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Abstract

This paper studies which social networks maximize trust and welfare when agreements are implicitly 
enforced. We study a repeated trust game in which trading opportunities arise exogenously and a social net-
work determines the information each player has. The main contribution of the paper is the characterization 
of optimal networks under alternative assumptions about how information flows across a network. When a 
defection is observed only by the victim’s connections, cohesive networks are Pareto efficient as they allow 
players to coordinate their punishments to attain high equilibrium payoffs. In contrast, when a defection is 
observed by the victim’s direct and indirect connections, barely connected networks maximize the number 
of players that can punish a defection and are therefore efficient.
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1. Introduction

The use of informal mechanisms of misconduct deterrence has been widely recognized and 
documented by economists (Milgrom et al., 1990; Dixit, 2006; Greif, 2006), political scientists 
(Ostrom, 1990; Fearon and Laitin, 1996), sociologists (Coleman, 1990; Raub and Weesie, 1990;
Burt, 2001; Rauch, 2001), and legal scholars (Bernstein, 1992). Crucial to their use is the way in 
which trading partners get informed about mischievous actions. Several authors have argued that 
the social structure is a key determinant of information flows and of the sustainability of trust-
based transactions. For instance, Greif (1993) studies contract enforcement between medieval 
Maghribi traders, and argues that a close-knit community can quickly disseminate informa-
tion about its members’ behaviors. Thus members’ incentives can be aligned by employing 
community-based sanctions that punish behaviors deemed opportunistic.1

This paper formally explores optimal network architectures in the context of a repeated trust 
game in which the social network determines information flows and feasible punishments. Our 
main contribution is the characterization of optimal networks under alternative assumptions 
about how information flows across a network. Cohesive networks are efficient when informa-
tion flows are slow, whereas barely connected networks are efficient when information spreads 
quickly within a component.

Our baseline model is a repeated game played by N investors and one agent. At each round 
t ≥ 1, one of the N investors is randomly and uniformly selected to play a trust game with the 
agent. In the trust game, the investor decides whether or not to participate. If he participates, he 
also picks an action or investment level, then the agent chooses whether to cooperate or to defect. 
If the agent does not participate, stage game payoffs are 0 and the game moves to next round. 
The equilibrium of the stage game is inefficient as the agent will defect after an investment is 
made and, anticipating this behavior, the investor will not participate. The agent’s temptation to 
defect may be curtailed by the existence of community sanctions governed by a social network 
of investors G. Our model exhibits network monitoring since after the agent misbehaves when 
facing investor i, then i and all his direct connections in G become aware of that, but players 
who are not connected to i learn nothing about it. We focus on perfect Bayesian equilibria that 
sustain cooperation on the path of play.

Our results characterize optimal networks. Theorem 1 establishes the Pareto optimality of 
any social network of equally sized complete components (i.e., networks in which all players 
have the same number of connections and if a player is connected to two other players, then 
all three are connected). Precisely, if G∗ has equally sized complete components and G is such 
that no investor has more connections than in G∗, there exists an equilibrium σ ∗ under network 
G∗ yielding higher expected payoffs to each community member than any equilibrium σ under 
network G. When the number of links is scarce and the number of connections per player is 

1 Other cases abound. In the automobile industry, for example, firms usually outsource large amounts of work and 
suppliers are routinely called upon to make specific investments. Hold-up problems are overcome by the threat of future 
business losses. As McMillan (1995) documents, one of the keys to deter opportunistic behavior in vertical relationships is 
the existence of cohesive business associations, such as Japanese keiretsus or Korean chaebols, that facilitate information 
exchange about parties’ previous performances. McMillan (1995) observes that “the institutionalization of links among 
firms that is provided by the keiretsu system arguably serve as ... an information-provision device.” He also notes that 
“by providing a mechanism for keeping track of any opportunistic behavior ..., the keiretsu provides a disincentive to 
such behavior.”
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Fig. 1. Illustration of Theorem 1. Even when each investor has the same number of connections in each network, G∗
yields higher payoffs than all equilibria of network G.

exogenously given, the formation of a fully cohesive social network is the best that all game 
players can hope for.2

The mechanism driving this result can be understood as follows. Consider networks G and 
G∗ in Fig. 1 and note that in both networks each investor is connected to two other players. 
However, while in network G∗ all players within a component can observe all defections, in G
they cannot. Take, for example, investors 1 and 5 in network G and note that a defection against 1 
is observed by 2 and 6 but not by 5. The agent can defect against 1 and then against investor 5, but 
investor 3 will still be willing to trade. In contrast, in network G∗, play within each component is 
observed by all players and punishments can be immediately implemented leaving no room for 
further off-path defections (defections against 1 and 5 leave the agent with no investor willing 
to participate in G∗). Thus, compared to G∗, network G allows the agent to defect twice (first 
against 1 and then against 5) by incurring a rather small loss in continuation value. Consequently, 
the network of complete components G∗ results in higher equilibrium payoffs.

While characterizing optimal play in networks of complete components is simple, finding 
optimal equilibria in games with private monitoring (as the game with monitoring network G
in Fig. 1) is difficult. In networks of incomplete components, optimal equilibria need not be 
in trigger strategies as, by ignoring some defections, an investor can strengthen the position of 
some of his neighbors and reduce the room for off-path gaming (see Proposition 3 and Exam-
ple 2 in Appendix A.1). To prove Theorem 1, we sidestep the difficulties that private monitoring 
poses by studying relaxed equilibrium conditions. These conditions, combined with lattice the-
ory tools (Topkis, 1998), yield upper bounds for investment paths that apply to all equilibria. 
A key intermediate result, Proposition 1, reveals the constraints that private monitoring imposes 
on equilibrium play by showing that such upper bounds cannot be attained in networks with some 
incomplete component. Theorem 1 then follows by comparing the upper bounds across different 
networks.

We also explore social networks that maximize the sum of players’ equilibrium payoffs given 
an exogenous number of links. In this problem, a reassignment of links translates into utility 
transfers between different investors. As a result, the characterization of welfare maximizing net-
works will depend partly on the convexity properties of the map from the number of connections 
a player has to utility levels. Theorem 2 provides conditions under which welfare maximizing 
networks have complete components. Despite the fact that our upper bound on equilibrium in-

2 Our results apply under the assumptions that the studied networks are feasible. For example, Theorem 1 applies when 
a regular network of complete components exists. Our results are silent otherwise due to integer problems.
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vestments is slack in networks of incomplete components, the convexity of payoffs as a function 
of the number of links is a force towards an heterogenous distribution of connections that favors 
the formation of a star. A star can maximize social welfare since the central investor can leverage 
his connections and attain high equilibrium investments that can offset the low actions taken by 
other investors.

Section 4 studies our setting under a general network monitoring technology. It is assumed 
that, after a defection against some investor i, all investors within distance d ≥ 1 of i observe it, 
and that an investor can observe whether one of his connections refused trade at t with probability 
q ∈ [0, 1]. This model reduces to our baseline model when d = 1 and q = 0.

Section 4.1 studies the model when a defection against i is immediately transmitted to all 
investors that are directly and indirectly connected to i (formally, here we impose d = N ). Com-
pared to the baseline model in Section 2, this alternative formulation can be seen as a polar 
assumption on the role of the social network – extremely slow information flows in the baseline 
model, very fast dissemination of news in Section 4.1. Theorem 3 shows that Pareto efficient 
networks of two or more components are minimally connected: in an optimal network, any two 
investors that are indirectly connected must be connected by a single path. Intuitively, with fast 
information flows, a minimally connected network maximizes the number of players that be-
come aware of a defection and therefore more severe punishments are available. Theorem 4
nails down the sizes of the different minimally connected components of welfare maximizing 
networks.

Taken together, our results uncover a trade-off between networks of complete components 
and minimally connected networks. By doing so, we clarify two different sociological views on 
the merits of alternative social architectures (Coleman, 1990; Burt, 1992; Sobel, 2002). When 
information flows are slow, a network of complete components creates local common knowledge 
of play that facilitates the coordination of punishments (Theorem 1). In contrast, when informa-
tion flows quickly within a component, minimally connected networks maximize the number of 
investors that can sanction a deviation (Theorem 3).

Section 4.2 explores the general model when d = 1 and q > 0. This is a complicated model, 
because on top of the incentive considerations, news percolate the network randomly and the 
agent must selectively decide whether or not to defect following a chain of defections. Theorem 5
shows that, under appropriate convexity restrictions, a star maximizes social welfare even if we 
impose no restriction on q . Thus, the star appears as a very robust welfare maximizing network 
structure under convexity restrictions.

Related literature Our paper belongs to the growing literature on repeated games in networks.3

In our model, the network determines the monitoring technology as in Ahn and Suominen (2001)
and Wolitzky (2013). Ahn and Suominen (2001) study a model similar to ours, in which the net-
work of information transmission is drawn at the beginning of each round. They do not study 
optimal network design, nor do they explore how networks of complete components deter off-
path gaming. Wolitzky (2013) studies a repeated public provision game in which the social 
network determines the monitoring technology. Since Wolitzky (2013) does not study optimal 

3 Kandori (1992) and Ellison (1994) are precursors to this literature. The literature is extensive and includes Haag and 
Lagunoff (2006), Bloch et al. (2008), Karlan et al. (2009), Mihm et al. (2009), Fainmesser (2012), Jackson et al. (2012), 
and Nava and Piccione (2013). We only discuss the papers that are closest to ours. See Nava (2015) for an overview of 
the literature.
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networks, our research question is different. As he does, we use lattice theory techniques to prove 
our results, but in our model once a player defects whether or not defections keep occurring de-
pends on the actions being implemented on the path of play. Wolitzky’s (2013) analysis does 
not apply to our environment because in our model on-path actions are neither complements nor 
substitutes in general networks. As our examples show, a player’s own maximal on-path action 
increases with the neighbors’ actions, but decreases with the investment of more distant players. 
To prove our optimality results, we obtain estimates of continuation values and derive relaxed 
incentive constraints to bound equilibrium actions. A problem arising in our model but not in 
Wolitzky’s (2013) is that the upper bound need not be tight. We explore conditions under which 
the bound is tight and use this result to derive optimal architectures under a variety of criteria.

