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Abstract. An important economic problem is that of finding optimal pricing mechanisms
to sell a single item when there are a random number of buyers who arrive over time.
In this paper, we combine ideas from auction theory and recent work on pricing with
strategic consumers to derive the optimal continuous time pricing scheme in this situation.
Under the assumption that buyers are split among those who have a high valuation and
those who have a low valuation for the item, we obtain the price path that maximizes
the seller’s revenue. We conclude that, depending on the specific instance, it is optimal
to either use a fixed price strategy or to use steep markdowns by the end of the selling
season. As a complement to this optimality result, we prove that under a large family of
price functions there is an equilibrium for the buyers. Finally, we derive an approach to
tackle the case in which buyers’ valuations follow a general distribution. The approach is
based on optimal control theory and is well suited for numerical computations.
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1. Introduction
In many practical situations, particularly when sell-
ing items online, the precise number of potential
consumers is unknown. Therefore, studying auction
mechanisms with a random number of bidders has
been an important question in economic theory since
the work of McAfee and McMillan (1987). Significant
effort has been put in understanding these type of auc-
tions under different assumptions (see, e.g., Levin and
Smith 1994, Levin and Ozdenoren 2004, Haviv and
Milchtaich 2012). However, these works assume a static
situation in which the action takes place at one time
(or in two rounds) and potential bidders are always
present. Recent work in economic theory, including
that of Gershkov et al. (2014) and Board and Skrzypacz
(2016), considers a more general setting in which buy-
ers arrive over time and fully strategize their decisions.
However, this work assumes that the seller has full flex-
ibility and can design any type of mechanism, rather
than just the posted price mechanisms more common
in the pricing literature.
The issues of intertemporal price discrimination and

that of limited pricing flexibility have been central in
the area of revenue management, which is concerned
with price discrimination over time when selling per-
ishable goods (see Talluri and van Ryzin 2005 for an
in-depth treatment). Typically, revenue management
theory and practice firms use posted price mecha-
nisms with a price that may vary over time. On the

other hand, a frequent assumption in early revenue
management work is that customers are not forward-
looking. This assumption is usually violated because
customers anticipate the pricing policy and incorpo-
rate such knowledge in their purchase decision, thus
influencing the firm’s pricing decision. The evidence
that consumers act strategically (Li et al. 2014) has
opened a new line of research that analyzes the con-
ditions under which different pricing policies optimize
the firm’s profitability (Caldentey and Vulcano 2007,
Aviv and Pazgal 2008, Elmaghraby et al. 2009, Yin et al.
2009, Jerath et al. 2010, Osadchiy and Vulcano 2010,
Surasvadi and Vulcano 2013, Cachon and Feldman
2015, Caldentey et al. 2015, Correa et al. 2016). In par-
ticular, two types of pricing policies have been studied:
ones in which the price depends on the number of
remaining items at the end of each period and ones that
are fully preannounced. A drawback of this literature
is that it assumes that the price can only be changed at
discrete time steps, usually limited to two periods.

In this paper we address the problem of pricing
an item over time when fully informed and forward-
looking rational consumers arrive according to a
random process. This situation is common in several
economic activities, including real estate markets and
electronic commerce. For instance, Mercado Minero
in Chile offers second-hand mining machinery (min-
ing is the largest industry in Chile) through a contin-
uous pricing scheme.1 In their business model, they

2741

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

8.
74

] 
on

 1
6 

A
pr

il 
20

18
, a

t 1
2:

51
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://pubsonline.informs.org/journal/mnsc/
mailto:luis.briceno@usm.cl
mailto:correa@uchile.cl
mailto:andresperlrothv@gmail.com


Briceño-Arias, Correa, and Perlroth: Optimal Continuous Pricing with Strategic Consumers
2742 Management Science, 2017, vol. 63, no. 8, pp. 2741–2755, ©2016 INFORMS

announce at time 0 the full price curve until the last
day, say, 180. Then, a consumer arriving at any time
may decide to buy upon arrival or wait until the price
goes down enough. However, if a consumer decides
to wait, she risks not getting the item because another
consumer may purchase it. Other examples of com-
panies using such announced pricing schemes include
Lands End overstocks and Dress for Less.
Our model differs from most of those in the rev-

enue management literature in that the pricing can be
adjusted continuously. In this sense, our model is sim-
ilar to that of Su (2007), although consumers’ arrivals
are structured by a deterministic continuous flow. On
the other hand, our work also differs from the recent
literature in dynamic mechanism design, particularly
the work of Gershkov et al. (2014) and Board and
Skrzypacz (2016), in two key aspects. First, we only
allow the seller to use posted prices rather than general
mechanisms. Second, and probably more important, is
the fact that in these papers both the buyers and the
seller discount the future at the same rate, which is
key for a Myersonian approach. As argued by Pai and
Vohra (2013), among others, it is probably more real-
istic to assume that buyers are more impatient than
the seller. Therefore, we follow the classic economic
modeling of impatience and consider that buyers pos-
sess a temporal discount rate, while the seller does
not. It is worth noting that there are alternative mod-
els available in the literature, including those proposed
by Su (2007), Pai and Vohra (2013), or Mierendorff
(2016). In thesemodels, buyers have an arrival time and
either a time when they leave the system or an explicit
waiting cost.

