Tabla de Contenido

1.	Intr	oducción	1
	1.1.	Motivación	1
	1.2.	Objetivos	2
	1.3.	Organización de la tesis	3
2.	Maı	rco Teórico	4
	2.1.	Osmosis inversa	4
		2.1.1. Otros métodos de desalinización	5
		2.1.2. Plantas de osmosis inversa en Chile y el mundo	7
	2.2.	Métodos de síntesis de membranas	8
	2.3.	Problemas en la osmosis inversa	10
		2.3.1. Fouling	10
		2.3.2. Polarización de la concentración	11
	2.4.	Antecedentes de modificación de membranas TFC con nanopartículas inorgá-	
		nicas	13
	2.5.	Principios básicos de la caracterización de membranas	16
	2.6.	Estudios de Osmosis Inversa en plantas de flujo cruzado	18
3.	Met	codología	19
	3.1.	Síntesis y caracterización de membranas	19
		3.1.1. Preparación del Soporte	19
		3.1.2. Preparación de Membrana PA/PSf	20
		3.1.3. Morfología superficial	21
		3.1.4. Rugosidad	21
		3.1.5. Estabilidad química	22
	3.2.	Descripción del montaje experimental	23
	3.3.	Automatización de la medición de parámetros	26
	3.4.	Experimento para determinar rendimiento de membranas	27
		3.4.1. Descripción del experimento	27
	3.5.	Experimento para determinar el efecto de la polarización de la concentración	30
	3.6.	Análisis anti-adhesión y biocida	31
4.	Res	ultados y discusión	33
	4.1.	Caracterización morfológica y química de las membranas	33
		4.1.1. Rugosidad \ldots	33
		4.1.2. Hidrofilicidad	35

	4.2.	Experimento para determinar rendimiento de membranas	41
		4.2.1. Resultados de pruebas de rendimiento de membranas comerciales	41
		4.2.2. Resultados de pruebas de rendimiento de membranas de laboratorio .	43
	4.3.	Experimento para determinar el efecto de la polarización de la concentración	51
		4.3.1. Resultados con una membrana comercial	51
		4.3.2. Resultados con una membrana de laboratorio	53
	4.4.	Estabilidad química de las membranas	54
	4.5.	Imágenes SEM	56
	4.6.	Pruebas anti-biofouling	60
	4.7.	Resumen de resultados	64
5.	Con	clusiones	66
Bi	bliog	rafía	69
	Bibli	iografía	69
Aı	Anexos		
А.	A. Fotos de la planta piloto		73
в.	B. Fotos de las membranas		76

Índice de Tablas

2.1.	Principales tecnologías de desalinización distintas a la osmosis inversa	5
2.2.	Principales plantas de desalinización del país y sus características	7
2.3.	Resumen de estudios en membranas TFC modificadas	14
3.1.	Listado de membranas utilizadas	21
3.2.	Principales características del experimento de desalinización	29
4.1.	Rugosidad de las membranas.	35
4.2.	Ángulo de contacto de membranas estudiadas	37
4.3.	Composición elemental de membrana modificada con $CuO~0.25\%$	39
4.4.	Composición elemental de membrana modificada con $CuO \ 1\%$	40
4.5.	Composición elemental de membrana modificada con $CuCl_2$ 1 %	40
4.6.	Composición elemental de membrana modificada con $Cu(s)$ 1%	40
4.7.	Composición elemental de membrana modificada con TiO_2 1.5%	40
4.8.	Resultados de flux para las membranas comerciales	42
4.9.	Resultados de flux para las membranas de laboratorio.	46
4.10.	Volumen permeado cuando el porcentaje de rechazo pasa a ser inferior a 90 %.	50
4.11.	Parámetros aproximaciones lineales para la membrana comercial.	52
4.12.	Parámetros aproximaciones lineales para la membrana de laboratorio	53
4.13.	Porcentaje de anti-adhesión y de bacterias muertas/vivas en membranas mo-	
	dificadas con CuO en distintas concentraciones	62
4.14.	Resumen de características de las membranas estudiadas. Anti-Adhesión: In-	
	dica el porcentaje de partículas no adheridas en comparación a la membrana	
	sin modificar. Bactericida: Indica la cantidad de bacterias muertas en la mem-	
	brana del total disponible.	64
4.15.	Resumen de características de las membranas estudiadas. Volumen permeado	
	indica la cantidad permeada antes de que el rechazo sea inferior al 90%	64

