σ+
1 , where |±〉 are the bath energy

eigenstates |εi〉. Thus we know from this that HB ∝ σzb . Comparing Eq.(3.47) with the
dissipator of Eq.(3.54) we note that

γ+ =
e−βε+

ZB
(3.58)

where HB |+〉 = ε+ |+〉. Writing the bath Hamiltonian as HB = hbσ
z
b we obtain γ+ =

(1−tanh(βhb))/2, thus hb can be determined from γ+ if and only if −1 ≤ 1−2γ+ ≤ 1. There
is yet another constraint. Since [v,H0 +HB] = 0, we require h = hb, so γ+ and ω+ are fully
determined once one fix the inverse temperature β.

In the case of the XY (HXY = h
2

N∑
i=1

σzi −
N−1∑
i=1

Jxi σ
x
i σ

x
i+1 + Jyi σ

y
i σ

y
i+1) spin chain one does

not have an operator H0 which commutes with HXY , so the detailed balance condition is not
fulfilled and we do not have Eqs.(3.10) and (3.11). However, one can obtain the repeated
interaction that generates a Lindblad evolution like Eq.(3.54) for the XY spin chain without
detailed balance making use of another system which has detailed balance, in this case, the
XX spin chain. Actually, choosing the same coefficients for the dissipator as before for the
XX spin chain one obtains a repeated interaction of a CPTP map E with a NESS for the
XY chain as the one considered in Section 2.6.2.

3.2.2 The smallest possible refrigerator

In [48, 31] a refrigerator composed of three qubits connected each one to a different bath
is studied. A Lindblad equation is given with intuitive arguments. A simple reset model

34



is used where with probability pi per time τ each qubit may reset to a Gibbs state ωβi(Hi)
where Hi = Ei |1〉i 〈1|i is the Hamiltonian of the i-qubit with |1〉i its excited state and βi is
the inverse temperature of the bath connected to the qubit i. A non-unitary process occurs
in the time τ given by

ρS →
3∑
i=1

τpiωβi(Hi)⊗ Tri(ρS) + (1− τpi)ρS. (3.59)

Baths with temperatures TC , TR and TH are connected to qubits 1,2 and 3, respectively,
where C stands for “cold ”, R for “room”, and H for “hot”. There is a free Hamiltonian
H0 =

∑3
i=1EiΠi where Πi = |1〉i 〈1|i is the projector to the excited state of the qubit i, and

a interacting Hamiltonian Hint = g(|101〉 〈010|+ |010〉 〈101|) which couples the three qubits.
The idea is that constraining the energies to E2 = E1 + E3 the interaction couples states
of equal energy. If the evolution were unitary, nothing will change since the populations of
|101〉 and |010〉 would change with equal probability, but choosing TR < TH the state |010〉
is preferred which brings the qubit 1 to the ground state, thus energy is constantly being
pumped from the cold bath because it needs to give energy to thermalize the first qubit. The
result is that qubit 1 reaches a stationary effective temperature lower than that of its bath,
T s1 < TC .

In the limit τ → 0 a Lindblad equation (we will show in a moment that it can be rewritten
in Lindblad form) is obtained:

∂tρS = −i[H0 +Hint, ρS] +
∑
i

pi(ωβi(Hi)⊗ Tri(ρS)− ρS). (3.60)

It is argued that the inclusion of Hint would require modifications to the dissipator, but in
the limit g → 0, pi → 0 and g/pi constant, the corrections are of order gpi. This refrigerator
can reach Carnot efficiency, which is calculated in terms of heats only because there is no
work, η = Q̇C/Q̇H = E1/E3 ≤ (1− TR

TH
)/(TR

TC
− 1) = ηC .

A later article [49] argues that this local dissipator (in the sense that Lindblad operators
act locally in a subspace of the system) might not be realistic. They do modifications to
the Lindblad equation and obtain a lower constraint on the efficiency. We would now like to
argue that Eq.(3.60) can be obtained from a repeated interaction without any assumptions
on g or pi and that the efficiency must be modified because it requires work.

