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ABSTRACT	 The	Mehdiabad	complex	deposit	is	located	116	km	SE	of	Yazd,	in	the	structural	zone	
of	central	Iran.	At	this	deposit,	important	decisions	are	often	based	on	the	grades	of	
multiple	elements	(zinc,	 lead,	and	silver).	 In	 this	context,	 it	 is	 therefore	essential	 to	
devise	 a	method	 that	 addresses	 the	 change	of	 support	 from	 the	data	 support	 to	 the	
target	smu	block,	the	multivariate	nature	of	the	ore	control	selection	criteria	and	the	
uncertainty	in	the	actual	(unknown)	block	grades.	The	solution	presented	in	this	study	
is	to	employ	block-support	sequential	co-simulation	to	construct	multiple	realizations	
or	 outcomes	 of	 the	 grade	 distribution	 within	 the	 deposit	 that	 reproduce	 the	 natural	
variability	at	all	spatial	scales.	The	set	of	realizations	allow	assessing	both	grade	and	
tonnage	uncertainties	and	can	be	used	to	evaluate	the	uncertainty	on	key	aspects	of	
the	project	and	transferring	uncertainty	of	the	resource/reserve	estimates	into	risk	in	
downstream	studies.

Key words:	 polymetallic	 deposit,	 block-support	 simulation,	 multiple	 recoverable	 metals,	 spatial	
uncertainty.
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1. Introduction

Recoverable	reserve	estimation	describes	the	portion	of	a	resource	through	a	mine	plan,	which	
is	 economically	 and	 technologically	 viable,	 thereby	 providing	 the	 tonnage	 and	 grade	 that	 are	
expected	to	be	recovered	during	mining.	This	enables	calculating	and	forecasting	a	recoverable	
reserve, which is fundamental to the financial success of a mining operation (David, 1977; Peattie 
and Dimitrakopoulos, 2013) At the feasibility or early production stages, block grade estimates 
should	be	conditionally	unbiased	and	have	the	lowest	level	of	uncertainty.	Estimation	provides	a	
value	that	is,	on	average,	as	close	as	possible	to	the	actual	(unknown)	value,	but	suffers	from	an	
unavoidable	smoothing	effect	that	will	generally	overestimate	the	tonnage	above	the	economic	
cut-off	and	underestimate	the	corresponding	grade	for	cut-off	grades	below	the	mean	grade	of	the	
ore	body	(Assibey-Bonsu	et al., 2015). Stochastic simulation is one of the techniques proposed 
to	 correct	 this	 smoothing	 feature.	 It	 consists	 in	 constructing	 multiple	 outcomes	 (also	 called	
realizations)	of	the	ore	body	that	mimic	the	spatial	variability	of	the	true	grades,	providing	a	more	
complete	 representation	of	block	grade	uncertainty,	 in	 addition	 to	 the	uncertainty	 jointly	over	
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multiple	blocks.	Simulation	methods	allow	quantifying	the	uncertainty	of	the	mineral	resource	
and	ore	reserve	prediction	risks	in	downstream	studies,	such	as	mine	design,	mine	planning,	or	
operational	optimization	studies.	The	risk	assessment	is	achieved	by	applying	transfer	functions	
to the simulation models (Dimitrakopoulos, 2010; Rossi and Deutsch, 2014).