1.1. Our Results
We consider the situation in which a single item is to
be sold over a period of time. Two types of strategic
buyers arrive over time: high-value and low-value con-
sumers. Consumers arrive according to independent
nonhomogeneous Poisson processes and upon arrival
they decide when is most convenient for them to buy.
To this end, they balance the price to be paid against
the probability of getting the item, and discount the
future at rate µ ≥ 0. The seller, who does not discount
the future, chooses an arbitrary price function over the
time period in order to maximize his expected profit.
Intuitively, one may think that the optimal policy for
the seller is to wait until the end of the time period and
then engage in a first price auction. We prove that this
intuition is correct when µ � 0, but fails when µ > 0. In
this case, we explicitly find the optimal pricing policy
for the seller and observe that offering steep discounts
by the end of the period is optimal. Interestingly, we
observe that the dynamic pricing mechanism obtains
more revenue than that of an optimal auction. This
additional revenue arises from exploiting the buyers’
impatience.

To complement these results, we show that for any
fixed continuous price function, possibly with a dis-
continuity at the end of the season, a mixed strategy
equilibrium exists for the buyers. We do this by con-
structing a symmetric equilibrium, since the standard
tools from fixed point theory do not apply to our set-
ting. In this equilibrium, some buyers will buy upon
arrival, whereas others will use a mixed strategy over
future times. Although not central to our paper, this
result may be of practical relevance since it allows sell-
ers to evaluate the expected revenue across a wide
array of price functions—an option that may be neces-
sary if, for instance, regulations or practical constraints
impede the application of the optimal pricing.

Finally, we extend our approach to a more general
setting inwhich buyers’ valuations are arbitrary. Under
an assumption about the buyers behavior, we formu-
late the seller’s problem and apply optimal control
theory to distill it down to solving a system of ordi-
nary differential equations, which we are able to solve
numerically.

From a methodological perspective, our work may
be of interest since we depart from the Myersonian
approach and design a method based on optimal con-
trol formulations that explicitly consider the time. This
seems to be crucial to account for the difference in
degree of impatience between the buyers and the seller.

1.2. Assumptions
Let us briefly discuss themain assumptionswemake in
the subsequent analysis. First, we assume that only two
types of buyers’ valuation are present. Although this
makes some of the analysis simpler, we believe that the
main conclusions are not altered. Furthermore, this is
a common simplifying assumption in the pricing liter-
ature (Caldentey and Vulcano 2007, Su 2007, Yin et al.
2009). In Section 4 we relax this two-valuation assump-
tion. Our second assumption on the consumers’ side
is that they arrive according to independent nonhomo-
geneous Poisson processes. This is more general than
the homogeneous Poisson arrivals imposed in part of
the literature, and moreover there is strong empiri-
cal evidence that this is a good modeling assumption
in electronic commerce (Russo et. al 2010). The third
assumption is that consumers discount the future at
rate µ ≥ 0. Note that under this impatience measure,
the buyers’ behavior is straightforward: A higher value
of µmake buyers more prone to buy earlier, increasing
their chances of actually getting the item. We assume
that the seller does not discount the future, given that it
is reasonable to assume that the vendor is more patient
than the buyers. Finally, we assume that a single item is
on sale. This is the case in many applications, and quite
common in the economic theory literature and some
of the revenue management work (see, e.g., Caldentey
et al. 2015).
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2. Model
Consider a risk neutral seller who wants to sell a sin-
gle item over a season described by the time interval
[0,T]. At time 0 the seller commits to a price func-
tion for the item p(t), in case the item is available at
time t. Consumers, who arrive according to a random
process, take the price function as given andmake pur-
chasing decisions strategically; namely, they decide to
buy at a time (which is at least their arrival time) max-
imizing their expected utility, which balances the price
to pay with the probability of actually obtaining the
item. Naturally, we model the game as a Stackelberg
game (two stage dynamic game), where in the last stage
strategic buyers seek tomaximize their profit under the
imposed pricing, whereas in the first stage the seller
selects a price function to maximize his own profit. We
now describe the seller’s and buyers’ problems.

2.1. The Seller
The vendor’s problem is to determine a price func-
tion p(t). Since p(t) is public information and con-
sumers are strategic, any choice of p(t) induces a func-
tion f (t), denoting the probability that the item is avail-
able at time t. Thus, the seller, who is risk neutral and
has the distributional knowledge of the buyers, needs
to anticipate this function f (t) and selects p(t) to max-
imize his expected revenue.

2.2. The Buyers
There are two classes of buyers: high-value consumers,
whose valuation for the item is V , and low-value con-
sumers, whose valuation for the item is v < V . We
consider the buyers’ discount rate to be µ ≥ 0. This
discount rate models impatience on the buyers’ side
and also the fact that buyers may be risk averse. Both
the high-value and low-value buyers arrive to the store
according to independent stochastic processes (count-
ing process) with strictly positive interarrival times.
We assume for simplicity that the arrival processes
are nonhomogeneous Poisson processeswith ratesΛ(t)
for high-value buyers and λ(t) for low-value buyers,
though this assumptionmay be relaxed for some of our
results. We then denote by Qk(t) (respectively, qk(t))
the probability that exactly k high-value (respectively,
low-value) buyers arrive in [0, t]. Note that, given that
a buyer arrived at time s < t, these probabilities also
represent the probability that k other buyers arrive in
[0, t]. The informational assumption we make is that
buyers know the arrival process and that other buy-
ers are strategic, but do not have information on how
many other buyers have arrived at any point in time.
Given a price function p, a buyer arriving at time t ∈
[0,T] with valuation u ∈ {v ,V} who finds out that the
item is still available will buy at a time maximizing her

ownutility (provided that it is eventually nonnegative).
Her utility at time s ≥ t is given by

(u − p(s))e−µs � (getting the item at time s | item
is available at time t).