When players only observe their own interactions, a social network of trading opportunities 
has also a key role spreading information about distant interactions. Lippert and Spagnolo (2011)
and Ali and Miller (2013) show that cohesive networks facilitate information dissemination. 
Lippert and Spagnolo (2011) highlight the existence of cycles to spread punishments and attain 
cooperation. The main result in Ali and Miller (2013) establishes that a contagion-equilibrium 
in a network of complete components Pareto dominates all (on-path) stationary equilibria of net-
works having incomplete components. We need not restrict attention to stationary equilibria, and 
derive results about welfare maximizing networks (which need not be of complete components) 
under various assumptions on the monitoring technology. Our Theorem 1 highlights the fact 
that in networks of complete components, it is easier to coordinate punishments.4 By disentan-
gling the monitoring network from the network of interactions, we uncover a trade-off between 
networks of complete components and minimally connected networks that is absent in theses 
papers.

Organization Section 2 outlines the baseline model. Section 3 presents our optimal network de-
sign results. Section 4 studies our model under alternative information transmission technologies. 
Section 5 discusses extensions. All proofs are in the Appendix.

2. Set up

2.1. The environment

Our game has N ≥ 2 investors and one agent. At the beginning of each round t ≥ 1, an 
investor it is randomly and uniformly selected from the set {1, . . . , N}. Investor it and the agent 
(hereinafter, player 0) may produce some surplus in round t by playing a trust game as in Kreps
(1996) or Greif (1993). First, the investor decides whether to participate or not (P or NP ). If he 
chooses not to participate, then period payoffs equal 0 and the game moves on to round t + 1. If 
investor it participates, he chooses an action a ∈R+. After observing the investor’s decision, the 
agent decides whether to cooperate (C) or to defect (D). Fig. 2 illustrates the game.5

4 The fact that coordination is easier in networks of complete components is also observed by Chwe (2000) and Morris
(2000). Our results emphasize how off-path coordination restricts on-path payoffs in a repeated game model of imperfect 
private monitoring.

5 We could also formulate the model by assuming that the agent first chooses an action a ∈ R+ and then the investor 
and the agent play a trust game.
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Fig. 2. The game between investor it and the agent. The first (resp. second) component of each payoff vector represents 
the investor’s (resp. agent’s) payoff.

Investors who are not selected get a per-period payoff equal to 0. Given a stream of period pay-
offs (ut

i)t≥1 for player i ∈ {0, . . . , N}, his utility function equals 
∑

t≥1 δt−1ut
i , where 0 < δ < 1

is the common discount factor.6

The following restrictions on payoffs are maintained throughout the paper.

Condition 1.

1. For a ≥ 0, f (a), v(a), l(a), g(a) ≥ 0 with strict inequality if a > 0.
2. g is increasing, f is nondecreasing and v is increasing.
3. g is continuous and f is continuous and bounded.
4. g(0) < δ

1−δ
1
N

f (0) and there exists b̄ > 0 such that g(a) > δ
1−δ

f (a) for all a ≥ b̄.

Restriction 1 says that for any investment level, the agent’s static best response is to defect. As 
a result, the investor decides not to participate and each player’s payoff equals 0. This outcome 
is Pareto dominated by the outcome in which the investor participates and makes a positive 
investment and the agent cooperates. Restriction 2 implies that when the agent cooperates, both 
players benefit from a higher investment. Yet, the higher the investment, the larger the agent’s 
temptation to defect. The third and fourth restrictions are mainly technical and are discussed after 
Lemma 1.

There is an undirected network of investors that determines the monitoring technology. More 
formally, a social network of investors is a symmetric matrix G ∈ {0, 1}n×n such that Gij = 1 if 
and only if i and j are linked. We also write ij ∈ G whenever Gij = 1 and assume Gii = 0. De-
note by N(i, G) = {j | ij ∈ G} the set of i’s neighbors in G and define the closed neighborhood 
of i as N̄(i, G) = N(i, G) ∪ {i}.

Players can monitor the agent’s behavior. If it plays NP , then investors receive an empty 
signal st

i = ∅. If it chooses P , then all investors j ∈ N(it , G) become aware of that and observe 
whether the agent cooperated or defected. More formally, if investor it participates and the agent 
played xt ∈ {C, D}, player j ∈ N(it , G) receives signal st

j = (it , xt ), while if j /∈ N̄(it , G), 
player j receives signal st

j = ∅. If it did not participate, then all players j �= i receive signal 

6 Our results also apply to a more general environment with N investors and M ≥ 1 agents, as in Greif (1993), provided 
matching is random and uniform and that the incentive problem is one sided. In this case, there is no need to discipline 
the investors – so it is enough to focus on how they transmit information about each agent’s behavior.
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st
j = ∅. Player it perfectly observes play during round t . Players receive signals only about cur-

rent interactions; in particular, we assume that information does not travel any further. A history 
ht

i for investor i at the beginning of round t will consist of all the signals (s1
i , . . . , st−1

i ) he has 
received during past play. We assume the agent has perfect information.

These assumptions capture the idea that the network determines the transactions each investor 
can observe. This modeling choice illustrates situations in which information is hard to transmit 
throughout the network, and other sources of information transmission (such as signaling through 
stakes or by refusing trade) are inexistent. One could also interpret these assumptions as saying 
that the victim (and only the victim) of a mischievous action let all his connections know that the 
agent is a miscreant. In on-line markets, for example, one is called upon to rate a seller only after 
trading with the seller. We postpone further discussion to Section 4.

Our repeated trust game can be interpreted broadly and captures key aspects of several 
repeated interactions. The agent can be seen as a firm that may or may not hold-up the 
specific investments made by suppliers (investors), as in Williamson (1979). The social net-
work represents all business ties among the different suppliers (Greif, 1993; McMillan, 1995;
Uzzi, 1996). The game can also be seen as a model in which consumers (investors) decide 
whether or not to buy experience goods from a monopolist (agent) who may be tempted to sell 
low-quality goods. The social network represents all sources of information on the monopolist 
performance (such as online feedback systems, word-of-mouth) as in Dellarocas (2003). The ba-
sic strategic structure of our repeated trust game also appears in models of relational contracting 
with multiple employees (investors), in which the employer may renege on payments to their 
employees.

We introduce some network terminology (for details consult Jackson, 2008). Let the set of 
investors that are at distance 2 of i be N2(i, G). This is formally defined as N2(i, G) = {j /∈
N(i, G) | jk ∈ G for some k ∈ N(i, G)}. More generally, we define Nd(i, G) as the set of in-

vestors that are at distance d of i: Nd(i, G) =
(

∪j∈Nd−1(i,G) N(j, G)
)

\ ∪d−1
l=1 Nl(i, G). The set 

of players within distance d ≥ 2 of i is written as N≤d(i, G) = ∪l≤dNl(i, G). The component of 
investor i, C(i, G), will include i and the set of all j such that there exists a path i0, . . . , iK with 
inin+1 ∈ G with i0 = i and iK = j . It follows that if j ∈ C(i, G), then C(j, G) = C(i, G). Each 
network G has a finite number of components that partition the set of investors. If C(i, G) = {i}, 
we will say that the component is trivial. A network G has complete components if for any 
j ∈ C(i, G), ij ∈ G; a network G has some incomplete component if there exists i, j such that 
j ∈ C(i, G) but ij /∈ G. We will say that G is κ-regular, for some κ ≥ 1, if for all i such that 
|N(i, G)| ≥ 1, we have |N(i, G)| = κ . A network is regular if it is κ-regular for some κ ≥ 1. A 
network G is minimally connected if for any link ij ∈ G, G \ {ij} has more components than G. 
When there is no risk of confusion, we omit the dependence of these sets on G (and write N(i)

instead of N(i, G), for example).

2.2. Strategies and cooperation

A pure strategy for investor i is a family of functions σi = (σ t
i )t≥1 such that each σ t

i maps 
private histories ht

i = (s1
i , . . . , st−1

i ) to stage game actions in {NP } ∪ (P × R+).7 A strategy 
σ0 for the agent maps game histories, including the decision of investor it , to {C, D}. For any 
strategy σ and given any sequence of selected investors (i1, . . . , it ), let ασ (i1, . . . , it ) ∈ {NP } ∪

7 While we restrict attention to pure strategies, Theorems 1, 2, 3 and 4 can be extended to mixed strategies.
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({P } × R+) be the decision that player it makes in round t on the path of play.8 We say that a 
strategy profile σ sustains cooperation if σ is a perfect Bayesian equilibrium of the game, and 
for all (i1, . . . , it ), ασ (i1, . . . , it ) �= NP and, following a history

(
(i1, ασ (i1),C), . . . , (it−1, ασ (i1, . . . , it−1),C), (it , ασ (i1, . . . , it ))

)
the agent’s strategy σ0 prescribes C. In words, a strategy sustains cooperation if on the path 
of play, in all encounters, the selected investor participates and the agent cooperates. Let �(G)

be the set of all strategies σ that sustain cooperation. We say that ασ is stationary if the in-
vestment decision of player it = i depends on i but not on the identity of players choosing 
in previous rounds. Formally, ασ is stationary if ασ (i1, . . . , it , i) = ασ (j1, . . . , j t ′ , i) for all 
i1, . . . , it , j1, . . . , j t ′ , i ∈ {1, . . . , N} and we simply write ασ (i).

As can be expected, trigger strategies can sustain cooperation in networks of complete com-
ponents. While trigger strategies can also sustain cooperation in networks of incomplete com-
ponents, optimal equilibria need not be in trigger strategies as it could be beneficial that some 
players ignore some defections (Example 2 in Appendix A.1). A general characterization of 
strategies that sustain cooperation is beyond the scope of the paper, but Appendix A.1 discusses 
some new strategic effects arising in networks of incomplete components.

The equilibrium set depends on the monitoring network in subtle ways. Restricting atten-
tion to networks of complete components, more connections are always beneficial. However, 
in networks of incomplete components, more connections can hurt a player. Example 3 in 
Appendix A.1 shows that two investors may obtain higher payoffs in a network with smaller 
neighborhoods and components (even if we take the most favorable equilibrium in the more 
connected network). Intuitively, in networks of incomplete components some players may loose 
leverage after a defection has occurred. When a network has more connections, such leverage 
loss can be bigger and therefore equilibrium actions are smaller.

