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A B S T R A C T

In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a
categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock
type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work
presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is
represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an
intrinsic random field of order k with Gaussian generalized increments.
The proposals concern both the inference of the model parameters and the construction of realizations condi-
tioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a
semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances
and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the
copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce
the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock
type.
1. Introduction

33333333The spatial distribution of the quantitative variables of
interest in mineral resources evaluation is usually controlled by geolog-
ical factors such as lithology, mineralization or alteration. When assess-
ing the resources and the underlying uncertainty with geostatistical
techniques, some dependence relationships between the random fields
representing the quantitative variables and the controlling factors should
therefore be taken into account. Most often, this is done with a hierar-
chical approach, by first partitioning the deposit into geological domains
and, then, by simulating the quantitative variables within each domain
(Rold~ao et al., 2012). As a result, the modeled variables exhibit clear-cut
discontinuities when crossing the domain boundaries.

To avoid such discontinuities, one can consider the geological domains
as a categorical covariate for the target quantitative variables. The former
and the latter can thenbe jointly simulatedbyusingGaussian-basedmodels
(Dowd, 1997; Emery and Silva, 2009; Maleki and Emery, 2015). However,
to date, most of these models rely on a stationarity hypothesis, which is
unrealistic in the presence of spatial trends of the geological domains.

The solution proposed here is to look for a bivariate random field
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model, in which one random field (representing a quantitative variable,
say, a metal grade) is stationary, while the other random field (repre-
senting the geological domains, say, rock type domains) is not stationary,
but cross-correlated with the first one. In the following sections, we detail
the process for inferring the model parameters (Section 2) and for con-
structing conditional realizations (Section 3). An application case study is
presented in Section 4.

2. Joint modeling of grade and rock type

2.1. Grade modeling

Henceforth, we will consider a single metal grade, viewed as a real-
ization of a stationary random field that can be monotonically trans-
formed into a standard Gaussian random field. The model parameters are
classically obtained by (1) transforming the grade data into normal
scores, (2) calculating the experimental variogram or covariance of the
normal scores, and (3) fitting a theoretical variogram or covariance
model (Chil�es and Delfiner, 2012). In the following, let us denote by Y0
the stationary Gaussian random field associated with the transformed
hile.
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grade and by K0 its stationary covariance function.

2.2. Rock type modeling

Following Madani and Emery (2017), non-stationary rock type do-
mains can be obtained by truncating an intrinsic random field of order k
(IRF-k), hereafter denoted as Z, with Gaussian generalized increments
and generalized covariance function K1. For simplicity, a single IRF-kwill
be considered here, although the extension to several IRF-k is possible.

2.2.1. Finding a representation of the IRF-k with an ordinary covariance
To work with a random field that possesses an ordinary covariance

function (and not only a generalized covariance), let us put

∀x 2 ℝd; Y1ðxÞ ¼ ZðxÞ � ZT
0ΛðxÞ (1)

where d is theworkspace dimension, Z0 is the n� 1 vectorwith entry Z (xi)
at row i (with x1 … xn a set of given locations in ℝd) and Λ(x) is the n � 1
vector containing the universal kriging weights λ1(x)… λn(x) assigned to
x1… xnwhen predicting location xwith a pure nugget effect model and a
polynomial drift of degree k. Let {f l: l¼ 1… L} be the basic drift functions
(monomials of the spatial coordinates of degrees less than or equal to k),
F0 the L� nmatrix with f l(xi) as the entry at row l and column i, and F(x)
the L � 1 vector with entry f l(x) at row l. Then

ΛðxÞ ¼ FT
0 ðF0FT

0 Þ�1FðxÞ (2)

The choice of the pure nugget effect model is merely instrumental, in
order to provide a vector of weights Λ(x) that are linear combinations of
the components of F(x), and does not presume the spatial structure of the
random fields Y1 and Z. Equation (1) becomes

∀x 2 ℝd; Y1ðxÞ ¼ ZðxÞ � ZT
0F

T
0

�
F0FT

0

��1FðxÞ (3)

The difference between Y1(x) and Z(x) is a linear combination of the
components of F(x), i.e., a polynomial function of the coordinates of x.
This implies that Y1 is a representation of the same IRF-k as Z, insofar as
an IRF-k is defined up to a polynomial of the coordinate of degree less
than or equal to k (Chil�es and Delfiner, 2012). Furthermore, since it co-
incides with a universal kriging error, Y1(x) is a generalized increment of
Z and follows a Gaussian distribution with zero mean and finite variance.
Accordingly, Y1 is a Gaussian random field that possesses a covariance
function C1, which can be expressed as a function of the generalized
covariance K1:

∀x;x02ℝd;C1ðx;x0Þ¼K1ðx�x0Þ�
Xn

i¼1

λiðxÞK1ðxi�xÞ�
Xn

i¼1

λiðx0ÞK1ðxi�x0Þ

þ
Xn

i¼1

Xn

j¼1

λiðxÞλjðx0ÞK1

�
xi�xj

�
(4)

According to Chil�es and Delfiner (2012), the number of locations x1
… xn necessary to construct the representation Y1 (hereafter called an
“internal representation”) should be such that

n � L ¼ ðk þ dÞ!
k!d!

(5)

Let us standardize Y1 by putting:

∀x 2 ℝd; ~Y1ðxÞ ¼ Y1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðx; xÞ

p (6)

which provides a Gaussian random field with zero mean, unit variance
and non-stationary covariance function
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∀x; x0 2 ℝd; ρ1ðx; x0Þ ¼ C1ðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðx; xÞC1ðx0; x0Þp (7)

2.2.2. Truncating the representation of the IRF-k
Consider the indicator Iz obtained by truncating the original IRF-k at a

threshold z:

∀x 2 ℝd; IzðxÞ ¼
�
1 if ZðxÞ< z
0 otherwise (8)

This indicator can be rewritten as (Eqs. (3)–(7))

∀x 2 ℝd; IzðxÞ ¼
�
1 if ~Y1ðxÞ< yðxÞ
0 otherwise

(9)

with

yðxÞ ¼ z� ZT
0F

T
0 ðF0FT

0 Þ�1FðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðx; xÞ

p (10)

The covariance function of Iz can be derived from that of the standard
Gaussian random field fY1 (Chil�es and Delfiner, 2012):

∀x; x0 2 ℝd;Czðx; x0Þ

¼ gðyðxÞ Þgðyðx0Þ Þ
Xþ∞

p¼1

Hp�1ðyðxÞ ÞHp�1ðyðx0Þ Þρ1ðx; x0Þp (11)

where {Hp: p 2 N} are the Hermite polynomials and g is the standard
Gaussian probability density function. Finally, the non-centered indica-
tor covariance is:

∀x; x0 2 ℝd;EfIzðxÞIzðx0Þ g ¼ Czðx; x0Þ þ GðyðxÞ ÞGðyðx0Þ Þ (12)

where G is the standard Gaussian cumulative distribution function. The
right-hand side is a function of the known locations and weights used to
construct the internal representation Y1, and of the unknown generalized
covarianceK1, threshold z and vector Z0 (involved in the definition of y(x)
in Equation (10)). Concerning the left-hand side, an experimental estimate
can be computed for each pair of data locations where Iz is known.
Therefore, if one assumes a parametric form forK1 (e.g., aweighted sumof
known nested models with unknownweights), one can estimate K1, z and
Z0 so as to minimize the sum of squared errors between the experimental
and theoretical covariances (Eq. (12)) (Madani and Emery, 2017).
2.3. Modeling the cross-correlation between grade and rock type

Let K10 be the generalized cross-covariance between the IRF-k
modeling the rock type domains (Z) and the stationary Gaussian random
field modeling the grade (Y0). The cross-covariance between Y0 and the
internal representation Y1 can be expressed as:

∀x; x0 2 ℝd ;C10ðx; x0Þ :¼ covfY1ðxÞ; Y0ðx0Þ g
¼ cov

(
ZðxÞ �

Xn

i¼1

λiðxÞZðxiÞ; Y0ðx0Þ
)

¼ K10ðx� x0Þ �
Xn

i¼1

λiðxÞK10ðxi � x0Þ
(13)

The cross-covariance between the standardized representationfY1 and
Y0 is:

∀x; x0 2 ℝd; ρ10ðx; x0Þ :¼ covf~Y1ðxÞ; Y0ðx0Þ g ¼ C10ðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðx; xÞ

p (14)

To determine the cross-covariance between Y0 and the indicator Iz
defined in Equations (8) and (9), let us expand the indicator into Hermite
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polynomials:
∀x; x0 2 ℝd;Cz;0ðx; x0Þ :¼ cov
n
1~Y1

ðxÞ< yðxÞ ; Y0ðx0Þ
o
¼ cov

(
GðyðxÞ Þ þ

Xþ∞

p¼1

1ffiffiffi
p

p Hp�1ðyðxÞ ÞgðyðxÞ ÞHpð~Y1ðxÞ Þ; Y0ðx0Þ
)