Of course, for a buyer to get the item at time s, the item
had to be available at time t. Thus, the event in which
the item is available at time t is already included in
the event in which the buyer gets the item at s. There-
fore, by Bayes’ rule, the buyer’s utility maximization
problem is equivalent to

max
s≥t

U(s)
:� max

s≥t
(u − p(s))e−µs � (getting the item at time s)

� max
s≥t
(u − p(s))e−µsα(s) f (s).

Recall that f (s) denotes the probability that the item is
available at time s, so that α(s) represents the probabil-
ity of actually getting the item given that it is available
in a random allocation model. In other words, if rk(s)
represents the probability that there are k other buy-
ers who chose to buy at time s, then α(s) �∑∞

k�0 rk(s) ·
(1/(k + 1)). If the chances that two different buyers
decide to buy in the exact same moment are zero, then
this term is just α(s)�1. It is easy to observe that the lat-
ter happens, for instance, when the price function p(t)
is continuous, since in such a case a buyer may slightly
anticipate the purchasing decision, thus paying only
infinitesimally more, but saving a significant amount
in the term α(s).

2.3. Equilibrium of the Second Stage
Naturally, an equilibrium may be defined as a set of
strategies for all potential buyers such that they can-
not strictly improve their own profit by unilaterally
deviating from the current situation; that is, the poten-
tial buyers I � {1, . . . , n , . . .} that may arrive over [0,T]
must have a plan of action that is optimal given the
plans of the other buyers. Even though our results
apply to this general equilibrium concept, because
players are ex ante equal, we restrict our attention to
symmetric equilibria.

Since the seller does not have incentives to lower the
price below v, the game actually occurs only among
high-value buyers. Consider, thus, a price function p
such that p(t) > v for all t ∈ [0,T) and p(T) � v. We
define a mixed strategy profile of the game as a family
of distributions Ht over [t ,T], such that if a high-value
buyer arrives at time t, she buys at a random time cho-
sen according to Ht ; that is, we forget about defining
a full plan of actions for every possible buyer and just
index the strategies by the timewhen buyers arrive.We
define equilibrium in terms of f (t), accounting for the
probability that the item is available at time t. Specifi-
cally, given a price function p such that p(t) > v for all
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t ∈ [0,T) and p(T) � v, we say that a probability func-
tion f is an equilibrium for p if there exists a family of
distributions Hs over [s ,T], such that if a high-value
buyer arriving at time s buys at a random time chosen
according to Hs , it holds that

f (t) � probability that the item is available at t ,
given buyers behavior (1)

�

∞∑
k�0

Qk(t)
∫ k∏

i�1
(1−Hxi

(t)) dFt(x1 , . . . , xk),

supp(Ht) ⊆ arg max
t≤s≤T

(V − p(s))e−µsα(s) f (s). (2)

Here Ft(x1 , . . . , xk) denotes the conditional distribution
of k high-value buyer arrivals in [0, t], subject to one
buyer having arrived at time 0.
This definition appears to be more natural and sim-

pler: creating a full possible contingent of actions
seems much harder to understand. Also, it is easy to
see that defining for buyer i ∈ I with arrival time t its
contingent plan as Ht leads to a strategy in the classic
Bayesian setting. Therefore, every equilibrium in our
definition generates a Bayes–Nash equilibrium almost
everywhere. Also, our definition only in terms of f (t)
is more robust in the sense that condition (2) could be
imposed almost everywhere, so that if we change the
distributions Ht for a negligible subset of [0,T], f (t)
remains unaltered.
Note that considering mixed strategies is key since

equilibrium in pure strategies may fail to exist. For the
intuition behind this, suppose the price function p is
continuous and that a buyer arriving at time t max-
imizes her utility by buying at time s > t (i.e., the
buyer chooses s deterministically). Then, since all buy-
ers have equal valuation for the item, it is clear that
every buyer arriving between t and s will also max-
imize her utility by buying at time s. But since there
is a positive probability that someone arrives in [t , s]
and p is continuous, a sufficient small ε exists such
that s − ε is a better option for the buyer arriving at
time t, and therefore buying at s is not a best response
for this buyer.

2.4. Equilibrium of the First Stage
Given that the seller does not discount the future, it is
quite evident that his optimal strategy belongs to one
of the following two families:

Constant pricing: Select the price function p(t) ≡ V
(i.e., a no markdown strategy).

Markdown: Select a price function such that p(t) > v
for all t ∈ [0,T) and p(T)� v.