We first rewrite Eq.(3.60) in Lindblad form. We will for the moment write ρS as ρ just to
simplify the notation. We define ri = 〈0|i ωβi(Hi) |0〉i and r̄i = 〈1|i ωβi(Hi) |1〉i. Thus,

τiTriρ =(ri |0〉 〈0|i + r̄i |1〉 〈1|i)⊗ (〈0| ρ |0〉i + 〈1| ρ |1〉i)
=ri |0〉 〈0|i ρ |0〉 〈0|i + ri |0〉 〈1|i ρ |1〉 〈0|i + r̄i |1〉 〈0|i ρ |0〉 〈1|i + r̄i |1〉 〈1|i ρ |1〉 〈1|i
=ri(σ

−
i σ

+
i )ρ(σ−i σ

+
i ) + riσ

−
i ρσ

+
i + r̄iσ

+
i ρσ

−
i + r̄i(σ

+
i σ
−
i )ρ(σ+

i σ
−
i ). (3.61)

Also, since ri + r̄i = 1, we have that

ρ = riρ+r̄iρ = ri
1

2

{
1, ρ
}

+r̄i
1

2

{
1, ρ
}

= ri
1

2

{
(σ+

i σ
−
i )+(σ−i σ

+
i ), ρ

}
+r̄i

1

2

{
(σ+

i σ
−
i )+(σ−i σ

+
i ), ρ

}
.

(3.62)

35



Adding this last two terms we obtain

pi(τiTr− ρ) =pi

[
r̄i

(
σ+
i ρσ

−
i −

1

2

{
(σ−i σ

+
i ), ρ

})
+ ri

(
σ−i ρσ

+
i −

1

2

{
(σ+

i σ
−
i ), ρ

})
(3.63)

+ r̄i

(
(σ+

i σ
−
i )ρ(σ+

i σ
−
i )− 1

2

{
(σ+

i σ
−
i ), ρ

})
+ ri

(
(σ−i σ

+
i )ρ(σ−i σ

+
i )− 1

2

{
(σ−i σ

+
i ), ρ

})]
,

(3.64)

where it was used that (σ±i σ
∓
i )2 = σ±i σ

∓
i . We thus write Eq.(3.60) as

∂tρ = −i[H0 +Hint, ρ] +
3∑
i=1

4∑
µ=1

γµi

(
2Lµi ρL

µ†
i − {L

µ†
i L

µ
i , ρ}

)
, (3.65)

where γ1
i = γ2

i = pir̄i/2, γ3
i = γ4

i = piri/2, L1
i = σ+

i , L2
i = σ+

i σ
−
i , L3

i = σ−i and L4
i = σ−i σ

+
i .

This equation does not have detailed balance, or equivalently, has a NESS. In the following
we obtain a repeated interaction in which each bath alternates two different couplings with its
corresponding qubit. We will find that the work done due to turning on and off the interaction
between the baths and the system in the repeated interaction are in the continuous limit given
by the powers

Ẇi = −pi TrS[HintρS], (3.66)

while the heat fluxes are

Q̇i =
1

2
Eipi(TrS[σzi ρS]− (1− 2ri)). (3.67)

To construct a bath and coupling so that Eq.(3.65) is obtained from a repeated interaction
we propose the following anzat, where two different couplings between the bath r and the
qubit i alternate. These are given by

V Q
r = Jr

(
σxrσ

x
i + σyrσ

y
i +Qr(σ

z
r −Mr)σ

z
i

)
, V P

r = Jr
(
σxrσ

x
i + σyrσ

y
i + Pr(σ

z
r −Mr)σ

z
i

)
,

(3.68)
where r = {C,R,H} indicates the bath and are associated with i = {1, 2, 3} representing
the three qubits. The coefficients Qr and Pr are unknown and for the moment are part of
the anzat. The other coefficient is Mr = Trr[σ

z
rρ

n
r (0)] (see below ρnr (0)). As in Section 1.2 we

assume that the bath r has Hamiltonian Hr =
⊕

nH
n
r where Hn

r = −(Er/2)σzr . The system
and baths are initially uncorrelated, ρ(0) = ρS(0)

