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Abstract: Biomarkers represent a critical research area in neurodegeneration disease as they can con-
tribute to studying potential disease-modifying agents, fostering timely therapeutic interventions, and
alleviating associated financial costs. Functional connectivity (FC) analysis represents a promising
approach to identify early biomarkers in specific diseases. Yet, virtually no study has tested whether
potential FC biomarkers prove to be reliable and reproducible across different centers. As such, their
implementation remains uncertain due to multiple sources of variability across studies: the numerous
international centers capable conducting FC research vary in their scanning equipment and their sam-
ples’ socio-cultural background, and, more troublingly still, no gold-standard method exists to analyze
FC. In this unprecedented study, we aim to address both issues by performing the first multicenter
FC research in the behavioral-variant frontotemporal dementia (bvFTD), and by assessing multiple
FC approaches to propose a gold-standard method for analysis. We enrolled 52 bvFTD patients and
60 controls from three international clinics (with different fMRI recording parameters), and three
additional neurological patient groups. To evaluate FC, we focused on seed analysis, inter-regional
connectivity, and several graph-theory approaches. Only graph-theory analysis, based on weighted-
matrices, yielded consistent differences between bvFTD and controls across centers. Also, graph
metrics robustly discriminated bvFTD from the other neurological conditions. The consistency of our
findings across heterogeneous contexts highlights graph-theory as a potential gold-standard approach
for brain network analysis in bvFTD. Hum Brain Mapp 38:3804–3822, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: biomarkers; frontotemporal dementia; functional connectivity; graph-theory and neurode-
generative diseases
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INTRODUCTION

Multiple research efforts aim to detect sensitive early bio-
markers for neurodegenerative diseases, as these can contrib-
ute to studying potential disease-modifying agents, fostering
timely therapeutic interventions, and alleviating associated

financial costs (Henley et al., 2005; Humpel, 2011; Shaw et al.,

2007). Functional connectivity (FC) analysis represents a

promising approach in this context (Pievani et al., 2011,

2014). Yet, virtually no study has tested whether potential FC

biomarkers prove to be reliable and reproducible across

different centers. As such, their implementation remains

uncertain due to multiple sources of variability across stud-

ies. First, the numerous international centers capable of con-

ducting FC research vary in their scanning equipment and

their samples’ socio-cultural background; and second, while

there are multiple approaches to derive FC measures (Pievani

et al., 2011; van Wijk et al., 2010), no gold-standard method

exists to analyze the data. These limitations undermine the

reliability and reproducibility of FC results, which are essen-

tial requisites to be met by a candidate biomarker (Henley

et al., 2005; Humpel, 2011). Here, we aim to address these
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issues by performing an unprecedented multicenter FC anal-

ysis in the behavioral variant of the frontotemporal dementia

(bvFTD), and by assessing multiple FC approaches to pro-

pose a gold-standard method for analysis.
FTD is the second most common dementia in patients

below age 65 (Piguet et al., 2011a). Its relatively young onset,
its clinical overlap with other diseases, and its variable pat-
tern of brain atrophy make it difficult to achieve early diag-
nosis (Ibanez et al., 2014, Piguet et al., 2011a). Regarding FC,
bvFTD patients consistently exhibit abnormalities in the
salience network (SN), which encompasses the anterior cin-
gulate cortex (ACC) as well as orbitofrontal and insular
regions (Pievani et al., 2011, 2014). However, similar impair-
ments have been documented in Alzheimer’s disease (AD)
(Pievani et al., 2014) and neuropsychiatric diseases (Menon,
2011). Moreover, research in genetic forms of presymptom-
atic bvFTD is inconclusive, reporting both absence of altera-
tions (Whitwell et al., 2011) and changes (Dopper et al.,
2014) of the SN. These results cast doubts on the preclinical
sensitivity and specificity of SN disturbances as a hallmark
of bvFTD. This controversy is further fueled by results from
inter-regional connectivity analyzes (Zalesky et al., 2010),
which evaluate the strength of connections between areas
regardless of their encompassing resting-state network. In
bvFTD, this method has shown both increased and
decreased connectivity, even within the same area (e.g.,
insular cortex) (Agosta et al., 2013; Farb et al., 2013).

Arguably, discrepancies in the literature may reflect
inconsistencies among MRI recording devices, measurement
parameters, network analyzes, and even socio-demographic
differences. To circumvent these limitations and look for
specific biomarkers (Shaw et al., 2007), novel FC approaches
must be tested across methodologically and socio-
demographically heterogeneous settings. Crucially, most
current proposals to assess FC fail to conceive the whole
brain as a dynamic and interactive network (De Vico Fallani
et al., 2014). A radically different viewpoint is offered by
graph-theory, which allows characterizing the brain FC as a
complex network of interconnected elements (Bullmore and
Sporns, 2009; Sporns, 2014) with global and local properties.
Promisingly, this method may afford powerful biomarkers
of neurodegenerative disease (Pievani et al., 2011; Sporns,
2014). Yet, few graph-theory studies have demonstrated
aberrant network organization in bvFTD (Agosta et al., 2013;
Sedeno et al., 2016). This may be partially due to the lack of a
gold-standard approach to derive graph measures from FC
networks (Bullmore and Sporns, 2009; van Wijk et al., 2010).

Two outstanding questions thus emerge: (a) are any of the
FC methods or graph-theory approaches robust enough to
afford replicable findings across different fMRI acquisition con-
texts? (Papo et al., 2014; Shaw et al., 2007); and (b) can any of
these measures reveal disorder-specific alterations? (Papo et al.,
2014) This international multicenter study aims to address both
questions by establishing a gold standard network-disruption
signature of bvFTD. Specifically, we explored whether graph-
theory compared to other FC methods (inter-regional

connectivity and seed analysis) could robustly distinguish
bvFTD patients from controls despite major variability in clini-
cal diagnostic groups, fMRI parameters, and graph approaches.
To this end, we enrolled participants from three international
clinics specialized in neurodegeneration with different MRI
scanners and acquisition parameters. Then, we compared
diverse connectivity and graph-theory methods in the quest of
systematic and sensitive network markers across countries.
Finally, to evaluate our results’ specificity, we replicated the
study with three disease control groups: fronto-insular stroke
(FIS), AD, and primary progressive aphasia (PPA).