Indeed, if p(t) > v throughout the season, low-
valuation buyers will not buy, and thus setting the
price to V is optimal. Otherwise, the price function will
reach the value v at some point, but because the seller
does not discount the future, it is in his best interest to

mark down at the end since low-valuation buyers will
buy anyhow. In the former case, there is no strategic
waiting: high-value buyers buy upon arrival, whereas
low-value buyers never buy. Thus, the expected rev-
enue of the seller is easily computed as

π(V) � V � (one or more high-value buyers arrive)
� V(1−Q0(T)). (3)

To express the expected revenue in the latter case
observe that a price function induces an equilibrium,
which determines an availability probability func-
tion f (t). Thus, for t < T, G(t) � 1 − f (t) can be seen
as the distribution of the random variable expressing
the time at which the item is sold considering only
high-value buyers, and for convenience we set G(T) �
1−Q0(T). This holds since low-value buyers only buy
at time T. Thus, the seller’s expected revenue under
the markdown pricing scheme can be expressed as the
integral of the price function with respect to the mea-
sure induced by G plus a term accounting for the prob-
ability of selling the item at price v when no high-value
buyer arrives:

π(p ,G) :�
∫ T

0
p(t) dG(t)+ vQ0(T)(1− q0(T)). (4)

Note that in this expression the revenue correspond-
ing to selling the item at price v is exactly v times the
probability of selling the item at that price. Indeed,
this probability is expressed as Q0(T)(1− q0(T)), in the
second term of (4), plus the jump G(T) − G(T−) in the
integral term (since p(T) � v). Overall, this adds up to
1−Q0(T)−G(T−)+Q0(T)−Q0(T)q0(T)� 1−Q0(T)q0(T)
− G(T−), i.e., the probability of selling the item minus
the probability of not selling it before T, as desired.

In light of this observation, to determine the opti-
mal pricing strategy, the seller needs to solve first the
subproblem in which there are only buyers with valu-
ation V and the price function has to be chosen among
those belonging to the markdown family, i.e., satis-
fying p(t) > v for all t ∈ [0,T) and p(T) � v. In this
subproblem, buyers with valuation v only interfere as
a threat to buyers of high valuation if these decide
to postpone their purchase until time T. In summary,
the seller needs to find a price function maximizing
π̃(p ,G) � ∫T

0 p(t) dG(t). With this, the seller evaluates
Equation (4), then compares the quantities (3) and (4),
and selects the price function inducing the largest
profit among these two.

3. Optimal Pricing
In this section we explicitly obtain the optimal price
function and its corresponding equilibrium for the
seller. To this end, we consider that only high-value
buyers arrive according to a nonhomogeneous Poisson
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process. In Section 3.3we plug this back into the seller’s
revenue to obtain the optimal profit. The space of func-
tions over which the seller needs to make her selection,
called F, is the set of price functions p: [0,T] → [v ,V]
such that p(T) � v and p(t) > v for every t ∈ [0,T).
Note that we do not impose any continuity or regu-
larity of the price functions; we only require that an
equilibrium for the buyers exists. By defining D as the
set of non decreasing functions G: [0,T] → [0, 1] such
that G(0)� 0 and setting

E � {(p ,G) ∈ F×D: 1−G is an equilibrium for p},

the vendor’s subproblem may be written as

max
(p ,G)∈E

π̃(p ,G)�
∫ T

0
p(t) dG(t).

To solve this problem, we first compute an upper
bound on the expected revenue of any price func-
tion in F and then find a particular pricing scheme
whose expected revenue matches this upper bound.
The tightness of this upper bound is based on two
guesses that hold at the optimal price path: first, that
high-valuation buyers may buy as long as the item is
available, and second, that these buyers are indifferent
between different purchasing times. Thus, our upper
bounds essentially comes by lower bounding the utility
of a buyer with what she would get if she buys at the
end of the season. This translates into an upper bound
on the seller’s profit that we may match with a price
function satisfying the guesses.

3.1. Upper Bound on Vendor’s Profit
Recall that given a function p ∈ F, buyers choose a
distribution function for deciding when they will buy
so as to maximize their utility U(s) � α(s)(V − p(s)) ·
f (s)e−µs , where f is an equilibrium for p. So we let
(p ,G) ∈ E and for convenience let f � 1 − G. Thus, a
buyer arriving at time t will get an expected utility of
ut �maxs≥t U(s) and may buy at any time belonging to
the set St :� arg maxs∈[t ,T]U(s). Note that the value ut
is nonincreasing in t. In particular,

ut ≥ Q0(T)α(T)e−µT(V − v) for all t ∈ [0,T]. (5)

Indeed, the quantity on the right-hand side is the
expected utility the buyer would get if no other high-
value buyer arrives in [0,T] and she gets the item in
the random assignment at time T, so α(T)�∑∞

k�0 qk(T)/
(1 + k). Let us define S �

⋃
t∈[0,T] St , the set of times at

which the item can be sold. Now, it follows from (5)
that for all t ∈ S, i.e., a time at which there is interest in
buying, we have that

U(t)� α(t) f (t)e−µt(V − p(t)) ≥ Q0(T)α(T)e−µT(V − v).

Using that α(t) ≤ 1, since it is a probability, we deduce

p(t) ≤ V − Q0(T)α(T)
f (t) e−µ(T−t)(V − v)

� V − Q0(T)α(T)
1−G(t) e−µ(T−t)(V − v) for all t ∈ S.