3. Characterization of optimal networks

In this section, we derive upper bounds on equilibrium actions and then characterize the ar-
chitecture of Pareto dominant and welfare maximizing social networks. Note that when links are 
costless, the optimal network is the complete network in which all investors can punish any de-
fection. However, in many applications links are costly and we therefore focus on optimal design 
given a fixed number of links.

3.1. Bounding equilibrium investments

Our first observation is that investments along an equilibrium path can be bounded above. 
Indeed, take any network G and σ ∈ �(G) and assume, for now, that ασ is stationary. Since 
σ ∈ �(G), the agent prefers to cooperate in each encounter over defecting against i and cooper-
ating in subsequent encounters with players outside N̄(i, G). Note that after a defection against i, 
investors j ∈ N̄(i, G) are aware of the defection and can inflict a punishment yielding period pay-
offs to the agent greater than or equal to 0.9 Investors j /∈ N̄(i, G) are still willing to participate 
and cooperation in those encounters remains feasible. This implies that

8 This means that ασ (i1, . . . , it ) is the action played at t by player it when all players have followed σ .
9 It will be 0 only if investors j ∈ N̄(i, G) use trigger-strategies, but this need not be the case.
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f (ασ (i))+ δ

1 − δ

1

N

N∑
j=1

f (ασ (j)) ≥ (f (ασ (i))+g(ασ (i)))+ δ

1 − δ

1

N

∑
j /∈N̄(i,G)

f (ασ (j)).

We thus deduce that

g(ασ (i)) ≤ δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (ασ (j)) i = 1, . . . ,N. (3.1)

The left-hand side of (3.1) is the short-term gain from a defection against i, whereas the right-
hand side is an upper bound for the losses in continuation value from the same defection.10

Equation (3.1) defines a system of inequalities, where the unknowns are actions (ai)
N
i=1 ∈

R
N+ . Our restrictions on f and g in Condition 1 allow us to use Tarski’s fixed point theorem 

(Topkis, 1998) to deduce that such system has a largest solution, āG, so that ασ (i) ≤ āG
i for all 

i = 1, . . . , N . Moreover, at āG, all inequalities must actually bind. While we have assumed that 
ασ is stationary, the following result shows such restriction is not really needed.

Lemma 1. For any G, the following hold.

a. The system of inequalities

g(ai) ≤ δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (aj ), i = 1, . . . ,N

has a largest solution āG 
 0. At āG, all inequalities above bind.
b. For all σ ∈ �(G) and all (i1, . . . , it ) ∈ {1, . . . , N}t , ασ (i1, . . . , it ) ≤ āG

it
.

The proof builds on arguments appearing in the proof of Theorem 1 in Wolitzky (2013). 
Wolitzky (2013) obtains a system of incentive constraints and proves such system has a largest 
solution. In this paper, however, we derive a system of relaxed incentive constraints that has a 
largest solution. More importantly, a key question (which does not appear in Wolitzky, 2013) is 
whether such largest solution can actually be implemented as an equilibrium outcome – a ques-
tion answered in Proposition 1 (and Proposition 3 in the Appendix). We then build on these 
preliminary results to derive the architecture of optimal networks.

Restrictions 3 and 4 in Condition 1 are crucial to derive Lemma 1. Consider the case of only 1 
investor and assume that δ

1−δ
f (a) = 1. Condition 1, part 4, fails when either (i) g is above f ≡ 1

(for example g(a) = 2 + a) or (ii) g is always below f ≡ 1 (for example, g(a) = 1 − exp(−a)). 
In the first case, Lemma 1 does not hold because the system of incentive constraints does not 
have a solution (and the only equilibrium of the repeated game is the repetition of the stage game 
equilibrium). In the second case, every action a can be an equilibrium and therefore āG cannot 
be defined. The existence of a largest investment profile can also fail when the third restriction
in Condition 1 is not satisfied. For example, if g(a) = a2 for a < 1 and g(a) = 1 + a for a ≥ 1, 
any a < 1 can be an equilibrium but there is no largest equilibrium action.

We now turn to the problem of whether āG is a tight bound for equilibrium actions.

10 Note that (3.1) does not apply to equilibria in which the agent defects on the path of play. When the agent is allowed 
to defect in some encounters, our bounds for equilibrium investments need not hold.
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Fig. 3. A network where investors 1 and 3 are not connected.

Definition 1. Let G be a network and a ∈ R
N++. We say that the equilibrium σ ∈ �(G) imple-

ments a if for all (i1, . . . , it ) ∈ {1, . . . , N}t , ασ (i1, . . . , it ) = ait .

The incentive constraints exploited to obtain the upper bound āG need not be sufficient for 
equilibrium since optimal behavior following a defection by the agent could, for example, in-
volve defections when facing some of the remaining investors. It is entirely possible that for 
some networks, no equilibrium can actually attain āG on the path of play. The following result, 
which is the main contribution of this subsection, provides necessary and sufficient conditions to 
implement āG.

Proposition 1. Let G be a network. The following are equivalent:

a. G is a network of complete components.
b. There exists σ ∈ �(G) that implements āG.

Proposition 1 shows that the action profile āG can be implemented as an equilibrium outcome 
if and only if G is a network of complete components. When G is a network of complete compo-
nents, it is relatively easy to construct σ to implement āG along the path of play. Indeed, trigger 
strategies suffice: on the path of play, investor i participates and makes investment decision āG

i ; if 
the agent ever defects against j ∈ N̄(i, G), investor i refuses trade in all subsequent interactions. 
The agent cooperates against any investor who decides to participate and who has not observed 
any defection. Since G is a network of complete components and (3.1) holds, σ ∈ �(G).

The converse is more subtle and reveals some important constraints arising due to the fact that 
in networks with incomplete components, monitoring is private. Take, for example, network G
in Fig. 3. Suppose that there exists σ ∈ �(G) such that in all encounters ασ (i) = āG

i , i = 1, 2, 3. 
Since āG is the largest solution to the system of relaxed incentive constraints, (3.1) binds and 
thus

f (āG
1 ) + δ

1 − δ

1

3

3∑
j=1

f (āG
j ) = f (āG

1 ) + g(āG
1 ) + δ

1 − δ

1

3
f (āG

3 ). (3.2)

From the agent’s perspective, cooperating in all encounters is as attractive as defecting against 
investor 1 and cooperating in all encounters with investor 3.

We argue that the strategy σ cannot be sequentially rational for the agent. Indeed, following 
an off-path defection against 1, both players 1 and 2 must refuse trade in all subsequent rounds. 
In the continuation game right after a defection against 1, player 3 has less leverage because he is 
uninformed and player 2 is already punishing the defection against 1. It is therefore in the interest 
of the agent to defect when facing 3. In other words, after a defection against 1, the agent strictly 
prefers to defect against the uninformed player 3. This implies that the total expected payoff the 
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Fig. 4. The number of connections each player has is the same in both networks.

agent obtains after a defection against 1 is strictly higher than the payoff he would obtain by 
defecting against 1 and cooperating when facing 3 (which equals the payoff from cooperating 
always, as Equation (3.2) shows). Therefore, for the agent it is optimal to defect when facing 
investor 1 in the first place. The strategy profile σ cannot be sequentially rational and thus that 
āG cannot be implemented in the network of incomplete components G.

3.2. The design of optimal networks

Given G and a strategy profile σ , let ui(σ, G) be the expected normalized sum of discounted 
payoffs for player i when play evolves according to σ and the social network is G.11 We will say 
that G∗ Pareto dominates G if there exists σ ∗ ∈ �(G∗) such that for all σ ∈ �(G), ui(σ

∗, G∗) ≥
ui(σ, G) for all i = 0, 1, . . . , N with at least some strict inequality.

Theorem 1. Let G∗ be a regular network of complete components. Let G be any other network 
having some incomplete component such that |N(i, G)| ≤ |N(i, G∗)| for all i = 1, . . . , N . Then, 
G∗ Pareto dominates G.

The proof of Theorem 1 exploits Lemma 1 and Proposition 1. The first observation is that, 
since each player has more connections in G∗ than in G, āG

i ≤ āG∗
i for all i. Proposition 1 is then 

used to show that no equilibrium in network G can implement āG, whereas some equilibrium 
σ ∗ ∈ �(G∗) implements āG∗

. The result follows since payoffs are monotone in ai .
As the following example shows, the assumption that G∗ is regular in Theorem 1 cannot be 

dispensed with.

Example 1. Consider networks G∗ and G in Fig. 4. Each investor has the same number of 
connections in each network. Network G∗ has complete components but is not regular, while 
network G has a single component which is incomplete. Assuming that both f and g are strictly 
increasing and that g(0) < δ

5f (0), we will show that there exists an equilibrium in G that results 
in higher payoffs for player 1 than all equilibria in network G∗.

Take the upper bound āG∗
and note that (āG∗

1 , āG∗
2 ) is the largest solution to

g(a1) ≤ δ

1 − δ

1

5

(
f (a1) + f (a2)

)
(3.3)

11 More formally, ui (σ, G) = Eσ,G[∑t≥1 δt−1ut ], where ut is player i’s payoff at time t .

i i
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g(a2) ≤ δ

1 − δ

1

5

(
f (a1) + f (a2)

)
. (3.4)

Therefore, no equilibrium can implement investments higher than āG∗
1 for investor 1 in net-

work G∗.
To construct an equilibrium for network G, take ā = (āi)

5
i=1 as the largest solution to

g(a1) ≤ δ

1 − δ

1

5

(
f (a1) + f (a3)

)
(3.5)

g(a3) ≤ δ

1 − δ

1

5

(
f (a1) + f (a3) + f (a5)

)
(3.6)

g(ai) ≤ δ

5
f (ai) for i = 2,4,5 (3.7)

We can construct an equilibrium that implements ā in network G as follows. Along the path 
of play, investor i participates and chooses āi . If investor 1 or investor 3 observes a defection 
against either of them, both refuse trade in all subsequent rounds. Investor 3 ignores any defec-
tion against 5. Player 5 does not participate in subsequent trading opportunities if he observes a 
defection against 3. A defection against either 2, 4 or 5 is punished only by the victim by refus-
ing trade only in the next round (which happens with probability 1/5) and then resuming play 
as no defection had occurred. The agent cooperates when facing any investor who, according 
to his strategy, should participate and invest (including off-path histories). This strategy profile 
is sequentially rational for all players. Indeed, the system (3.5)–(3.6)–(3.7) ensures it is in the 
agent’s interest to cooperate on the path of play. Following a defection against either 1 or 3, it is 
still in the agent’s interest to cooperate when facing players who still participate (2, 4 and 5 if the 
defection was against 1, 2 and 4 if the defection was against 3) as those players did not count on 
either 1 or 3 to punish defections against them. Defections against either 2, 4 or 5 do not affect 
agents’ continuation values as those players punish for a single round. In sum, it is in the agent’s 
interest to cooperate when facing any investor who participates.