MATERIALS AND METHODS

Participants

The study comprised 148 participants. Fifty-two patients
fulfilling revised consensus criteria for probable bvFTD
(Rascovsky et al., 2011) were recruited from three interna-
tional clinics: INECO Foundation, Argentina (Country-1);
San Ignacio University Hospital, Colombia (Country-2);
and the frontotemporal dementia research group (FRON-
TIER) based at Neuroscience Research Australia, Australia
(Country-3). As in previous reports (Baez et al., 2014;
Piguet et al., 2011b; Torralva et al., 2009), clinical diagnosis
in each center was established by a standard examina-
tion—including extensive neurological, neuropsychiatric,
and neuropsychological assessments—and case revision by
a multidisciplinary clinical meeting of bvFTD experts. The
patients were functionally impaired and exhibited promi-
nent changes in personality and social behavior, as verified
by caregivers (behavioral features of bvFTD patients from
each center are reported in Supporting Information Table
S1). All patients showed frontal atrophy on MRI and fron-
tal hypoperfusion (when SPECT were available). They
were all in early/mild disease stages, did not fulfill criteria
for specific psychiatric disorders, and they presented simi-
lar demographic features (Supporting Information Table
S2). Patients presenting primarily with language deficits
were excluded. As show in Table IA, each patient sample
was matched on sex, age, and education with its own con-
trol group from the same scanning center. Healthy controls
(sixty in total) presented no history of psychiatric or neu-
rological disease.

To test the specificity of potential alterations in bvFTD,
we recruited 13 Country-1 patients with FIS [a neurological
condition with dissimilar pathophysiological mechanisms
and different patterns of local-global connectivity (Garcia-
Cordero et al., 2015)], and two other samples with neurode-
generation: 8 Country-2 patients fulfilling criteria for PPA
(Gorno-Tempini et al., 2011), and 15 Country-3 patients
who satisfied international criteria for AD (McKhann et al.,
2011). FIS patients were evaluated at least six months
post-stroke (to ensure stability of lesions and symptoms).
These groups were sex-, age-, and education-matched with
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its corresponding bvFTD sample, and assessed following
their institute’s standard clinical examination.

Participants (or their Person Responsible) provided signed
informed consent in accordance with the Declaration of Hel-
sinki. The study protocol was approved by the institutional
Ethics Committee of each center.

Image Acquisition

Structural imaging

Country-1 participants were scanned in a 1.5T Phillips
Intera scanner with a standard head coil. We used a
T1-weighted spin-echo sequence covering the whole brain
(matrix size 5 256 3 240 3 120, 1 mm isotropic; TR 5 7,489
ms; TE 5 3,420 ms; flip angle 5 88).

Country-2 participants underwent whole-brain structural
T1-rapid gradient-echo (MP RAGE) scans in a 3T Philips
Achieva (matrix size 5 256 3 256 3 160, 1 mm isotropic;
TR 5 8,521 ms; TE 5 4,130 ms; flip angle 5 98).

In Country-3, whole-brain structural T1-weighted spin echo
sequences were acquired through a 3T Philips MRI scanner
with standard head coil (matrix size 5 256 3 200 3 256, 1 mm
isotropic; TR 5 5,903 ms: TE 5 2,660 ms; flip angle 5 88).

Functional imaging

We obtained resting-state recordings with different scan-
ners and acquisition parameters across centers (Table IB).
They were instructed to keep their eyes closed, remain still,
and avoid moving or thinking about anything in particular
(Agosta et al., 2013; Farb et al., 2013; Garcia-Cordero et al.,
2015; Seeley et al., 2009; Whitwell et al., 2011).

Structural Imaging Analysis

Voxel-based morphometry

A voxel-based morphometry (VBM) analysis with the Sta-
tistical Parametric Mapping software (SPM12) was performed
to establish the global atrophy pattern in patients with neuro-
degeneration. As in previous research of our group (Baez
et al., 2016a,b; Couto et al., 2013; Santamaria-Garcia et al.,
2016), data were preprocessed on the DARTEL Toolbox fol-
lowing validated procedures (Ashburner and Friston, 2000).
Prior to modulation, the images were segmented in gray mat-
ter, white matter, and cerebrospinal fluid volumes. Next,
12 mm full-width half-maximum kernel images were
smoothed (Good et al., 2001) and normalized to MNI space.

Lesion mapping (FIS group)

Lesion masks were manually traced in native spaces
according to visible damage on a T1 scan, then normalized to
MNI space, and finally overlapped to obtain the lesion map.

Functional Imaging Preprocessing

FMRI preprocessing

The Data Processing Assistant for Resting-State fMRI
(DPARSF) (Chao-Gan and Yu-Feng, 2010) was used for pre-
processing as in previous studies (Garcia-Cordero et al.,
2016; Melloni et al., 2016). Images were slice-time corrected,
realigned, normalized and smoothed (Fig. 1A). We excluded
participants showing head movements greater than 3 mm
and/or rotations higher than 38: five Country-1 patients (all
with bvFTD) and four Country-3 patients (two with bvFTD
and two with AD). No differences were found in the mean
translational and mean rotational parameters among groups
(Table IC).

Matrix construction

Using the Automated Anatomical Labeling (AAL)-Atlas
(Tzourio-Mazoyer et al., 2002) –one of the most broadly
used atlas in dementia network studies (Baggio et al., 2014;
Li et al., 2013; Liu et al., 2012; Sanabria-Diaz et al., 2013;
Sanz-Arigita et al., 2010; Seo et al., 2013a,b; Supekar et al.,
2008; Xiang et al., 2013; Yao et al., 2010), and used in two
previous fMRI studies on bvFTD with graph theory mea-
sures (Agosta et al., 2013; Sedeno et al., 2016)2, we extracted
mean time-courses by averaging the BOLD signal of all vox-
els from each of the 90 regions of interest (ROIs). Pearson’s
correlation coefficient was used to construct a 90-node FC
network for each subject (Fig. 1C). We discarded negative
correlations, which are controversial and less systematic in
resting-state (Rubinov and Sporns, 2010).

Functional Connectivity Analysis

We assessed FC with three methods: inter-regional con-
nectivity, seed analysis, and graph-theory analysis.