The	simulation	of	mineral	resources	and	ore	reserves	faces	several	challenges.	On	one	hand,	
mine	planning	is	always	based	on	considerations	of	multiple	elements,	and	the	multivariate	nature	
of	the	ore	control	selection	criteria,	as	well	as	the	consideration	of	their	joint	uncertainty,	are	common	
and	critical.	So,	the	spatial	cross-correlation	between	elements	observed	in	sampling	data	needs	to	
be	reproduced	in	simulation	models	for	these	to	be	realistic,	for	which	joint	simulation	methods	
are often needed (Goovaerts, 1997). On the other hand, the support effect is a major concern 
in	 recoverable	 reserve	estimation,	 insofar	 as	 the	volumetric	 support	of	 the	 available	 sampling	
data	(typically,	portions	of	drill	holes	of	a	few	metres	length	and	a	few	centimetres	in	diameter,	
which	can	be	considered	as	a	quasi-point	support)	is	much	smaller	than	the	volumetric	support	
of the selective mining units (smu) or blocks utilized during mining (Parker and Switzer, 1975; 
Krige, 1976; Armstrong and Champigny, 1989; Sinclair and Vallée, 1994). The usual approach 
is to simulate the variables of interest at a point support on a fine grid discretizing the entire 
deposit,	then	to	average	the	simulated	values	within	the	relevant	selective	mining	units	so	as	to	
obtain a simulation at a block support. This procedure is time consuming and needs a significant 
amount	of	computer	memory	 to	store	all	 the	simulated	point-support	values.	An	alternative	 is	
direct	block-support	simulation,	which	avoids	keeping	the	values	simulated	onto	the	discretizing	
grid in memory. This idea, originally proposed by Journel and Huijbregts (1978), was extended by 
Boucher and Dimitrakopoulos (2009, 2012) to block co-simulation (i.e., multivariate simulation), 
by	 incorporating	 a	 de-correlation	 method	 (minimum/maximum	 autocorrelation	 factors),	 while	
Emery and Ortiz (2011) presented two algorithms that significantly increase efficiency and 
decrease	memory	requirements	during	block	co-simulation.	In	addition,	block	co-simulation	was	
utilized	to	model	porphyry	copper	deposits	(Hosseini	et al., 2017).

This	 paper	 presents	 an	 application	 of	 block-support	 sequential	 Gaussian	 co-simulation	 to	
forecast	the	recoverable	reserves	at	Mehdiabad,	the	biggest	zinc,	lead	and	silver	deposit	in	Iran,	
in which oxide and sulfide domains, controlled by stratigraphy, need to be modelled separately. 
The	following	sections	include	a	summary	of	the	co-simulation	framework	and	its	extension	to	
block simulation; a thorough description of the deposit and available data; joint simulation of 
Zn, Pb, and Ag grades in the oxide and sulfide domains, aiming at a geological plausibility of 
the	complex	ore	body	and	control	on	operational	quality,	 required	by	the	mine	design	and	the	
processing	plant.	Thereafter,	the	results	from	the	generated	grade-tonnage	curves	are	discussed,	
followed	by	conclusions.

2. Block-support sequential Gaussian co-simulation

The following sequential algorithm, proposed by Emery and Ortiz (2011), can be used to 
simulate	 K	 coregionalized	 variables	 (such	 as	 metal	 grades)	 at	 a	 block	 support,	 based	 on	 the	
Gaussian random field model.

1)	For	each	original	variable	of	interest,	the	available	point-support	data	are	transformed	into	
Gaussian data with a mean of 0 and variance of 1. In the following, the k-th	original	variable	at	
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a	point-support	location	x	is	denoted	by	Zk(x),	the	associated	Gaussian	transform	is	denoted	by	
Yk(x),	while	the	transformation	function,	denoted	by	φk,	is	such	that:

Zk	(x) = φk	(Yk	(x))	 (1)

In	 practice,	 knowing	 experimentally	 the	 distribution	 of	 the	 variable	 of	 interest	 Zk,	 the	
transformation	function	φk	can	be	estimated	and	modelled	by	either	an	expansion	into	Hermite	
polynomials (Chilès and Delfiner, 2012) or by piecewise linear and exponential functions (Emery, 
2009).

2) Model the joint spatial correlation of the Gaussian data. If there are K	Gaussian	variables	
under	consideration,	then	K (K+1)/2 experimental covariances or variograms must be calculated 
and jointly fitted with a theoretical model. The calculation of the experimental covariances or 
variograms	requires	identifying	the	main	directions	of	anisotropy	and	setting	tolerances	on	the	lag	
separation distances and on the angles (azimuth and dip) defining a direction in space (Goovaerts, 
1997; Chilès and Delfiner, 2012). As for the joint fitting, it can be performed by the so-called 
linear model of coregionalization (LMC) (Goovaerts, 1997; Wackernagel, 2003), which amounts 
to	modelling	all	the	variograms	with	combinations	of	the	same	set	of	basic	variogram	models:

