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In the literature, residual stress problems are generally formulated using classical invariants despite most
of them having an unclear physical meaning and not having experimental advantages. In this article,
we give an alternative formulation for residual stress problems using a set of spectral invariants. These
invariants have a clear physical meaning which may facilitate the design of a residual stress experiment.
For the case of an energy function that depends on the right Cauchy tensor and the residual stress tensor,
we show that only nine of the classical invariants are independent, not 10 as commonly assumed. Details
of the spectral formulation are given and several boundary value problems are illustrated.
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1. Introduction

A residual stress is a stress that exists in a reference configuration of an equilibrium body with zero
surface traction. Such stresses can appear in a body, for example, due to some manufacturing process
for metals (Withers & Bhadeshia, 2001; Brinksmeier et al., 1982), and due to some changes in the mass
distribution or remodelling in soft tissue (see, e.g., Fung, 1991 and Chapter 11 of Fung, 1990). The
presence of such residual stresses can be detected, for example, by cutting the body and by observing
during that process the release of elastic energy, which is shown by some displacement field associated
with such cutting (see, e.g., Fung, 1990; Chuong & Fung, 1986.) In biomechanics such stresses are
considered to be important in order to reduce the stress concentration, when an organ is under the
influence of some external loads (Chuong & Fung, 1986). In the case of arteries, the presence of such
stresses can be detected by cutting a piece of artery in the radial direction and an angular opening of the
artery is observed (see Figs 11.2:1–11.2:3 of Fung, 1990). Analyses of residual stress problems can be
found in Hoger (1985, 1986); Merodio et al. (2013) and some of the references mentioned therein.

The determination of residual stresses and the influence of such stresses in the behaviour of elas-
tic bodies is a very important topic due to its many implications in mechanical design (see, e.g.,
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Brinksmeier et al., 1982; Withers & Bhadeshia, 2001), and in the understanding of some processes
in biomechanics (see Fung, 1990, 1991), among some of the applications that we can mention. Different
theories and methods have been proposed in order to determine such residual stresses (see, e.g., Hoger,
1986; Merodio et al., 2013; Merodio & Ogden, 2014) and the references cited therein. In the present
work, we consider as a basis the theory developed recently in Shams et al. (2011) and Merodio & Ogden
(2014), where the residual stress τ is considered as a variable in the elastic energy of the body along
with the deformation gradient, where now in the reference configuration the body is not stress free.
The aim of this article is to present an alternative representation for such energy function considering
a new set of invariants defined in terms of the principal variables of the right Cauchy-Green stretch
tensor (spectral representation) (see, e.g., Shariff, 2008, 2013; Shariff & Bustamante, 2015; Shariff,
2016b). The proposed formulation uses a set of spectral invariants, where most of the invariant have a
clear physical meaning, and hence have an experimental advantage over other types of invariants with
no physical interpretation such as most of the classical invariants by Spencer & Rivlin (1962) (or their
variants). The advantages of spectral invariants over classical invariants have been discussed in Shariff
(2008, 2016a); hence, we will not discuss them here.

This communication is divided in the following sections: In Section 2, some basic equations and rela-
tions are shown, while in Section 3, the spectral formulation for residually stressed bodies is presented,
where some restrictions are also shown for the constitutive equations. In Section 5, some boundary value
problems are solved. Finally, in Section 6 some final remarks are given.

2. Basic equations

2.1. Kinematics

In this article, all subscripts i,j and k take the values 1, 2, 3, unless stated otherwise.
Let B denotes the elastic body, x ∈ Bt denotes the position of a particle X ∈ B in the current

configuration Bt . The position of the same particle in the reference configuration is denoted as X ∈ Br ,
where Br is the reference configuration of the body. It is assumed that there exists a one-to-one mapping
χ such that x = χ(X, t) for any time t > 0. The deformation gradient, the left Cauchy-Green B and
right Cauchy-Green C stretch tensors are defined, respectively, as:

F = ∂x
∂X

, B = FFT = V2, C = FTF = U2, (2.1)

where χ is assumed such that J = det F > 0. More details about the kinematics of deforming bodies
can be found in Truesdell & Toupin (1960).

2.2. Residual stresses

The residual stress τ has to satisfy the equilibrium equation

Divτ = 0 in Br (2.2)

and the boundary condition

τN = 0 in ∂Br , (2.3)
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where ∂Br is the boundary of Br and N is unit outward normal to ∂Br . More information about residual
stresses can be found, for example, in Hoger (1985) and the references mentioned therein.

3. Constitutive equation and spectral formulation

3.1. Spectral formulation for anisotropic elastic bodies

In this section, we present a brief summary of the most important elements of the theory of spectral
invariants developed by Shariff and co-workers (see Shariff, 2008, 2013, 2016b,a; Shariff & Bustamante,
2015).

If λi and ei is an eigenvalue and an eigenvector of the right stretch tensor U, respectively, a general
anisotropic elastic strain energy function We can be written in the form

We = Ŵ(C) = W̃(λ1, λ2, λ3, e1, e2, e3), (3.1)

with the symmetrical property

W̃(λ1, λ2, λ3, e1, e2, e3) = W̃(λ2, λ1, λ3, e2, e1, e3) = W̃(λ3, λ2, λ1, e3, e2, e1), (3.2)

In view of the non-unique values of ei and ej when λi = λj, a function W̃ should be independent of ei

and ej when λi = λj, and W̃ should be independent of e1, e2 and e3 when λ1 = λ2 = λ3. Hence, when
two or three of the principal stretches have equal values the strain energy must have any of the following
forms

We =
{

W(a)(λ, λk , ek) , when λi = λj = λ , i �= j �= k �= i

W(b)(λ) , when λ1 = λ2 = λ3 = λ
(3.3)

As an example of (3.3), consider We = a · (Ca) = ∑3
i=1 λ

2
i (a · ei)

2, where a is a fixed unit vector and∑
i=1(a · ei)

2 = 1. If λ1 = λ2 = λ, we have We = W(a)(λ, λ3, e3) = λ2 + (λ2
3 − λ2)(a · e3)

2 and in the
case of λ1 = λ2 = λ3 = λ, We = W(b)(λ) = λ2. Note that C = ∑3

i=1 λ
2
i ei ⊗ ei (or U ) also has the same

property as described in (3.3), where ⊗ denotes the dyadic product.
The spectral formulation requires the components of ∂We

∂C relative to the basis {ei}. Following the
work of Shariff (2008), we have

(
∂We

∂C

)
ii

= 1

2λi

∂W̃

∂λi
, i not summed, (3.4)

(
∂We

∂C

)
ij

=
∂W̃
∂ei

· ej − ∂W̃
∂ej

· ei

2(λ2
i − λ2

j )
, i �= j. (3.5)

It is assumed that W̃ has sufficient regularity to ensure that, as the value of λi approaches λj, (3.5) has a
limit. The Cauchy stress tensor σ for a compressible and an incompressible solid is given, respectively
by