Inter-regional connectivity

This analysis taps connectivity strength associations
between each pair of regions (based on the 90-node func-
tional connectivity network). It allows identifying altered
pairwise connection patterns in bvFTD compared to con-
trols. To this end, we used a network-based statistic (NBS)
(Zalesky et al., 2010) to identify altered pairwise connections
in bvFTD patients compared to controls (Fig. 1D). This is a
nonparametric statistical method that controls the multiple
comparisons problem and the family-wise error on a graph.
Briefly, potentially connected structures (named, graph com-
ponents) are derived from suprathreshold links, which are
identified based on an “a priori” threshold applied to a two-
sample t-test between controls and patients. To estimate the
significant value of these components, their topological
extension is compared against the null distribution of maxi-
mal connected component size that is calculated from a non-
parametric permutation testing. The NBS yields greater
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Figure 1.

fMRI: Preprocessing and analysis pipeline. A. Preprocessing: each fMRI

preprocessing steps was performed using the DPARSF toolbox, an

automated pipeline for resting-state fMRI data preprocessing previ-

ously used in graph-theory research (Cao et al., 2014) and in studies

on FTD’s functional connectivity features (Farb et al., 2013). B. Seed

analysis: two bilateral seeds were selected, namely, the ACC (right

x 5 5; y 5 19; z 5 28 and left x 5 25; y 5 19; z 5 28) and the anterior

ventral insula (right x 5 35; y 5 24; z 5 5; and left x 5 235; y 5 24;

z 5 5). Seeds consisted of 4-mm radius spheres. C. Matrix construc-

tion: Pearson’s correlation coefficient was used to construct 90-node

functional connectivity matrices per subject based on the Automated

Anatomical Labeling (AAL)-Atlas. D. Inter-regional connectivity: NBS

analyzes were performed over weighted undirected matrices (nega-

tive correlations were discarded), showing altered pairwise connec-

tions in bvFTD compared to controls. E. Graph-theory analysis:

graph-theoretical measures were derived from binary (fixed thresh-

old and fixed degree approaches) and weighted undirected matrices

(negative correlations were discarded). For the fixed threshold

approach, we analyzed 1,000 thresholds whose correlation values

(rho) ranged from zero to one (x axis). In the fixed degree approach,

the number of thresholds varied among countries to preserve a con-

stant degree value across subjects (x axis, country one: 2,474 thresh-

olds; country two: 2,453 thresholds and country three: 3,088

thresholds). We calculated the following measures: characteristic

path length (L), that is, the average of the minimum number of edges

that must be crossed to go from one node to any other node on the

network and is taken as a measure of functional integration (Watts

and Strogatz, 1998); average clustering coefficient (C), which indicates

how strongly a network is locally interconnected and is considered a

measure of segregation (Watts and Strogatz, 1998); degree (K), which

represents the number of connections that link one node to the rest

of the network (Bullmore and Sporns, 2009); closeness centrality

(CC), namely, the inverse of the average shortest path length between

one node and all the others in the network(Freeman, 1978); and

betweenness centrality (BC), indicating the number of shortest paths

that pass through a node and links the other node pairs across the

network (Freeman, 1978). Finally, we compared bvFTD against PPA

and AD based on a ROI analysis. These bilateral ROIs were selected

according to previously reported atrophy differences between these

diseases. The ventromedial prefrontal region involves one of the main

areas specifically affected in bvFTD compared to PPA (Lu et al.,

2013). The fronto-insular-limbic areas (inferior, medial, and superior

orbitofrontal gyrus, gyrus rectus, insular cortex, ACC, putamen, pal-

lidum and caudate) encompassed regions that are primarily affected

in bvFTD when compared to AD (Irish et al., 2014; Rabinovici et al.,

2007). [Color figure can be viewed at wileyonlinelibrary.com]
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power than mass-univariate link analysis because the null
hypothesis is rejected on a component-by-component level,
overcoming the multiple comparison problem (Zalesky
et al., 2010). In this way, results cannot be interpreted at the
individual connection level but on a structural level. The
NBS has already been used in neurodegenerative studies
(Bai et al., 2012; Wang et al., 2013) [see technical details in
(Zalesky et al., 2010)].

Seed analysis

We used seed analysis to explore differences between
controls and patients—and similarities across countries—in
the most important target network for bvFTD: the SN (Pie-
vani et al., 2011, 2014). Two bilateral regions previously
used in FTD studies to derive the SN were selected as seeds:
ACC (Dopper et al., 2014) and the ventral anterior insula
(Seeley et al., 2009) (see Fig. 1B). For each participant, BOLD
signal time course from the voxels within each seed region
were extracted and averaged together. Next, this averaged
time series was correlated to every voxel in the brain using
Pearson correlation coefficient. The whole-brain correlation
maps from each seed were averaged together to finally
derive the SN. The aim of this last step was to overcome
possible disadvantages of estimating the intrinsic connectiv-
ity analysis from a single seed region (Demertzi et al., 2015).

Graph-theory analysis

Using the BCT toolbox (Bullmore and Sporns, 2009), we
derived three approaches to graph-theoretical measures
from binary and weighted undirected matrices (Rubinov
and Sporns, 2010). To define the binary matrices, we applied
two typical approaches (Stam et al., 2007; van den Heuvel
et al., 2008) (Fig. 1E). The first procedure (fixed threshold
approach) establishes an absolute value (that range from
zero to one in 1,000 steps) to binarize the correlation coeffi-
cients between node-pairs. Values above/below this thresh-
old are set to 1 and 0, respectively. The number of node-
pairs that survive varies between subjects, so that networks
from each participant may differ in size and degree (van
Wijk et al., 2010). To avoid such differences, we applied a
second procedure (fixed degree approach) in which the
threshold is adjusted for each individual; hence the network
size is fixed across subjects (van Wijk et al., 2010). Although
this method overcomes network-size differences by forcing
the same number of connections for all participants, it may
modify network topology (van Wijk et al., 2010). Thus, small
correlation values from networks with low average connec-
tivity might surpass the threshold to achieve the fixed
degree, while larger correlation values from networks with
high average connectivity might not. Following state-of-the-
art recommendations (Rubinov and Sporns, 2010), we
explored multiple thresholds. Finally, to circumvent thresh-
olding issues, we estimated graph measures from weighted
undirected matrices while preserving information of each
node-pair (van Wijk et al., 2010). However, weight

differences across subjects might influence graph measures
as in the fixed threshold approach (van Wijk et al., 2010).