(2)

where	 h is	 a	 separation	 vector,	 G(h)	 is	 the	 K ×	 K	 matrix	 of	 direct	 (diagonal)	 and	 cross	 (off-
diagonal)	variograms	for	vector	h,	{γn(h):	n =	1…nst}	is	a	set	of	basic	variogram	models	with	a	
unit	sill	value,	and	{Bn:	n =	1,	…,	nst}	is	a	set	of	K×K symmetric, positive semi-definite matrices, 
called	 coregionalization	 matrices,	 indicating	 the	 contribution	 of	 each	 basic	 model	 to	 the	 total	
sill	 value	 of	 the	 direct	 and	 cross	 variograms.	The	 anisotropy,	 scale	 and	 shape	 parameters	 are	
fitted in the specification of each constituent nested structure γn(h).	Automated	or	semi-automated	
procedures can be employed for fitting a linear model of coregionalization with the constraint of 
positive definiteness of the coregionalization matrices (Goulard and Voltz, 1992; Emery, 2010).

3) Divide the domain targeted for simulation into non-overlapping blocks.
4) Select a block v	in	the	domain	among	the	blocks	not	yet	simulated.	Selection	can	be	made	

according	to	a	random	sequence.
5) Discretize v	into	M	points	{x1…	xM}	and,	for	k	=	1…	K, define the k-th	original	and	Gaussian	

transformed	variables	at	the	block	support	as:

(3)

(4)

The linear model of coregionalization (Eq. 2) provides the direct and cross covariance functions 
of	the	point-	and	block-support	Gaussian	variables.	For	any	k,	ḱ ∈	{1…	K},	any	pair	of	points	x	
and	x́, and any pair of blocks v	and	v́, we have 

-	point-to-point	covariance:
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(5)

-	point-to-block	covariance:

(6)

where	{x1́...xḾ}	are	a	set	of	points	discretizing	block	v́.
-	block-to-block	covariance:

(7)

where	{x1...xM}	and	{x1́...xḾ}	discretize	blocks	v	and	v́, respectively.
6)	Jointly	simulate	 the	Gaussian	variables	at	points	{x1…	xM}	within	v,	constrained	by	 the	

original	 point-support	 Gaussian	 data	 and	 by	 the	 previously	 simulated	 block-support	 Gaussian	
values	located	in	and	around	block	v	(this	constrained	simulation	is	referred	to	as	a	“conditional”	
simulation	 in	 the	 geostatistical	 literature).	To	 this	 end,	 a	 non-conditional	 simulation	 at	 points	
{x1…	xM}	can	be	constructed	with	the	well-known	LU	decomposition	of	the	covariance	matrix	
method (Davis, 1982), and subsequently converted into a conditional simulation by means of a 
cokriging step (Chilès and Delfiner, 2012, pp. 494-495). For the former stage (non-conditional 
simulation),	as	above	we	simply	need	to	know	the	direct	and	cross-covariances	of	the	point	support	
Gaussian variables (Eq. 5), while for the latter stage (conditioning cokriging), the direct and 
cross-covariances	between	the	point-support	and	block-support	Gaussian	variables	are	needed,	
according to Eqs. 5 to 7. Simple or ordinary cokriging can be utilized at this stage, depending 
on whether the mean values of the Gaussian variables are assumed known or not (Emery, 2007, 
2009).

7) The average simulated point-support Gaussian values [Yk(xi)	with	k	=	1…	K	and	i	=	1…	M]	
within	block	v,	give	block-support	values	to	be	used	for	further	conditioning	along	the	simulation	
path	(step	6):

(8)

8) Back-transform the simulated point-support Gaussian values within block v,	according	to	
Eq.	1,	and	average	them	to	obtain	simulated	block-support	values	for	the	original	variables:

(9)

Note	that	the	obtained	block-support	values	are	not	used	in	the	conditioning	stage	at	step	6	and	
that the block-support Gaussian data (Eq. 8) are used instead.