σ = 2J−1F
∂We

∂C
FT, σ = 2F

∂We

∂C
FT − pI, (3.6)
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where p is the Lagrange multiplier associated with the incompressibility constraint λ1λ2λ3 = 1, and F
is the deformation gradient tensor. The Eulerian spectral Cauchy stress components σij take the form,
respectively as

σii = λi

J

∂W̃

∂λi
, (3.7)

σij = J−1λiλj

λ2
i − λ2

j

(
∂W̃

∂ei
· ej − ∂W̃

∂ej
· ei

)
, i �= j. (3.8)

and

σii = λi
∂W̃

∂λi
− p, i not summed, (3.9)

σij = λiλj

λ2
i − λ2

j

(
∂W̃

∂ei
· ej − ∂W̃

∂ej
· ei

)
, i �= j. (3.10)

In the rest of this work, we only consider the case of incompressible bodies

3.2. Spectral formulation for residually stressed elastic bodies

In this section, we extend the results presented in the previous section, for the case of a residually stressed
body. The key point of our model is to assume that the energy function depends on the deformation and
the residual stress (see Shams et al., 2011), that is, We = Wc(C, τ ). Treating the residual stress as a
structural tensor, the strain energy We can be written as

We = Wc(C, τ ) = Ws(λ1,2,3, E1,2,3, τ ), (3.11)

where we have defined Ei = ei ⊗ ei and where we have used the notation

λ1,2,3 ≡ λ1, λ2, λ3 E1,2,3 ≡ E1, E2, E3. (3.12)

The spectral decomposition of the Cauchy-Green stretch tensor is

C =
3∑

i=1

λ2
i Ei . (3.13)

Considering the work of Spencer (1971) and Shariff (2008, 2013, 2016b,a) the function We can be
expressed as

We = W(λ1,2,3, ζ1,2,3, ξ1,2,3, τ1,2,3) , (3.14)

where the new invariants ζi and ξi are defined as

ζi = ei · (τei), ξi = ei · (τ 2ei), (there is no sum in i), (3.15)
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and τi, is an eigenvalue of τ . In spectral terms,

τ =
3∑

i=1

τidi ⊗ di, (3.16)

where di is an eigenvector of τ .
The function W above must satisfy the symmetry conditions

W(λ1,2,3, ζ1,2,3, ξ1,2,3, τ1,2,3) = W(λ2,1,3, ζ2,1,3, ξ2,1,3, τ1,2,3) = W(λ3,1,2, ζ3,1,2, ξ3,1,2, τ1,2,3) , (3.17)

W(λ1,2,3, ζ1,2,3, ξ1,2,3, τ1,2,3) = W(λ1,2,3, ζ1,2,3, ξ1,2,3, τ2,1,3) = W(λ1,2,3, ζ1,2,3, ξ1,2,3, τ3,1,2). (3.18)

In (3.14), there are twelve invariants to describe We, however, in Appendix A it is shown that there are
only nine independent invariants from the list λi, ζi, ξi and τi. The corresponding 10 classical invariants
(see Spencer, 1971) are expressed explicitly in terms of the spectral invariants as

I1 = tr(C) =
3∑

i=1

λ2
i , I2 = 1

2

[
(trC)2 − trC2

] = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

I3 = det(C) = λ2
1λ

2
2λ

2
3, (3.19)

I4 = tr(τ ) =
3∑

i=1

τi, I5 = tr(Cτ ) =
3∑

i=1

ζiλ
2
i , I6 = tr(C2τ ) =

3∑
i=1

ζiλ
4
i , (3.20)

I7 = tr(Cτ 2) =
3∑

i=1

ξiλ
2
i , I8 = tr(C2τ 2) =

3∑
i=1

ξiλ
4
i , (3.21)

I9 = tr(τ 2) =
3∑

i=1

τ 2
i , I10 = tr(τ 3) =

3∑
i=1

τ 3
i . (3.22)

Hence, since the classical invariants can be expressed explicitly in terms of spectral invariants and there
are only nine independent spectral invariants, only nine of the 10 classical invariants are independent.
One might be interested to see if we can construct a relation between the classical invariants only, that is,
without the appearance of spectral invariants in the relation. In Appendix B, we show this relation (B16)
(not single-valued) between the classical invariants, which proves that only nine classical invariants are
independent. Since ξi = ∑3

k=1 τ
2
k (ei · dk)

2 is non-negative, this implies that I8 (or I7) is non-negative. If
we consider I8 to be the dependent invariant, then the relation (B16) can be considered as I8 to be an
implicit function of the remainder invariants. However, we must emphasized that we are only interested
in evaluating the number of independent invariants, not the number of invariants that should be in the
strain energy function. A discussion on the importance of knowing the number of independent invariants
and the number of invariants required in a strain energy function can be found in Shariff (2016b); Shariff
& Bustamante (2015).

In view of (3.9) and (3.10), the Eulerian spectral components of the Cauchy stress with respect to
the basis {Re1, Re2, Re2} (R is a proper orthogonal tensor, where F = RU), take the form

σii = λi
∂W

∂λi
− p, i not summed, (3.23)
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σij = 2λiλj

λ2
i − λ2

j

[(
∂W

∂ζi
− ∂W

∂ζj

)
ei · (τej)+

(
∂W

∂ξi
− ∂W

∂ξj

)
ei · (τ 2ej)

]
, i �= j, (3.24)

where λ1λ2λ3 = 1. Its important to note that, in this article, our residual stress τ for an incompressible
solid is the Cauchy stress in the reference configuration in the absence of hydrostatic pressure.

3.3. On the reference configuration for a residually stressed body

In the reference configuration λi = 1, and we let ei = di, where di is an eigenvector of τ and (3.23) and
(3.24) simply reduce to

τi − p = ∂W

∂λi
(11,2,3, τ1,2,3, τ 2

1,2,3, τ1,2,3)− p, (3.25)

which gives the relation

τi = ∂W

∂λi
(11,2,3, τ1,2,3, τ 2

1,2,3, τ1,2,3), (3.26)

where we have used the notation 11,2,3 to symbolize the triad 1, 1, 1 that results when we replace λi = 1
in the expression for W .

We note that the residual stress is commonly defined in the literature as the Cauchy stress in the
reference configuration in the presence of hydrostatic pressure (see, e.g., Merodio et al., 2013), and
hence their relation have the form (considering the new set of invariants presented in this article):

τi = ∂W

∂λi
(11,2,3, τ1,2,3, τ 2

1,2,3, τ1,2,3)− p. (3.27)

If we use the classical invariants in the energy function, that is,

We = WI(I1, I2, I4, I5, I6, I7, I8, I9, I10), (3.28)

then (3.27) is equivalent to (see Merodio et al., 2013)

2
∂WI

∂I1
+ 4

∂WI

∂I2
− p0 = 0, 2

(
∂WI

∂I5
+ 2

∂WI

∂I6

)
= 1,

∂WI

∂I7
+ 2

∂WI

∂I8
= 0. (3.29)

The first equation of (3.29) suggests that a hydrostatic stress p0 is needed to maintain the residual stress
in the reference configuration.