Integration and segregation measures. We explored two
extensively used measures to show efficient and ubiquitous
small-world organization (Rubinov and Sporns, 2010) of the
human brain (high levels of long-range integration com-
bined with high levels of local connectivity): characteristic
path length (L) and average clustering coefficient (C). These
were analyzed to test possible group differences in the bal-
ance between efficient inter-nodal information transmission
(low L values) and efficient local processing (high C values).

Nodal centrality features. These measures appraise the
relevance of a node within a network (Rubinov and
Sporns, 2010), for example by showing how many connec-
tions it has. We calculated the three most common nodal
measures (Rubinov and Sporns, 2010) to characterize the
centrality features of each region and the groups’ global
network centrality organization: (a) degree (K) –the total
amount of connections of a node (Bullmore and Sporns,
2009)–; (b) closeness centrality (CC) –a node’s overall inte-
gration with all the others in the network (Freeman,
1978)–; and (c) betweenness centrality (BC), –the centrality
of a node’s position in a network’s information flow or
integration (Freeman, 1978). These measures provide com-
plementary information. K shows a node’s involvement in
a network regardless of its position. Thus, a highly
connected node might possess abundant neighboring
connections but very few long-range associations, indicat-
ing a peripheral role in the network’s dynamics. On the
other hand, CC and BC characterize the integration and
relevance of a node, as they show whether it is closely
connected to the others or represents a central path for
inter-connections (Rubinov and Sporns, 2010).

Disease Control Groups

To test the specificity of our graph-theory results, we also
assessed FIS, AD, and PPA patients. Given that only graph
measures yielded robust results (see Graph-theory analysis),
both global and nodal indexes from these groups were com-
pared to those of bvFTD samples within their country.

Finally, we performed a ROI analysis to evaluate specific
anatomical differences between bvFTD and the other two neu-
rodegenerative diseases. ROIs were selected based on previ-
ous studies showing specific atrophy patterns of bvFTD
patients compared to PPA (Lu, et al., 2013) and AD (Irish,
et al., 2014; Rabinovici, et al., 2007) (Fig. 1E). For this assess-
ment, we used one of the most sensitive graph indexes accord-
ing to the above comparisons between bvFTD and controls.

Statistical Analysis

We used ANOVA and Pearson’s chi-square tests within
each country for demographic and movement comparisons.
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Figure 2.

(See legend on the following page.)
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VBM (SPM12)

A two-sample t-test corrected by total intracranial vol-
ume was used to compare patients and controls across
centers (FWE-corrected, P 5 0.05, extent threshold 5 100
voxels).

Inter-regional connectivity (NBS analysis)

Following state-of-the-art recommendations (Zalesky,
et al., 2010), in our two-sample t-test between controls and
patients we applied several a priori thresholds (ranging
from t-value 3 to t-value 4) for each center. We used 5,000
permutations for this analysis (Fig. 1D).

Seed analysis (SPM12)

One-sample t-tests were applied to display connectivity
maps in the control group of each center (FWE-corrected,
P 5 0.05, extent threshold 5 50 voxels). The overlap of sig-
nificant areas across centers was calculated through a con-
junction analysis on the statistical maps of each one-
sample t-test (FWE-corrected, P 5 0.05, extent thresh-
old 5 50 voxels). Voxel-wise connectivity was compared
between controls and bvFTD patients in the three coun-
tries with two-sample t-tests (P 5 0.001 uncorrected, extent
threshold 5 50 voxels). A conjunction analysis was also
performed to calculate the overlap of significant areas
(P 5 0.05 uncorrected, extent threshold 5 50 voxels). These
permissive thresholds were used to maximize the area of
overlap of the differences between controls and patients
across countries (Fig. 1B).

Graph measures (FieldTrip)

(Oostenveld et al., 2011)

To compare controls against bvFTD patients from each
center, we analyzed metrics derived from binary matrices
with a specific cluster-based permutation tests (5,000 permu-
tations) (Maris and Oostenveld, 2007). This analysis reduces
the impact of comparing multiple thresholds in graph-theory
(Sanz-Arigita et al., 2010; Sedeno et al., 2016), as it does not
depend on multiple comparisons correction or assumptions
about normal data distribution (Nichols and Holmes, 2002).
It was implemented as in a previous report (Sedeno et al.,
2016). Monte Carlo permutation tests (5,000 permutations)
were combined with bootstrapping to assess global graph
measures calculated from weighted matrices and ROI ana-
lyzes, as recommended (Bullmore and Bassett, 2011). Results
from region level analysis are P< 0.005 uncorrected (Bai
et al., 2012). Effect sizes were calculated with Cohen’s d [in
general interpreted as indicating small (0–0.20), medium
(0.50–0.80) and large (>0.80) effects (Cohen, 1988)], which is
recommend for measuring the magnitude of difference for
independent sample t-test (Cohen, 1988) –that is the statisti-
cal method used in each permutation step.

RESULTS

Structural Imaging

Voxel-based morphometry

The atrophy pattern of bvFTD patients replicated previous
results (Whitwell et al., 2009) and was consistent across coun-
tries (Fig. 2A) as shown by a conjunction analysis (see

Figure 2.

A. Atrophy pattern. VBM results (FWE-corrected, P 5 0.05,

extent threshold 5 100 voxels) showed a consistent pattern of

atrophy in the three countries (Whitwell et al., 2009), involving

the main areas reported for bvFTD patients: ACC, the insular

cortex, orbitofrontal areas, and medial temporal regions (hippo-

campus and amygdala). B. Inter-regional connectivity results. A

single connected network, which involved different amounts of

edges and nodes, was found altered in each country (P-value

<0.01, corrected). Node color coding: frontal areas, blue; parie-

tal regions, orange; temporal areas, yellow; limbic system, pur-

ple; occipital regions, red. Edge color: gray indicates altered

connections between different regions and color highlights con-

nections within a region. C. Seed analysis. The connectivity

maps of the control samples across centers showed a very con-

sistent engagement of the insular cortex and the ACC, two

main areas related to the SN (FWE-corrected, P 5 0.05, extent

threshold 5 50 voxels). Results from the comparison between

controls and bvFTD are not consistent across countries

(P 5 0.001 uncorrected, extent threshold 5 50 voxels). D. Graph

results across countries: Integration and segregation measures.