⊗
r ρr(0), where ρr(0) =

⊗
n ρ

n
r (0) =⊗

n ωβr(H
n
r ). The interaction between the system and baths is divided into 2N steps of time

τ from t = 0 to t = T = 2Nτ . In even time steps the system-bath coupling is V Q =
∑

r V
Q
r

and in odd time steps is V P =
∑

r V
P
r . The evolution after the first two time steps reads

ρ(τ) = UQ
1 (ρS(0)⊗ ρ1)UQ†

1 ⊗ ρ2 ⊗ ρ3 ⊗ · · · (3.69)

ρtot(2τ) = UP2 (UQ
1 (ρS(0)⊗ ρ1)UQ†

1 ⊗ ρ2)UP †2 ⊗ ρ3 ⊗ · · · (3.70)

where UQ
1 = e−iτ(HS+

∑
r H

1
r+V Qr ) and UP2 = e−iτ(HS+

∑
r H

2
r+V Pr )e−it

∑
r H

1
r . Tracing out the baths

the recurrence obtained is

ρS((2n− 1)τ) = Tr(2n−1)

(
UQ

(2n−1)(τ)(ρS((2n− 2)τ)⊗ ρ(2n−1))U
Q†
(2n−1)(τ)

)
(3.71)
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ρS(2nτ) = Tr2n

(
UP

2n(ρS((2n− 1)τ)⊗ ρ2n)UP †
2n

)
. (3.72)

Since ρn and Hn
α are the same for every n, we can drop the label on ρn and UQ,P

n , writing
just

ρS((2n− 1)τ) = TrE
(
UQ(ρS((2n− 2)τ)⊗ ρE)UQ†

)
(3.73)

ρS(2nτ) = TrE
(
UP (ρS((2n− 1)τ)⊗ ρE)UP †

)
. (3.74)

Now we expand UR, where R = {Q,P} for small τ up to order τ 3/2. Scaling the couplings
as V R

r = vRr /
√
τ we obtain

UR(τ) = I − ivRτ
1
2 −

(
iHSE +

(vR)2

2

)
τ − 1

2
{H0, v

R}τ
3
2 +O(τ 2), (3.75)

where HSE = HS +
∑

rHr and vR =
∑

r v
R
r . Thus we have

ρS(2nτ)− ρS((2n− 1)τ) =TrE
(
UPρS((2n− 1)τ)⊗ ρEUP † − ρS((2n− 1)τ)⊗ ρE

)
=− iτ

[
HS, ρS((2n− 1)τ)

]
+ τTrE

(
vPρS((2n− 1)τ)⊗ ρEvP

)
− τ

2
TrE

{
(vP )2, ρS((2n− 1)τ)⊗ ρE

}
+O(τ 3/2), (3.76)

and also

ρS((2n− 1)τ)− ρS((2n− 2)τ) =TrE
(
UQρS((2n− 2)τ)⊗ ρEUQ† − ρS((2n− 2)τ)⊗ ρE

)
=− iτ

[
HS, ρS((2n− 2)τ)

]
+ τTrE

(
vQρS((2n− 2)τ)⊗ ρEvQ

)
− τ

2
TrE

{
(vQ)2, ρS((2n− 2)τ)⊗ ρE

}
+O(τ 3/2), (3.77)

where we have used that TrE[vRρS ⊗ ρE] = 0 (for which we need that Mr = TrE[σzrωβr(Hr)])
and TrE[Hr, ρS ⊗ ρE] = 0. Summing Eqs.(3.76) and (3.77), dividing by 2τ and taking the
limit τ → 0 and n→∞ such that 2nτ = t is finite we obtain

ρ̇S = −i [HS, ρS] +
1

2
DQ(ρS) +

1

2
DP (ρS), (3.78)

with DR(ρS) = TrE
[
vR(ρS ⊗ ρE)vR

]
− 1

2
TrE

{
(vR)2, ρS ⊗ ρE

}
. Since vR =

∑
r v

R
r and

Trr(vRr ωr) = 0, this equation can be split as

ρ̇S = −iτ [HS, ρS] +
1

2

∑
r

DQr (ρS) +
1

2

∑
r

DPr (ρS), (3.79)

with DRr (ρS) = Trr
[
vRr (ρS ⊗ ρE)vRr

]
− 1

2
Trr
{

(vRr )2, ρS ⊗ ρE
}
.