3.4. The strain energy for the case of small strains with arbitrary rotations

Since, our formulation satisfies objectivity, it is only consistent with the constitutive equation for small
strains with arbitrary rotations. For a large strain residual stress formulation to be consistent with infin-
itesimal elasticity (small displacement gradients), it may require a non-objective finite strain energy
function (Hoger, 1993).
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The strain energy function for small strains can be expressed as

We = WE(U, τ ), (3.30)

and let us define

νi = λi − 1, (3.31)

where for this section, we further assume that

| νi |<< 1. (3.32)

Considering the results presented in Section 3, we have

WE(U, τ ) = Ws(ν1,2,3, ζ1,2,3, ξ1,2,3, τ1,2,3), (3.33)

where from (3.32) we have that
∑3

i=1 νi = 0 + O(ν2
i ).

In the case of (3.26) that relation specializes to

τi = ∂Ws

∂νi
(01,2,3, τ1,2,3, τ 2

1,2,3, τ1,2,3). (3.34)

In view of (3.34), the most general quadratic strain energy function for incompressible small strain
elasticity is

We =
3∑

i=1

(
μν2

i + μ1ζiν
2
i + μ2ξiν

2
i + ζiνi

) + β1

2

(
3∑

i=1

ζiνi

)2

+ β2

2

(
3∑

i=1

ξiνi

)2

+ β3

(
3∑

i=1

ζiνi

)(
3∑

i=1

ξiνi

)
, (3.35)

= μtr(ε2)+ μ1tr(ε2τ )+ μ2tr(ε2τ 2)+ tr(ετ )+ β1

2
tr(ετ )2

+ β2

2
tr(ετ 2)2 + β3tr(ετ )tr(ετ 2) , (3.36)

where the material constantμ has a stress dimension and may depend on τ , andμ1,μ2, β1, β2 and β3 are
dimensionless constants. We have defined ε = U − I. Following the work of Hoger (1993), the Cauchy
stress for small strain deformation is

σ = −pI + R
(

τ + L[ε] + 1

2
(ετ + τε)

)
RT , (3.37)

where

L[ε] = 2με + μ1(ετ + τε)+ μ2(ετ
2 + τ 2ε)+ β1tr(ετ )τ + β2tr(ετ 2)τ 2

+β3

(
τ tr(ετ 2)+ τ 2tr(ετ )

)
. (3.38)
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For infinitesimal strain (small displacement gradient) R = I+W and ε = E, where W is the infinitesimal
rotation tensor and E is the infinitesimal strain. The infinitesimal Cauchy stress then takes the form

σ = −pI + τ + (Wτ − τW)+ 1

2
(Eτ + τE)+ L[E] . (3.39)

The constitutive equation (3.39) is a generalization of some constitutive equations proposed in the
literature (see Hoger, 1986; Robertson, 1997; Man, 1998) when specialized to incompressible elastic
solids. The modelling of realistic materials often require that the Hartig’s law (see Bell, 1973) should
be satisfied. Hartig’s law states that in uniaxial tension/compression (Man, 1998)

dσ

dε
= E0 − bσ0 , (3.40)

where σ is the Cauchy uniaxial stress, ε is the engineering strain, E0 = 3μ0 is the Young’s modulus at
zero stress,μ0 is the value ofμ at zero stress, σ0 is the initial true stress and b is a dimensionless constant
that depends on the material. Since, b must depend on the type of material, six material constants in
(3.35) ensure that b does not have a value that is independent of material constants and hence Hartig’s
law is satisfied. For example, Man (1998) proposed a constitutive equation with three material constants
μ0, k1 and k2 (when specialized to incompressible materials) that satisfies Hartig’s law. His constitutive
equation is a special case of our form (3.39), where their constants are related to ours via the relations
μ = μ0 + k1tr(τ )

2 , μ1 = k2 + 0.5, μ2 = β1 = β2 = β3 = 0, and k1 and k2 are dimensionless constants.
In this case, following the work of Man (1998), we have

b = −(2 + 1.5k1 + 2k2) (3.41)

that depends on the material constants, k1 and k2.

3.5. Ground state conditions

Due to the incompressibility condition λ1λ2λ3 = 1, we can write

We = Ŵ(λ1,2, ζ1,2,3, ξ1,2,3, τ1,2,3). (3.42)

When F = I we let ei = di and we have the non-zero ground state conditions:

∂2Ŵ

∂λ2
1

(11,2, τ1,2,3, τ 2
1,2,3, τ1,2,3) = 4μ+ 2μ1(τ1 + τ3)+ 2μ2(τ

2
1 + τ 2

3 )+ 2τ3

+ β1(τ1 + τ3)+ β2(τ
2
1 + τ 2

3 )+ 2β3(τ1 − τ3)(τ
2
1 − τ 2

3 ), (3.43)

∂2Ŵ

∂λ2
1

(11,2, τ1,2,3, τ 2
1,2,3, τ1,2,3) = 4μ+ 2μ1(τ2 + τ3)+ 2μ2(τ

2
2 + τ 2

3 )+ 2τ3

+ β1(τ2 + τ3)+ β2(τ
2
2 + τ 2

3 )+ 2β3(τ2 − τ3)(τ
2
2 − τ 2

3 ), (3.44)
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∂2Ŵ

∂λ1∂λ2
(11,2, τ1,2,3, τ 2

1,2,3, τ1,2,3) = 2μ+ 2τ3μ1 + 2τ 2
3μ2 + τ3 + β1(τ1 − τ3)(τ2 − τ3)

+ β2(τ
2
1 − τ 2

3 )(τ
2
2 − τ 3

3 )+ β3

[
(τ1 − τ3)(τ

2
2 − τ 2

3 )

+(τ2 − τ3)(τ
2
1 − τ 2

3 )
]

. (3.45)

3.6. A specific constitutive equation

In this section, we propose a specific constitutive equation for the case of large deformations, which is
of the form

We =
3∑

i=1

[μr1(λi)+ μ1ζir2(λi)+ μ2ξir3(λi)+ ζi(λi − 1)] + β1

2

(
3∑

i=1

ζir4(λi)

)2

+ β2

2

(
3∑

i=1

ξir5(λi)

)2

+ β3

(
3∑

i=1

ζir6(λi)

)(
3∑

i=1

ξir7(λi)

)
, (3.46)

where, in order to be consistent with the small strain formulation (3.35), we let rm(1) = 0, m = 1, 2, ..., 7,
r ′

t(1) = 1, t = 4, 5, 6, 7, r ′
n(1) = 0 and r ′′

n (1) = 2, n = 1, 2, 3 (see Shariff, 2016b,a). Also these
conditions ensure that the residual stress is the referential Cauchy stress in the absence of hydrostatic
pressure. However, if a residual stress is defined as the referential Cauchy stress in the presence of
hydrostatic pressure as given in (3.27), the conditions r ′

1(1) = r ′′
1 (1) = 1 must be imposed. Note that,

as mentioned before, in this article, we are only concerned with a residual stress that is defined to be
the referential Cauchy stress in the absence of hydrostatic pressure, although some models proposed in
the literature that treat the residual stress as the referential Cauchy stress in the presence of hydrostatic
pressure are discussed below.