(15)
On the one hand, one has:

Y0ðx0Þ ¼ �H1ðY0ðx0ÞÞ (16)

On the other hand, as the Hermite polynomials applied to jointly
standard Gaussian random fields do not have any cross-correlation unless
they have the same degree, one obtains:

Cz;0ðx; x0Þ ¼ �gðyðxÞÞcov�~Y1ðxÞ; Y0ðx0Þ� ¼ �gðyðxÞÞρ10ðx; x0Þ (17)

The right-hand side is a function of the known locations and weights
used to construct the internal representation Y1, and of the unknown
generalized cross-covariance K10, threshold z and vector Z0. As for the
left-hand side, an experimental estimate can be computed for each pair of
data locations where Iz and Y0 are known. Therefore, if one assumes a
parametric form for K10, one can estimate K10, z and Z0 so as to minimize
the sum of squared errors between the experimental and theoretical
cross-covariances (Eq. (17)).

2.4. Joint modeling of the correlation structure of grade and rock type

As they involve common parameters (threshold z and vector Z0), the
inference of the rock type model (generalized covariance K1) and of the
cross-correlation (generalized cross-covariance K10) should be performed
in a single least squares fitting process. In summary, the steps to infer
both the generalized direct and cross-covariances are:

� Choice of model parameters:
� an order k for the IRF-k Z representing the rock type;
� a set of locations x1 … xn on which to construct the representation

Y1;
� a set of basic nested structures for the direct and cross-covariances

K0, K1 and K10. The unknowns can be the sills, slopes, exponents,
shape parameters and scale parameters of these nested structures.

� Experimentally calculate the data-to-data indicator covariance ma-
trix, as well as the data-to-data indicator-normal scores cross-
covariance matrix.

� Calculate the theoretical data-to-data indicator covariance matrix
(Eq. (12)) and data-to-data indicator-normal scores cross-covariance
matrix (Eq. (17)), which depend on the parameters to be fitted.

� Find the covariance parameters, threshold z and vector Z0 that
minimize the sum of squared errors between the experimental and
theoretical direct covariance and cross-covariance matrices. A trust
region algorithm (Yuan, 2015) can be used for this purpose.

Z0 varies from one realization to another, as it depends on the values
of the representation of the intrinsic random field Z at the chosen loca-
tions x1 … xn, while the parameters of the generalized direct covariance
K1 and cross-covariance K10 remain the same for all the realizations of
this intrinsic random field. Therefore, one should keep only the latter
parameters for the simulation stage, not the value of Z0 delivered by the
least-squares fitting algorithm.

Also, because z and Z0 are fitted through the difference z �
ZT
0F

T
0 ðF0FT0 Þ�1FðxÞ that defines the numerator of the ratio in Equation

(10), the exact value of z remains undetermined. This indetermination is
actually not an issue: instead of truncating the initial representation Z at
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threshold z (Eq. (8)), one can use another representation of the same IRF-
k equal to Z – z with a truncation threshold equal to zero. In other words,
up to a change in the representation of the IRF-k, the truncation threshold
z can be set to zero without loss of generality.
2.5. An example of bivariate covariance model

Suppose that K1 is a power covariance with slope c1 and exponent α1,
and that K0 and K10 are Mat�ern covariance functions with sills c0 and c10
and shape parameters μ0 and μ10, respectively. The Mat�ern covariance is
chosen here because of its versatility, as the shape parameter controls its
behavior at the origin. In this section, all these covariances are further
assumed to have a unit scale parameter, but this parameter can be
modified to any other value, possibly depending on the direction in case
of anisotropy.

The matrix of generalized direct and cross-covariances is:

CðhÞ ¼
�

K0ðhÞ K10ðhÞ
K10ðhÞ K1ðhÞ

	
(18)

The corresponding spectral density matrix is:

fðωÞ ¼
�

f0ðωÞ f10ðωÞ
f10ðωÞ f1ðωÞ

	
(19)

where f0, f1 and f10 are the spectral densities of the Mat�ern direct
covariance, power direct covariance and Mat�ern cross-covariance,
respectively, i.e. (Lantu�ejoul, 2002; Chil�es and Delfiner, 2012):

f0ðωÞ ¼ c0
Γðμ0 þ d=2Þ
Γðμ0Þπd=2

1�
1þ 



ω

j2�μ0þd=2

f1ðωÞ ¼ c1
Γðα1=2þ 1ÞΓðα1=2þ d=2Þ

Γðα1=2� kÞΓð1� α1=2þ kÞπα1þd=2

1

ð2πÞdðjjωjj=ð2πÞÞα1þd

f10ðωÞ ¼ c10
Γðμ10 þ d=2Þ
Γðμ10Þπd=2

1�
1þ 



ω

j2�μ10þd=2

(20)

with k the integer part of α1=2. To have an admissible model, f(ω) must
be positive semi-definite for any ω (Chil�es and Delfiner, 2012), i.e.:

∀ω 2 ℝd; f0ðωÞf1ðωÞ � f 210ðωÞ (21)

After simplification, one obtains the following two constraints.