Fixed-threshold (P < 0.05, cluster-based corrected). Compared to

controls, patients exhibited higher values of L. Country one:

cluster one size from 0 rho to 0.41 rho; cluster two size from

0.48 rho to 0.62 rho; effect size 1.02. Country two: cluster one

size from 0 rho to 0.5 rho; cluster two size from 0.60 rho to

0.66 rho; effect size 0.77. Country three: cluster one size from 0

rho to 0.66 rho; cluster two size from 0.76 rho to 0.83 rho; effect

size 1.09. Regarding C, patients presented decreased values.

Country one: cluster size from 0 rho to 0.26 rho; effect size

0.85. Country two: cluster size from 0 rho to 0.52 rho; effect

size 0.75. Country three: cluster size from 0 rho to 0.45 rho;

effect size 0.85. Fixed-degree (P < 0.05, cluster-based corrected).

No differences were found in any of the countries. Weighted

undirected matrices (P< 0.05). Patients exhibited higher values of

L than controls. Country one: effect size 0.82. Country two:

effect size 0.75. Country three: effect size 1.03. C was lower in

patients than controls. Country one: effect size 0.80. Country

two: effect size 0.73. Country three: effect size 0.94. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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Supporting Information Fig. S1). Damage extended through-
out the ACC, the insular cortex, orbitofrontal areas, and
medial temporal regions (hippocampus and amygdala) (Iba-
nez and Manes, 2012) (Supporting Information Table S3).

Finally, to assess the reproducibility of atrophy patterns
across countries, we performed a correlation analysis between
the results of each dataset, following previously reported pro-
cedures. Correlation values higher than Rho> 0.2 were taken
to indicate high consistency of results between pairs of data-
sets. Our VBM results showed large Rho values between coun-
tries: country-1 vs country-2, Rho 5 0.77, P-value< 0.001;
country-1 vs country-3, Rho 5 0.85, P-value< 0.001; country-2
vs country-3, Rho 5 0.75, P-value< 0.001 (see Supporting
Information Fig. S2A).

Functional Connectivity

Inter-regional connectivity

In all centers, bvFTD showed decreased connectivity
compared to controls (Fig. 2B), although compromised
connection patterns were inconsistent across countries.
Predominant left-sided alterations were observed in
Country-1, whereas differences were concentrated in tem-
poral and limbic-system connections in Country-2. In
Country-3, differences were found predominantly in
frontal-parietal connections. In addition, the final a priori
threshold applied in these results was different for each
center: while data from Country-1 and 22 were analyzed
with the same threshold (t 5 4), Country-3 only yielded
significant results with a more permissive one (t 5 3.4).

Seed analysis

We identified the main areas of the SN in controls: the
insular cortex and the ACC (Fig. 2C). This was highly con-
sistent across centers as shown by the conjunction analysis.
However, the comparison between controls and bvFTD
patients differed from country to country (Fig. 2C and
Supporting Information Fig. S3). In Country-1, patients
presented very few areas of decreased connectivity, mainly
in the basal ganglia and frontal operculum. Reduced con-
nectivity was also observed in Countries 2 and 3, mainly
in insular regions; yet, this pattern was more posterior in
Country-2 and more anterior in Country-3. Joint analysis
of data from all centers confirmed that decreased connec-
tivity in the SN was inconsistent across countries. Specifi-
cally, significant differences were found only with a very
permissive threshold (P< 0.05, uncorrected) and the main
SN areas (ACC, insula) were missing.

In addition, we assessed the consistency of these results
using correlation analysis between datasets, as done on
VBM findings. In this case, all the comparisons between
pairs of countries yielded low correlation values (Rho< 0.2):
country-1 vs country-2, Rho 5 20.14; country-1 vs country-
3, Rho 5 20.09; country-2 vs country-3, Rho 5 20.03 (see
Supporting Information Fig. S2B).

Graph-theory analysis

Integration and segregation measures (Fig. 2D). Compared
to controls, bvFTD patients presented significantly higher
L in the three countries. This was observed only in the
fixed threshold and weighted matrices approaches. The
same was true of C, but here the patients exhibited signifi-
cantly decreased values. Across countries, the magnitude
of these differences was similar [effect sizes ranged from
medium (0.75) to large (1.09)]. No differences were found
in any measure with the fixed degree approach.

Nodal centrality features (Fig. 3). Since the weighted
matrices analysis yielded the most consistent differences,
only the node measures derived from this approach are
reported. Although the fixed threshold method also
revealed significant results, it presents the disadvantage of
dealing with multiple thresholds. Global averages of node
measures were consistent across countries: relative to
controls, patients exhibited decreased K and CC, and
increased BC. Figure 3A illustrates the consistency of
nodal centrality alterations between countries. Lobes in
which the bvFTD samples presented altered areas across
datasets are highlighted in the figure through color circles.
Results show that patients from the three countries
showed common aberrant spatial organization in fronto-
temporal areas (blue and yellow circles, respectively). In
addition, Figure 3B offers a schematic representation in
which four circles are presented for each brain lobe
(fronto-limbic, temporal, parietal, and occipital lobes). For
each measure and dataset, these circles were colored if
bvFTD patients presented at least one aberrant centrality
node within the lobe compared to controls. This figure
shows that whereas several areas from different lobes
were affected in patients, only the frontal-limbic regions
were consistently compromised in the three countries and
across measures (Supporting Information Table S4).

Finally, we merged the bvFTD (45) and control samples
(60) of each country, and compared them using all global
measures based on the weighted approach, and including
scanning center as a confounding variable of the analysis.
All the metrics yielded the same significant differences as
when countries were separately analyzed (Supporting
Information Table S5 for statistical details).

Disease Control Groups

The following analyzes rely on the weighted approach,
which yielded the most robust and consistent graph-
metric results across countries.

FIS

Frontal and insular structures were injured in the FIS
group (as shown by Fig. 4 and Supporting Information Table
S6). Global level analysis showed that bvFTD, relative to FIS,
presented significantly decreased C, CC, and K as well as
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Figure 3.

Nodal centrality features. A. Centrality in bvFTD: Communali-

ties across countries. Circles indicate brain lobes in which the

bvFTD patients presented altered areas within the same lobe

across countries. In BC and CC, the common areas affected

belong to the fronto-limbic lobe, while in K, they belong both to

the fronto-limbic and temporal lobes. B. Centrality in bvFTD for

each country. Color circles indicate the presence of at least one

altered region within the specific lobe (pink 5 occipital;

brown 5 parietal; yellow 5 temporal and blue 5 fronto-limbic).