Hence, we have that∫ T

0
p(t) dG(t)

�

∫
S

p(t) dG(t)

≤
∫

S

(
V − Q0(T)α(T)

1−G(t) e−µ(T−t)(V − v)
)

dG(t)

≤
∫ T

0

(
V − Q0(T)α(T)

1−G(t) e−µ(T−t)(V − v)
)

dG(t)

� V
∫ T

0
dG(t)

+Q0(T)α(T)(V − v)e−µT

∫ T

0
eµt −dG(t)

1−G(t) . (6)

Here, the first equality follows from the fact that out-
side S the function G(t) is constant, since no buyer buys
outside S. (The support of the measure induced by G is
exactly S.) The first inequality follows from the bound
on p(t) obtained earlier, whereas the second inequality
is direct because S ⊆ [0,T] and the integrand is non-
negative. Hence, noting that ∫T

0 dG(t) � G(T) − G(0) �
1−Q0(T) for the first integral and using integration by
parts for the second, we obtain that, for all (p ,G) ∈ E,

π̃(p ,G)
≤ V(1−Q0(T))+Q0(T)α(T)(V − v)

·
(
ln(Q0(T)) − e−µTµ

∫ T

0
eµt ln(1−G(t)) dt

)
. (7)

3.2. Matching Upper Bound
Nowwe provide a pricing scheme, togetherwith a very
natural equilibrium for it, that attains the latter upper
bound for the revenue of the vendor. We then conclude
that the seller’s revenue under this price function is
best possible for the subproblem in which only high-
value consumers arrive. Define

p∗(t)�


V − Q0(T)α(T)
Q0(t)

e−µ(T−t)(V − v) for t ∈ [0,T),

v for t � T,

and observe that, for every t ∈ [0,T), p∗(t) > v and
p∗(T) � v. Note also that this function is discontinuous
at time T. Under this pricing scheme, a buyer arriving
at time t will seek to maximize

max
s∈[t ,T)

f (s)α(s)e−µs Q0(T)α(T)
Q0(s)

e−µ(T−s)(V − v),
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or may prefer to buy at time T for a profit of
f (T)α(T)e−µT(V − v). Then, if all buyers buy upon
arrival Q0(s)� f (s) and α(s)� 1, the previous quantity
is actually the constant Q0(T)α(T)e−µT(V − v), which in
particular is maximized at time s � t. Therefore, f (s)�
Q0(s) is an equilibrium for the proposed pricing p∗. By
denoting G∗ � 1−Q0, we conclude that (p∗ ,G∗) ∈ E.
Observe that by subtracting an arbitrarily small

quantity ε > 0 to the price function above, we can force
that the utility of each buyer is strictly maximized at
time s � t. Indeed this extra term ε will be multiplied
by e−µtQ0(t), so the expected utility of a buyer decid-
ing to buy at time s will be the constant above plus
εe−µsQ0(s), which is strictly decreasing. This implies
that buying upon arrival (i.e., f (t) � Q0(t)), is an equi-
librium in which all buyers strictly prefer their choice.
Of course, because ε is arbitrarily small, this price func-
tion achieves a profit for the seller that is arbitrarily
close to that obtained with p∗.
Nowwe compute the expected revenue for the seller

of the pricing policy p∗. This revenue calculation fol-
lows exactly as in (6) and doing integration by parts
after this. It follows that the revenue of the seller is
given by

π̃(p∗ ,G∗)
� V(1−Q0(T))+Q0(T)α(T)(V − v)

·
(
ln(Q0(T)) − e−µTµ

∫ T

0
eµt ln(1−G∗(t)) dt

)
. (8)

Finally, to connect the quantities in (7) and (8), we
need to establish a relation between the last integrals in
both terms. Note that since for every (p ,G) ∈ E we have
that 1−G ≥Q0, we can bound any such distribution as
G ≤ G∗. Therefore, using the monotonicity of the func-
tion ln( · ), we deduce from (7) that for all equilibrium
(p ,G) ∈ E,

π̃(p ,G) ≤ V(1−Q0(T))+Q0(T)α(T)(V − v)

·
(
ln(Q0(T))− e−µTµ

∫ T

0
eµt ln(1−G(t)) dt

)
.

≤ V(1−Q0(T))+Q0(T)α(T)(V − v)

·
(
ln(Q0(T))− e−µTµ

∫ T

0
eµt ln(1−G∗(t)) dt

)
.

� π̃(p∗ ,G∗).

Hence, (p∗ ,G∗) is the optimal pricing function and asso-
ciated equilibrium.

3.3. Best Pricing Strategy
We are now ready to compare the revenues obtained
by the candidates to the best pricing policy. Recall
that this is either constant pricing or the best possible
markdown. To make the calculation explicit, note that
we are assuming nonhomogeneous Poisson arrivals

so that if we let m(t) � ∫ t
0 Λ(s)ds and `(t) � ∫ t

0 λ(s)ds,
we have Q0(T) � e−m(T), Q1(T) � m(T)e−m(T), q0(T) �
e−`(T), q1(T)� `(T)e−`(T), and α(T)�

∑∞
k�0 qk(T)/(1+ k)�

(1− e−`(T))`(T).
Constant pricing: Observe that in the constant price

strategy, the seller obtains value V if and only if at
least one high-value buyer arrives. Thus, his expected
revenue is

V(1−Q0(T))� V(1− e−m(T)). (9)

Markdown: To evaluate the revenue of the opti-
mal markdown pricing strategy, we use Equations (4)
and (8), which lead to an expected revenue of

V(1−Q0(T))+Q0(T)α(T)(V − v)

·
(
ln(Q0(T))− e−µTµ

∫ T

0
eµt ln(1−G∗(t)) dt

)
+ vQ0(T)(1− q0(T))

�V(1−Q0(T))+ e−m(T)(1− e−`(T))

·
(
v− V − v

`(T)

(
m(T)− e−µTµ

∫ T

0
eµt m(t) dt

))
. (10)

In summary, the markdown strategy is better if and
only if

v
(
`(T)+ m(T) − µ

∫ T

0
e−µ(T−t)m(t) dt

)
>V

(
m(T) − µ

∫ T

0
e−µ(T−t)m(t) dt

)
.