� First constraint

4μ10 � 2μ0 � α1 (22)
� Second constraint

c210 � c0c1
Γðμ0 þ d=2ÞΓðα1=2þ 1ÞΓðα1=2þ d=2ÞΓ2ðμ10Þ2α1
Γðμ0ÞΓðα1=2� kÞΓð1� α1=2þ kÞΓ2ðμ10 þ d=2Þ (23)

In a nutshell, by considering Equations (22) and (23), one needs to
find suitable covariance parameters (c0, c1, c10, μ0, μ10, α1). The



Fig. 1. Location maps of copper grade (A) and rock type (B) data (plan view of drill hole data with elevations between 94 m and 106 m).
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parameters associated with the grade (c0 and μ0) can be fitted directly on
the basis of the experimental variogram or covariance of the normal
scores data, while the remaining parameters should be fitted by least
squares optimization based on Equations (12) and (17).

3. Joint simulation of grade and rock type

3.1. Non-conditional simulation

Having determined the model parameters, one can jointly simulate
the two random fields Y0 and Z with an algorithm based on the spectral
representation of the generalized covariance functions. Specifically, let
us define a vector random field with two scalar components as follows:

∀x 2 ℝd;YðxÞ ¼
X2

p¼1

αp

�
ωp

�
cos

�
2π < x



ωp > þ ϕp

�
(24)

where < j > represents the dot product in ℝd

{ωp: p ¼ 1, 2} are independent random vectors with probability
density h in ℝd

{ϕp: p ¼ 1, 2} are independent random variables uniform on [0,2π]
{αp: p ¼ 1, 2} are vector-valued mappings with two real-valued
components.

For the random field Y to have (generalized) direct and cross-
covariances associated with the target spectral density matrix f, the
following condition must be satisfied (Emery et al., 2016; Arroyo and
Emery, 2016):

AðωÞAðωÞT ¼ 2fðωÞ
hðωÞ (25)

where A(ω) is the 2� 2matrix whose p-th column is αp(ω). The necessary
conditions to find a matrix A(ω) fulfilling the above equation are that
f(ω) is a real-valued symmetric positive semi-definite matrix for any
ω 2 ℝd and that the support of h contains the support of f. In such a case,
A(ω) can be obtained by taking the Cholesky factor of 2f(ω)/h(ω).

To obtain a random field with (approximately) multivariate-Gaussian
increments, it suffices to sum up and normalize many of such indepen-
dent random fields (Arroyo and Emery, 2016):
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∀x 2 ℝd;YðxÞ ¼ 1ffiffiffiffi
Q

p
XQ
q¼1

YqðxÞ (26)

where Q is a large integer and {Yq: q ¼ 1… Q} are mutually independent
random fields defined as in Equation (24).

Given a fixed number Q of basic random fields, the computational
cost (in terms of floating points operations) for calculating R realizations
of Y(x) at N locations in ℝd is O(N⋅R), i.e., proportional to N and R. For
comparison, sequential simulation requires between O(N3⋅R) and
O(N4⋅R) operations (Dimitrakopoulos and Luo, 2004), while spectral
approaches based on fast Fourier transforms require O(N⋅ln(N)⋅R) oper-
ations (Gneiting et al., 2006; Liang et al., 2016). For large N, the
computational requirement of our spectral algorithm is therefore
significantly lower and is comparable to that of the more general turning
bands algorithm (Lantu�ejoul, 2002). Calculations can be parallelized by
recourse to multi-core processors and/or GPU computing.

Another advantage of this algorithm relates to its minimal memory
requirement, insofar as the values simulated at every location can be
stored in an output file without waiting for the simulation at any other
location. In contrast, sequential and discrete spectral simulations often
require keeping in memory all the simulated values in each realization
(2⋅N values in the present case) before writing them in the output file
(Liang et al., 2016).
3.2. Conditioning to data

In the stationary case, one can convert a non-conditional simulation
into a conditional one thanks to an additional step based on simple
kriging or cokriging. In the present case however, one random field (Y0)
is stationary, but the other one (Z) is not. Accordingly, simple cokriging
can no longer be used to condition the realizations.