Using Jr =
√
λr/τ and replacing the couplings, Eq.(3.68), into Eq.(3.79) we obtain for

the dissipator 1
2
(DQ(ρS)+DP (ρS)) the following (we write ρS as ρ for the moment to simplify

37



the notation):

1

2

∑
i

λr

[
2(1 +Mr)

(
σ+
i ρσ

−
i −

1

2

{
σ−i σ

+
i , ρ
})

+ 2(1−Mr)

(
σ−i ρσ

+
i −

1

2

{
σ+
i σ
−
i , ρ
})

+ 4Q2
i (1−M2

r )

(
σ+
i σ
−
i ρσ

+
i σ
−
i −

1

2

{
σ+
i σ
−
i , ρ
})]

+
1

2

∑
i

λi

[
2(1 +Mi)

(
σ+
i ρσ

−
i −

1

2

{
σ−i σ

+
i , ρ
})

+ 2(1−Mr)

(
σ−i ρσ

+
i −

1

2

{
σ+
i σ
−
i , ρ
})

+ 4P 2
i (1−M2

r )

(
σ+
i σ
−
i ρσ

+
i σ
−
i −

1

2

{
σ+
i σ
−
i , ρ
})]

(Note that r and i come in pairs {r, i} = {{C, 1}, {R, 2}, {H, 3}}.) Choosing Q2
i = (1−Mr)

−1

y P 2
i = (1 +Mr)

−1 we obtain

∑
i

λi

[
(1 +Mr)

(
2σ+

i ρσ
−
i −

{
σ−i σ

+
i , ρ
})

+ (1−Mr)

(
2σ−i ρσ

+
i −

{
σ+
i σ
−
i , ρ
})

+ (1 +Mr)

(
2σ+

i σ
−
i ρσ

+
i σ
−
i −

{
σ+
i σ
−
i , ρ
})

+ (1−Mr)

(
2σ−i σ

+
i ρσ

−
i σ

+
i −

{
σ−i σ

+
i , ρ
})]

.

Note that (1 ±Mr) = 1 + Trr[σ
z
rρr] = 2 Trr[σ

±
r σ
∓
r ρr]. If we re-scale the energy spectrum

of the bath such that Hr = Ei |1〉r 〈1|r with the same energy for the excited state as the
corresponding refrigerator qubit i, we have that (1 + Mr) = 2r̄i and (1 −Mr) = 2ri (recall
that ri = 〈0|i ωβi(Hi) |0〉i and r̄i = 〈1|i ωβi(Hi) |1〉i). Additionally we choose λr = pi/4 and
we recover the Lindblad form for the three qubit refrigerator, Eq.(3.65),

ρ̇S = −i[HS, ρS]

+
∑
i

1

2
pir̄i

(
2σ+

i ρSσ
−
i − {σ−i σ+

i , ρS}+ 2σ+
i σ
−
i ρSσ

+
i σ
−
i − {σ+

i σ
−
i , ρS}

)
+
∑
i

1

2
piri

(
2σ−i ρSσ

+
i − {σ+

i σ
−
i , ρS}+ 2σ−i σ

+
i ρSσ

−
i σ

+
i − {σ−i σ+

i , ρS}
)
.