Gray circles represent the absence of alterations within the

lobe. Bar charts represent the global average (GA) of each cen-

trality measure. Country one. Effect size of the GA of BC: 1.00.

Regions with increased BC in patients: right putamen and right

middle orbitofrontal cortex (fronto-limbic areas). Effect size of

the GA K: 0.91. Regions with decreased K in patients: right pre-

central gyrus, left rolandic operculum, right and left fusiform

gyrus, right postcentral gyrus and left superior parietal cortex.

Effect size of the GA CC: 0.84. Regions with decreased CC in

patients: right precentral gyrus, left rolandic operculum, right

and left fusiform, right postcentral gyrus, and right and left

occipital inferior lobe. Country two. Effect size of the GA of BC:

0.77. Regions with increased BC in patients: left precentral

gyrus, right insular cortex, right posterior cingulate cortex, right

supramarginal gyrus and left angular gyrus. Effect size of the GA

K: 0.75. Regions with decreased K in patients: right and left

amygdala, right and left heschl’s gyrus, right superior temporal

pole and right middle temporal pole. Effect size of the GA CC:

0.75. Regions with decreased CC in patients: right superior

frontal gyrus, left middle cingulate cortex, right and left Heschl’s

gyrus, right superior temporal pole, right and left middle tempo-

ral pole and right inferior temporal gyrus. Country three. Effect

size of the GA of BC: 1.05. Regions with increased BC in

patients: left Rolandic operculum, left medial orbitofrontal cor-

tex, right angular gyrus and left precuneus. Effect size of the GA

K: 1.00. Regions with decreased K in patients: right and left

superior orbitofrontal cortex, right middle temporal pole, right

paracentral lobe, right calcarine sulcus, right cuneus and lingual

gyrus. Effect size of the GA CC: 0.92. Regions with decreased

CC in patients: right and left superior orbitofrontal cortex, right

paracentral lobe, right calcarine sulcus, and right cuneus gyrus.

[Color figure can be viewed at wileyonlinelibrary.com]
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significantly higher values in L and BC (see Supporting
Information Table S7 for further details of FIS graph-theory
measures).

PPA

PPA patients presented fronto-temporal atrophy with left-
side predominance (Agosta et al., 2012) (Fig. 5A and Support-
ing Information Table S3). Relative to controls, they showed
alterations in global and average nodal measures, resembling
those found in bvFTD (Fig. 5B). Node-level comparisons
between controls and PPA patients revealed widespread dif-
ferences in BC, K, and CC across parietal, temporal, and
fronto-limbic areas (Fig. 5C and Supporting Information Table
S4). These results replicate those obtained in the comparison
between bvFTD patients and controls. This was expected given
that both forms of dementia involve similar atrophy patterns
affecting mainly fronto-insulo-temporal areas (Figs. 2 and 5).

Specific differences between these two diseases were nev-
ertheless present in terms of BC –the only nodal measure

investigated given its large effect size in the comparison
between controls and patients in all countries. First, across
graph measures, the average BC was significantly higher in
PPA than in bvFTD patients (Fig. 5B). Second, ROI analysis
of BC in the ventromedial prefrontal region, an area specifi-
cally compromised in bvFTD compared to PPA (Lu et al.,
2013), revealed significantly higher BC in the latter in the
left side of this region (Fig. 7).

AD

AD patients showed an expected (Du et al., 2007) vol-
ume loss mainly comprising temporoparietal regions (Fig.
6A and Supporting Information Table S3). Global and

average nodal alterations in AD relative to controls were

similar to those found in bvFTD (Fig. 6B). These overall

patterns replicate previous findings in both diseases

(Agosta et al., 2013; Pievani et al., 2011). Also, node-level

comparisons between AD and controls yielded consistent

differences in posterior (occipital and parietal regions) and

Figure 4.

Results regarding fronto-insular stroke patients. A. Lesion overlap. Frontal and insular structures

that were injured in stroke patients. The colormap indicates lesions overlapping across the

group: dark red refers to areas affected by the lesion of only one subject, while white shows

injured areas shared by four patients. B. Global analysis. Effect size of global measures. L: 0.85;

C: 0.85; BC: 0.93; CC: 0.95, and K: 0.93. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5.

Results regarding PPA patients from Country-2. A. Atrophy pat-

tern. VBM results showed a fronto-temporal pattern of atrophy

with left-side predominance. B. Global analysis. Effect sizes of

the significant differences between PPA and controls. L: 1.46;

CC: 1.42; BC: 1.58; CC: 1.46 and K: 1.49. Effect sizes of the sig-

nificant differences between PPA and bvFTD. BC: 0.92. C. Nodal

centrality features. Compared to controls, PPA patients pre-

sented decreased values of K and CC in a distributed manner

affecting parietal, temporal and fronto-limbic areas, and an

increased value of BC in parietal and fronto-limbic areas. [Color

figure can be viewed at wileyonlinelibrary.com]

Figure 6.

Results regarding AD patients from Country-3. A. Atrophy pat-

tern. VBM results presented atrophy mainly in the hippocampus

and parahippocampus, precuneus, posterior cingulate cortex and

posterior temporal regions. B. Global analysis. Effect sizes of the

significant differences between AD and controls. L: 1.17; C:

1.15; BC: 1.22; CC: 1.08 and K: 1.18. No differences were found

between AD and bvFTD. C. Nodal centrality features. Com-

pared to controls, AD patients presented decreased values of K

and CC in temporal, parietal and occipital regions and an

increased value of BC in parietal and occipital areas. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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temporal areas, across all graph indexes (Fig. 6C and Sup-
porting Information Table S4). In contrast to bvFTD, AD
featured no disturbance of frontal network centrality. This
differential pattern represents a first step to establish net-
work alterations specific to each disease, despite the pres-
ence of similar global changes.

Finally, to corroborate this specific alteration of frontal net-
works in bvFTD, we analyzed a ROI encompassing fronto-
insular limbic areas, which are primarily atrophied in bvFTD
relative to AD (Irish et al., 2014; Rabinovici et al., 2007). As
was the case with PPA patients, our analysis focused on BC:
AD patients presented higher values than bvFTD in the right
fronto-limbic ROI. This result aligned with those obtained in
the nodal comparison, and supported the specificity of frontal
alterations in bvFTD (Fig. 7).