To obtain conditional realizations of both random fields, a specific
version of cokriging (mixed simple/intrinsic cokriging) has to be used,
which accounts for the stationarity and known mean value of the first
random field and the non-stationarity of the second one. The elements of
the right-hand and left-hand side kriging matrices are filled by consid-
ering the generalized direct and cross-covariances and the basic drift
functions associated with the non-stationary random field.

This specific version of cokriging should actually be used not only for
conditioning the realizations, but also in the Gibbs sampler required in



Fig. 2. Contact analysis of drill hole data: A) mean grade graph and B) correlation graph.

Fig. 3. Sample (crosses) and modeled (solid lines) variograms along main anisotropy
directions (transformed copper grade).
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the truncated Gaussian algorithm for constructing Gaussian data from
known data on the rock type domains (Armstrong et al., 2011).

4. Case study

4.1. Presentation of data and exploratory analysis

The models and algorithms presented in the previous sections are
now applied to a case study in mineral resources evaluation. The avail-
able data consist of 737 samples from exploration drill holes in a region
of size 400 m� 600 m� 130m belonging to the Río Blanco - Los Bronces
porphyry copper deposit (Chilean Central Andes), with information on
the rock types and total copper grades (Fig. 1). Two main rock types that
control the copper grade distribution can be distinguished
(Frikken, 2003):

� High-graded tourmaline breccia: the matrix is a milled rock flour with
biotite and tourmaline cement and open spaces filled by tourmaline-
quartz-sulfide.

� Other rocks, which include granodiorite and diorite whose miner-
alogy is composed of plagioclase, orthoclase, quartz, biotite and
262
hornblende, as well as low-graded breccias with a matrix of milled
rock flour and low proportion of tourmaline.

From Fig. 1, one observes a clear zonation, where the tourmaline
breccia is present only in the central part of the region, while the lateral
parts on the eastern and western sides are covered by the other rock
types. A stationary modeling of the rock type would therefore be ques-
tionable. Instead, a non-stationary model will be used, based on the
truncation of an IRF-k.

4.2. Contact analysis

To know whether or not a joint simulation approach is suited for this
case study, a contact analysis is carried out to determine the behavior of
the copper grade in the neighborhood of the boundary between the two
rock types (Maleki and Emery, 2015). In particular, the mean copper
grade in the other rocks appears to be rather continuous across the
boundary with the nearby mean copper grade of the breccia (Fig. 2A).
Also, the cross-correlation between a copper grade data located in the
breccia and a copper grade data located in the other rocks turns out to be
high (greater than 0.6) when the distance separating the two data loca-
tions is less than 15 m, and slowly decays to zero as the separation dis-
tance increases (Fig. 2B). These results suggest a soft contact and incite us
to use the proposed joint simulation method instead of the conventional
hierarchical approach. Note that the representations in Fig. 2A and B
omit the statistics associated with the short distances, which actually
involve very few data (less than 5, against several tens or hundreds data
for the remaining distances) and are therefore not robust.

4.3. Spatial structure analysis

4.3.1. Structural analysis of copper grade
To identify the spatial structure of the stationary Gaussian random

field Y0, the grade data are transformed into normal scores and vario-
gram analysis is performed on the normal scores. The experimental
variogram is calculated along the vertical and horizontal directions. The
fitted model (generalized covariance K0) comprises a nugget effect and
two nested Mat�ern structures with shape parameters equal to 0.5, which
correspond to exponential models (Fig. 3):

K0 ¼ 0:19nugget þ 0:29Mat�ern0:5ð30m; 75mÞ
þ 0:45Mat�ern0:5ð100m; 250mÞ (27)

The distances into brackets indicate the scale parameters along the
horizontal and vertical directions, respectively, while the scalar



Fig. 4. Two conditional realizations of the copper grade and rock type (plan view with elevation 100 m). The rock type of drill hole data between elevations 94 m and 106 m has been
superimposed, with filled and unfilled circles to indicate the belonging to tourmaline breccia and other rock types, respectively.
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coefficient before each structure indicates the sill of this structure.

4.3.2. Joint structural analysis of copper grade and rock type
We suppose that the rock type indicator is obtained by truncating an

IRF-k, denoted as Z. The spatial structure of Y0 and Z, i.e., their gener-
alized direct and cross-covariances, can be determined with the meth-
odology presented in Section 2, which relies on the choice of:

(1) an order k for the intrinsic random field Z;
(2) a set of locations for constructing an internal representation of Z;
(3) a set of basic nested structures for the direct (K0 and K1) and cross

(K10) covariance models.

