

Unusual dimerization of a BcCsp mutant leads to reduced conformational dynamics

Alonso I. Carvajal¹, Gabriel Vallejos¹, Elizabeth A. Komives², Victor Castro-Fernández¹, Diego A. Leonardo³, Richard C. Garratt³, César A. Ramírez-Sarmiento^{1,4*} and Jorge Babul

¹Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile

²Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States ³Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil

⁴Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile

Introduction.

gh a recent crystal str icture showed dimerization via domain swap cold shock proteins of the same fold are known to dimerize in a non-su ped ar ucing the size of the hinge loop may promote swapping as in several other DS proteins with different folds we deleted two residues from these region (BcCsp Δ 36-37) in order to

The double deletion \triangle 36-37 forms a soluble dimer without significantly altering the stability and function of BcCsp.

	· m	Alogo C poour mor	1 . D family	. n
d-type <i>Bc</i> C	sp 75.9 (± 0.1)) 1.0 (± 0.14)	0.04	1
<i>Bc</i> Csp∆36	79.2 (± 0.1) 1.5 (± 0.14)	0.37	9
<i>Bc</i> Csp∆37	82.0 (± 0.1) 2.0 (± 0.14)	1.56	39
/////////////////////////////////////	7 76.6 (± 0.1)) 1.1 (± 0.14)	1.46	36
Table 2. 1 <i>Bc</i> Csp∆3 T [°C]	Thermodynamic 6-37 at several K ₀ × 10 ⁸ [M]	c analysis of dimer temperatures ΔH _b [kcal·mol ⁻¹]	dissociat ΔG _b [kcal·n	lon of
50 ± 0.1	1.26 (± 0.12)	4.91 (± 0.29)	4.27 (± 0.41)	
42 ± 0.1			4.28 (± 0.41)	
	1.06 (± 0.30)	4.91 (± 0.29)	4.28 (± 0.	41)
37 ± 0.1	1.06 (± 0.30) 0.91 (± 0.10)	4.91 (± 0.29) 4.91 (± 0.29)	4.28 (± 0. 4.29 (± 0.	41) 40)

Ikoshmotil KaluMi Ka/Ka

Fig. 2. Biophysical characterization of hinge loop deletion mutants of *Bc*Csp (A) Thermal stability acquired by thermal unfolding at 1 °C/min measured by circular dichroism. All mutants are similar to wild-type *Bc*Csp, showing slight differences in their T_m and Δ Ω_{TDC} . Parameters for thermal two-state unfolding model are shown in **Table 1**. (B). Ligand binding measured by ligand titration, whose fit parameters are shown in **Table 1**. (C) Oligomeric state for each mutant was determined by SEC using a Superdex 75 column. (D) van't Hoff's analysis of the monomer-dimer equilibrium of *Bc*CspΔ36-37. The K₀ was determined at three temperatures and are shown in **Table 2**.

ASASA

Protective effect of dimer formation on the conformational dynamics of BcCsp

Fig. 5. Protective effect of dimerization of BCSpA36-37 in conformational dynamics. (A) Correlation of relative deuterium uptake of monomeric (black) and dimeric BCSpA36-37 (blue) against wild/hype BCSp. (B) Cartoon representation of the difference in relative deuterium uptake upon dimerization of BCSpA36-37. (C) Structure-based models qualitatively recapitulate the effects of dimerization on the structure of BCSpA36-37. is compared to the difference in SASA (blue line) obtained by comparing wild-type monomeric line) obtained by comparing wild-type monomeric BcCsp (PDB 1C90) and dimeric BcCsp∆36-37 (PDB 5JX4).

FUNDING. FONDECYT 1130510 & 11140601. BECA MAGÍSTER EN CHILE 2013 CONCURSO COMPLEMENTARIO 221320447

Fig. 1. Crystallographic structures of BCCsp. BcCsp has been reported as a monomer (A; 1C90) and a swapped dimer in presence of its ligand dT₆ (B; 2HAX). Both share the same architecture but differ in their topology and orientation of residues from the hinge loop (yellow spheres).

Crystal structure of BcCSP∆36-37 reveals a dimer formed via its ligand-binding surface

Fig. 3. Crystallographic structure of the non-swapped dimer of *BcCspA36-S7* (A) Cartoon representation of the structure of *BcCspA36-S7*, whose parameters are in Table 3. (B) Electron density of the hinge loop of *BcCspA36-37*. (C) Structural alignment of wild-type BcCsp (orange), BcCsp Δ36-37 (red), BsCspB in complex with dT₆ (PDB 2ES2, green).

	Cell dimensions (Å) a, b, c (°) α, β, γ	34.0, 44.1, 36.5 90.00, 99.28, 90.00
	Detector	R-AXIS IV++
	X-ray source	MicroMax 007 HF
	Wavelength (Å)	1.5418
	Resolution range (Å)	18 - 1.799 (1.863-1.799)
	Multiplicity	3.5 (2.5)
	Rmeas (%)*	5.7 (14.8)
,	CC (1/2)	99.8 (96.5)
	Completeness (%)	95.10 (75.18)
	Total reflections	18342 (1243)
	Unique reflections	9538 (736)
	I / σ(I)	23.6 (8.8)
	Refinement parameters	
	Reflections used for refinement	9514
	R (%)**	15.00
	R _{Free} (%)**	18.21
	No. of protein atoms	1049
	No. of water molecules	221
	B (Å ²)	
	Protein	7.48
	Ligands	22.81
	Water	16.21
	Error estimates	
	Coordinate Error (Å)	0.13
	Phase error (°)	16.60
	Ramachandran Plot	
	Favored (%)	98.44
	Allowed (%)	1.56
	Outliers (%)	0.00

RMSD from ideal ge

Table 3. Data collection and

P2,

r.m.s. bond lengths (Å) 0.013 rms bond angles (*) 1 335 Fig. 4. Dimerization of BcCspΔ36-37 occurs throughout the ligand-binning surface. (A) Thermani unfolding of monomeric BcCspΔ36-37 with (empty circle) and without (filled circle) its ligand dT_e. (B)

Thermal unfolding of isolated dimeric B_CCsp Δ 36-37 at several protein concentrations in comparison with unfolding of dimeric B_CCsp Δ 36-37 in the presence of dT₆.

Concluding Remarks

3
Single deletion of hinge loop residues in BcCsp does not lead to a dimeric form of this protein. However, the double deletion $\Delta 36$ -37 generates a larger species that corresponds to a dimer.
The crystallographic dimer obtained corresponds to a dimer of ${\tt BcCsp\Delta 36-37}$ in solution.
The dimerization interface is located along the ligand-binding surface, whose resifues change their occlusion state upon dimerization.
Dimer formation leads to a dramatic decrease of the conformational dynamics of BcCsp∆36-37, hinting at protective effect upon dimerization.