DISCUSSION

In this unprecedented connectivity multicenter report in
bvFTD, we assessed the sensitivity and specificity of FC
methods to detect connectivity abnormalities in this dis-
ease. Graph-theory was the only method which consis-
tently discriminated bvFTD patients from controls and
other neurological samples across centers. Thus, graph-
theory might become a gold-standard approach for brain
network analysis, irrespective of methodological, diagnos-
tic, and sociocultural factors. Our findings might represent
an important step to identify clinically relevant neuro-
markers of neurodegenerative diseases.

Sensitivity of Graph-Theory Metrics in bvFTD

Graph-theory metrics robustly discriminated bvFTD
patients from controls across centers. In particular, small-
world measures revealed alterations in the integration of dis-
tant regions (L) and in local processing (C). Such disturbed

balance between integration and segregation suggests ineffi-
cient information transfer between both regionally and dis-
tributed brain areas.

Also, global measures of node centrality showed
decreased connectivity (K) and nodal integration (CC) in
bvFTD. However, such results were more diverse at node
level across countries, confirming that graph measures are
less reliable when considering this unit (Telesford et al.,
2013). Yet, temporal and frontal regions consistently pre-
sented less interconnected and integrated nodes in all
patients. Given that both regions are anatomical hallmarks
of bvFTD (Whitwell et al., 2009), node centrality measures
seem capable of tapping its distinctive pathophysiology.

Notably, results regarding the central position of each
node (BC) revealed an opposite pattern. At the global and
nodal levels, nodes from bvFTD occupied a more central
path between network connections. At first glance, this
pattern of high central position nodes seems at odds with
previous measures revealing a severely disconnected net-
work. However, available evidence illuminates the issue.
First, Agosta et al. (2013) reported that bvFTD patients
showed a trend toward higher values of BC in parietal
and frontal regions. Second, a heterogeneous pattern of
increased and decreased BC has also been found in AD
(Tijms et al., 2013). Such seemingly disparate findings
might be reflecting the so-called overload breakdown
problem (Holme, 2002): when a node loses connections, its
load is redistributed to other nodes, which thus increase
their participation in the network (Holme, 2002). In our
study, nodes of bvFTD patients exhibited generalized loss
of connections (as shown by the other graph measures).
Ensuing network reorganization could have increased the
central position of other nodes. While an in-depth assess-
ment of the overload breakdown problem is beyond the
scope of our paper, it may afford a useful framework to
analyze network evolution in dementia.

Figure 7.

ROI analysis. A. Country two: PPA patients presented a higher BC than the bvFTD group in the

ventromedial prefrontal region (effect size: 1.04). B. Country three: AD showed a higher BC

than bvFTD in the right fronto-limbic ROI (effect size: 0.90). [Color figure can be viewed at

wileyonlinelibrary.com]
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In sum, consistent results across countries further support
the relevance of BC as a marker of network abnormalities in
bvFTD. Compared to the other measures, it revealed the high-
est differences between groups (based on effect sizes) at both
global and nodal levels. Moreover, as discussed below, it also
discriminated among different forms of dementia and stroke.

Specificity of Graph-Theory Metrics in bvFTD

Graph measures also revealed differences between
bvFTD and other neurological conditions. Specifically,
bvFTD differed from FIS in global connectivity patterns,
while its differences relative to other neurodegenerative
diseases mainly concerned node-level patterns.

As compared to FIS, bvFTD exhibited decreased integra-
tion of long-range connections and local connectivity,
together with increased node centrality. Although similar
brain structures were affected in both conditions, differen-
tial network compromise was expected given their etiolog-
ical and pathophysiological specificities. Strokes involve
focal tissue loss followed by neural reorganization and
plasticity (Garcia-Cordero et al., 2015); when recovery is
good, normal connectivity is restored in the months after
the stroke (Grefkes and Fink, 2014). Conversely, neurode-
generation in bvFTD and AD implies diffuse damage
mainly triggered by insidious protein aggregation. Thus,
while focal damage in FIS would alter specific connections
without affecting whole-brain dynamics, the pathological
processes of dementia may disturb general network
properties.

A different pattern of contrasts emerged upon compar-
ing bvFTD with PPA and AD, all of which share gross
neurodegenerative processes. Aberrant network organiza-
tion has been reported in bvFTD (Agosta et al., 2013; Sed-
eno et al., 2016), AD (Pievani et al., 2011), and variants of
PPA (Agosta et al., 2014). Predictably, no global-level dif-
ferences emerged between groups. This was true for AD
and for almost all measures in PPA. The latter condition
featured significantly higher BC than bvFTD, suggesting
more severe neurodegeneration. Two findings support this
idea: first, though not statistically significant, means of all
global measures pointed to a more disconnected network
in PPA; second, at node level, more regions were affected
in PPA than bvFTD (Supporting Information Table S4).
The more disconnected network in PPA suggests that
more nodes lost connections, which, as argued above, may
overload other nodes. If the average network we are com-
paring is indeed more disconnected in PPA than bvFTD,
then nodes in the former condition could have become
reorganized toward more central positions.

Conversely, node-level and ROI analyzes showed differ-
ent patterns between diseases. In comparing bvFTD and
PPA, clear differences emerged only upon analyzing the
ventromedial prefrontal region (an area that is specifically
affected in the former condition compared to PPA). This
suggests that the loss of connections in both diseases

generated different patterns of centrality re-distribution.
Frontal areas in bvFTD presented a peripheral role in the
network’s dynamics, in line with their characteristic atro-
phy pattern. On the other hand, PPA preserved the central
role of these regions –which are not specific targets of this
disease– despite their general loss of connectivity. In AD,
the contrast with bvFTD was stronger. This was expected,
since the atrophy pattern of bvFTD is more similar to that
of PPA than that of AD. First, at node level, AD compared
to controls showed alteration in posterior regions without
almost any involvement of frontal hubs. This pattern
opposes the one obtained in bvFTD, where the most con-
sistent differences across countries were in frontal areas.
Furthermore, as observed for PPA, when bvFTD were
compared to AD, ROI results showed affected BC of
bvFTD target areas (fronto-limbic regions) (Irish et al.,
2014; Rabinovici et al., 2007).