In relation to the intrinsic random field, let us consider an order k¼ 1
that allows for a drift that can account for the rock type zonation. The
minimal number of locations needed to construct an internal represen-
tation is n ¼ 4 (Eq. (5)); these locations are chosen randomly over the
region of interest. More locations could be considered in order to get a
263
more robust representation of the drift, but this would increase the
number of parameters (size of vector Z0) and make the semi-automated
fitting process more complex.

Concerning the nested structures, the direct covariance K0 of the
Gaussian random field Y0 has been fitted in the previous subsection with
a nugget effect and two Mat�ern structures (Eq. (27)). Under these con-
ditions, let us assume a bivariate model for K0, K1 and K10 composed of
two structures (apart from the nugget effect).

The first structure is a model where all the generalized direct and
cross-covariances are Mat�ern covariances. For the sake of simplicity, we
will set the shape and scale parameters along the horizontal and vertical
directions to the same values as that found in the fitting of K0, i.e. a shape
parameter equal to 0.5 and scale parameters equal to 30 m (horizontally)
and 75 m (vertically). This bivariate model boils down to an intrinsic
correlation model where the generalized direct and cross-covariances are
proportional to the same exponential covariance.

The second structure is a bivariate model where the generalized
direct covariance associated with the rock type is a power model and the



Fig. 5. A) Conditional mean, B) conditional variance and C) conditional coefficient of variation (plan view with elevation 100 m) for the joint simulation approach.
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other direct and cross-covariances are Mat�ern, as presented in Section
2.5. Again, some choices are necessary to reduce the number of param-
eters to be fitted by the least-squares algorithm presented in Section 2.4.
One can fix the exponent, shape and scale parameters of this bivariate
model and leave only the sills or slope to the least-squares fitting:

� Scale parameters: the same scale parameters as the ones found when
fitting K0 will be used, so as to preserve the anisotropy directions and
anisotropy ratio of the grade model.

� Exponent: to obtain an IRF-1 for Z, the exponent of its power covari-
ance should be between 2 and 4 (Chil�es and Delfiner, 2012). For
simplicity, we chose a value of 3.

� Shape parameter: the lower bound for the shape parameter of the
cross-covariance between Y0 and Z is 1, as per Equation (22). Again,
for simplicity, we will take this bound as the parameter value.

The generalized direct and cross-covariances of the random fields Y0
and Z will therefore be assumed of the following form:
8<:
K0 ¼ 0:19nugget þ 0:29Mat�ern0:5ð30m; 75mÞ þ 0:45Mat�ern0:5ð100m; 250mÞ
K1 ¼ c1Mat�ern0:5ð30m; 75mÞ þ c01Power3ð100m; 250mÞ
K10 ¼ c10Mat�ern0:5ð30m; 75mÞ þ c010Mat�ern1ð100m; 250mÞ

(28)
The coefficients c1; c01; c10 and c010 are fitted by the least-squares al-
gorithm presented in Section 2.4, which aims to obtain the smallest total
sums of squared errors between the experimental and modeled covari-
ance matrices of the indicator data and cross-covariance matrices of in-
dicator and normal scores data. One finds

c1 ¼ 0:030; c01 ¼ 0:098; c10 ¼ 0 and c010 ¼ 0:252 (29)

These coefficients fulfill the condition in Equation (23) to be math-
ematically valid.

Due to the Mat�ern structure, the generalized covariance K1 is linear at
the origin, which produces irregular boundaries between the two rock
types when truncating the IRF-1 (Lantu�ejoul, 2002). However, the
Mat�ern structure becomes negligible in comparison with the power
structure for distances greater than 30m, so that the irregular behavior of
the rock type boundaries will convert into a smoother behavior at the
scale of a few tens of meters, which agrees with the geological under-
standing of the deposit and with the map in Fig. 1B.
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4.4. Conditional simulation