Índice de Ilustraciones

2.1.	(a) Osmosis directa. (b) Osmosis inversa	4
2.2.	Tipos de estructuras de capa de PSf. Imágenes propias obtenidas mediante Scanning Electron Microscope (SEM).	9
2.3.	Reacción en cadena de MPD con TMC para formar poliamida.	9
$\frac{2.0}{2.4}$	Esquema de los distintos tipos de <i>foulina</i> en una membrana de osmosis inversa	10
2.1.	Efecto de Donnan en una membrana con carga electroestática negativa	11
$\frac{2.0}{2.6}$	Esquema representando la saturación de la membrana por partículas de sal	
2.0.	debido a la polarización de la concentración	12
2.7.	Ángulo de contacto de una gota de agua sobre la membrana. θ_{α} : Ángulo de	
	contacto.	17
2.8.	Esquema del fluio cruzado.	18
3.1.	Esquema del proceso de síntesis de soporte PSf mediante la inversión de fase.	19
3.2.	Esquema del proceso de síntesis de capa de PA sobre soporte de PSf mediante	
	la polimerización interfacial	20
3.3.	Esquema del montaje experimental. V1: Válvula reguladora de presión ope-	
	racional. V2: Válvula reguladora de caudal de rechazo. V3: Válvula estanque	
	más NaCl. V4: Válvula estanque con agua desmineralizada. B: Bomba de des-	
~ (plazamiento positivo. C: Celda de prueba, lugar donde va ubicada la membrana.	23
3.4.	Celda de prueba CF042D. 1: Perillas de ajuste. 2: Placa superior. 3: Par-	
	te superior de la celda. 4: Soporte metálico sinterizado. 5: O-ring de goma. 6:	
	Parte inferior de la celda. 7: Placa inferior. Fuente: CF042D Crossflow Cell As-	
	sembly and Operation Manual (2010) Web: https://www.sterlitech.com/	าะ
25	Sistema para la madición del flux permando	20
ວ.ວ. ງ ເ	Deleción entre medición del senser a velumen de erro	20
3.0.	Relacion entre medicion del sensor y volumen de agua	21
5.7.	pruebas anti adhesión y biosidas	21
90	Utilizando al cultivo de basterias producido enteriormento, se prenero un tre	51
5.0.	zo do mombrana para probar sus propiodados anti adhosión (parto superior)	
	Adicionalmente, se extraen 50 μL del cultivo de bacterias luego de que la	
	membrana ha estado sumergida en este para verificar sus propiedades biocidas	
	(parte inferior).	32
11	Lucence de AEM de membres de differente de C. O	99
4.1.	Imagen de AFM de membranas modificadas con CuO	აპ ე∡
4.2.	magen de AF M de memoranas modificadas con $Cu(s)$	54

4.3.	Imagen de AFM de las membranas. A) PSf B) PA/PSf C) PA($TiO_2 \ 1.5 \ \%$)/PSf	34
4.4.	Ángulo de contacto de membranas modificadas con CuO	36
4.5.	Ángulo de contacto de membranas modificadas con $CuCl_2$	36
4.6.	Ángulo de contacto de membranas modificadas con $Cu(s)$	36
4.7.	Ángulo de contacto de las membranas. A) PA B) $PA/PSf C$) $PA(TiO_2 1.5\%)/PSf$.	37
4.8.	Análisis EDX de membranas modificadas con CuO	38
4.9.	Análisis EDX de la membrana $PA(CuCl_2 \ 1 \ \%)/PSf.$	38
4.10.	PA(Cu(s) 1%)/PSf.	39
4.11.	Análisis EDX de la membrana $PA(TiO_2 1.5\%)/PSf$	39
4.12.	Flux permeado en el tiempo a través de membrana comercial. Experimentos	
	a 300 <i>ps</i> i	42
4.13.	Porcentaje de rechazo de sales en el tiempo. Experimento a 300 psi	43
4.14.	Flux permeado en el tiempo a través de membranas de laboratorio. Experi-	
	mentos a 300 psi	44
4.15.	Comparación de flux de membrana comercial, sin nanopartículas y modificadas.	45
4.16.	Rendimiento de desalinización en el tiempo. Experimento a 300 psi	47
4.17.	Flux permeado en el tiempo por membrana PA/PSf. Experimentos a 300 psi .	48
4.18.	Rendimiento de desalinización de membrana PA/PSf. Experimentos a 300 psi .	48
4.19.	Comparación de rechazo de sales de membrana comercial, sin nanopartículas	40
4 20	Volumen permeado en el tiempo. Experimento a 300 nsi	50
4.20. 1 91	Variación del flux permeado versus distintas presiones operacionales para la	50
4.21.	membrana comercial.	52
4.22.	Variación del flux permeado versus distintas presiones operacionales para la	
	membrana de laboratorio sin modificar	53
4.23.	Concentración de cobre en el permeado en membranas de laboratorio modifi-	E 4
1 94	cadas con CuO	54
4.24.	$con CuO.$ \dots	55
4.25.	Sección transversal de membrana PA/PSf sin modificación pre uso a 3000 veces	
	el tamaño real.	56
4.26.	Sección transversal de membrana $PA(CuCl_2 \ 1 \ \%)/PSf$ pre uso. Imagen a 2000	
	veces el tamaño real.	57
4.27.	Sección transversal de membrana PA/PSf sin modificación post uso. a) Vista	
	general a 800 veces el tamaño real. b) Detalle a 2500 veces el tamaño real. $\ .$	58
4.28.	Sección transversal de membrana $PA(CuO \ 1 \ \%)/PSf$ post uso. a) Vista general	
	a 1200 veces el tamaño real. b) Detalle a 2500 veces el tamaño real	58
4.29.	Distribución de E. Coli en las membranas sin modificar y modificada con CuO	
	1%	60
4.30.	Distribución de E. Coli en las membranas modificadas con $CuCl_2$	60
4.31.	Células por mm^2 en membranas sin y con modificación mediante nanopartículas.	61
4.32.	Distribución de E. Coli en las membranas (bacterias vivas: verdes y muertas:	
	rojas). a) PA/PSf b) PA(CuO 0.25%)/PSf c) PA(CuO 1%)/PSf	61
4.33.	Distribución de E. Coli en las membranas (bacterias vivas: verdes y muertas:	
	rojas) en las membranas modificadas con $Cu(s)$	62
4.34.	UFC en membranas sin y con modificación mediante nanopartículas	63

A.1.	Dampener de flujo	73
A.2.	Celda de prueba con una membrana modificada	74
A.3.	Bomba de desplazamiento positivo.	74
A.4.	Planta piloto en funcionamiento	75
D 1	Membrana DA /DSf sin madifassián	76
D.1.	Memorana PA/PSI Sin modificación	10
B.2.	Membrana $PA(CuO \ 0.25 \ \%)/PSf.$	77
B.3.	Membrana $PA(CuCl_2 \ 0.25 \ \%)/PSf.$	77