In sum, previously proposed features of aberrant network
organization in bvFTD (Agosta et al., 2013) were systemati-
cally detected across heterogeneous contexts. Furthermore,
we showed that graph-theory discriminated bvFTD from
FIS and, more interestingly, from other neurodegenerative
conditions. Thus, graph measures might reveal potential
biomarkers of bvFTD, paving the way for innovations in
early diagnosis and monitoring of disease progression, ther-
apeutic interventions, and other forms of clinical response.

Methodological Issues

We compared three methods based on FC: inter-regional
connectivity, seed analysis, and graph-theory analysis.
Crucially, only the latter yielded consistent results across
countries.

Inter-regional connectivity and seed analysis corroborated
connectivity alterations in bvFTD (Pievani et al., 2011, 2014).
However, both analyzes, focused on voxel- or node-level
connection patterns, failed to show consistent patterns
across samples. For example, the conjunction assessment of
the seed-analysis showed a minimum overlap of SN altera-
tions between countries, and this inconsistency was further
supported by the low correlation values between the results
of each pair of datasets (see Supporting Information Fig.
S2B). Note that the number of elements included by this
method is above the thousands, which increases the degrees
of freedom and, hence, the potential variability of results. A
similar situation occurred with interregional connectivity
analysis: different patterns of decreased connectivity were
found across datasets. Compared to the seed-analysis, this
measure was more inconsistent given that alterations were
found with different statistical thresholds, indicating that
strength differences were not persistent across countries.
This could reflect reduced voxel-wise information due to the
use of ROIs. Also, this method only captures the interaction
between pairs of ROIs and it is not able to account for the
complex interactions between areas that underpin the
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organization and dynamics of the brain network (Telesford
et al., 2011).

Also, though based on fewer, simpler measures, graph-
theory analyzes corroborated this alteration with even greater
consistency. This was true for two of the three approaches:
fixed threshold and weighted matrices. Indeed, the fixed
degree approach failed to identify expected differences
(Agosta et al., 2013) between bvFTD and controls across coun-
tries. In this analysis, the threshold for binarizing subjects’
connectivity matrix is adjusted to fix a similar network size
across the whole sample (Fornito et al., 2013; Garrison et al.,
2015; van den Heuvel et al., 2008; van Wijk et al., 2010). This
might emphasize small correlation values from networks
with low average connectivity networks, while over-
underrating large correlations from network with higher con-
nectivity (Fornito et al., 2013; Garrison et al., 2015; van den
Heuvel et al., 2008; van Wijk et al., 2010). Thus, this approach
might over-estimate the low connectivity values of bvFTD
patients (as shown by the inter-regional and seeds analysis
methods) and fail to capture their connectivity alterations.
Conversely, the fixed threshold approach yielded consistent
differences across countries. Application of the same thresh-
old for all subjects avoids the over or underestimation of
connectivity values, thus acknowledging hypoconnectivity
patterns in the patients. These results replicate previous net-
work alterations found in bvFTD through the same approach
(Agosta et al., 2013). Despite this consistency, this method has
its own limitations given that the fixed threshold generates
networks of different size or degree that might bias the com-
parisons between groups (Fornito et al., 2013; Garrison et al.,
2015; van den Heuvel et al., 2008; van Wijk et al., 2010).
Accordingly, several studies have employed the fixed degree
approach and showed network alterations in other demen-
tias, such as AD (Brier et al., 2014; Liu et al., 2012; Xiang et al.,
2013) and Parkinson’s disease (Baggio et al., 2014). In sum,
both network analyzes based on binary matrices present
methodological constrains that might hinder their application
as standard approaches to evaluate graph-theory measures.

On the other hand, the weighted approach overcomes
these limitations and proves particularly interesting as it
avoids dealing with multiple thresholds. In network analy-
sis, no consensus exists on which thresholding level to
apply or how many thresholds to consider (Bullmore and
Sporns, 2009). Conveniently, the weighted approach cir-
cumvents these issues, preserves the information of each
node (van Wijk et al., 2010), and facilitates between-group
comparisons as it considers only one value to analyze a
specific network phenomenon. Thus, it can simplify moni-
toring of disease progression, clinical response to interven-
tions, and characterization of individual impairments. In
sum, our findings indicate that interregional connectivity
might be the less reliable method across countries, and
that, in line with previous recommendations (Fornito
et al., 2013; Reijneveld et al., 2007), the weighted graph
measure might be a potential gold-standard approach for
brain network analysis.

Limitations and Future Studies

Although each group’s size was moderate, similar (and
smaller) sizes have been used in recent FC studies (Farb
et al., 2013). Moreover, the consistency of our findings sug-
gests that they were not biased by the number of subjects.
Also, there are other graph measures that might provide
valuable information about brain network alterations in
dementia (such as modularity, global efficiency, etc.); how-
ever, their analysis was beyond our scope given the amount
of results presented, and that we assessed relevant graph
measure as the small-world and centrality index. Brain par-
cellation is another methodological constrain given its effect
in FC and graph-theory (Fornito et al., 2010). Future studies
should evaluate the replicability of our findings with differ-
ent parcellation resolutions, and preserving regions sizes.
Finally, we were unable to apply graph-theory in genetic
forms of bvFTD during presymptomatic stages, monitoring
disease progression and network reconfiguration following
clinical therapy; it would be crucial to extend our report
through longitudinal studies.

CONCLUSIONS

FTD is the second most common dementia in patients
below age 65 (Piguet et al., 2011a). Its relatively young onset,
its clinical overlap with other diseases, and its variable pat-
tern of brain atrophy make it difficult to achieve early diag-
nosis via conventional neuropsychological assessments or
routine clinical neuroimaging (Ibanez et al., 2014, 2016,
Piguet et al., 2011a). Accurate early diagnosis is fundamental
to foster timely therapeutic intervention, study potential
disease-modifying agents, and alleviate associated financial
burdens (Prince et al., 2015). Graph-theory might become an
important tool to achieve these aims. In this unprecedented
multicenter study, we took a first step in this direction by
showing that graph-theory metrics reveal condition-specific
FC alteration in bvFTD, which are robust enough to emerge
despite major variability across countries. Further research
is needed to confirm the reliability of these results; however,
the consistency of our findings supports graph-theory as a
potential gold-standard for brain network analyzes, and
highlights its eventual role as a biomarker signature for
dementias.
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