The above form (3.46) is a generalization of some expressions proposed in the literature (Merodio
et al., 2013; Merodio & Ogden, 2014). For example, in the case where r ′

1(1) = r ′′
1 (1) = 1, Merodio &

Ogden (2014) proposed

We = μ

2
(I1 − 3)+ 1

2
[I5 − tr(τ )] (3.47)

and

We = μ

2
(I1 − 3)+ 1

4
[I6 − tr(τ )]. (3.48)

The expression (3.47) can be obtained from (3.46) if μ1 = 1
2 , μ2 = β1 = β2 = β3 = 0

r1(λ) = λ2 − 1

2
, r2(λ) = (λ− 1)2, (3.49)

whereas (3.48) can be obtained from (3.46) by letting μ1 = 3
2 , μ2 = β1 = β2 = β3 = 0

r1(λ) = λ2 − 1

2
, r2(λ) = 1

4

[
6(λ− 1)2 + 4(λ− 1)3 + (λ− 1)4

]
. (3.50)
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3.7. Restrictions on the ground-state constants

The strong ellipticity condition is a mathematical restriction on a constitutive function, where it guaran-
tees that the governing partial differential equations of equilibrium are elliptic in character, and hence,
in particular, certain types of non-physical singularity, which could otherwise occur and lead to serious
numerical problems, are absent. In addition to this, strong ellipticity ensures that the speeds of infin-
itesimal plane waves propagating through the material are real. The material constants in (3.35) can
be restricted using strong ellipticity condition in the reference configuration (F = I). Mathematically,
strong ellipticity condition for an incompressible materials (see Shams et al., 2011) requires

m · [Q(n)m] > 0, m · n = 0 (3.51)

where m and n are unit vectors, and in Cartesian components we have

(Q(n))ij =
(
∂2We

∂F2

)
piqj

npnq , (3.52)

where ni is a Cartesian component of n. In view of (3.35) and (3.52), we need to calculate the derivative
∂2We
∂U2 at F = I, where the relevant Cartesian components are given below:

(
∂2We

∂F2

)
nmsr

= ∂2We

∂Fmn∂Frs
= Anmsr + Cnmsr , n, m, s, r = 1, 2, 3, (3.53)

where

Anmsr = 1

4

(
∂2We

∂Umn∂Urs
+ ∂2We

∂Unm∂Urs
+ ∂2We

∂Umn∂Usr
+ ∂2We

∂Unm∂Usr

)
, (3.54)

Cnmsr = 1

2

[
3

2
δrm

∂We

∂Uns
− 1

2

(
∂We

∂Unr
δsm + ∂We

∂Umr
δns + ∂We

∂Ums
δrn

)]
, (3.55)

where Fij and Uij are the Cartesian components of F and U, respectively, and it is assumed ∂We
∂Uij

= ∂We
∂Uji

.

To obtain the ellipticity condition in the reference configuration, we differentiate (3.36) and get

Q(n) = Q1(n)+ Q2(n)+ Q3(n)+ Q4(n)+ Q5(n)+ Q6(n)+ Q7(n), (3.56)

where

Q1(n) = μ(I + n ⊗ n), Q2(n) = μ1

2
[(τn)⊗ n + n ⊗ (τn)+ (n · (τn))I + τ ], (3.57)

Q3(n) = μ2

2
[(τ 2n)⊗ n + n ⊗ (τ 2n)+ (n · (τ 2n))I + τ 2], (3.58)

Q4(n) = 3

4
((τn) · n)I − 1

4
[n ⊗ (τn)+ (τn)⊗ n + τ ], (3.59)

Q5(n) = β1(τn)⊗ (τn), Q6(n) = β2(τ
2n)⊗ (τ 2n), (3.60)

Q7(n) = β3[(τ 2n)⊗ (τn)+ (τn)⊗ (τ 2n)]. (3.61)

Downloaded from https://academic.oup.com/imamat/article-abstract/82/3/656/3792106
by Universidad de Chile user
on 06 April 2018



666 M. H. B. M. SHARIFF ET AL.

In this article, we will not derive the general inequalities required for the material constants given
in (3.35). Since, in Section 5 below, we deal with problems that can be considered as two dimensional,
we will give some inequality results for m and n in a plane and assume τ = τ1d1 ⊗ d1 + τ2d2 ⊗ d2 in
that plane. In the case of a material with β1 = β2 = β3 = 0, the necessary and sufficient conditions for
(3.51) is

μ+ μ1

2
(τ1 + τ2)+ μ2

2
(τ 2

1 + τ 2
2 )+ 3

4
τ1 − 1

4
τ2 > 0, (3.62)

μ+ μ1

2
(τ1 + τ2)+ μ2

2
(τ 2

1 + τ 2
2 )+ 3

4
τ2 − 1

4
τ1 > 0. (3.63)

In the case where at least one of the βi’s is not zero, then the inequalities (3.62), (3.63)

β1 > 0, β2 > 0, β3(τ
2
2 − τ 2

1 )(τ2 − τ1) > 0 (3.64)

are sufficient for (3.51). For example, the necessary and sufficient condition for the strain energy (3.47)
is

μ+ τ1 > 0, μ+ τ2 > 0 (3.65)

and for (3.48)

μ+ 1

2
(3τ1 + τ2) > 0, μ+ 1

2
(3τ2 + τ1) > 0 . (3.66)

3.8. Initial stress symmetry (ISS)

Recently, Gower et al. (2017) developed an initial stress symmetry model (ISS) to deal with residual
stressed bodies. For our proposed model, it is beyond the scope of this article to construct general
conditions (if possible) that are required so that the ISS constraint is satisfied. However, in this section
we give, as an example, a simple spectral constitutive equation that satisfies the ISS constraint. As a first
step let us give a brief summary of the ISS constraint. The initial stress symmetry condition states that:

σ = H(F, τ̂ , p) , τ̂ = H(F−1, σ , p0) (3.67)

for every F such that det F = 1 and τ̂ and for some scalar p0, where τ̂ = τ − p0I is the residual stress in
the presence of hydrostatic pressure. Equivalently, the ISS constraint independent of hydrostatic terms
has the form

σ̄ = G(F, τ ) , τ = G(F−1, σ̄ ) , (3.68)

where σ = σ̄ − pI and σ̄ is the Cauchy stress in the absence of hydrostatic pressure. The ISS constraint
is based on the assumption that σ and τ̂ are due to the elastic deformation of a virtual stress-free
configuration of an isotropic elastic solid. Following the work of Gower et al. (2017), we assume there
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exist a stress free configuration B̃ and we propose a simple strain energy function for the current
configuration Bt

We = μ

3∑
i=1

r(λ̄i) = μ

2
(tr(C̄)− tr(ln(C̄))− 3 , (3.69)

where r(x) = 1
2 (x

2−2 ln(x)−1), λ̄2
i is an eigenvalue of C̄ = F̄TF̄ and F̄ is the deformation gradient tensor

of configuration Bt relative to configuration B̃. Take note that r satisfies the conditions r(1) = r ′(1) = 0
and r ′′(1) = 2, imposed in Section 3.6. The Cauchy stress in the configuration Bt is