9) Go back to step 4 until all the blocks are simulated.
Because	the	simulated	point-support	Gaussian	values	do	not	need	to	be	stored	and	only	block-

support information is retained at steps 7 and 8, the above algorithm drastically decreases the 
memory	 storage	 requirements	 of	 traditional	 sequential	 Gaussian	 simulation.	 In	 addition,	 the	
search	for	nearby	conditioning	data	at	step	6	is	faster,	given	that	the	previously	simulated	data	are	
considerably	fewer	when	using	block-support	data	instead	of	point-support	data.	As	an	additional	
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advantage, the algorithm can be applied without any difficulty to partially heterotopic data sets, 
i.e.,	data	sets	for	which	not	all	the	variables	are	measured	at	all	the	data	locations,	inasmuch	as	
Gaussian transformation (step 1), covariance or variogram calculation and fitting (step 2) and 
cokriging	(step	6)	do	not	require	all	the	variables	to	be	equally	sampled.	In	the	case	of	entirely	
heterotopic	data	sets,	the	experimental	variograms	can	no	longer	be	calculated	and	experimental	
covariances must be used at step 2.

3. Application to the Mehdiabad deposit

3.1. Geological description
The Mehdiabad deposit is a world-class Cretaceous deposit, located 116 km SE of the city of 

Yazd	in	the	central	Iranian	tectonic	block,	one	of	the	most	important	metallogenic	provinces	for	zinc-
lead mineralization (Ghazanfari, 1993; Ghorbani, 2013). The deposit has been explored by various 
parties since the 1960s. The geologic map of the Mehdiabad area is shown in Fig. 1. Outcrops of the 
different	geological	units	have	been	distinguished	in	the	Mehdiabad	deposit	area,	mainly	formed	by	
the	Sangestan,	Taft	and	Abkouh	Formations.	The	structural	geology	is	characterized	by	faults	that	
are	one	of	the	main	controlling	factors	of	mineralization.	The	Mehdiabad	deposit	is	divided	into	two	
parts: 1) the Mountain Ore Body (MOB) (also known as Calamine Mine) that represents the highest 
parts of the oxide ore mineralization; and 2) the Valley Ore Body (VOB), the main part of the ore 
body located in a depression surrounded by hills and mountains (Reichert, 2007).

3.1.1. The Mountain Ore Body (Calamine Mine)
The	MOB,	wedged-in	between	the	Black	Hill	Fault	 in	 the	west	and	the	Forouzandeh	Fault	

in	 the	east,	 is	 located	on	a	 rugged	mountainside	 in	 the	north-western	part	of	 the	deposit.	The	
MOB	is	completely	oxidized.	The	oxide	ore	is	hosted	by	limestone	and	low	magnesium	dolomitic	
limestone	 (Abkou	 Formation)	 that	 are	 intensively	 faulted,	 brecciated	 and	 locally	 mylonitized	
(Reichert	et al., 2003). The oxide ore occurs on three different levels due to tectonic repetition 
(GSI, 1998). Based on the composition of the sulfide ore of the VOB, the supposed main sulfide 
mineral	association	of	the	MOB	domain	was	galena,	sphalerite,	barite,	and	pyrite.	However,	no	
clear indications for the sulfide protor of the MOB have been identified, which might be attributed 
to	 the	 thorough	 oxidation,	 folding,	 and	 faulting	 of	 the	 strata	 and	 solution	 collapse	 (Reichert,	
2007). The most important oxide ore minerals include hemimorphite, hydrozincite, smithsonite, 
goethite,	 in	 addition	 to	 small	 amounts	of	mimetite,	hetaerolite,	 and	 sauconite	 (Reichert	et al.,	
2003). Three different stages of ore formation or alteration have been identified: 1) precipitation 
of	stage-1	hemimorphite	(and	possibly	minor	smithsonite,	hydrozincite,	goethite,	and	hematite)	
within the fault zones and breccias; 2) alteration of hemimorphite to hydrozincite, and precipitation 
of goethite/hematite; 3) precipitation of type-2 hemimorphite as mineralization within fractures 
and open spaces of the fault breccia as well as the oxide ore without significant precipitation of 
goethite/hematite	(Reichert	et al., 2003).