(3.80)

In same manner that we obtained in Section 1.2 the expressions for the heat and work,
here we have

∆QP
r,2nτ = Tr2n[Hr(ρ2n − ρ′2n)], (3.81)

∆QQ
r,(2n+1)τ = Tr2n+1[Hr(ρ2n+1 − ρ′2n+1)], (3.82)

where ρ′m = TrS[UmρS((m − 1)τ) ⊗ ρEU †m] is the density matrix of the m-copy of the bath
after the interaction, and

∆W2nτ = Tr[ρ(2nτ)(V2n+1 − V2n)] = −Tr[U2nρS((2n− 1)τ)⊗ ρEU †2nV2n], (3.83)
∆W(2n+1)τ = Tr[ρ(2nτ)(V2n+2 − V2n+1)] = −Tr[U2n+1ρS(2nτ)⊗ ρEU †2n+1V2n+1].(3.84)
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Doing the scaling V = v/
√
τ , expanding these expressions up to order τ , dividing by 2τ and

taking the limits we obtain the heat fluxes

Q̇r ≡
1

2
Q̇P
r +

1

2
Q̇Q
r = −1

2
DP
r (Hr)−

1

2
DQ
r (Hr) (3.85)

and the powers

Ẇr ≡
1

2
Ẇ P
r +

1

2
ẆQ
r =

1

2
DP
r (HS +Hr) +

1

2
DQ
r (HS +Hr), (3.86)

where DR
r (A) = Tr[(vRr Av

r
r − 1

2
{(vRr )2, A})ρs(t)⊗ ωβr(Hr)]. For our particular system, these

expressions are Eqs.(3.67) and (3.66), respectively.

It can be shown with thermodynamical arguments that the efficiency of a refrigerator
composed of three baths where only heat fluxes are interchanged like the one in [48, 31] is given
by η = Q̇C/Q̇H . In our analysis, this expression changes to η = Q̇C/(Q̇H +

∑
i Ẇi). We thus

argue that a boundary driven Lindblad equation of the form Eq.(3.65) can be microscopically
derived from the repeated interaction scheme, but it will not be an autonomous refrigerator
as conceived initially since it needs external work

∑
i Ẇi.
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Conclusions

We have studied the stochastic thermodynamics of CPTP quantum maps discussing in par-
ticular the properties of maps with equilibrium. Thermal maps are a very important class of
maps with equilibrium because they represent the passive effect of a heat bath on a system,
while non-thermal maps with equilibrium require the active intervention of an agent, mani-
fested by the work required to perform the process represented by E even when the system
Hamiltonian is not driven. We have shown that for maps with equilibrium the thermody-
namic quantities can be written in local form, this means, in terms of system’s operators.
This is a great simplification since the experimenter usually does not have access to the state
of the bath after the interaction, this might be because the bath has many particles and/or
(like in the repeated interaction) there are many baths interacting with the system.

Non-thermal maps with equilibrium are, in a sense, in between thermal maps and maps
with non-equilibrium steady states. They share thermal maps’ simplicity of relaxing to the
equilibrium state, while at the same time allow us to study energy exchanges between the
system, the bath and the experimenter in a non-trivial case. The result we have illustrated
here might not be restricted to quantum systems, but in quantum systems the manipulation
of the interaction with the environment is much better controlled and thus the possibility of
transforming the state of a system using active interactions V (t) with the environment as
illustrated with the XX spin 1/2 chain is already in the tool box of the experimentalist [50].
We believe that an implementation of the XX chain with trapped ions and the interaction
with probes by its boundary is possible and that it can be a candidate to investigate further
aspects of quantum thermodynamics. Recently, the Landauer principle was experimentally
verified in nuclear spins of molecules on a NMR set-up [51]. In this experiment, quantum state
tomography is used to determine the system’s entropy change, and for the bath, an auxiliary
system (an ancilla qubit) is used to reconstruct the heat exchange probability distribution
of the process. On previous NMR experiments (see references in [51]) it was also possible to
determine work distributions. This means that this set-up could be used to verify if the local
thermodynamics quantities when the CPTP map has equilibrium are correct.

Stochastic thermodynamics for classical systems with Hamiltonian or stochastic dynamics
(Langevin or discrete master equation) is usually formulated for systems with the properties
we associate to thermal operations: in the absence of driving the system thermalizes to the
corresponding Gibbs state and the stochastic work is zero in non-driven systems. For instance,
in classical stochastic thermodynamics, and for thermal maps too, a system in equilibrium
presents no entropy production fluctuation and this implies no work fluctuations either. In
the quantum case one can consider these fluctuations simultaneously if the equilibrium state
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commutes with the Hamiltonian of the system. We have seen that in the XX spin 1/2 chain
we have studied, where the dynamics is controlled by a non-thermal map with equilibrium,
and where the equilibrium state commutes with the Hamiltonian, it is possible to have a
fluctuating work and no entropy production fluctuations.