σ = μ(F̄F̄T − I)− pI = σ̄ − pI , (3.70)

where σ̄ is the Cauchy stress in Bt in the absence of hydrostatic pressure. Let F0 be the deformation
gradient of Br relative to B̃, we have F̄ = FF0. In view that our residual stress is the Cauchy stress in
Br in the absence of hydrostatic pressure, we have

τ = μ(B0 − I) , (3.71)

where B0 = F0FT
0 . It is clear from (3.71) that B0 can be expressed in terms of τ independently of the

hydrostatic pressure and τ = 0 when B0 = I, as expected. If τ is the Cauchy stress in Br in the presence
of hydrostatic pressure, as commonly defined in the literature (see e.g., equation (3.4) of Gower et al.,
2017), then B0 depends on τ and a hydrostatic term, where the values of the hydrostatic term have to be
obtained inconveniently via the cubic equation det(B0) = 1. In view of (3.70) and (3.71), we have

σ̄ = μ(FB0FT − I) = μ

[
F
(

τ

μ
+ I

)
FT − I

]
= μ(FFT − I)+ FτFT (3.72)

and this gives

τ = μ(F−1F−T − I)+ F−1σ̄F−T . (3.73)

Equations (3.72) and (3.73) indicate ISS symmetry between τ and σ̄ . Let τ̂ = τ − p0I be the Cauchy
stress in Br , hence

τ̂ = μ(F−1F−T − I)+ F−1σ̄F−T − p0I . (3.74)

From (3.70) and (3.72), we get

σ = μ(FFT − I)+ FτFT − pI . (3.75)

Equations (3.74) and (3.75) indicate ISS symmetry between σ and τ . From (3.69) and using tr(C̄) =
tr(B0C) we have

We = μ

2
[tr(C)− tr(ln(C)] − 3] + 1

2
tr[ln(FT

0 FTFF0)] . (3.76)

Downloaded from https://academic.oup.com/imamat/article-abstract/82/3/656/3792106
by Universidad de Chile user
on 06 April 2018



668 M. H. B. M. SHARIFF ET AL.

Clearly from (3.76), as expected, We �= 0 when F = I, since we have set We = 0 in B̃. Hence, We in
(3.76) does not satisfy our property that We = 0 in B̃r . However, if we propose

We = μ

2
[tr(C)− tr(ln(C))− 3] + 1

2
[tr(τC)− tr(τ )] , (3.77)

where (3.77) is (3.46), when μ1 = 0.5, μ2 = β1 = β2 = β3 = 0, r1(x) = 1
2 (x

2 − 2 ln(x) − 1) and
r2(x) = (x − 1)2, we have , We = 0 at F = I. It is straightforward to show that, for the strain energy
function (3.77), the stress σ , σ̄ , τ and τ̂ satisfy the ISS relations (3.72), (3.73), (3.74) and (3.75).

4. Some preliminary considerations about the simple shear deformation

In this section, we study briefly the simple shear deformation, since for some cylindrical deformations
to be studied later on can have non-homogeneous local simple shear which can support residual stress.
Let the axes of x and X to coincide and the deformation can be described by the equations

x1 = X1 + γX2, x2 = X2, x3 = X3, (4.1)

where γ ≥ 0 is the amount of shear. The deformation gradient with respect to the Cartesian basis takes
the form

F ≡
⎛
⎝ 1 γ 0

0 1 0
0 0 1

⎞
⎠ . (4.2)

Let θ denotes the orientation (in the anticlockwise sense relative to the X1 axis) of the in plane Lagrangian
principal axes. The angle θ is restricted according by the following (Shariff, 2008)

π

4
≤ θ <

π

2
. (4.3)

The principal directions are

e1 ≡
⎡
⎣ c

s
0

⎤
⎦, e2 ≡

⎡
⎣ −s

c
0

⎤
⎦, e3 ≡

⎡
⎣ 0

0
1

⎤
⎦, (4.4)

where c = cos(θ) and s = sin(θ). It can be easily shown (see, e.g., Shariff, 2008) that the principal
stretches take the values

λ1 = s

c
= γ + √

γ 2 + 4

2
≥ 1, λ2 = 1

λ1
= c

s
=

√
γ 2 + 4 − γ

2
≤ 1, λ3 = 1, (4.5)

where in this case

c = 1√
1 + λ2

1

, s = λ1√
1 + λ2

1

, c2 − s2 = −γ cs. (4.6)
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Without loss of generality, we consider σ33 = 0 because the incompressibility allows the superposition
of an arbitrary hydrostatic stress without affecting the deformation.

The Cartesian components of stress tensor take the form

σ11 = 2
[
l1

(
s2(1 + γ 2)+ γ cs

) + l2

(
c2(1 + γ 2)− γ cs

) − 2l4cs
] − p, (4.7)

σ12 = 2
[
l1(γ s2 + cs)+ l2(γ c2 − cs)+ l4γ cs

]
, σ22 = 2

(
l1s2 + l2c2 + 2l4cs

) − p, (4.8)

σ13 = 2 (l5(c + γ s)+ l6(−s + γ c)), σ23 = 2 (l5s + l6c), σ33 = 2l3 − p, (4.9)

where we have defined

l1 = 1

2λ1

∂W

∂λ1
, l2 = 1

2λ2

∂W

∂λ2
, l3 = 1

2λ3

∂W

∂λ3
, (4.10)

l4 = 1

λ2
1 − λ2

2

[(
∂W

∂ζ1
− ∂W

∂ζ2

)
e1 · (τe2)+

(
∂W

∂ξ1
− ∂W

∂ξ2

)
e1 · (τ 2e2)

]
, (4.11)

l5 = 1

λ2
1 − λ2

3

[(
∂W

∂ζ1
− ∂W

∂ζ3

)
e1 · (τe3)+

(
∂W

∂ξ1
− ∂W

∂ξ3

)
e1 · (τ 2e3)

]
, (4.12)

l6 = 1

λ2
2 − λ2

3

[(
∂W

∂ζ2
− ∂W

∂ζ3

)
e2 · (τe3)+

(
∂W

∂ξ2
− ∂W

∂ξ3

)
e2 · (τ 2e3)

]
. (4.13)

As mentioned previously we consider σ33 = 0, hence p = 2l3.
In general, the Poynting relation σ11 − σ22 = γ σ12 (generally associated with isotropic theory) does

not hold. The Poynting relation is a relation between stress components and the deformation, which is
independent of the choice of (isotropic) constitutive equation. It is interesting to see if this universal
relation holds for residual materials under certain conditions. From (4.7) and (4.8)

σ11 − σ22 = γ σ12 − 2l4cs(4 + γ 2) , (4.14)

Hence, from (4.14), we see that the Poynting relation holds if and only if l4 = 0; no conditions are
required for l5 or l6. An example of a case when l4 = 0 for an arbitrary strain energy function is when
one of the directions d1 or d2 is parallel to e1 or e2, taking note that d3 ⊗ d3 = I − (d1 ⊗ d1 + d2 ⊗ d2).
For example, if the components of d1 and d2 are⎛

⎝ 1
2√
3

2
0

⎞
⎠ ,

⎛
⎝ −

√
3

2
1
2

b3

⎞
⎠, (4.15)

respectively, where b3 is any third component of d2, then the Poynting relation holds at the particular
strain when γ = 2√

3
.