3.1.2. The Valley Ore Body
The VOB is located in a valley and is covered by an alluvial overburden of about 250 m. The 

Taft Formation hosts the main portion of the sulfide ore of the VOB (Azari and Sethna, 1994). 
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The	 strata	 of	 the	Taft	 Formation	 mainly	 comprise	 dolomitic	 and	 ankeritic	 limestone,	 and	 are	
characterized by an intensive and extensive brecciation (BRGM, 1994) that is probably the result 
of emergence, paleo-karstification, and finally, the collapse of these strata (Reichert, 2007). The 
main portion of the VOB consists of sulfides. The main sulfide minerals are galena, sphalerite, 
barite, pyrite, and traces of chalcopyrite (Azari and Sethna, 1994), which occur as impregnation 
of	the	Taft	Formation	breccia	and	as	a	matrix	in	a	complex	fracture	and	breccia	system,	and	also	
fill the interstitial space between the breccia fragments (Reichert, 2007). Three different stages of 
(tectonic	or	collapse)	displacement	and	mineralization	of	the	valley	ore	body	can	be	interpreted:	
1) paleo-karst and partial collapse of the limestone of the Taft Formation; 2) the dolomitization of 
the carbonate rock that genetically linked with the emplacement of the sulfide ore and barite; 3) 
initiated with the oxidation of the sulfide ore that it is still going on (Reichert, 2007).

Fig.	1	-	Geologic	map	of	the	Mehdiabad	area.
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3.2. Presentation of the data set
The total length of diamond drilling in Mehdiabad is about 55,000 m. Comprehensive geological, 

structural	and	geotechnical	information	was	recorded	from	cores	that	were	composited	to	a	length	
of 1 m. As the mine geologists claim, the boundaries of the oxide and sulfide mineralization 
domains	 were	 provided	 by	 a	 consulting	 company	 and	 the	 block-support	 sequential	 Gaussian	
co-simulation was carried out in oxide and sulfide domains separately, using the subset of the 
composites located within these domains. The grades of three elements (Zn, Pb, and Ag) are 
considered	for	this	study.	The	general	statistics	of	the	composited	data	are	shown	in	Table	1	and	
their histograms are displayed in Fig. 2. It can be seen that the three grades have not been measured 
for all the samples and the data set is therefore partially heterotopic. The Pearson correlation 
coefficients are shown in Table 2.

Fig. 2 - Histograms of Zn (%), Pb (%), and Ag (g/t) grade data in oxide (left) and sulfide domains (right).
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3.3. Block support co-simulation of grades
The	following	analyses	deal	with	constructing	a	set	of	realizations	of	the	zinc,	lead,	and	silver	

grades over the oxide and sulfide domains of the deposit, which match the known values at the 
sample	 locations,	 reproduce	 the	 spatial	 variability	 of	 the	 true	 unknown	 grades	 at	 unsampled	
locations,	in	addition	to	the	spatial	dependence	between	the	grades.	The	steps	to	construct	these	
realizations	using	block-support	sequential	Gaussian	co-simulation	are	as	follows.

1) Declustering of the original data. In unequal sampling cases, declustering weights are 
primarily used to obtain a representative histogram for each variable (Goovaerts, 1997).

2) A Gaussian transformation was carried out for zinc, lead and silver grades. This nonlinear 
transformation tends to reduce the influence of outliers, to increase the correlation between 
variables	 and	 to	 make	 the	 estimation	 of	 experimental	 covariance	 and	 variograms	 in	
subsequent steps of the simulation process more robust (Desbarats and Dimitrakopoulos, 
2000). Table 3 shows the Pearson correlation after the Gaussian transformation.

3) The experimental variograms of the Gaussian data are calculated along the horizontal plane 
(i.e., all the directions with dip 0°, irrespective of their azimuth) and the vertical direction 
(i.e., the direction with dip 90°), and a linear model of coregionalization is fitted by a semi-
automated technique (Goulard and Voltz, 1992). The fitted model is presented in Figs. 3 and 

Table 1 - General statistics for the data in the oxide and sulfide domains.

 Field Mean Std dev Min Max 0.25Q 0.50Q 0.75Q Number

   Oxide domain

 Zn (%) 2.741 3.2510 0.0025 27.00 0.686 1.560 3.665 6630

 Pb (%) 1.263 1.5066 0 23.24 0.184 0.730 1.882 6626

 Ag (g/t) 28.190 40.5850 0 660.00 5.200 14.400 35.794 6461

   Sulfide domain

 Zn (%) 3.370  3.8600 0 43.66 1.015 2.220 4.350 9902

 Pb (%) 1.259 1.4555 0 23.60 0.298 0.784 1.675 9881

 Ag (g/t) 32.25 43.4150 0 825.00 8.633 20.000 39.002 9096

Table 2 - Pearson correlation coefficients between grade variables: oxide domain (upper diagonal) and sulfide domain 
(lower	diagonal).