This condition may be rewritten as

V
v
<

(
1+ `(T)

m(T) − µ
∫ T

0 e−µ(T−t)m(t) dt

)
. (11)

Observe that, as one may intuitively expect, this con-
dition is invariant under a rescaling of the valuations.
What is probably less intuitive is that this condition is
also invariant under a rescaling of the arrival rates. This
happens since, under such a rescaling, the price path p∗

gets closer to the value V , because the threat of low-
valuation buyers becomesmore powerful.

Interestingly, in the situationwithout a discount rate,
i.e., µ�0, our price path obtains the same revenue as an
optimal mechanism where all bidders arrive at time 0.
This constitutes a stronger version of revenue equiva-
lence that applies to a random number of bidders (sim-
ilar to the results of Levin and Ozdenoren 2004 and
Haviv and Milchtaich 2012). Indeed, as pointed out by
Skreta (2006), one can argue that the optimal auction
in our setting can be derived as follows. Consider that
a random number of bidders, distributed as a Poisson
random variable of parameter m(T)+ `(T), participate
in the auction. The valuation of the bidders are inde-
pendent and identically distributed (i.i.d.), equal to v
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with probability p � `(T)/(m(T)+ `(T)), and equal to V
with probability 1−p. In this situation, the virtual valu-
ation is not monotone, and thereforeMyerson’s ironing
is needed. It turns out that the optimal mechanism can
be implemented as follows:

Case v > V(1− p). Use a fixed price equal to V . Note
that the condition of this case is the opposite of (11)
(for µ� 0) and, furthermore, the revenue is exactly that
given by (9).

Case v <V(1−p). Here the situation ismore involved.
The optimal mechanism is implemented by running a
second price auctionwith reservation price equal to b �
V −(V − v)((1− e−`(T))/`(T)), but if all bids are below b,
the item is randomly allocated to any of the participat-
ing bidders. The auction is incentive compatible, and
thus the seller’s revenue in this case equals to V times
the probability of having two or more high-valuation
bidders plus b times the probability of having exactly
one high-valuation bidder plus v times the probabil-
ity of having no high-valuation bidder and at least one
with low valuation; that is,

V(1− e−m(T)−m(T)e−m(T))+ bm(T)e−m(T)

+ ve−m(T)(1− e−`(T))
�V(1− e−m(T))+ e−m(T)(1− e−`(T))

·
(
v−(V − v)m(T)

`(T)

)
,

exactly as is (10).
Therefore, the nonnegative term ((1 − e−`(T))/`(T)) ·

e−m(T)(V − v)e−µTµ ∫T
0 eµt m(t) dt may be seen as the

additional revenue obtained by the seller by exploit-
ing the impatience of the consumers. It is worth men-
tioning that our pricing scheme can get up to twice
the revenue of the optimal static mechanism and not
more than that. To see this, note that the best case
for our pricing occurs when µ is very large. In this
case, p∗ is essentially a constant equal to V and drops
to v in the very last minute, implying a revenue of
V(1− e−m(T))+ ve−m(T)(1− e−`(T)). On the other hand, the
optimal mechanism gets the revenue expressed in the
previous cases. A tedious but straightforward calcula-
tion shows that this ratio is at most 2, and this can be
attained (in the limit) using, for instance, V � 1, v �

√
ε,

m(T)� ε, `(T)�
√
ε. Indeed, in this case, the revenue of

the optimal mechanism is 1− e−ε ≈ ε, whereas our pric-
ing mechanism obtains 1− e−ε + e−ε(1− e−

√
ε)
√
ε ≈ 2ε.

To finish this section, we plot in Figure 1 the opti-
mal pricing path p∗ when the rate of the arrival process
is constant. Interestingly, the price remains relatively
constant until close to the end of the season, where it
drops steeply. This seems consistent with the common
practice in retail and other industries where aggres-
sive markdown strategies are used. In our setting, the
optimal price is even discontinuous at time T. This is

Figure 1. Optimal Markdown Price Function for
Homogeneous Poisson Processes of Rates Λ� 1 and λ � 0.2
and Parameters V � 3, v � 1, µ � 0.5, and T � 5

t

p

1 2 3 4 5

1

2

3

�T
p* (t) = V – (V – �)e–(Λ + µ) (T – t) 1 – e–�T( )

partially because of the valuations we consider; how-
ever, the phenomenon of steep discounts is prevalent
in continuous distributions of valuations, as we show
in the next section.

4. Continuous Valuation
In this section we relax the assumption of having just
two possible valuations for the item and consider the
general case in which the buyers’ valuations for the
item are i.i.d. according to a continuous distribution
Φ: [v ,V]→ [0, 1] with associated density φ. Therefore,
we assume that buyers arrive according to a nonhomo-
geneous Poisson process of rateΛ( · ), and the probabil-
ity that a buyer arriving at time t has a valuation less
than or equal to v is Φ(v).