We note that l5 and l6 appear in σ13 and σ23 only, in view of this, we have the relations

sσ13 + cσ23 = 2l5(2cs + γ s2), cσ13 − sσ23 = 2l6(γ c2 − 2cs). (4.16)

Since 2cs + γ s2 and γ c2 − 2cs = 3λ2
1−1

λ2
1+1

are both positive, then

λ1σ13 + σ23 = 0, (4.17)
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if and only if l5 = 0 and

σ13 − λ1σ23 = 0, (4.18)

if and only l6 = 0. Note that σ13 and σ23 in (4.17) and (4.18) have different values. Since l5 and l6 can be
zero for an arbitrary strain energy, the relations (4.17) and (4.18) are ‘deformation-dependent’ universal
relations, that is, they are independent of the choice of residual constitutive equation. We use the term
‘deformation-dependent’ since the relations hold at particular strains and at particular directions of d1

and d2. An example of l5 = 0 and l6 �= 0 at a particular strain is when both d1 and d2 are perpendicular
to e1 but not perpendicular to e2 and e3. An example of l6 = 0 and l5 �= 0 is when both d1 and d2 are
perpendicular to e2 but not perpendicular to e1 and e3. Since in the above two examples, either l6 �= 0
or l5 �= 0, and since W is arbitrary, the shear stresses σ13 and σ23 are generally non-zero. The relations
(4.17) and (4.18) may not be straightforward to derive using the classical invariants.

In the case when the directions d1 and d2 are perpendicular to the direction e3, the shear components
σ13 = σ23 = 0 and we have the relations

∂λ1

∂γ
= s2,

∂λ2

∂γ
= −c2,

∂ζ1

∂γ
= 2λ1sc3e1 · (τe2),

∂ζ2

∂γ
= −∂ζ1

∂γ
, (4.19)

∂ξ1

∂γ
= 2λ1sc3e1 · (τ 2e2),

∂ξ2

∂γ
= −∂ξ1

∂γ
. (4.20)

In general, the Poynting relation does not hold. Since a simple shear deformation depends on γ , the
strain energy function can be considered as a function of γ , that is, We = Ŵ(γ ). Using equation (4.20),
we can easily deduce (after some algebra) that, for d1 and d2 perpendicular to e3

σ12 = Ŵ ′(γ ). (4.21)

This relation has been studied in Bustamante & Merodio (2010) for other types of elastic bodies. It is
important to indicate that (4.21) can be used to study stability

5. Problems with cylindrical symmetry

Here we consider the constitutive equation presented in the previous section to study some boundary
value problems with cylindrical symmetry, which could be important from the experimental point of
view. First, we introduce a particular residual stress in a circular cylindrical tube and uses it in subsequent
sections. Since, some of the cylindrical tube problems discussed in this section have local simple shear
deformations, we use the detailed results of Section 4 in the cylindrical problems presented in the
subsequent sections.

Since there is no adequate quantitative data available in the literature to justify the proposed consti-
tutive equation (3.46), its pointless to give qualitative and quantitative results for specific strain energy
forms based on (3.46). However, the constitutive form (3.46) can be specialised to particular forms pro-
posed in the literature (see Merodio et al., 2013; Merodio & Ogden, 2014) and, in view of this, we only
consider some problems, where their solutions are given and analysed in the literature. We emphasize
that our spectral formulation can deal with classical invariant formulation but not vice versa; in general,
the spectral constitutive equation (3.14) cannot be converted to classical form. The interested reader can
see Nam et al. (2016) for the solution of some boundary value problem for bodies with initial stresses
where the formulation is based on the classical invariants by Rivlin and Spencer.
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5.1. Residual stresses

In the following section we solve some boundary value problems for a circular cylindrical tube,
considering different controllable deformations. The reference configuration is defined by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π , 0 ≤ Z ≤ L. (5.1)

Following Merodio et al. (2013), here we consider a residual stress of the form

τ = τ1(R)d1 ⊗ d1 + τ2(R)d2 ⊗ d2, (5.2)

where d1 = Er and d2 = Eθ are cylindrical polar coordinate vectors in the reference configuration.
The stress tensor (5.2) must satisfy the equilibrium equation

d(Rτ1)

dR
= τ2, (5.3)

The component τ1 must satisfy the boundary conditions

τ1(A) = 0, τ1(B) = 0. (5.4)

In Merodio et al. (2013), it has been shown that for above τ , τ2(R) has both positive and negative values
for A ≤ R ≤ B. For illustration purposes, we choose the simple expression (see Merodio et al., 2013)

τ1 = α(R − A)(R − B), (5.5)

where α is a constant. We shall use the form (5.5) in this article.

5.2. Pure azimuthal shear

Consider the problem of pure azimuthal shear of a circular cylindrical tube with cross section in the
reference configuration defined by (5.1) The deformation is described by

r = R, θ = Θ + g(R). (5.6)

The deformation gradient in cylindrical polar coordinate system is

F ≡
⎛
⎝ 1 0 0
γ 1 0
0 0 1

⎞
⎠, (5.7)

where γ = rg′(r) = Rg′(R). In view of (4.2) this is a local simple shear deformation and the constitutive
equation is the same as (4.9), with σrθ = σ12, σrr = σ22 and σθθ = σ11, where σrθ , σrr and σθθ are
cylindrical polar components of the Cauchy stress. The principal residual stresses are

τ1 = τrr , τ2 = τθθ . (5.8)
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The conditions for the universal relations are similar to that described in Section 4. The principal
directions of U takes the form

e1 ≡
⎛
⎝ s

c
0

⎞
⎠, e2 ≡

⎛
⎝ c

−s
0

⎞
⎠, e3 ≡

⎛
⎝ 0

0
−1

⎞
⎠. (5.9)

In view of (4.14), we have

σθθ − σrr = γ σrθ − 2l4cs(4 + γ 2) , (5.10)

If we use the strain energy (3.47), l1 = μ+ζ1
2 , l2 = μ+ζ2

2 , l4 = e1·(τe2)

2 and the shear stress take
the form

σrθ = (μ+ τ1)γ . (5.11)

To obtain (5.11) we used of the relations

e1 · (τe2) = (τ1 − τ2)cs, ζ1 = τ1s2 + τ2c2, ζ2 = τ1c2 + τ2s2. (5.12)

The ellipticity condition (3.51) gives

μ+ τ1 > 0, μ+ τ2 > 0. (5.13)

A discussion on the influence of residual stress (5.5) on a material with a strain energy of the form
(3.47) can be found in Merodio et al. (2013).