  Zn Pb Ag

 Zn 1.000 0.339 0.110

 Pb 0.535 1.000 0.616

 Ag 0.339 0.600 1.000

Table 3 - Pearson correlation coefficients between variables after Gaussian transformation: oxide domain (upper 
diagonal) and sulfide domain (lower diagonal).

  Zn Pb Ag

 Zn 1.000 0.507 0.267

 Pb 0.606 1.000 666

 Ag 0.411 0.668 1.000
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4 for the oxide and sulfide domains, respectively. The coregionalization model considers 
three	nested	structures:

Oxide	domain:
i) an exponential variogram with practical ranges of 20 m (horizontal) and 25 m (vertical);
ii) an exponential variogram with practical ranges of 30 m (horizontal) and 80 m (vertical);
iii) a spherical variogram with ranges of 150 m (horizontal) and 180 m (vertical).
The	respective	coregionalization	matrices	are	found	to	be	as	follows:

 0.349 0.170 0.152  0.021 0.005 0.015  0.630 0.332 0.100
B1	=	(	0.170 0.659 0.329 ),	B2	=	( 0.005 0.016 0.005 ),	B3	=	(	0.332 0.325 0.332 ) 0.152 0.329 0.362  0.015 0.005 0.010  0.100 0.332 0.628

Sulfide domain:
i) an exponential variogram with practical ranges of 20 m (horizontal) and 25 m (vertical);
ii) an exponential variogram with practical ranges of 30 (horizontal) and 100 m (vertical);
iii) a spherical variogram with ranges of 150 m (horizontal) and ∞ (vertical).
The	respective	coregionalization	matrices	are	found	to	be	as	follows:

 0.573 0.397 0.273  0.091 –0.020 0.062  0.336 0.229 0.076
B1	=	(	0.397 0.633 0.458 ),	B2	=	( –0.020 0.137 –0.018 ),	B3	=	(	0.229 0.230 0.227 ) 0.273 0.458 0.496  0.062 –0.018 0.051  0.076 0.227 0.453

4) The Zn, Pb, and Ag grades are co-simulated separately in the oxide and sulfide domains 
using	 the	 block-support	 sequential	 Gaussian	 co-simulation	 method.	The	 results	 of	 both	
domains are subsequently merged. A total of 100 realizations are constructed on 34,054 
blocks of size 25×25×10 m located within the ultimate pit limit, representing the smu that 

Fig. 3 - Experimental (dashed lines) and modelled (solid lines) direct and cross variograms of Gaussian transforms of 
zinc,	lead,	and	silver	grades,	along	the	horizontal	plane	(red)	and	the	vertical	direction	(blue)	in	the	oxide	domain.
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will be mined. The block discretization is set to 5×5×2; this discretization level is deemed 
sufficient, as a finer discretization does not bring much difference in the calculation of 
point-to-block and block-to-block covariances (Eqs. 6 and 7).

The maps of the first realization for a selected section at 3,484,300 m north are shown in Fig. 
5 (left) for zinc, lead, and silver. Also, the corresponding expected values were constructed by 
averaging the 100 realizations on a block-by-block basis (Fig. 5, right). The latter maps show 
less	contrasts	 than	the	former,	which	is	aimed	at	reproducing	the	true	smu	grade	variability	at	

Fig. 4 - Experimental (dashed lines) and modelled (solid lines) direct and cross variograms of Gaussian transforms of 
zinc, lead, and silver grades, along the horizontal plane (red) and the vertical direction (blue) in the sulfide domain.

Table 4 - Statistics on simulated grades at block support.