We now claim that ā1 > aG∗
1 . Consider the systems of equations (3.3)–(3.4) in (a1, a2) and 

(3.5)–(3.6) in (a1, a3), where a5 = ā5 is treated as a fixed parameter. By construction (āG∗
1 , āG∗

2 )

is the largest solution to (3.3)–(3.4), whereas (ā1, ā3) is the largest solution to (3.5)–(3.6). The 
two systems of equations coincide, save for the fact that the second equation in the second system 
has the constant term f (ā5). Since both systems of equations are fixed point conditions for 
monotonic operators and f (ā5) > 0, (ā1, ā3) ≥ (āG∗

1 , āG∗
2 ). Now, if ā1 = āG∗

1 , equations (3.3)
and (3.5) can be solved out to deduce that ā3 = āG∗

2 (f is strictly increasing). Then (ā1, ā3) is the 
largest solution to (3.5)–(3.6), but (3.6) is not binding. This is a contradiction (see the discussion 
and the proof of Lemma 1). It follows that ā1 > āG∗

1 .

In this example, investor 1 can enjoy a higher equilibrium payoff in network G than in G∗, 
even when in both networks the distributions of connections coincide, |N(1, G∗)| = |N(1, G)|
and G∗ has complete components.12 In network G, investor 1 is connected to investor 3, who 
is also connected to 5. In contrast, in network G∗ investor 1 is connected to investor 2 who is 
not connected to other players. What makes G attractive is a network effect that can be ruled out 
when āG

i is determined by the number of connections i has in G. The next assumption is crucial 
to achieve that.

12 Note however that |C(1, G)| > |C(1, G∗)|. This is needed for otherwise Theorem 1 would apply and G∗ would 
Pareto dominate G.
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Assumption 1. f attains its maximum.

This assumption says that the agent’s payoff from cooperation does not grow beyond an upper 
bound. Under this assumption, let a be the smallest action attaining the maximum maxf .13

Define

δ̄ = min
{
δ | δ

1 − δ

1

N
maxf ≥ g(a)

}

and note that 0 ≤ δ̄ < 1.

Lemma 2. Under Assumption 1, for δ > δ̄, and all i = 1, . . . , N ,

āG
i = g−1

(
δ

1 − δ

maxf

N
|N̄(i,G)|

)
.

When f is constant, the restriction δ > δ̄ is equivalent to g(0) < δ
1−δ

1
N

f (0).14 A constant f
means that regardless of the investment made in a given round, the way in which the investor and 
the agent divide the surplus leaves the investor with a constant amount that, for example, covers 
his effort costs plus a premium (like in efficiency wage models).

Lemma 2 allows us to simplify the design problem by focusing on the network effects that 
arise purely due to informational frictions. Intuitively, when δ > δ̄, the i-th component of the 
upper bound āG is large enough so that it lies in the flat portion of f and therefore, as a function 
of G, it is entirely determined by the number of connections investor i has.

The following optimality result applies to networks that are not necessarily regular. It shows 
how Assumption 1 and the restriction to δ > δ̄ eliminate the network effects illustrated in Exam-
ple 1.

Proposition 2. Under Assumption 1, for any δ > δ̄, any network of complete components G∗
and any network G having some incomplete component with |N(i, G)| ≤ |N(i, G∗)| for all i =
1, . . . , N , G∗ Pareto dominates G.

This result follows by combining Lemma 2 with the arguments in Theorem 1.
We are also interested in characterizing networks that maximize total welfare. We will say 

that G∗ gives strictly more total welfare than G if there exists σ ∗ ∈ �(G∗) such that for all 
σ ∈ �(G), 

∑N
i=0 ui(σ

∗, G∗) >
∑N

i=0 ui(σ, G). We will also write

U(x) = v ◦ g−1
(
(x + 1)

δ

1 − δ

1

N
maxf

)
,

for x ∈N, where v ◦ g−1(y) = v(g−1(y)) is the composition of v and g−1. Under the conditions 
of Lemma 2, U(x) can be interpreted as the period payoff an investor obtains when trading given 
a number x of connections when the upper bound on equilibrium actions is implemented.

13 Formally, a = min{a | f (a) = maxf } is well defined since f is continuous and attains its maximum.
14 Assumption 1 and Condition 1 have different roles. Restrictions 3 and 4 in Condition 1 ensure that 
g−1(

δ
1−δ

max f
N

|N̄(i, G)|) is well defined in that the range of g includes δ
1−δ

max f
N

|N̄(i, G)|. Assumption 1 and the 
restriction δ > δ̄ ensure that g−1(

δ max f |N̄(i, G)|) is the largest solution to the system of constraints.
1−δ N
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Theorem 2. Under Assumption 1, let δ > δ̄, G∗ and G be networks such that 
∑N

i=1|N(i, G)| ≤∑N
i=1|N(i, G∗)|. The following hold:

a. If U is linear and G∗ is a network of complete components but G is not, then G∗ gives 
strictly more total welfare than G.

b. If U is strictly concave and G∗ is a network of equally sized complete components but G is 
not, then G∗ gives strictly more total welfare than G.

c. If U is convex and satisfies

U(x+1)−U(x) ≥ max
{
x(U(2)−U(0)),2(U(x)−U(x−1))

}
, 2 ≤ x ≤ N −2 (3.8)

and G∗ is a star but G is not, then G∗ gives strictly more total welfare than G.

Theorem 2 characterizes welfare-maximizing networks given a number of links to be freely 
allocated among the investors. The key determinants of the architecture of optimal networks are 
the convexity properties of U = v ◦ g−1. To see (b), note that when U is concave, an uneven as-
signment of links implies that the equilibrium actions of highly connected investors only slightly 
decrease when a link is reassigned to a barely connected investor, who can significantly increase 
investments due to the addition of a new link. The concavity of U is therefore a force towards 
equally sized components, that must be complete to avoid the implementation losses described 
in Proposition 1. Note that v ◦ g−1 is concave provided so are v and −g.

Part (a) follows since the linearity of U implies that the incremental gains and losses when 
links are reassigned do not depend on how connected the different players are. To attain opti-
mality, therefore, it is enough to avoid the implementation losses of networks with incomplete 
components. The function v ◦ g−1 is linear provided g(a) = αv(a), where 0 < α < 1. This con-
dition arises in models in which the agent can defect and appropriate a fraction α of the investors’ 
payoffs v(a).15

Part (c) is probably the most surprising one as it shows that a network of incomplete compo-
nents –the star– can maximize social welfare. When assigning links to maximize total welfare, 
the convexity of U is a force towards an heterogenous distribution of connections and fa-
vors the formation of a star. On the other hand, as Proposition 1 shows, some implementation 
losses must be incurred when forming the network of incomplete components G∗. When U is 
“slightly convex”, the implementation losses can be significant compared to the gains from a 
heterogenous distribution of links.16 The strong convexity restriction (3.8) ensures that those im-
plementation losses are small compared to the heterogeneity gains in the star.17 Two different 

15 This happens in models where firms invest in non-contractible human capital and wages are determined ex-post by 
Nash-bargaining as in Acemoglu and Pischke (1999).
16 Note that the problem of assigning a given number of links is different to the problem of assigning consumption 
among agents given a budget constraint. In the first problem, by reassigning a link one takes away one connection from 
two nodes but we cannot reassign both of them to a single node.
17 Consider a model with N = 4, δ = 1/2, g(a) = a, f = 1, and v(a) = an with n ≥ 1. Suppose that we must 
assign two links. Forming two complete components results in payoffs 1

4 (1/2)n for each player and welfare W =
4 1

4 (1/2)n = (1/2)n . Now, consider a star formed by players 1, 2 and 3, with player 2 being the center of the star. Let 
a = (a1, a2, a3, a4) be a vector of equilibrium actions. From Proposition 3 in the Appendix, 1

4 ≤ 5| 1
2 − a1| + | 1

2 − a3|. 
As a result, in any equilibrium an

1 + an
3 ≤ (1/2)n + (1/4)n . The highest welfare that can be attained in the star is at most 

W̃ ≤ 1 (3/4)n + 1 (1/2)n + 1 (1/4)n . It is therefore clear that for n > 1 close enough to 1, W > W̃ . Thus, when v ◦ g−1

4 4 2
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parameterizations of our model that satisfy (3.8) are (i) v ◦ g−1(x) = exp(x) − A when A ≥ 1
and δ

1−δ
1
N

maxf > ln(2) and (ii) v ◦ g−1(x) = xp with p > 1 + ln(2)
ln(N/(N−1))

.18

For any network G, we denote its degree distribution by

FG(n) = |{i | |N̄(i,G)| ≤ n}|
N

, n = 0,1, . . . ,N.

We say that network G∗ is more equally sized than G if for all n = 1, . . . , N

n̄∑
n=1

(FG(n) − FG∗
(n)) ≥ 0 for all n̄ = 1, . . . ,N − 1.

This definition is identical to the standard notion of second order stochastic dominance, restricted 
to a discrete distribution (Mas-Colell et al., 1995).

Corollary 1. Under Assumption 1, let δ > δ̄, G∗ and G be networks such that 
∑N

i=1|N(i, G)| =∑N
i=1|N(i, G∗)|. If U is (weakly) concave, G∗ is a network of complete components, and G∗ is 

more equally sized than G, then G∗ gives weakly more total welfare than G.

This result shows that a concave map U favors the formation of more equally sized compo-
nents. This result follows since G∗ is a network of complete components and therefore its social 
welfare is entirely determined by the degree distribution induced by G∗.