5.3. Extension and torsion of a solid cylinder

The deformation is described by

r = λ− 1
2 R, θ = Θ + λτZ , z = λZ , (5.14)

where τ is the amount of torsional twist per unit deformed length and λ is the axial stretch. In the above
formulation, r, θ and z are cylindrical polar coordinates in the deformed configuration. The components
of the deformation gradient are

F ≡
⎛
⎜⎝ λ− 1

2 0 0

0 λ− 1
2 λγ

0 0 λ

⎞
⎟⎠, (5.15)

where γ = rτ and, in this article, we only consider λ ≥ 1. The Lagrangian principal directions have
cylindrical components:

e1 ≡
⎛
⎝ 1

0
0

⎞
⎠, e2 ≡

⎛
⎝ 0

c
s

⎞
⎠, e3 ≡

⎛
⎝ 0

−s
c

⎞
⎠, (5.16)
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where

c = cos(φ) = 2√
2(γ̂ 2 + 4)+ 2γ̂

√
γ̂ 2 + 4

, s = sin(φ) = γ̂ + √
γ̂ 2 + 4√

2(γ̂ 2 + 4)+ 2γ̂
√
γ̂ 2 + 4

, (5.17)

with

π

4
≤
π − tan−1

(
1√
λ3−1

)
2

≤ φ <
π

2
(5.18)

and

γ̂ = λ3γ 2 + λ3 − 1

λ
3
2 γ

≥ 0. (5.19)

We also have the relation

c2 − s2 = −γ̂ cs. (5.20)

In the case of simple torsion λ = 1 and we have γ̂ = γ . The principal stretches for a combined extension
and torsion deformation have the forms

λ1 = 1

λ
1
2

, λ2 =
√
λ3(1 + γ 2)+ 1 + λ

3
2 γ

√
γ̂ 2 + 4

2λ
=

√
1

λ
+ sγ

√
λ

c
, (5.21)

λ3 =
√
λ3(1 + γ 2)+ 1 − λ

3
2 γ

√
γ̂ 2 + 4

2λ
=

√
1

λ
− cγ

√
λ

s
. (5.22)

The cylindrical components of the Cauchy stress take the form:

σθθ = −p + 2

[
l2c2 + l3s2 − 2l6cs

λ
+ 2

√
λγ ((l2 − l3)cs + l6(c

2 − s2))+ λ2γ 2(l2s2 + l3c2 + 2l6cs)

]
,

(5.23)

σzθ = 2
[√
λ((l2 − l3)cs + l6(c

2 − s2))+ λ2γ (l2s2 + l3c2 + 2l6cs)
]
, (5.24)

σzz = −p + 2λ2
(
l2s2 + l3c2 + 2l6cs

)
, σrθ = 2

[
l4c − l5s

λ
+ √

λγ (l4s + l5c)

]
, (5.25)

σrr = −p + 2l1

λ
, σzr = 2

√
λ (l4s + l5c) . (5.26)

In the case of τ taking the form (5.2), it can be easily shown that l4 = l5 = 0, which implies that
σrz = σrθ = 0. Since the deformation depends on γ and λ, the energy function can be considered as a
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function of γ and λ, that is, We = Ω̄(λ, γ ). We can easily deduce that,

σzθ = ∂Ω̄

∂γ
. (5.27)

In order to obtain the above relation (5.27), we require the following formulae

∂λ2

∂γ
= 1

λ2

(
sc

√
λ+ λ2γ s2

)
,

∂λ3

∂γ
= 1

λ3

(
−sc

√
λ+ λ2γ c2

)
(5.28)

and

∂s2

∂γ
= −∂c2

∂γ
= sc

λ2
2 − λ2

3

(
2
√
λ(c2 − s2)+ 4λ2γ sc

)
. (5.29)

For this problem, we have

ζ1 = τ1, ζ2 = τ2c, ζ3 = ξ3 = 0, ξ1 = τ 2
1 , ξ2 = τ 2

2 c, (5.30)

e1 · (τe2) = e1 · (τ 2e3) = e1 · (τe3) = e1 · (τ 2e3) = 0, e2 · (τe3) = −τ2cs. (5.31)

If we assume that no stress is applied at the surface r = b, the mechanical traction N and the torque M
applied at the ends of the cylinder are as follows:

N = 2π
∫ b

0
σzzr dr, M = 2π

∫ b

0

∂Ω̄

∂γ
r2 dr. (5.32)

To remove the hydrostatic pressure term in (5.32), we reformulate (5.32) in the form

N = π

∫ a

0
(2σzz − σrr − σθθ )r dr, (5.33)

using the relation

σrr + σθθ = 1

r

d(r2σrr)

dr
. (5.34)

If the strain energy take the form (3.47) then

l1 = μ+ τ1

2
, l2 = μ+ τ2c

2
, l3 = μ, l4 = l5 = 0, l6 = −τ2cs

2
. (5.35)

In the case of (3.48), we have,

l1 = μ+ λ2
1τ1

2
, l2 = μ+ λ2

2τ2c

2
, l3 = μ, l4 = l5 = 0, l6 = − (λ

2
2 + λ2

3)τ2cs

4
. (5.36)

Some numerical results for the above strain energy functions can be found in Merodio & Ogden
(2014).
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5.4. Inflation of a tube

We consider a cylindrical tube inflated by a pressure P, where the deformation described by

r =
√

a2 + R2 − A2, θ = Θ , z = Z , A ≤ R ≤ B, (5.37)

where a and A are the deformed and un-deformed inner radius, respectively. In this case, we have the
cylindrical components

e1 ≡
⎛
⎝ 1

0
0

⎞
⎠, e2 ≡

⎛
⎝ 0

1
0

⎞
⎠, e3 ≡

⎛
⎝ 0

0
1

⎞
⎠, (5.38)

and the principal stretches

λ1 = R

r
, λ2 = λ = r

R
, λ3 = 1. (5.39)

The non-zero components of the Cauchy stress are

σrr = R

r

∂We

∂λ1
− p, σθθ = r

R

∂We

∂λ2
− p, σzz = ∂We

∂λ3
− p. (5.40)

The only variable in the strain energy function is λ, hence we can write We = W̃(λ) and have the relation

λ
∂W̃

∂λ
= σθθ − σrr . (5.41)

By integrating the radial component of the equilibrium equations and in view of σrr = 0 at r = b, the
pressure

P =
∫ b

a
λ
∂W̃

∂λ

dr

r
=

∫ B

A

1

λ

∂W̃

∂λ

dR

R
. (5.42)

For the strain energy function (3.47), the pressure (5.42), after using the boundary conditions (5.4), takes
the form

P =
∫ B

A
(μ+ τ1)

(
1 − 1

λ4

)
dr

R
. (5.43)

Numerical discussion relating to (5.43) can be found in Merodio et al. (2013).

6. Final remarks

In the present communication, we have revisited the theory for residually stressed bodies developed in
Shams et al. (2011); Merodio et al. (2013); Merodio & Ogden (2014), reformulating the constitutive
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equations considering some new classes of invariants proposed by Shariff (2008, 2013, 2016b,a); Shariff
& Bustamante (2015). Such new invariants have a clearer physical meaning in comparison with the
classical invariants formulated by Spencer (1971). Hence, they are useful in facilitating the design of
residual stress experiment. It has been shown that there are only nine independent spectral invariants
from the original list of 12.