Provided with the spatial correlation model, one can construct re-
alizations of the grade and rock type. The simulation first consists in
simulating the intrinsic random field Z at the drill hole data locations,
conditionally to the grade and rock type data, by Gibbs sampling (using
mixed simple/intrinsic cokriging for determining the successive condi-
tional distributions, as indicated in Section 3.2). Cokriging is imple-
mented in a unique neighborhood, which theoretically ensures the
convergence of the Gibbs sampler (Emery et al., 2014), and the Gibbs
sampler is stopped after 10,000 iterations, i.e., when the value at each
drill hole data has been updated 10,000 times; such a number of updates
is chosen to obtain a good match in the reproduction of the spatial cor-
relation structure, as suggested in Emery et al. (2014). The spectral al-
gorithm is then applied to construct non-conditional realizations at the
data locations and over the region of interest, discretized by a regular
grid with a spacing of 5 m � 5 m � 12 m along the east, north and
elevation coordinates, respectively. One thousand (Q ¼ 1 000) basic
random fields are used at this stage (Eq. (26)). The realizations are
subsequently conditioned to the data (normal scores data for grade and
output of the Gibbs sampler for rock type), again by using mixed sim-
ple/intrinsic cokriging.

One hundred realizations are generated, two of which are displayed
in Fig. 4. As expected, no discontinuity is observed in the copper grade
when crossing the boundary between the two rock types (soft bound-
aries). The maps are consistent with the data values shown in Fig. 1,
where the tourmaline breccia is located in the center of the region under
study and contains the highest copper grade.
4.5. Post-processing the realizations

Fig. 5 displays the conditional mean, identified as the average of the
realizations, conditional variance (CV) and conditional coefficient of
variation (CCV) of the copper grade. Both the CV and CCV measure the
uncertainty in the true (unknown) copper grade and reflect a
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proportional effect (higher uncertainty in high-graded areas).
One can also calculate the uncertainty in the rock type at each target

grid node, through a probability map (Fig. 6). As can be seen from this
map, the probability of occurrence of tourmaline breccia is very high in
the center of the region under study and almost zero in the eastern and
western sides. This zonation is consistent with the drill hole data and
with the geological understanding of the deposit.

4.6. Validation against blast hole data

The identification of the spatial structure in Section 4.3.2 depends on
several subjective decisions of the modeler, in particular, the choice of
the order for the random field Z, of the number and coordinates of the
locations used for constructing the internal representation, of the number
and types of basic nested structures and of some of their parameters
(exponents, scale and shape parameters). From the authors’ experience,
the resulting model is sensitive to all these decisions and so are the
simulation results. An important step is therefore the validation of the
fitted generalized direct and cross-covariances, which can be done by the
leave-one-out cross-validation or the split-sample method.

Here, a validation against 20,893 blast hole data is done, by
Fig. 7. Split-sample validation of the simulated copper grades: A, map of blast hole data (plan v
realizations; C, accuracy plot comparing the proportion of blast hole data within PI-intervals a

Fig. 6. Conditional probability of tourmaline breccia (plan view with elevation 100 m).
The rock type of drill hole data between elevations 94 m and 106 m has been super-
imposed, with filled and unfilled circles to indicate the belonging to tourmaline breccia
and other rock types, respectively.
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simulating the copper grade at the blast hole locations (Fig. 7A) and
comparing the simulated values with the true values. On the one hand,
Fig. 7B shows the scatter plot of the average of 100 copper grade re-
alizations versus the true copper grades measured at the blast hole
samples, which indicates that the average simulated values are unbiased
(mean error equal to �0.013), conditionally unbiased (regression line
close to the bisector) and precise (scatter plot with little dispersion
around the bisector, reflected by a mean squared error equal to 0.350).
On the other hand, from the conditional realizations, one can also
compute a series of symmetric probability intervals (PI) at each blast hole
location. The bounds of the PI of probability p are the quantiles (1–p)/2
and (1 þ p)/2 of the distribution of simulated values. A correct modeling
of the grade uncertainty would entail that a proportion p of the proba-
bility intervals contains the true copper grade value (Goovaerts, 2001).
As a consequence, the scatter plot of the probability p versus the pro-
portion of blast hole data contained in the p-PI (known as an accuracy
plot) allows visualizing the match between observed and expected pro-
portions as a function of p. This plot (Fig. 7C) indicates an accurate
modeling of the uncertainty, as the departures from the identity line
are small.

The blast hole data do not carry information on the rock type, but a
validation of the rock type model has been made in the previous section,
by comparing the probability map (Fig. 6) in the light of the geological
knowledge of the deposit.
4.7. Comparison with the hierarchical approach

For comparison, let us simulate the rock type and the copper grade in
a hierarchical way. For the rock type simulation, the same procedure as
for the joint simulation is used, except that all the copper grade data are
removed and only the rock type data are kept. This amounts to con-
structing 100 realizations of an IRF-1 with generalized covariance K1
(Eqs. (28) and (29)) at the data locations, conditioned to the rock type
information at these locations, by Gibbs sampling. Then, 100 non-
conditional realizations are generated at the data locations and target
grid nodes by the spectral algorithm and converted into conditional re-
alizations with intrinsic kriging, using the Gibbs sampler output. As for
the copper grade simulation, the following steps are used for each rock
type (tourmaline breccia and other rocks):

1 Transform the copper grade data into normal scores
2 Calculate the experimental variogram of the normal scores
3 Fit a theoretical (stationary) variogram model
4 For each rock type realization:
iew with elevation 100 m); B, scatter plot between true copper grades and average of 100
gainst the nominal interval probability.