4. Networks with richer information flows

Let (d, q) ∈ N × [0, 1] parameterize the monitoring technology in the following way. Given 
G, histories are recursively determined as follows. The history i has at the beginning of t =
1 (before play) is h0

i = ∅. Let ht−1
i be the history player i has at the beginning of t and let 

it ∈ {1, . . . , N} be the investor chosen at round t . If it chooses P , then all investors within 
distance d of i become aware of that and observe whether the agent cooperated or defected, 
whereas if it chooses NP investors j within distance d of i become aware of this decision with 
probability q . More formally, if investor it participates and the agent played xt ∈ {C, D}, then 
player j ∈ N≤d(it , G) receives a signal st

j = (it , xt ), while if j /∈ N≤d(it , G) then j receives a 
signal st

j = ∅. If it chooses NP , then with probability (1 − q) (resp. q) each j ∈ N≤d(it , G)

receives st
j = ∅ (resp. st

j = it ). Player it perfectly observes play during round t and knows all 
the observations that other investors in N≤d(i, G) make about it ’s interaction with the agent. So, 
the signal that player i receives at t belongs to

{φ} ∪
(
N≤d(i,G) × {C,D}

)
∪

(
N≤d(i,G)

)
∪

(
{NP } ∪ (R+ × {C,D} × N≤d(i,G))

)

and the history investor i has at the beginning of t + 1 is then defined as ht
i = (

ht−1
i , st

i

)
. We 

assume that the agent has perfect information and observes all information flows.

is convex but does not satisfy (3.8), the star need not be optimal. On the contrary, welfare is maximized by a network of 
complete components.
18 Under these parameterizations, (3.8) holds with strict inequality. Small perturbations to these functions also satisfy 
(3.8). Note that if U1 and U2 satisfy (3.8), then U ≡ U1 + U2 also satisfy (3.8).
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This model extends the setup analyzed in the previous section. When q = 0 and d = 1, we are 
back in the model of Section 2. When d = 1 and q > 0, we obtain a model in which investors 
can learn by observing the participation decisions of their neighbors. This is a model in which in-
formed investors can signal their information through their participation decisions. (The results in 
this Section would also extend to allow investors to signal through actions a. In general, though, 
one should expect that signaling through investments should be more effective as more precise 
information can be transmitted.) When d = N , investors observe play of all other investors in 
the same component. In this model, once a player becomes informed, he can rapidly transmit his 
information to all his direct connections. Those direct connections can also transmit the new in-
formation to their own connections, and so on, and all these information flows occur fast enough 
so that the whole component becomes informed before a new trading opportunity arises.

The definition of strategy σi for player i is similar to that presented for the main model. We 
also define the set �̄(G, d, q) of equilibrium strategy profiles σ = (σi)

N
i=0 that sustain coopera-

tion on the path of play. We also (with a slight abuse of notation) define ui(σ, G) as the expected 
sum of discounted payoffs given the network G and strategy profile σ .

Characterizing equilibria for the general game is extremely difficult; news travel through the 
network and, after a defection, the agent selectively decides whether or not to defect following a 
chain of defections. As a result, incentives and the process of information transmission are jointly 
determined in a non-trivial fashion.19 Yet, as the following subsections show, some of the tools 
and insights from the previous sections can be used to nail down optimal networks in this general 
environment.

4.1. Social networks of rapid information transmission

We now study the general model under the assumption that d = N . This means that once the 
agent defects against i, all players in C(i, G) become immediately informed.20 In particular, for 
any network G, the system of incentive compatibility constraints becomes

g(ai) ≤ δ

1 − δ

1

N

∑
j∈C(i)

f (aj ), i = 1, . . . ,N

and has a largest solution âG ∈ R
N++. Moreover, âG can be implemented as a trigger strategy 

equilibrium, and no equilibrium can implement higher actions.

Theorem 3. Let G be a network which is not minimally connected having at least two compo-
nents. Then, G is Pareto dominated by a network G∗ having the same number of links.

This result shows that Pareto efficient networks must be minimally connected, unless the 
number of links is large enough to form a single component. Intuitively, if G is not minimally 
connected, we can give an alternative use to one of the links in order to expand the number 
of players that become aware of any defection. In the new network more players can punish a 
defection and therefore on-path actions are higher.

19 Results on diffusion in networks can be found in Jackson (2008, Chapter 7), but those models apply to very special 
network structures. Results on rumor spreading (Pittel, 1987) typically focus on approximating the distribution of the 
number of periods that take a single rumor to reach the whole network.
20 In terms of the model of Section 2, this is similar to restricting attention to networks of complete components. The 
difference is that in this model once an investor is connected to some player, it becomes immediately connected to all 
players in the component at no cost.
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To characterize welfare maximizing networks, note that âG
i depends on G only through the 

size of the component i belongs to, |C(i, G)|. We thus write âG
i = âi (|C(i, G)|). Up to a constant, 

the equilibrium payoff player i obtains in component C is Û (|C|) = v
(
âi (|C|)). We also define 

the total welfare that members of component C obtain as �(|C|) = |C|Û(|C|).

Theorem 4. Let G∗ be a network that maximizes total welfare, and having |E| = ∑N
i=1

|N(i,G∗)|
2 ≤

N − 1 links. Then, G∗ is minimally connected. Moreover, the following hold:

a. If � is strictly convex, G∗ has a single non-trivial component.
b. If � is strictly concave, then G∗ has N − E components. Taking n̄ as the only integer such 

that N
N−E

− 1 < n̄ ≤ N
N−E

, a component of G∗ is formed by n̄ or n̄ + 1 nodes. If n̄ = N
N−E

, 
then all components have size n̄.

The restriction 1
2

∑N
i=1|N(i, G∗)| ≤ N − 1 implies that the problem is nontrivial; if it did not 

hold welfare maximizing networks would have a single component of N or more links. When �
is strictly convex, a network with two components can be improved by reassigning connections 
to form a single component involving all but one of the investors from the original components. 
This implies that in order to maximize welfare, a network must have a single nontrivial com-
ponent. In contrast, when � is concave, two differently sized components can be improved by 
making their sizes more homogeneous. Therefore, maximizing total welfare requires that all 
components are of a similar size and therefore their sizes differ in at most one player. The rest of 
the characterization in part b is just an accounting exercise.21

Theorem 4 relates to results on cooperation and group size. Pecorino (1999) and Haag and 
Lagunoff (2007) explore how the addition of new players determines cooperation in repeated 
public good games with perfect monitoring. In contrast, we fix the total number of players and 
simply assign investors to be part of different components.

Discussion: closure versus structural holes There are two main sociological perspectives on the 
benefits of different social architectures for welfare (Burt, 2001; Sobel, 2002). On the on hand, 
the closure view set forth by Coleman (1990) emphasizes that in networks with high closure and 
cohesion, the enforcement of cooperative behaviors is more effective. In Coleman’s (1990) argu-
ment, cohesion facilitates the implementation of sanctions and therefore leads to higher welfare. 
On the other hand, Burt’s (1992) structural hole argument poses that the existence of players 
linking otherwise disconnected groups is socially beneficial as those players can bridge non-
redundant sources of information.22

As our analysis makes clear, this seemingly conflicting views can be reconciled after observ-
ing that they apply to different models of information flows on networks. The closure view is 
consistent with the model presented in Section 2, in which once a player becomes aware of a 
defection against one of his direct connections, he cannot pass that information to other players. 
As shown in Section 3, the key game theoretical reason that makes cohesion desirable is that 
harsher punishments are available when, within a component, all players can observe and punish 

21 Under Assumption 1 and δ > δ̄, âi (c) = g−1( δ
1−δ

c
N

maxf ) and therefore �(c) = cv ◦ g−1( δ
1−δ

c
N

maxf ). Deter-

mining the convexity properties of � is simple. � is convex when so is v ◦ g−1, whereas � is concave when v ◦ g−1(x)

is sufficiently concave (for example, v ◦ g−1(x) = A − ( 1
x )1+p , with p > 0 and A > ( δ

1−δ
1
N

)1+p).
22 See also Granovetter (1973).
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a defection. Burt’s (1992) perspective is supported by the model of Section 4.1, in which play-
ers can transmit any available information to their direct and indirect contacts. In this context, 
scattered networks are optimal as they maximize the number of players that become aware of a 
defection and result in more severe punishments.

These observations are similar to those made by Chwe (1999) and Sobel (2002). In particular, 
Sobel (2002) observes that “widely scattered weak links are better for obtaining information, 
while strong and dense links are better for collective action.” Our results formalize this intuition 
in a full-fledged dynamic model of imperfect information in networks.

4.2. Design with intermediate information flows

We investigate the restrictions that incentive compatibility conditions put on equilibrium ac-
tions for the model with d = 1 and q ∈ [0, 1]. We show that the basic intuition behind the star 
result, Theorem 2 part c, survives when information flows are more general.

Theorem 5. Under Assumption 1, let δ > δ̄, and assume that U is such that

U(x) − U(x − 1 + δ) ≥ x
(
U(x − 1 + δ) − U(0)

)
, 1 ≤ x ≤ N − 1. (4.1)

Let G∗ and G be networks such that 
∑N

i=1|N(i, G)| ≤ ∑N
i=1|N(i, G∗)|. If G∗ is a star but G is 

not, then G∗ gives strictly more total welfare than G.

When v ◦ g−1 is sufficiently convex, forming a star is socially desirable as the incremental 
social gains from having a highly connected investor are substantial. Intuitively, the center of the 
star is in a very good position because in no network he could be part of a bigger component, 
and moreover, in the star he is directly connected to all nodes in the component.23

5. Concluding remarks

This paper studies optimal network design in a repeated game model in which the social 
network determines information flows. The main insight is that cohesive networks coordinate 
punishments when information travels slowly, while sparse networks increase the deterrence 
power when information flows rapidly within a component. These results clarify different socio-
logical views on the merits of alternative social architectures.

We now discuss some generalizations and limitations of our results.

Non-uniform matching and asymmetries Our results are robust to small asymmetries between 
investors. But some of our results need not extend to models in which investors are extremely 
asymmetric. Suppose for example that investors are randomly (and independently) chosen ac-
cording to a distribution π ∈ R

N++ where π(1) = 1 − ε and π(j) = ε/(N − 1) for j �= 1, with ε
close to 0. This means that a star centered at investor 1 maximizes total expected welfare when 
v ◦ g−1 is linear. This shows that Theorem 2 need not hold when investors are sufficiently het-
erogeneous. Theorem 1 need not hold because an investor j �= 1 in a complete component that 

23 Some of the results from Section 3 do not extend to this general setup. In the Online Appendix, we extend this 
model and also show that a network of incomplete components can Pareto dominate a network of complete components. 
However, in the Online Appendix we also show that when q is close to 0, Theorems 1 and 2 are valid approximations.
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excludes investor 1 could attain lower payoffs than in a network of incomplete components that 
includes investor 1. Theorem 3 remains valid.