On the other hand, open systems, in contact with a single heat bath, whose dynamics
is represented by a map without equilibrium (its invariant state is a non-equilibrium state),
presents a complexity similar to the one of open systems passively coupled to two heat baths
at different temperatures. Nevertheless a few properties for this case were also studied like
the statistics of work for systems starting in the Gibbs ωβ(HS) state, Eq.(2.23).

We have generalized the condition of equilibrium in Lindblad master equations through the
generalization of the detailed balance condition which has allowed us to relate this condition
with the equilibrium of a CPTP map when it is iterated. We argued that when a Lindblad
equation has detailed balance it is straightforward to obtain a repeated interaction that
generates it, thus heat, work and entropy production can be defined in a consistent way in
local form (in terms of operators of the system) for any coupling strength. We emphasize
that this might be used as a tool for designing quantum thermal machines with boundary
driven Lindblad equations dynamics. As a final remark, we would like to point out that
this simplification in the thermodynamic quantities in the presence of a equilibrium has been
derived when there is only one temperature for the possibly many baths. When there are
different temperatures, one might only be able to write the sum of the heats and the entropy
production in local form, but not the work, thus further exploration is required.
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Appendix A

Proof of Eq.(2.20)

Eq.(2.20) is an equality between operators in the system Hilbert space HS that we can write
as

〈̃i| Ũ |j̃〉 = ΘS 〈j|U |i〉†Θ†S

where Ũ = ΘU †Θ† and |̃i〉 = ΘB |i〉. We prove it by showing that the matrix elements in
an arbitrary basis are the same. Consider the operator at the left hand side and evaluate its
matrix elements with states |ã〉 = ΘS |a〉 and |b̃〉 = ΘS |b〉, i.e.,(

|ã〉 , 〈̃i| Ũ |j̃〉 |b̃〉
)
HS

=
(
|ã̃i〉 , Ũ |b̃j̃〉

)
Htot

=
(

Θ |ai〉 ,ΘU † |bj〉
)
Htot

=
(
U † |bj〉 , |ai〉

)
Htot

= 〈bj|U |ai〉 . (A.1)

Let us know evaluate the same element for the operator in the right hand side(
|ã〉 ,ΘS 〈j|U |i〉†Θ†S |b̃〉

)
HS

=
(

ΘS |a〉 ,ΘS 〈j|U |i〉† |b〉
)
HS

=
(
〈j|U |i〉† |b〉 , |a〉

)
HS

=
(
|b〉 , 〈j|U |i〉 |a〉

)
HS

= 〈bj|U |ai〉 (A.2)

and therefore we have the equality. Note that we have used the property (Θφ,Θψ) = (ψ, φ)
that the anti-unitary operators Θ and ΘS satisfy in the corresponding Hilbert space.
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Appendix B

p(w) = p̃(w) if the Hamiltonian Htot is
invariant under time reversal.

For the spin systems we consider in our analysis and the time reversal operator Θ defined in
Section 2.6, we have the equality Ũ = U , which equivalently means that the Hamiltonian Htot

is invariant under time reversal. We will now show that this implies that the work distribution
of the forward process equals the work distribution of the reversed process, p(w) = p̃(w).
For every trajectory γ = {n, k,m} in the forward process there is a a associated backward
trajectory γ̃ = {m̃, k̃, ñ}, but now we will compare γ with another trajectory belonging to
the backward trajectories, that is γ̃′ = {ñ,−k̃, m̃} where if k = ij is associated with the
Kraus operator Mk=ij, then −k̃ corresponds to the operator M̃ij (see Eq.(2.19)). Note that
if we measure the system energy at the beginning and at the end, |an〉 and |bm〉 correspond
to energy eigenstates. Due to the fact that the Hamiltonian is invariant under time reversal,
we have that ΘS |an〉 = |an〉 and ΘS |bm〉 = |bm〉 (the same is true for the energy eigenstates
of the bath, ΘB |i〉 = |i〉 and ΘB |j〉 = |j〉), thus according to Eq.(2.19) we get M̃ij = Mij.
These trajectories are:

|n〉 k−→ |m〉 , p(γ) = pi(n)
∣∣〈bm|Mij |an〉

∣∣2 , βwγ = ln
pi(n)

pi(m)
− β(εi − εj) (B.1)

|ñ〉 −k̃−→ |m̃〉 , p̃(γ̃′) = pi(n)
∣∣∣〈b̃m| M̃ij |ãn〉

∣∣∣2 , βwγ̃′ = ln
pi(n)

pi(m)
− β(εi − εj). (B.2)

Those two probabilities are the same, p(γ) = p̃(γ̃′) and wγ = wγ̃′ . We conclude that ev-
ery trajectory in the forward process is also present in the backward process, so the work
distribution is the same, p(w) = p̃(w).

To derive an equivalent relation for the entropy production, p(∆is) = p̃(∆is), we equiva-
lently require that Θ |an〉 = |an〉 and Θ |bm〉 = |bm〉, however, now these states are the initial
density matrix and final density matrix eigenstates. We thus need time reversal invariant
initial and final density matrices, i.e., ΘρΘ† = ρ and Θρ′Θ† = ρ′. In the stationary state
of the XX spin chain this is fulfilled, since ρXX = e−βH0/Z0 is invariant under time reversal
with Θ defined as in Section 2.6. However, for the XY stationary state, this is not true, since
ρXY 6= ΘρXY Θ†.
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The previous analysis can be readily generalized to a concatenation of maps and the same
results hold.
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Appendix C

Thermal maps do not contribute to work
fluctuations

To demonstrate that in the thermodynamic cycle of Section 2.6.1 the work probability dis-
tribution is determined only by the driving, pcycle(w) = pdrive(w), we assume that there is
just one thermalization map. The generalization to many thermalization maps, though, is
straight forward.

The work distribution probability is

p(w) =
∑
γ

p(γ) δ(εm − εn − qγ − w)

=
∑
γ

pi(n)pi1pi2 | 〈εm, εj1 , εj2|U2U1 |εn, εi1 , εi2〉 |2 δ(εm − εn − qγ − w),
(C.1)

where U1 is responsible for the driving and U2 for the thermalization. The probabilities
are pi(n) = e−βεn/ZS and pik = e−βεik/Zb, and δ(·) is a Kronecker-Delta. Expanding the
transition probability and including two identities in the system Hilbert space HS we get

p(w) =
∑
γ,α,β

pi(n)pi1pi2 | 〈εm, εj2|U2 |εα, εi2〉 〈εα, εj1|U1 |εn, εi1〉 〈εn, εi1|U
†
1 |εβ, εj1〉 〈εβ, εi2 |U

†
2 |εm, εj2〉 δ(εm−εn−qγ−w).

Since U2 is thermal, εm + εj2 = εα + εi2 = εβ + εi2 , thus, since the system Hamiltonian is
non-degenerate, α = β. Additionally, we can replace εm = εα+εi2−εj2 in the delta, obtaining

p(w) =
∑
γ,α

pi(n)pi1pi2 | 〈εα, εj1|U1 |εn, εi1〉 |2 | 〈εm, εj2|U2 |εα, εi2〉 |2δ(εα − εn + εj1 − εi1 − w).

(C.2)
Summing over m and j2 the second transition probability becomes a trace, which is equal to
one. Finally we arrive to

p(w) =
∑

α,j1,n,i1

pi(n)pi1 | 〈εα, εj1|U1 |εn, εi1〉 |2δ(εα − εn + εj1 − εj2 − w). (C.3)

Note that this quantity is exactly the work distribution probability of the driving alone, thus
pcycle(w) = pdrive(w). We remark that this implies also that pcycle(w) = p̃cycle(w) despite of
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the fact that the protocol is not symmetric (because in the backward process the relaxation
map acts first).
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