Contents

Introduction 1

1 **Ensemble thermodynamics** 5
1.1 Thermodynamic quantities 5
1.2 Repeated interaction 8
 1.2.1 Continuous limit 9
 1.2.2 Lindblad limit for the XX and XY spin chains 10

2 **Stochastic thermodynamics in the quantum regime** 13
2.1 CPTP maps 13
2.2 Quantum trajectories 14
2.3 Stochastic thermodynamics 15
 2.3.1 Maps with thermodynamic equilibrium and conserved quantities 16
 2.3.2 Stochastic thermodynamics of thermal maps 17
 2.3.3 Stochastic thermodynamics of non-thermal maps with equilibrium 18
2.4 Fluctuation theorems 18
 2.4.1 Fluctuations of entropy production 18
 2.4.2 Fluctuations of work 20
2.5 Concatenation of maps 21
 2.5.1 Thermodynamic cycle 22
2.6 Applications 23
 2.6.1 Single spin in a thermodynamic cycle 23
 2.6.2 Spin 1/2 chains 24

3 **Thermodynamics in the Lindblad limit** 27
3.1 Detailed balance and CPTP maps with equilibrium 27
3.2 Examples 33
 3.2.1 Spin 1/2 chains 33
 3.2.2 The smallest possible refrigerator 34

Conclusions 39

Appendix A Proof of Eq.(2.20) 43

Appendix B $p(w) = \tilde{p}(w)$ if the Hamiltonian H_{tot} is invariant under time reversal. 45
Appendix C Thermal maps do not contribute to work fluctuations 47

Bibliography 49