The results presented in this article will serve as a stepping stone to study the more complex problem,
wherein we will consider the case of a residually stressed body that can react to the presence of an
electric field. Such a theory would be particularly interesting for the case of modelling, for example,
the behaviour of myocardium, which is a material that can react to electromagnetic fields (see, e.g.,
Göktepe & Kuhl, 2010 and the reference mentioned therein) and also shows the presence of residual
stresses (see, e.g., Figs 11.4:1, 11.4:2 and 11.4:4 of Fung, 1990). For such a problem, for simplicity, we
initially assume that the myocardium behaves as an elastic body, the energy function would be of the
form We = We(C, τ , El, a0, b0), where El would be the electric field in the reference configuration (see,
e.g., Dorfmann & Ogden, 2005 and the references mentioned therein) and a0, b0 vector fields used to
incorporate the anisotropic behaviour of such material (Holzapfel & Ogden, 2009). It is clear that for
such a problem, where the constitutive equation depends on many different fields, it is very important
to have invariants with a clear physical meaning.
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Appendix A

In this section, we study the number of independent invariants proposed in Section 3.2. From the
definitions presented in that section it is possible to see that

3∑
i=1

ζi =
3∑

i=1

τi,
3∑

i=1

ξi =
3∑

i=1

τ 2
i . (A1)

Additionally, following the work of Shariff (2013), we have

[e1 · (τe3)]2 = ξ1 − ζ 2
1 − [e1 · (τe2)]2, [e2 · (τe3)]2 = ξ2 − ζ 2

2 − [e1 · (τe2)]2, (A2)

[e1 · (τe2)]2 = τ1τ2 + τ1τ3 + τ3τ3 + ζ1ζ2 + ξ1 + ξ2 − (τ1 + τ2 + τ3)(ζ1 + ζ2), (A3)

from where we obtain

{τ1τ2τ3 − ζ1ζ2ζ3 + ζ1[e2 · (τe3)]2 + ζ2[e1 · (τe3)]2 + ζ3[e1 · (τe2)]2}2

= 4[e1 · (τe2)]2[e1 · (τe3)]2[e2 · (τe3)]2. (A4)
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The three constraints in (A1) and (A4) implies that only nine of the twelve spectral invariants are
independent.

Appendix B

Here, we show there exists a relation between the ten classical invariants; spectral invariants do not
appear in this relation. The existence of this relation proves that only nine of the 10 invariants are
independent. The prove of this relation requires relations obtained in Shariff (2013). In order for the
reader to easily connect relations in this Appendix to those in Shariff (2013), most of the notations used
here are different from the main body of this article, taking note that some of the notations may be
equivalent to the spectral variables introduced in the main body.

Initially, we assumed that the values of the eigenvalues are not the same, that is, λ1 �= λ2 �= λ3 �= λ1.
The ten classical invariants take the forms (see, e.g., Spencer & Rivlin, 1962)

tr(C), tr(C2), tr(C3), tr(τ ), tr(τ 2), tr(τ 3), (B1)

tr(Cτ ), tr(C2τ ), tr(Cτ 2), tr(C2τ 2). (B2)

Using the work of Sawyers & Rivlin (1976) and Sawyers (1986), we can show that

λi = 1√
3

[
I1 + 2A cos

(
ψ + 2π i

3

)]
, (B3)

where

A = (I2
1 − 3I2)

1
2 , ψ = cos−1 1

2A3
(2I3

1 − 9I1I2 + 27I3). (B4)

Let

bi = ei · (τei), di = ei · (τ 2ei), i not summed. (B5)

Hence

tr(τ ) =
3∑

i=1

bi, tr(Cτ ) =
3∑

i=1

λibi, tr(C2τ ) =
3∑

i=1

λ2
i bi, (B6)

and

tr(τ 2) =
3∑

i=1

di, tr(Cτ 2) =
3∑

i=1

λidi, tr(C2τ 2) =
3∑

i=1

λ2
i di. (B7)

In view of (B6) and (B7) we have the matrix equations

Mb = f , Md = g, (B8)
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where

M =
⎛
⎝ 1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎞
⎠, f =

⎛
⎝ tr(τ )

tr(Cτ )

tr(C2τ )

⎞
⎠, g =

⎛
⎝ tr(τ 2)

tr(Cτ 2)

tr(C2τ 2)

⎞
⎠. (B9)

We note that det M = (λ1 −λ2)(λ2 −λ3)(λ1 −λ3) �= 0, hence M is invertible. In view of (B3) and (B8),

we can express b =
⎛
⎝ b1

b2

b3

⎞
⎠ and d =

⎛
⎝ d1

d2

d3

⎞
⎠ explicitly in terms of the classical invariants.

In the following calculations, we use the result by Shariff (2013), let us define

Iab = e1 · (τe2), Ian = e1 · (τe3), Ibn = e2 · (τe3), (B10)

Ī1 = tr(τ ), Ī2 = Ī2
1 − tr(τ 2)

2
, (B11)

Ī3 = det(τ ) = tr(τ 3)− Ī1tr(τ 2)+ Ī2 Ī1

3
, (B12)

Ī4 = b1, Ī6 = b2, Ī5 = d1, Ī7 = d2. (B13)

Following the work of Shariff (2013), we have

I2
an = Ī5 − Ī2

4 − I2
ab, I2

bn = Ī7 − Ī2
6 − I2

ab, (B14)

where

I2
ab = Ī2 + Ī4 Ī6 + Ī5 + Ī7 − Ī1(Ī4 + Ī6). (B15)

Shariff (2013) also proved the relation

(Ī3 − Ī4 Ī6 Īn + Ī4I2
bn + Ī6I2

an + ĪnI2
ab)

2 = 4I2
abI2

anI2
bn . (B16)

Since b and d can be explicitly expressed in terms of the classical invariants, and in view of (B14) and
(B15), the relation (B16) proves that only 9 of the 10 classical invariants are independent.

In the case when two or more of the eigenvalues of C are equal, the number of independent classical
invariants is further reduced. For example, consider the case λ1 = λ2 = λ3 = λ, then the matrix C = λI
and we have

tr(C) = 3λ, tr(C2) = 3λ2, tr(C3) = 3λ3, tr(Cτ ) = λtr(τ ), (B17)

tr(C2τ ) = λ2tr(τ ), tr(Cτ 2) = λtr(τ 2), tr(C2τ 2) = λ2tr(τ 2). (B18)

It is clear from (B17) and (B18) that only four classical invariants,

tr(C), tr(τ ), tr(τ 2), tr(τ 3) (B19)
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out of the total 10 are independent. Note that in this case, the eigenvectors of C are not unique, hence,
we can let ei = di, where di is an eigenvector of τ and we have ζi = τi. In view of this, they are only 6
independent spectral invariants in (3.14).

The number of independent invariants for the case when 2 of the eigenvalues can also be obtained
but we shall not derive them here.
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