Synchronous interactions We consider a variation of the model in which at each round a subset 
of investors is chosen to interact with the agent. Formally, there exists a set I containing sub-
sets of {1, . . . , N} and a distribution r over I such that at each t , I t ∈ I is randomly selected 
according to r . We allow the possibility that ∅ ∈ I . All agents i ∈ I t interact with the investor 
simultaneously in round t as in our baseline model. We assume that a player i ∈ I t does not ob-
serve I t . Players are equally likely to be selected: 

∑
I∈I st i∈I r(I ) does not depend on i and we 

denote this probability by α < 1. Focusing on profiles that sustain cooperation, it follows that an 
incentive condition similar to that in Lemma 1 holds (now an investor is selected with probability 
α instead of 1/N ), and all our results extend.

Pairwise stable networks Our results characterize optimal networks, but in reality links are 
formed in a decentralized way. One way to model such decentralized process is by exploring 
pairwise stable networks (Jackson and Wolinski, 1996). To follow such approach, it would be 
necessary to model how an equilibrium of the repeated game is selected when an arbitrary 
network is formed. Such selection process is not easy to model as in networks of incomplete 
components, there is no Pareto dominant equilibrium (see Example 3).

Appendix A

This Appendix consists of four parts. Appendix A.1 presents results to characterize equilib-
ria in arbitrary networks and provides some comparative statics results. Appendix A.2 presents 
proofs for Section 3.1. Appendix A.3 presents proofs for Section 3.2. Appendix A.4 presents 
proofs for Section 4.

A.1. Equilibria in arbitrary networks

Characterizing the set of equilibria (or the Pareto-frontier of such set) in the model of Section 2
is beyond the scope of the paper. In this Appendix, we derive some estimates for equilibrium 
investments and use them to find optimal equilibria in networks.

Recall that a function h : R →R is Lipschitz-continuous with constant Lh ≥ 0 in X ⊆R if for 
all x, y ∈ X, |h(x) − h(y)| ≤ Lh|x − y|. The following result is useful to characterize equilibria 
in arbitrary networks. All proofs can be found in the Online Appendix.

Proposition 3. Assume that f and g are Lipschitz-continuous with constants Lf and Lg in [0, b̄]
(where b̄ was introduced in Condition 1). Let G be a network and σ ∈ �(G) that implements 
a ∈ R

N++. Then, for all i = 1, . . . , N ,

δ

1 − δ

1

N

∑
k∈N(i)

f (ak)|N(k) \ N(i)| (A.1)

≤N(1 − δ) + δ|N2(i)|
δ

( δ

1 − δ

1

N

∑
k∈N̄(i)

Lf |ak − āG
k | + Lg|ai − āG

i |
)

+
∑

k∈N2(i)

( δ

1 − δ

1

N

∑
l∈N̄(k)

Lf |al − āG
l | + Lg|ak − āG

k |
)
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Fig. 5. There is an efficient equilibrium in which player 1 ignores defections against 3.

This result proves that if an action profile a ∈ R
N++ can be implemented in network G, with 

a close to āG, then for any i the neighborhood N̄(i) must be sufficiently cohesive: the weighted 
sum of links that “leave” the neighborhood must be sufficiently small. As in Proposition 1, the 
basic force here arises since in networks of incomplete components, monitoring is imperfect. 
Intuitively, if some equilibrium in network G is implementing a profile close to āG on some 
extended neighborhood of i, then the deterrence of double defections (first against i and then 
against investors within distance 2 of i) implies that investors k ∈ N2(i) cannot loose too much 
leverage following the first defection. As a result, investors k ∈ N2(i) cannot have many connec-
tions in common with i.

We apply this result to illustrate some novel effects in networks of incomplete components.

Optimal equilibria need not be in trigger strategies The following example shows that trigger 
strategies need not be optimal.

Example 2. Suppose that N = 3, f (a) = 1, g(a) = a, and consider network G in Fig. 5.
Let a ∈ R

3++ be implemented by some σ ∈ �(G). From Lemma 1, a1 ≤ δ
1−δ

, and a2, a3 ≤
δ

1−δ
2
3 . Now, since f and g are Lipschitz with Lf = 0 and Lg = 1, we can use Proposition 3 to 

deduce that

δ

1 − δ

1

3
≤ 3(1 − δ) + δ

δ
(

δ

1 − δ

2

3
− a2) + (

δ

1 − δ

2

3
− a3)

It follows that if a2 = δ
1−δ

2
3 , then a3 ≤ δ

1−δ
1
3 . We claim that a = ( δ

1−δ
, δ

1−δ
2
3 , δ

1−δ
1
3 ) can be 

implemented by a strategy σ which is not a trigger strategy. Such a strategy σ is such that on-path, 
investors play a. Any defection against 1 triggers all players to refuse trade in all subsequent 
rounds, a defection against 2 is punished by players 1 and 2, and a defection against 3 is punished 
only by player 3. Following steps similar to those in the proof of Theorem 2 (c), these outcome 
can be part of a perfect Bayesian equilibrium.

This example shows that in networks of incomplete components, a Pareto optimal equilibrium 
need not be in trigger strategies in that some players ignore defections. Moreover, there is no 
equilibrium in trigger strategies such that the Pareto efficient action profile ( δ

1−δ
, δ

1−δ
2
3 , δ

1−δ
1
3 ) is 

played on the path of play. In network G, player 1 ignores defections against 3 to favor investor 2. 
If player 1 did not ignore defections against 3, investor 2 would be more vulnerable and the agent 
could profitable deviate against 3 and then against 2. To see this, suppose that player 1 refuses 
trade after a defection against 3. If the agent defects against 3, it will be in his interest to defect in 
a subsequence encounter with 2. This implies that the following incentive constraint must hold: 

1
1−δ

≥ 1 + a3 + ∑∞
t=1 δt (1/3)(2/3)t−1(1 + a2). When a2 = δ

1−δ
2
3 and a3 = δ

1−δ
1
3 , this condition 

does not hold.



F. Balmaceda, J.F. Escobar / Journal of Economic Theory 170 (2017) 289–318 309
Fig. 6. Investors 1 and 4 have lower payoffs in network Ḡ even when both of them (a) have more direct connections in Ḡ, 
(b) pertain to a larger component in Ḡ, (c) have fully clustered neighborhoods in Ḡ.

Comparative statics Proposition 3 suggests that investors can attain relatively high equilibrium 
actions only when their direct connections are not connected to more distant players. This implies 
that the impact of more connections or higher clustering coefficients (as defined in Chapter 2.2.3 
in Jackson, 2008) on investors payoffs is ambiguous. The following example illustrates this ob-
servation.

Example 3. Suppose that N = 5, f (a) = 1 and g(a) = a. See Fig. 6.
In network G, investor 1 is connected to investors 2 and 3. Moreover, āG

1 = δ
1−δ

3
5 can be 

implemented by an equilibrium in which investor 1 plays āG
1 on the play-path, whereas 2 and 

3 play δ
1−δ

1
5 . A defection against 1 triggers no further participation by 1, 2, and 3; a defection 

against 2 (resp. 3) triggers no further participation by 2 (resp. 3), investor 1 keeps participating 
choosing δ

1−δ
2
5 , investor 1 refuses trade only after a second defection. It is clear that it is in the 

interest of the agent to cooperate when facing either 1, 2, or 3. Since investors 4 and 5 belong to 
a different component (which is complete), we can construct a profile sustaining cooperation in 
which investor 1 invests δ

1−δ
3
5 and investor 4 invests δ

1−δ
2
5 .

Take now network Ḡ. At first glance, it could seem that investors 1 and 4 are in a more 
advantageous position (compared to G) since in Ḡ investor 4 has more direct connections and, 
moreover, both investors’ neighborhoods are fully clustered. We show that this is not the case. 
Take a ∈ R

5++ that can be implemented by some σ ∈ �(G) and apply Proposition 3 to deduce 
that

δ

1 − δ

2

5
≤ 5(1 − δ) + δ

δ
| δ

1 − δ

3

5
− a1| + | δ

1 − δ

3

5
− a4|.

This inequality immediately shows that if a1 = δ
1−δ

3
5 then a4 ≤ δ

1−δ
1
5 (< δ

1−δ
2
5 ).

We finally present a result establishing some properties of the equilibrium set as links are 
added.

Proposition 4. Under Assumption 1, let δ > δ̄. The following hold:

a. Let G and G∗ be networks such that for some i, |N(i, G∗)| ≥ |N(i, G)|. Then there exists 
σ ∗ ∈ �(G∗) such that investor i gets higher expected payoff under σ ∗ than in any σ ∈ �(G).

b. Let G∗ be a network formed of two or more complete components of size at least 2 and 
σ ∗ ∈ �(G∗) be the Pareto optimal equilibrium implementing āG∗

. Let l and m two investors 
in different components of G∗, and build a new network G∗ ∪ {lm} by adding link lm to G∗. 
There is no σ ∈ �(G∗ ∪ {lm}) Pareto dominating the Pareto dominant equilibrium in G∗.
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This result shows that adding a link can always result in higher payoff for some player. The 
second part shows that the addition of a link need not result in Pareto improvements. The idea 
is that if one player strictly improves by adding a link, then some other player will lose leverage 
after a defection and therefore he should reduce his equilibrium investment.

A.2. Proofs for Section 3.1

Proof of Lemma 1. The proof is organized as follows. In Claim 1, we derive necessary condi-
tions for implementability and then, in Claim 2, we show that those necessary conditions have a 
larger solution āG. Finally, in Claim 3 we show that the largest solution āG is strictly positive.

Claim 1. Let σ ∈ �(G), (i1, . . . , iT ) ∈ {1, . . . , N}T be any selection of randomly chosen in-
vestors, and aT be the action chosen by iT on the path of play. Then,

g(aT ) ≤
∞∑

t=T +1

δt−T
∑

j∈N̄(iT )

1

N
Eσ

[
f (at

it ) | i1, . . . , iT , it = j
]
. (A.2)

To prove this Claim, denote by V (C) (resp. V (D)) the continuation value accruing to the agent 
by cooperating (resp. defecting) against investor iT at the on path history selecting (i1, . . . , iT ). 
Then,

g(aT ) ≤ V (C) − V (D).