The main result of this section is that, under an
assumption over the equilibrium strategies, we reduce
the seller’s problem to solving a system of ordinary dif-
ferential equations. To this end, we first show that we
can reduce to equilibria taking the form of a thresh-
old ϕ( · ), implying that a buyer arriving a time t with
valuation u will buy upon arrival if u > ϕ(t), will buy
at time s ∈ ϕ−1(u) (with s ≥ t) if u ≤ ϕ(t), and will not
buy if such a time does not exist. Second, we prove that
a first-order approach is sufficient to write the seller’s
optimization problem. Finally, using optimal control
theory, we write down the seller’s problem in a way
that can be dealt with numerically.

4.1. Threshold Strategies
Following the notation in Section 2, given a price func-
tion p, we let f be a corresponding equilibrium with
associated distributions H � (Hu

t )
u∈[v ,V]
t∈[0,T] . Here, Hu

t is a
probability distribution over [t ,T] corresponding to
the (mixed) strategy of a buyer arriving at time t with
valuation u. Observe that, for a continuous price func-
tion, the random allocation probability α(t)will always
be 1, and the probability that the item is available at
time t, f (t), is a continuous function. Thus, we have
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that supp(Hu
t ) ⊆ arg maxt≤s≤T(u − p(s))e−µs f (s). A key

monotonicity property is that if we consider an equi-
librium and two valuations u < u′, then for all s ∈
supp(Hu

t ) with s > t and s′ ∈ supp(Hu′
t ), we have that

s > s′. Indeed, assume s is the smallest element in
supp(Hu

t ), andwrite the utility of a buyerwith utility u′

buying at time τ as

(u′− p(τ))e−µτ f (τ)
� (u − p(τ))e−µτ f (τ)+ (u′− u)e−µτ f (τ). (12)

Since the second term is decreasing and the first is
maximized at τ � s, the whole utility is maximized at
a point s′ ∈ [0, s).2 This monotonicity property implies
that if a buyer arriving at t buys upon arrival, then any
higher-valuation buyer arriving at t will also buy upon
arrival.
With the monotonicity property at hand, it follows

that for an equilibrium (p , f ) with associated distri-
butions H, the function ϕ(t) � inf{u | t ∈ supp(Hu

t )}3
defines a threshold with the desired property. Indeed,
note that ϕ may be defined as

ϕ(t)� inf
{
u | t ∈ arg max

t≤s≤T
(u − p(s))e−µs f (s)

}
,

so that if for a buyer arriving at t her valuation u
is greater than ϕ(t), then she will buy immediately,
whereas if her valuation is u ≤ ϕ(t), she will wait until
a time s for which u � ϕ(s).

As the reader could realize, the monotonicity prop-
erty imposes a certain order in the equilibrium
strategies, which is summarized by the threshold
characterization. From a mechanism design perspec-
tive, the threshold function is inherently connected to
the allocation rule associated with the mechanism of a
posted price p. In fact, if the threshold function turns
out to be nonincreasing, the allocation rule consists
of giving the item to the player with minimum τ �

max{t , ϕ−1(u)}, where (t , u) is the respective type of
the player.
Moreover, a violation of this nonincreasing thresh-

old property would imply scenarios (with positive
probability of occurrence) where a player u arriving
at t receives the item, but if she arrives shortly after-
ward she waits to purchase at time t + c. Thus, the
chances of obtaining the item depend on whether no
one with higher valuation arrives between [t , t + c].
This strange situation leads us to conjecture that in the
optimal pricing, the threshold must be nonincreasing.
Unfortunately, we have been unable to formally prove
the latter. Nevertheless, under some conditions, e.g.,
if the sets Su :� arg maxs≥0(u − p(s))e−µs f (s) are con-
nected, one can indeed prove that the threshold equi-
librium is nonincreasing. For the rest of this section, we
make the following assumption.

Assumption 1. In the revenue maximizing pricing policy,
the buyers’ equilibrium is characterized by a nonincreasing
threshold function.

Thus, for sorting out the seller’s problem, we restrict
our attention to this class of equilibria. In what fol-
lows, we exploit this conjecture to simplify the seller’s
optimization problem. An important implication of
our assumption is that if ϕ is nonincreasing, there
are at most countably many valuations u for which
the preimage ϕ−1(u) is not a singleton. Therefore, for
almost all valuations u and arrival times t, a buyer
with valuation u and arriving at time t will buy at time
max{t , ϕ−1(u)}. In conclusion, almost all players are
playing pure strategies.

4.2. First-Order Approach
We now consider a price function with a nonincreasing
threshold equilibrium, which we denote by (p , ϕ), and
assume that both p and ϕ are differentiable. The goal
of this section is to show that the first-order approach
is sufficient to deal with the seller’s problem.

