Prolactin gene expression in the pituitary of rats subjected to vaginocervical stimulation requires Erk-1/2 signaling

By: Reuque, P (Reuque, Patricia)¹ ²; Guajardo-Correa, E (Guajardo-Correa, Emanuel)¹ ²; Orostica, ML (Orostica, Maria L.)¹ ²; Curotto, C (Curotto, Constanza)¹ ²; Parada-Bustamante, A (Parada-Bustamante, Alexis)³; Cardenas, H (Cardenas, Hugo)¹ ²; Orihuela, PA (Orihuela, Pedro A.)¹ ²

REPRODUCTIVE BIOLOGY
Volume: 17
Issue: 4
Pages: 357-362
DOI: 10.1016/j.repbio.2017.10.001
Published: DEC 2017
Document Type: Article

Abstract
Vaginocervical stimulation (VCS) induces twice-daily prolactin (PRL) surges resulting in pseudopregnancy in the rat. Furthermore, activation of the extracellular signal-regulated kinase-1/2 (Erk-1/2) is involved in the effect of estradiol (E-2) on the Prl gene expression in pituitary cells. Herein, we investigated whether Erk-1/2 signaling is involved in the control of Prl expression in the pituitary of VCS rats and whether VCS regulates the effect of E-2 on Erk-1/2 and Prl in the pituitary. Estrous rats were assigned as control or VCS groups and 0, 6, 12 or 24 h later the levels and localization of phosphorylated Erk-1/2 (p-Erk-1/2) were analyzed in the pituitary. The effect of an Erk-1/2 inhibitor PD98059 on the Prl level in the pituitary of control or VCS rats was also analyzed. Other control or VCS rats were treated with E-2 and the level of p-Erk-1/2 and Prl were measured in the pituitary. In control rats, p-Erk-1/2 decreased at 6 and 12 h and increased at 24 h while Erk-1/2 was phosphorylated at all time points in VCS rats. p-Erk-1/2 was localized only in the anterior pituitary. PD98059 decreased Prl level in VCS, but not in control rats. Estradiol decreased Erk-1/2 phosphorylation although did not change Prl level in the pituitary of control or VCS rats. Thee findings show that prolonged activation of Erk-1/2 is necessary to induce Prl expression in the pituitary of VCS rats; however, VCS does not influence the role of E-2 on the activation of Erk-1/2 and Prl expression the pituitary.

Keywords
Author Keywords: Erk-1/2; Pituitary; Vaginocervical stimulation; Prolactin; Rat
KeyWords Plus: THYROTROPIN-RELEASING-HORMONE; PSEUDOPREGNANT RATS; ESTROGEN-RECEPTORS; FEMALE RATS; DOPAMINE; SECRETION; ESTRADIOL; MODULATION; ACTIVATION; PATHWAY

Author Information

Reprint Address: Orihuela, PA (reprint author)

Univ Santiago Chile, Fac Quim & Biol, Lab Inmunol Reprod, Alameda 3363, Casilla 40, Correo 33, Santiago, Chile.

Addresses:

[1] Univ Santiago Chile, Fac Quim & Biol, Lab Inmunol Reprod, Alameda 3363, Casilla 40, Correo 33, Santiago, Chile

[2] CEDENNA, Ctr Desarrollo Nanociencia & Nanotecno, Santiago, Chile

[3] Univ Chile, Inst Invest Maternoinfantil, Santiago, Chile

E-mail Addresses: pedro.orihuela@usach.cl

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONDECYT1110662</td>
<td></td>
</tr>
<tr>
<td>BASALFB0807</td>
<td></td>
</tr>
<tr>
<td>DICYT Regular021543OD</td>
<td></td>
</tr>
<tr>
<td>DICYT Asociativo0217430D_DAS</td>
<td></td>
</tr>
</tbody>
</table>

Publisher

INST ANIMAL REPRODUCTION FOOD RESEARCH, POLISH ACAD SCIENCES OLSZTYN, UL BYDGOSKA 1-8, PO BOX 55, OLSZTYN, 10-243, POLAND

Journal Information

- Impact Factor: [Journal Citation Reports](#)

Categories / Classification

Research Areas: Reproductive Biology
Web of Science Categories: Reproductive Biology