Tabla de Contenido

	Intr	oducción
		0.0.1. Motivación
		0.0.2. Modelamiento matemático de sistemas homeostáticos
		0.0.3. Proyecciones
1.	Mod	delo biológico.
		Introducción
	1.2.	Conceptos básicos.
		1.2.1. Homeostasis
		1.2.2. Regulación transcripcional en bacterias
	1.3.	Modelo biológico del operón cop en $E.$ $faecalis.$
2.	Mod	delamiento matemático.
	2.1.	Introducción
	2.2.	Modelos de ecuaciones diferenciales ordinarias
		2.2.1. Ley de acción de masas y formalismo de potencias
		2.2.2. Aproximaciones del estado estacionario
		2.2.2.1. Modelo de Michaelis-Menten
		2.2.2.2. Modelo de Hill y cooperatividad
		2.2.3. Ecuaciones del modelo
		2.2.3.1. Hipótesis generales
		2.2.3.2. Modelo polinomial (ΣP)
		2.2.3.3. Modelo más realista (Σ)
3.	Pre	eliminares. 2
	3.1.	Introducción
	3.2.	Conceptos básicos
		3.2.1. Conceptos de estabilidad e invarianza
	3.3.	Teoría de control y sistemas monótonos
	3.4.	Estudio del grafo de interacciones asociado a un sistema de EDO
		3.4.1. Condiciones necesarias relacionadas con la homeostasis
		3.4.2. Caracterización gráfica de la monotonía
		3.4.3. Método de descomposición de sistemas autónomos en sistemas monó-
		tonos controlados
	3.5.	Teoría de perturbaciones
		3.5.1. Definiciones

		oducción	3
4.	4.2.1		3
	4.2.2		4
	1.2	4.2.2.1. Análisis del grafo de interacciones asociado al modelo ΣPI .	4
		4.2.2.2. Análisis del grafo de interacciones asociado al modelo ΣPII .	4
	4.2.3		4
	4.2.4		4
4.	.3. Aná	lisis del modelo Σ	5
		4.3.0.1. Invarianza del cono positivo	5
		4.3.0.2. Análisis de puntos críticos y estabilidad local	5
		4.3.0.3. Comportamiento asintótico	Ę
5. S	imulac	ones.	6
5.	.1. Intr	oducción	6
5.	.2. Sim	ılaciones modelo ΣP	6
	5.2.1	. Estudio asintótico del modelo	6
	5.2.2	2. Fuente de cobre y perturbaciones	7
		5.2.2.1. Fuentes periódicas	7
		5.2.2.2. Perturbaciones constantes	7
5.		ılaciones modelo Σ	8
	5.3.1	. Experimentos numéricos	8
		5.3.1.1. Diseño de las simulaciones	8
		5.3.1.2. Pulso 0,5 mM por 3 hrs	8
		5.3.1.3. Pulso 1 mM por 3hrs	Ĝ
		5.3.1.4. Pulso 0,5 mM por 6 hrs	Ĝ
	.	5.3.1.5. Tren de 3 pulsos de 0,5 mM cada una hora por 3 hrs	1.0
	5.3.2	2. Estudio numérico del comportamiento asintótico	10
C	Conclus	ón	10

Índice de Tablas

1.1.	Resumen de reacciones modelo operón cop E faecalis	1(
2.1.	Lista de parámetros modelo ΣP	19
2.2.	Variables de estado del modelo Σ	20
2.3.	Lista de parámetros modelo Σ	21
5.1.	Parámetros usados en los experimentos numéricos	83
5.2.	Tabla de valores estado estacionario	103