 Field Block model Mean Std dev Min Max 0.25Q 0.50Q 0.75Q

    Oxide domain

 
Zn

 Realization # 1  2.577  2.026 0.0086  16.865  0.932  1.738  3.014

  Average of all realizations  2.397  1.018 0.2680  10.420  1.757  2.285  2.823

 
Pb

 Realization # 1  1.261  0.894 0.0125   8.133  0.681  1.155  1.785

  Average of all realizations  1.342  0.335 0.3270   2.846  1.131  1.324  1.510

 
Ag

 Realization # 1 28.888 27.330 0.1500 366.061 11.946 22.917 40.09 

  Average of all realizations 30.076 11.935 2.1150  91.679 22.061 29.458 36.801

    Sulfide domain

 
Zn

 Realization # 1  3.493  2.091 0.1450  22.247  1.700  2.658  4.053

  Average of all realizations  3.178  0.683 0.5140   8.592  2.802  3.163  3.523

 
Pb

 Realization # 1  1.279  0.806 0.0440   7.926  0.803  1.224  1.791

  Average of all realizations  1.361  0.233 0.3110   3.500  1.240  1.358  1.469

 
Ag

 Realization # 1 39.815 28.815 0.486  403.744 19.250 30.367 47.704

   Average of all realizations 35.408 10.229 5.946  130.815 29.969 35.125 40.657
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all	 spatial	 scales.	This	 fact	 is	corroborated	by	examining	 the	statistics	of	 the	simulated	block-
support	grades,	where	a	higher	dispersion	and	a	larger	range	of	the	simulated	grades	for	a	single	
realization than for the average of 100 realizations can be observed (Table 4).

The	 variability	 of	 the	 simulated	 grades	 is,	 nevertheless,	 smaller	 than	 that	 of	 the	 original	
point-support grades (Table 1), while the mean values are not significantly different between one 
support and the other, which agrees with the change-of-support theory (Matheron, 1984; Chilès 
and Delfiner, 2012, pp. 433). The Pearson correlation coefficient between the simulated grades 
(Table 5) are also higher than that of the original data (Table 2), which is a consequence of the 
support	effect	that	tends	to	smooth	out	the	small-scale	variability	and	to	improve	the	correlation	
between	variables.

Fig. 5 - Maps of simulated zinc (top), lead (middle), and silver (bottom) block-support grades for realization #1 (left) 
and maps of expected zinc, lead, and silver grades (average of 100 realizations) (right).

Table 5 - Pearson correlation coefficients between simulated grades: oxide domain (upper diagonal) and sulfide domain 
(lower	diagonal).

  Zn Pb Ag

 Zn 1.000 0.576 0.187

 Pb 0.634 1.000 0.646

 Ag 0.346 0.657 1.000
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4. Risk assessment results and discussion

The	prediction	of	the	tonnages	and	grade	of	ore	recoverable	with	particular	selective	mining	
units	or	blocks	is	a	central	problem	in	mineral	resource	and	ore	reserve	estimation	(Rossi	and	
Deutsch, 2014). In polymetallic deposits, some minerals and different metals can be exploited 
with	an	acceptable	economic	value.	The	analysis	of	the	uncertainty	in	grade,	tonnage	and	metal	
curves	by	long-term	planning	engineers	can	be	performed	to	understand	the	recoverable	mineral	
resource	and	ore	reserve	scenarios	at	different	cut-offs	(Hosseini	et al., 2017). The Mehdiabad 
mining project represented a total investment of about 1.3 billion dollars. The high investment, 
associated	with	the	mineral	asset	and	its	metallurgical	complexity,	highlights	the	importance	of	
assessing the risks using the jointly simulated variables to ensure the financial viability of the 
project.

In	polymetallic	ores,	it	is	common	to	use	a	“metal-equivalent	grade”	to	simplify	the	analysis	
(Kelmendi and Azemi, 2011). Typically, the contents of minor metals are converted and added 
to	 the	grade	of	 the	major	metal	with	 the	most	 stable	market	price.	The	equivalence	 factor	 for	
converting the grades of metal 1 and 2 into an equivalent grade is equal to:

(10)

Zeq	=	Z1	+	Feq Z2	 (11)