Now, since σ sustains cooperation

V (C) =
∞∑

t=T +1

δt−T
Eσ [f (at

it ) | i1, . . . , iT ]

=
∞∑

t=T +1

δt−T
N∑

j=1

1

N
Eσ [f (at

it ) | i1, . . . , iT , it = j ].

Now, after a defection against iT , it is still feasible for the agent to cooperate when facing players 
i /∈ N̄(iT ). Thus, following a defection against iT , the agent can secure a total discounted payoff

V (D) ≥
∞∑

t=T +1

δt−T
∑

j /∈N̄(iT )

1

N
Eσ [f (at

it ) | i1, . . . , iT , it = j ].

It follows that

g(aT ) ≤
∞∑

t=T +1

δt−T
Eσ [f (at

it ) | i1, . . . , iT ]

−
∞∑

t=T +1

δt−T
∑

j /∈N̄(iT )

1

N
Eσ [f (at

it ) | i1, . . . , iT , it = j ]

=
∞∑

t=T +1

δt−T
∑

j∈N̄(i)

1

N
Eσ

[
f (at

it ) | i1, . . . , iT , it = j
]
.
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This completes the proof of the claim.

Consider now the set

A =
{
α | α :

∞⋃
t=1

{1, . . . ,N}t → R+
}
.

For any σ ∈ �(G), we can generate the same distribution over on path actions by using a partic-
ular element ᾱ = ᾱσ ∈ A.

Since g is continuous, its range g(R+) is connected. From the fourth restriction in Condi-
tion 1, for any α ∈ A,

g(0) ≤ δ

1 − δ

f (0)

N

≤
∞∑

t=T +1

δt−T
∑

j∈N̄(iT )

1

N
E

[
f (α(i1, . . . , iT , iT +1, . . . , it )) | i1, . . . , iT , it = j

]
.

Now, if supa∈R+ g(a) = ∞, then it immediately follows that

∞∑
t=T +1

δt−T
∑

j∈N̄(iT )

1

N
E

[
f (α(i1, . . . , iT , iT +1, . . . , it )) | i1, . . . , iT , it = j

] ∈ g(R+).

(A.3)

If supa∈R+ g(a) < ∞, then the fourth restriction in Condition 1 implies that

∞∑
t=T +1

δt−T
∑

j∈N̄(iT )

1

N
E

[
f (α(i1, . . . , iT , iT +1, . . . , it )) | i1, . . . , iT , it = j

] ≤ sup
a∈R

g(a)

and therefore (A.3) holds. We can define T G : A → A by(
T G(α)

)
(i1, . . . , iT )

= g−1
( ∞∑

t=T +1

δt−T
∑

j∈N̄(iT )

1

N
E

[
f (α(i1, . . . , iT , iT +1, . . . , it )) | i1, . . . , iT , it = j

])
.

Claim 2. For any network G, there exists āG ∈ R
N+ which is the largest solution to the equation 

a = �(a, G), with

�i(a,G) = g−1
( δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (aj )
)
.

Moreover, any solution α ∈ A to the system α ≤ T G(α) satisfies α(i1, . . . , iT ) ≤ āG
iT

for all 
(it )Tt=1 ∈ {1, . . . , N}T and for all T .

To prove this claim, use the third and the fourth restrictions in Condition 1 to define

Ā = supg−1(
δ

1 − δ
f (a)) = g−1(

δ

1 − δ
supf ) ∈R.
a≥0



312 F. Balmaceda, J.F. Escobar / Journal of Economic Theory 170 (2017) 289–318
Note that for any α, T G(α)(i1, . . . , iT ) ≤ Ā for all (i1, . . . , iT ) ∈ {1, . . . , N}T and all T . De-
fine A∗ = A ∩ {α | α(i1, . . . , iT ) ≤ Ā}. In order to find solutions to the system α ≤ T G(α), 
it is enough to restrict the domain and range of T G to A∗ and, abusing notation, we write 
T G : A∗ → A∗. Let α∗ ∈ A∗ be the largest element in A∗ defined as α∗(i1, . . . , iT ) = Ā for 
all (i1, . . . iT ). Since T G is non-decreasing, Tarski’s fixed point theorem implies the existence 
of a largest fixed point ᾱ ∈ A, which can be computed as the limit point of the sequence 
((T G)n(α∗))n≥1. Observing that (T G)n(α∗)(i1, . . . , iT ) is only a function of iT (and not of 
the vector (i1, . . . , iT −1)), we can actually represent the sequence ((T G)n(α∗)) ⊆ A∗ as a se-
quence of vectors (αn)n≥1 ⊆ R

N with (T G)n(α∗)(i1, . . . , iT ) = αn
iT

. Denote āG = limn→∞ αn. 
By construction, the sequence (αn) satisfies αn = �(αn−1, G) with α1 = Ā an upper bound for 
the set of fixed points of �(·, G). As a result, āG is the largest fixed point of the non-decreasing 
function �(·, G). Since āG actually represents the largest fixed point of T G, it readily follows 
that for any α ≤ T G(α), α(i1, . . . , iT ) ≤ āG

iT
for all (i1, . . . , iT ). �

Claim 3. āG 
 0.

To prove this claim, we argue by contradiction. Assume that āG
i = 0 for some i. Then,

0 = �i(ā
G
i ) = g−1

( δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (āG
j )

)

and therefore g(0) = δ
1−δ

1
N

∑
j∈N̄(i,G) f (āG

j ). From the fourth restriction in Condition 1, g(0) <
δ

1−δ
1
N

f (0) ≤ δ
1−δ

1
N

∑
j∈N̄(i,G) f (āG

j ), which is a contradiction.

Proof of Proposition 1. Proving a ⇒ b is immediate. We prove the converse.
Let σ ∈ �(G) and suppose that āG is played on-path. Fix i and let V (C) (resp. V (D)) be the 

continuation value after playing C (resp. D) in an encounter with i. Thus,

f (āG
i ) + V (C) ≥ f (āG

i ) + g(āG
i ) + V (D)

Using the fixed point characterization for āG, and the fact that V (C) = δ
1−δ

1
N

∑N
j=1 f (āG

j ), we 
deduce that the continuation value after a defection against i equals

V (D) ≤ δ

1 − δ

1

N

∑
j /∈N̄(i,G)

f (āG
j ).

Now, decompose the continuation value V (D) following the defection against i as payoffs accru-
ing from encounters with investors j ∈ N̄(i, G), v̄, and payoffs accruing from encounters with 
investors j /∈ N̄(i, G), v̂. By definition V (D) = v̄ + v̂. Since agents’ payoffs are nonnegative, 
v̄ ≥ 0. Moreover, following a defection against i, it is feasible for the agent to cooperate in all 
remaining encounters against j /∈ N̄(i, G) and therefore v̂ ≥ δ

1−δ
1
N

∑
j /∈N̄(i,G) f (āG

j ). It follows 

that v̄ = 0 and V (D) = v̂ = δ
1−δ

1
N

∑
j /∈N̄(i,G) f (āG

j ). Moreover, following a defection against i, 

continuation play must be such that (i) all investors j ∈ N̄(i, G) do not participate, and (ii) there 
is no contagion: investors j /∈ N̄(i, G) keep investing according to āG

j and the agent cooperates 
in all those encounters.

Now, assume that G is not of complete components and let i and k be within distance 2. 
Consider a defection against i in t = 1 and consider the incentives the agent faces if he meets k
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in t = 2. From the previous paragraph, the path of play in encounters j /∈ N̄(i) should involve 
cooperation. Following an argument similar to that in the proof of Lemma 1, we derive the 
incentive constraint for cooperation when facing k after a defection against i

g(āG
k ) ≤ δ

1 − δ

1

N

( ∑
j /∈N̄(i)

f (āG
j ) −

∑
j /∈N̄(i)∪N̄(k)

f (āG
j )

)

Since i and k are within distance 2, it follows that 
∑

j /∈N̄(i) f (āG
j ) − ∑

j /∈N̄(i)∪N̄(k) f (āG
j ) <∑

j∈N̄(k) f (āG
j ) and therefore āG

k < �k(ā
G), yielding a contradiction and concluding the 

proof. �
A.3. Proofs for Section 3.2

Proof of Theorem 1. Take G and G∗ as in the statement of theorem. From the proof of Claim 2, 
āG and āG∗

can be computed by iterative applications of �(·, G) and �(·, G∗). Starting both it-
erative procedures from a common upper bound Ā, denote by ān and ā∗n

the corresponding 
sequences for n = 0, 1, 2, . . . . Since G∗ is regular and has complete components, it follows that 
ā∗n

i = ā∗n
j if |N(i, G∗)| = |N(j, G∗)|, whereas ā∗n

i > ā∗n
j if |N(i, G∗)| > |N(j, G∗)|.24 In par-

ticular, if N(j, G∗) �= ∅,

ā∗n
j = max

k=1,...,N
ā∗n

k . (A.4)

We argue that ān ≤ ā∗n using induction. Assume the claim is true for some n. Now,

ān+1
i =�i(ā

n,G) = g−1
( δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (ān
j )

)
≤ g−1

( δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (ā∗n
j )

)

≤ g−1
( δ

1 − δ

1

N

∑
j∈N̄(i,G∗)

f (ā∗n
j )

)
= ā∗

i

n+1
.

The first inequality follows by the induction hypothesis. The second inequality follows from 
equation (A.4) and the fact that |N(i, G∗)| ≥ |N(i, G)| for all i. Thus, ān+1 ≤ ā∗n+1

. We deduce 
that ān ≤ ā∗n

for all n = 0, 1, . . . and, by passing to the limit, that āG ≤ āG∗
.