Índice de Ilustraciones

1.1.	Esquema operón
1.2.	Esquema operón cop de E. faecalis
3.1.	Grafo de interacción para el modelo de Goodwin simplificado
4.1.	Modelo ΣPI . Subgrafo formado por x_1, x_2, x_4, x_5, x_7 y x_8
4.2.	Modelo ΣPI . Ciclo negativo formado por x_1, x_2, x_4, x_5, x_7 y x_8, \ldots, x_8, \ldots
4.3.	Grafo de interacción asociado al sistema ΣPII
4.4.	Modelo ΣPII . Subgrafo formado por x_1, x_2, x_5 y x_7, \ldots, x_{10} 4.
4.5.	Modelo ΣPII . Ciclo negativo formado por x_2, x_4, x_5 y x_8
4.6.	Grafo de interacciones sistema ΣPII
4.7.	Grafo de interacciones del sistema controlado asociado a ΣPII
4.8.	Soluciones de (4.71) para valores de $r = \frac{S\beta}{\delta\delta'}$ y K _d entre 0 y 100
5.1.	Dinámica de CopY para distintas condiciones iniciales y con parámetros que
	satisfacen las condiciones del Teorema 4.6
5.2.	Dinámica de CopY para distintas condiciones iniciales y con parámetros que satisfacen las condiciones del Teorema 4.6 con igualdad
5.3.	Dinámica de CopY para distintas condiciones iniciales y con parámetros que
0.0.	no satisfacen las condiciones del Teorema 4.6
5.4.	Dinámica del sistema bajo perturbación periódica para $\varepsilon = 10^{-6}$
5.5.	Dinámica del sistema bajo perturbación periódica para $\varepsilon = 10^{-4}$ 74
5.6.	Dinámica del sistema bajo perturbación periódica para $\varepsilon = 10^{-2}$ 7
5.7.	Dinámica del sistema bajo perturbación periódica para $\varepsilon = 1.$
5.8.	Dinámica de la concentración de mRNA bajo perturbación periódica para
	$\varepsilon = 10^{-4} \dots 7'$
	Dinámica del sistema bajo perturbación constante para $\varepsilon = 10^{-6}$
	Dinámica del sistema bajo perturbación constante para $\varepsilon = 10^{-4}$
	Dinámica del sistema bajo perturbación constante para $\varepsilon = 10^{-2}$ 8
	Dinámica del sistema bajo perturbación constante para $\varepsilon=1,\ldots,8$
5.13.	Incrementos porcentuales de las concentraciones de cobre intracelular experimentales y simuladas a partir del modelo Σ
5.14	Incrementos en concentraciones de mRNA experimentales y simuladas a partir
J.11.	del modelo Σ en distintos tiempos
5.15.	Concentraciones de proteínas, complejos cobre-proteínas y mRNA bajo un
	pulso de 0,5 mM por 3 hrs

5.10.	pulso de 0,5 mM por 3 hrs	88
5.17.	Concentraciones de variables de estado bajo un pulso de 0,5 mM por 3 hrs	89
	Concentraciones de proteínas, complejos cobre-proteínas y mRNA bajo un pulso 1 mM por 3 hrs	91
5.19.	Concentraciones de cobre externo, cobre interno y cobre expulsado bajo un pulso de 1 mM por 3 hrs	92
5.20.	Concentraciones de variables de estado del sistema bajo un pulso de 1 mM por 3 hrs	93
5.21.	Concentraciones de proteínas, complejos cobre-proteínas y mRNA bajo un pulso de 0,5 mM por 6 hrs	95
5.22.	Concentraciones de cobre externo, cobre interno y cobre expulsado bajo un pulso de 0,5 mM por 6 hrs	96
	Concentraciones de variables de estado bajo un pulso 0,5 mM por 6 hrs Concentraciones de proteínas, complejos cobre-proteínas y mRNA bajo un tren	97
	de pulsos de 0,5 mM cada 1hr	99
5.25.	Concentraciones de cobre externo, cobre interno y cobre expulsado bajo un tren de pulsos de 0.5 mM cada 1hr	100
5.26.	Concentraciones de variables de estado bajo un tren de pulsos de 0.5 mM cada 1hr	101
5.27.	Concentraciones de proteínas, complejos cobre-proteínas y mRNA bajo un pulso 0.5 mM por 120hrs	104
5.28.	Concentraciones de cobre externo, cobre interno y cobre expulsado bajo un	
5.29.	pulso 0.5 mM por 120hrs	105 106