Fig.	6	-	Tonnage	(top-left),	mean	zinc	grade	(top-right),	mean	lead	grade	(bottom-left),	and	mean	silver	grade	(bottom-
right)	 recovered	after	applying	a	cut-off	on	 the	block-support	equivalent	zinc	grade,	calculated	for	each	realization	
(solid	gray	lines)	and	averaged	over	all	the	realizations	(black	dash	line).
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where	s	the	selling	price,	y	the	recovery	and	Z	the	grade	for	each	metal.	Note	that	the	weights	of	
metal	are	in-situ	and	have	no	mining	factors	applied	to	them.	In	the	present	case,	the	equivalent	
zinc grade for oxide and sulfide types is defined as follows:

Oxide	domain:

Zneq	=	Zn(%) + (0.956 × Pb(%)) + (0.0174 × Ag(g/t)) (12)

Sulfide domain:

Zneq	=	Zn(%) + (0.837 × Pb(%)) + (0.0152 × Ag(g/t)) (13)

The assumed prices are 0.98 USD/lb for Zn, 0.82 USD/lb for Pb, and 20.29 USD/oz for Ag. A 
recovery of 63% and 72% was applied to Zn in the oxide and sulfide domains, respectively, 72% 
was applied to Pb and 40% was applied to Ag (BRGM, 1994).

For	 each	 realization,	 the	 recoverable	 zinc,	 lead,	 and	 silver	 grades	 above	 given	 cut-offs	 on	
the	equivalent	zinc	grade	are	calculated,	together	with	the	ore	tonnages	obtained	by	considering	
the average rock density in each mineralization domain, which is derived from a total of 1277 

Fig. 7 - Distributions of ore tonnage per production period (top-left), mean equivalent zinc grade per production period 
(top-right), and overall ore tonnage (bottom), calculated through 100 realizations. Boxplots in the top figures indicate 
the	extremes	and	the	quartiles	of	the	distributions.
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measurements. The expected recoverable grades and tonnages are then defined by an average over 
the 100 realizations (Fig. 6). As each realization constitutes a plausible outcome for the deposit, 
the	true	grade-tonnage	curves	should	lie	within	the	set	of	simulated	curves.	The	simulated	grade-
tonnage curves are helpful for ore/waste selection, for resource/reserve classification (Emery et 
al., 2006), for finding the optimum cut-off grade (Osanloo and Ataei, 2003) and for operational 
and planning purposes (Kelmendi and Azemi, 2011). As an illustration, let us consider a long-
term mine plan with 21-year production periods, established by planning engineers, together with 
an economic cut-off on the equivalent zinc grade equal to 4.7%. The ore tonnage and equivalent 
zinc	 grade	 extracted	 in	 each	 period	 can	 be	 evaluated	 in	 each	 realization.	 Accordingly,	 when	
considering the 100 realizations, one obtains distributions of ore tonnages and grades that quantify 
the uncertainty on the ore reserves per production period (Fig. 7, top). The overall distribution of 
ore tonnage (considering the 20 periods) can also be calculated (Fig. 7, bottom), which indicates 
the quantity of ore to be mined as a function of the level of risk (between 0 to 1).

5. Conclusions

The	study	shows	an	application	and	practical	aspects	of	 the	block	sequential	Gaussian	co-
simulation technique proposed by Emery and Ortiz (2011), which provides efficient forecasting 
of	multiple	recoverable	metals	at	the	Mehdiabad	deposit	in	central	Iran	for	mine	planning	and	
financial assessment. The joint simulation of zinc, lead, and silver grades is performed in the 
oxide and sulfide domains separately. Such an approach is remarkably simple, as it depends on a 
few	key	parameters	(essentially,	the	transformation	functions	from	original	to	Gaussian	variables	
and	the	coregionalization	model	for	the	Gaussian	data),	and	is	capable	of	handling	the	change	
of	support	from	the	data	to	the	target	SMU	supports,	the	multivariate	nature	of	the	ore	control	
selection	criteria	and	the	uncertainty	in	 the	actual	(unknown)	block	grades.	The	assessment	of	
global	 uncertainty	 of	 the	 in-situ	 resources	 and	 ore	 reserves	 by	 a	 set	 of	 realizations	 should	 be	
considered	in	feasibility	studies	and	in	supporting	important	decisions	concerning	the	Mehdiabad	
project	 and	 allow	 transferring	 uncertainty	 of	 the	 resource	 estimates	 into	 risk	 in	 downstream	
studies.
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