TABLA DE CONTENIDO

AGRADECIMIENTOS	
TABLA DE CONTENIDO	IV
ÍNDICE DE FIGURAS	V
ÍNDICE DE TABLAS	VI
1. INTRODUCCIÓN	1
1.1 FORMULACIÓN DEL PROYECTO	2
1.2 OBJETIVOS	3
1.3 HIPÓTESIS	3
1.4 METODOLOGÍA	4
1.5 MARCO TECTÓNICO	5
1.6 UBICACIÓN Y VÍAS DE ACCESO	6
2. MARCO GEOLÓGICO	9
2.1 GEOLOGÍA REGIONAL	9
3. GEOLOGÍA DEL PROSPECTO	15
3.1 GENERALIDADES	15
3.2 UNIDADES LITOLÓGICAS	15
3.3 MINERALIZACIÓN DEL YACIMIENTO ALCAPARRA D	19
3.4 ESTRUCTURAS	19
4. RESULTADOS	20
4.1 MODELO LITOLÓGICO	20
4.2 PETROGRAFÍA	26
4.3 SECUENCIA PARAGENÉTICA	34
4.4 ISÓTOPOS DE AZUFRE	35
4.5 MODELO DE MINERALIZACION	36
5. DISCUSIÓN	39
5.1 MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL	39
5.2 ISÓTOPOS DE AZUFRE	41
5.3 MODELO GEOLÓGICO	43
5.4 RELACIÓN ENTRE DEPÓSITOS TIPO IOA Y TIPO IOCG	44
6. CONCLUSIÓN	47
7. BIBLIOGRAFÍA	49
ANEXOS	52

ÍNDICE DE FIGURAS

Figura 1: Distribución de los principales depósitos de hierro (IOA e IOCG) en la Franja Metalogénica mesozoica. Modificado de Sillitoe (2003)......6 Figura 2: Ubicación y accesos al vacimiento Alcaparra D. Coordenadas UTM PSAD56.8 Figura 3: Ubicación Alcaparra D. Imagen satelital de la zona extraída desde Google earth......9 Figura 4: Mapa geológico regional con la zona de estudio y la ubicación del depósito Alcaparra D. Modificado de Arévalo (2009).....14 Figura 5: Óxidos de hierro y martitización. Muestra ALD – 02, sondaje ALD1335, Figura 6: Magnetita masiva, pirita, calcopirita, actinolita. Muestra ALD-21, sondaje Figura 7: Fotomicrografía de granodiorita con cuarzo, sericita y calcita (Cal) en vetilla que corta la roca. Muestra código 549268, profundidad 342.1m (cota 246.46 m.s.n.m.). Figura 8: Unidad de andesita mineralizada con brecha magnetita-actinolita±sulfuros. Muestra ALD2-03, sondaje ALD 1215, profundidad 283 metros (262 m.s.n.m.)20 Figura 10: Sección este-oeste de sondajes, corresponde a la sección A-A'. Los colores Figura 11: Sección este-oeste de sondajes, corresponde a la sección B-B'. Los colores Figura 12: Sección este-oeste de sondajes, corresponde a la sección C-C". Los colores representan las litologías presentes......24 Figura 13: Sección Noreste-suroeste de sondajes, corresponde a la sección D-D'. Los Figura 14: Fotomicrografía de asociación actinolita-magnetita. A, actinolita (act) a nicoles cruzados luz transmitida, B,magnetita (mt I) a nicoles paralelos luz reflejada. Corte 0549285, profundidad 234.8 m......27 Figura 15: Fotomicrografía con cristales de pirita y magnetita I aislados con menor calcopirita. Corte 0549255, profundidad 259 metros. Nicoles paralelos, luz reflejada. ..28 Figura 16: Fotomicrografía de magnetita con sulfuros, pirita y calcopirita. Corte Figura 17: Fotomicrografía con calcopirita, bornita, pirita y magnetita. Corte 0549265, Figura 18: Fotomicrografía con biotita, feldespatos y plagioclasas de la roca original. Corte 0549283, profundidad 216 m. Nicoles cruzados, luz transmitida......29 Figura 19: Fotomicrografía de brecha de especularita (Hm) con clastos de pirita (Py) y calcopirita (Cp). Muestra 0549269, sondaje ALD-1321, profundidad 193.7 metros. Figura 20: Fotomicrografía de cloritización. Mineral opaco corresponde a magnetita. Corte 0549277, profundidad 116.55 metros. Derecha, nicoles paralelos, izquierda, Figura 21: Fotomicrografía de vetilla de calcita con calcopirita II. Se observa magnetita II en la masa fundamental. Corte 0549268, profundidad 342.1 m. Derecha, nicoles

Figura 22: Fotomicrografía de turmalina con magnetita. Corte 0549276, sondaje ALD-1449, profundidad 216.15 m. En la imagen se observa turmalina, feldespato alterado y magnetita como mineral opaco. Derecha, nicoles paralelos, izquierda, nicoles cruzados, Figura 23: Fotomicrografía de alteración supérgena con hematita, clorita y vetilla de calcita. Corte 0549272, profundidad 105 m. Nicoles cruzados, luz transmitida......32 Figura 24: Fotomicrografía de proceso de martitización. Hematita II reemplazando a Figura 25: Datos isotópicos de azufre del depósito Alcaparra D y comparación con Figura 29: Datos isotópicos de azufre de distintos IOCG andinos. Fuente: Mantoverde Figura 30: Modelo de formación de depósitos tipo IOA. A, microlitos de magnetita primaria a la cual se adhieren burbujas de fluido magmático en un magma parental. B, Flotación y ascenso del par burbuja- magnetita. C, enriquecimiento de Cl y extracción de Fe y otros metales durante el ascenso. D, Precipitación de magnetita hidrotermal Figura 31: Modelo de zonación vertical de depósitos Tipo IOA a depósitos tipo IOCG

ÍNDICE DE TABLAS

Tabla 1: Secuencia paragenética Alcaparra D	34
Tabla 2: Resultados de isótopos de azufre δ^{34} S (‰) de muestras del depósito Alcaparra D	35