Fig. 8. Contact analysis mean grade graphs (A, C) and correlation graphs (B, D) for joint (A, B) and hierarchical (C, D) simulation at the target grid nodes (first realization).
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� Construct a non-conditional realization of the transformed grade at
the locations belonging to this rock type, using a spectral algorithm
(Emery et al., 2016).

� Condition the realization to the normal scores by simple kriging.
� Back-transform the simulated values from the Gaussian scale to the

grade scale.
Fig. 9. A) Conditional mean, B) conditional variance and C) conditional coefficien
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This way, one obtains as many copper grade realizations as rock type
realizations (100). The results of this approach are compared with the
ones obtained with the joint simulation approach.

4.7.1. Reproducing the nature of the rock type boundary
A contact analysis is carried out to determine the behavior of the
t of variation for the hierarchical approach (plan view with elevation 100 m).
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simulated copper grade near the rock type boundary. Regarding the joint
simulation approach, it is seen that the mean grade exhibits a gradual
transition when crossing the rock type boundary (Fig. 8A) and that the
simulated grades are correlated across the boundary (Fig. 8B), similarly
as what is observed in the original data (Fig. 2). This corroborates that
the joint simulation approach reproduces the soft boundary between rock
types. Conversely, the analysis related to the hierarchical approach
(Fig. 8C and D) indicates a discontinuity in the mean values and a weak
correlation of the simulated copper grades when crossing the boundary.
This is explained because the hierarchical model neglects the spatial
correlation of the copper grade across the boundary and therefore pro-
duces a hard boundary.

4.7.2. Prediction of copper grades
The conditional mean grade obtained with the hierarchical approach

(Fig. 9A) is higher in the edges of the region under study in comparison
with the joint simulation approach (Fig. 5A). This can be explained
because, in the joint simulation, the copper grade is positively correlated
with the IRF-1 associated with the rock type, which is likely to take large
negative values in the outer locations. In contrast, in the hierarchical
approach, the prior mean grade is constant in each rock type, so the
variations in the conditional mean are only due to the effect of the
conditioning data (these data are not abundant in the other rock type, so
their effect is moderate).

4.7.3. Quantification of grade uncertainty
As seen in Figs. 5 and 9, both the CV and CCV are significantly higher

when using the hierarchical approach, which is explained because this
approach uses fewer conditioning data when simulating the grades in
each rock type (tourmaline breccia data are neglected when simulating
the other rock types, and vice-versa, which leads to a greater uncer-
tainty). As a result, if one uses these measures for classifying the mineral
resources, the amount of measured ore tonnage is likely to increase by
using the joint simulation approach, while the hierarchical approach will
provide more inferred ore tonnage, thus a more conservative classifica-
tion. In other words, the joint simulation approach reduces the uncer-
tainty in the resources model by a more judicious use of the drill hole
information.

5. Conclusions

Up until now, the joint simulation of grade and rock type has been
restricted to a stationary setting, which is questionable when the spatial
layout of rock type domains exhibits spatial trends. This paper extends
such a simulation to a non-stationary setting, by assuming that the rock
type is obtained by truncating an IRF- k. Tools and algorithms have been
presented for inferring the model parameters and constructing re-
alizations conditioned to existing data. In practice, the main difficulty is
the identification of the joint spatial correlation structure, for which a
semi-automated procedure has been designed, based on a least-squares
fitting of the indicator covariance and cross-covariance between all the
pairs of data locations. This procedure can be subject to further im-
provements, so as to reduce the number of subjective decisions of the
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modeler and to enhance the effectiveness of the optimization algorithms
when a large number of parameters have to be fitted.

The proposed tools and algorithms have been applied to a porphyry
copper deposit, where the copper grade and rock type have been jointly
simulated conditionally to the information at drill hole samples. This case
study has proven the capability of the proposed model and algorithms to
jointly simulate a grade and a rock type and to reproduce the behavior of
the grade near the rock type boundary, as well as the spatial trend in the
rock type distribution.
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