To finally prove Theorem 1, let σ ∈ �(G), and note that ασ (i1, . . . , iT ) ≤ āG
iT

from Lemma 1, 

where the inequality is strict for some history due to Proposition 1. Noting that āG∗
can actually 

be implemented using trigger strategies in G∗ and āG ≤ āG∗
, the result follows since v is strictly 

increasing and f is nondecreasing. �
Proof of Lemma 2. Define ã as ãi = g−1

(
δ

1−δ
|N̄(i,G)|

N
f̄

)
, where f̄ = maxf . Note that

āG
i = g−1

( δ

1 − δ

1

N

∑
j∈N̄(i,G)

f (āG
j )

)
≤ ãi

for all i. Since δ > δ̄,

24 Note that in this last case, |N(i, G∗)| = κ and |N(j, G∗)| = 0.
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ãi ≥ g−1( δ

1 − δ

1

N
f̄

) ≥ a = min(arg maxf )

for all i. Therefore �i(ã) = g−1( δ
1−δ

|N̄(i,G)|
N

f̄ ) = ãi . It follows that for δ > δ̄, ã is a fixed point 
of �. Since āG is the largest fixed point, ãi ≤ āG

i for all i and we conclude that ã = āG. �
Proof of Theorem 2. Let ρ = ∑N

i=1|N(i, G∗)| and define f̄ = maxf . From Lemma 1, for a 
social network G and σ ∈ �(G)

ασ (i1, . . . , it ) ≤ g−1( δ

1 − δ

N̄(it ,G)

N
f̄

) ∀ (i1, . . . , it )

with at least some inequality strict if G has some incomplete component. Taking expectations 
and summing

N∑
i=1

ui(σ,G) ≤ 1

1 − δ

1

N

N∑
i=1

v ◦ g−1( δ

1 − δ

N̄(it ,G)

N
f̄

)

with strict inequality for G having some incomplete component.
Take G∗ having complete components (as in parts a and b). From Proposition 1, there exists 

σ ∗ ∈ �(G∗) such that

N∑
i=1

ui(σ
∗,G∗) = 1

1 − δ

1

N

N∑
i=1

v ◦ g−1( δ

1 − δ

N̄(i,G∗)
N

f̄
)
.

Part a follows immediately. To prove b, consider the relaxed problem

max
(x1,...,xN )

N∑
i=1

v ◦ g−1( δ

1 − δ

xi + 1

N
f̄

)
,

subject to xi ∈ {1, 2, . . . , N}, ∑N
i=1 xi ≤ ρ. This problem can be thought of as the problem of 

assigning a total of ρ pennies between N persons with the purpose of maximizing total utility. 
Since v ◦ g−1 is strictly concave and all components of G∗ are of the same size γ ≥ 2, this 
problem has a single solution x∗

i = γ − 1 for all i. Noting that (xi)
N
i=1 and (x∗

i )Ni=1 defined 
as xi = |N(i, G)| and x∗

i = |N(i, G∗)| = 2ρ/N are, respectively, feasible and optimal for the 
maximization above, it follows that

N∑
i=1

v ◦ g−1( δ

1 − δ

N̄(i,G)

N
f̄

)
<

N∑
i=1

v ◦ g−1( δ

1 − δ

N̄(i,G∗)
N

f̄
)
.

It remains to prove part c. Observe first that in the star G∗, we can construct a strategy pro-
file σ ∗ that yields average total welfare equal to U(E) + (N − 1)U(0), where E = ρ/2 is the 
number of available links. Take investor 1 as the center of the star and investors 2, . . .E + 1 as 
the leaves of the star. On the path of play, investor 1 invests g−1( δ

1−δ
E+1
N

f̄ ), whereas all other 
investors take action g−1( δ

1−δ
1
N

f̄ ). A defection against player 1 implies all other star members 
refuse trade in subsequent rounds (and after any second deviation). A defection against any i �= 1
implies only player i refuse trade in subsequent rounds, while player 1 keeps participating and 
playing g−1( δ

1−δ
E
N

f̄ ) (more generally, after a number n of defections against leaves, 1 chooses 
g−1( δ E+1−n f̄ )). The agent cooperates on the play path and, after a defection, keeps coop-
1−δ N
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erating when facing any investor who according to his strategy should participate (defecting 
otherwise). This strategy profile sustains cooperation and results in total average welfare equal 
to U(E) + (N − 1)U(0).

Now, consider the maximization problem

W̄ = max
G

N∑
i=1

U(|N(i,G)|) (A.5)

subject to 
∑N

i=1|N(i, G)| ≤ ρ, and G is not a star. Problem (A.5) yields an upper bound for total 
equilibrium welfare over all networks G different from a star and having less than 2ρ links. Let 
Ḡ be optimal for (A.5) and let i∗ ∈ arg maxi |N(i, Ḡ)|.

We first note that if there exists ij ∈ Ḡ, with i �= i∗ �= j , such that the new network formed 
from Ḡ by deleting ij and using that link to connect some isolated player k to i∗, then Ḡ cannot 
be optimal. Indeed, the net gain from forming the new network would be

U(|N(i∗, Ḡ)| + 1) − U(|N(i∗, Ḡ)|) + U(|N(k, Ḡ)| + 1) − U(|N(k, Ḡ)|)
+ U(|N(i, Ḡ)| − 1) − U(|N(i, Ḡ)|) + U(|N(j, Ḡ)| − 1)

− U(|N(j, Ḡ)|)
Define (x) = U(x) − U(x − 1) and rewrite the inequality above as

(|N(i∗, Ḡ)| + 1) + (1) ≥ (|N(i, Ḡ)|) + (|N(j, Ḡ)|).
As  is increasing, the inequality holds as (x + 1) + (1) ≥ 2(x). It follows that if Ḡ has 
two or more components, then only two of them are nontrivial, one of the nontrivial components 
is a star formed by E −1 links, and the other nontrivial component is a line formed by two nodes. 
Such network yields total welfare which is less than the welfare from the star. Indeed,

U(E − 1) + (E − 1)U(1) + 2U(1) + (N − E − 2)U(0) ≤ U(E) + (N − 1)U(0)

if and only if U(E) − U(E − 1) ≥ (E − 1)(U(1) − U(0)) and the inequality above holds true. It 
is therefore enough to consider the case where Ḡ has a single nontrivial component.

Define I = {i | |N(i, Ḡ)| ≥ 2}. Using the construction above, it follows that |I | ≤ 3. Consider 
first the case |I | = 3 and let I = {i∗, j1, j2}. We claim that N(jn, Ḡ) = {i∗, j3−n} as otherwise, 
and following the construction above, deleting jnl, with l /∈ I , to form i∗m, with N(m, Ḡ) = ∅, 
would be worthwhile. If |I | = 3, the value of (A.5) equals

W̄ = U(E − 1) + (E − 3)U(1) + 2U(2) + (N − E + 1)U(0).

Now, assume |I | = 2 and let I = {i∗, j}. Observe that |N(j, Ḡ)| = 2 as otherwise |N(j, Ḡ)| ≥ 3
and we could remove one of the links connecting j and use that link to connect i∗ to a new player. 
If j ∈ N(i∗, Ḡ), then it is relatively easy to see that the objective function at Ḡ is less than or 
equal to U(E −1) + (E −3)U(1) +2U(2) + (N −E +1)U(0) and therefore j /∈ N(i∗, Ḡ). Take 
l, m ∈ N(j, Ḡ) and note that deleting jm and connecting j to i∗, deleting lj and connecting l so 
that in the new network the distance between l and i∗ equals 2, one can increase the objective. 
We deduce that |I | = 3 and no equilibrium in a network which is not a star can give total payoffs 
above W̄ = U(E − 1) + (E − 3)U(1) + 2U(2) + (N − E + 1)U(0). By assumption (E) ≥
(E − 2)(U(1) − U(0)) + (2) + U(2) and thus

U(E) + (N − 1)U(0) ≥ U(E − 1) + (E − 3)U(1) + 2U(2) + (N − E + 1)U(0)

proving the result. �
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A.4. Proofs for Section 4

Proof of Theorem 5. Let |E| be the number of links. Note that in the star we can always attain 
total welfare of U(|E|) + (N − 1)U(0) by constructing strategies like the ones in the proof of 
Theorem 2 part c. In a network which is not a star, for at most |E| + 1 players

g(ai) ≤ δ

N
|E| + δ2

1 − δ

|E| + 1

N
,

and therefore for any σ that sustains cooperation and any such i

ui(σ,G) ≤ 1

1 − δ

1

N
v ◦ g−1( δ

1 − δ

maxf

N
(|E| + δ)

)
.

To prove the result, it is therefore enough to show that

U(|E|) + (N − 1)U(0) ≥ (|E| + 1)U(|E| − 1 + δ) + (N − |E| − 1)U(0)

which is equivalent to U(|E|) − U(|E| − 1 + δ) ≥ |E|(U(|E| − 1 + δ) − U(0)
)
. Since this must 

hold for any 1 ≤ |E| ≤ N − 1, the result is established. �
Proof of Theorem 3. For any G, if i and j belong to the same component C, âG

i = âG
j , which 

is purely determined by the size of the component |C|. Now, for G as in the statement of the 
Theorem, take the component which is not minimally connected, C1, and link ij ∈ C1 such that 
C \ {ij} is connected. Take a second component C2 and any k ∈ C2, and use the link ij to form 
a new connection ik. We therefore obtain a new network G∗ such that, for all i, âG∗

i ≥ âG
i for 

all i, with strict inequality for i ∈ C1 ∪ C2. It follows that G∗ Pareto dominates G. �
Proof of Theorem 4. Since 1

2

∑N
i=1|N(i, G∗)| ≤ N − 1, G∗ has two or more components and 

from Theorem 3, G∗ is minimally connected. The characterization of part a follows by noting 
that if G∗ has two non-trivial components of sizes n1 and n2, each component must be minimally 
connected and we can form two components of size n1 + n2 − 1 and 1. This new network yields 
strictly more total welfare because � is convex.

For part b, the same convexity argument shows that if a network has two or more components 
of sizes n1 and n2 and n1 > n2, then n1 = n2 + 1. Let m be the number of components in the 
optimal network, and assume that m1 components have size n1 and m2 components have size 
m2, with n1 = n2 + 1 and m1 + m2 = m. The following feasibility restrictions hold:

n1m1 + n2m2 = N

(n1 − 1)m1 + (n2 − 1)m2 = E.

Combining both equations, m1 + m2 = m = N − E. From the first equation, (n2 + 1)(N − E) ≥
N and n2(N −E) ≤ N . Thus, N

N−E
− 1 ≤ n2 ≤ N

N−E
. Since n1 = n2 + 1, the result follows. �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2017.05.005.
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