Let us first write down the seller’s problem. Recall-
ing that m(t)� ∫ t

0 Λ(s)ds is the average arrival rate until
time t, denoting by E the set of equilibriumpairs4 (p , ϕ)
such that ϕ is nonincreasing, and noting that f (t) �
e−m(t)(1−Φ(ϕ(t))) expresses the probability of having no
arrivals in [0, t] with valuation above ϕ(t), the seller’s
problem can be written as

max
p: (p , ϕ)∈E

∫ T

0
− d

ds
(e−m(s)(1−Φ(ϕ(s))))p(s) ds . (13)

Let U(u , t) :� (u − p(t))e−µt f (t) � (u − p(t))e−µt ·
e−m(t)(1−Φ(ϕ(t))) denote the utility (at equilibrium) of a
buyer with valuation u buying at time t. Then, (p , ϕ)
∈ E if and only if U(u , t) is maximized at t �ϕ−1(u). On
the other hand, the first-order optimality condition is
∂2U(u , ϕ−1(u))� 0. Similarly to the monotonicity prop-
erty, we compute

∂2U(u , t) � −p′(t)e−µt f (t)+ p(t)µe−µt f (t)− p(t)e−µt f ′(t)
− ue−µt(µ f (t)− f ′(t)) (14)

and note that, evaluating at t � ϕ−1(u), the previ-
ous quantity is zero. Then, since the term µ f (t) −
f ′(t) > 0, ∂2U(u′, ϕ−1(u)) < 0 whenever u′ > u, and
∂2U(u′, ϕ−1(u)) > 0 whenever u′ < u. Equivalently,
since ϕ is nonincreasing, we have that

∂2U(u , t)


> 0 if t < ϕ−1(u),
� 0 if t � ϕ−1(u),
< 0 if t > ϕ−1(u).

Thus, the first-order optimality condition is enough to
guarantee that, as a function of t, U(u , t) increases
until t � ϕ−1(u), and then it decreases, implying that
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ϕ−1(u) is a global maximizer. We have thus established
that (13) is equivalent to

max
p , ϕ:∂2U(u , ϕ−1(u))�0, ϕ′≤0

∫ T

0
− d

ds
(e−m(s)(1−Φ(ϕ(s))))p(s)ds .

(15)

4.3. Solving the Seller’s Problem Using
Optimal Control

Under Assumption 1, we now apply optimal control
theory to solve problem (15). It is worth mentioning
that although we must restrict our attention to a dif-
ferentiable setting, smooth functions are dense in the
continuous functions space, so our method obtains
numerical solution to the seller’s problem in this more
general setting.
To transform (15) into the classic optimal control

framework, we observe that at an equilibrium (p , ϕ)we
must have that p(T) � ϕ(T). Then, writing f explicitly
in (14), we have that (15) becomes

max
α, p , ϕ

∫ T

0
− d

ds
(e−m(s)(1−Φ(ϕ(s))))p(s) ds

s.t.


−p′ � (ϕ− p)(µ+ m′(s)(1−Φ(ϕ))
−m(s)φ(ϕ(s))ϕ′(s)) for s ∈ (0,T),

p(T)� ϕ(T)� α,
ϕ′ ≤ 0.

To solve this problem, we introduce the auxiliary func-
tions q(s) � p(T − s) and ψ(s) � ϕ(T − s), for every s ∈
[0,T]. By using the change of variables τ � T − s, the
problem becomes

max
α, q , ψ

I :�
∫ T

0

d
dτ
(e−m(T−τ)(1−Φ(ψ(τ))))q(τ) dτ

s.t.


q′ � (ψ− q)(µ+ m′(T − τ)(1−Φ(ψ))

+ m(T − τ)φ(ψ)ψ′) for τ ∈ (0,T),
q(0)� ψ(0)� α,
ψ′ ≥ 0.

(16)

Note that from the differential equation on q, we obtain

q(τ) � ψ(τ) − eµ(T−τ)+m(T−τ)(1−Φ(ψ(τ)))

·
∫ τ

0
ψ′(s)e−µ(T−s)−m(T−s)(1−Φ(ψ(s))) ds .

Using integration by parts, this yields

I �

∫ T

0

d
dτ
(e−m(T−τ)(1−Φ(ψ(τ))))ψ(τ) dτ

+

∫ T

0

d
dτ
(m(T − τ)(1−Φ(ψ(τ))))eµ(T−τ)

·
∫ τ

0
ψ′(s)e−µ(T−s)−m(T−s)(1−Φ(ψ(s))) ds dτ

� ψ(T) − αe−m(T)(1−Φ(α))

−
∫ T

0
e−m(T−τ)(1−Φ(ψ(τ)))ψ′(τ) dτ

−
∫ T

0
m(T − τ)(1−Φ(ψ(τ)))eµ(T−τ)

· (ψ′(τ)e−µ(T−τ)−m(T−τ)(1−Φ(ψ(τ))) − µr(τ)) dτ,

where r is the solution to the ordinary differential
equation{

r′ � ψ′e−µ(T−τ)−m(T−τ)(1−Φ(ψ)) for τ ∈ (0,T),
r(0)� 0.

Therefore, by setting u � ψ′, (16) is equivalent to

min
α, q , ψ

∫ T

0
`(τ,ψ(τ), r(τ),u(τ))dτ+R(ψ(T), r(T))

s.t.


r′� ue−µ(T−τ)−m(T−τ)(1−Φ(ψ)) for τ ∈ (0,T),
r(0)�0,
ψ′� u≥ 0 for τ ∈ (0,T),
ψ(0)�α,

(17)

where
`(τ,ψ, r,u) :� e−m(T−τ)(1−Φ(ψ))u(1+m(T − τ)(1−Φ(ψ)))

−µrm(T − τ)(1−Φ(ψ))eµ(T−τ) ,
R(ψ, r) :�αe−m(T)(1−Φ(α))−ψ.

Note that (17) is a classical optimal control problem,
where u is the control and (ψ, r) is the state. Hence,
we deduce that any solution of this problem must sat-
isfy the first-order necessary conditions (Pontryagin’s
minimum principle; see, e.g., Vinter 2000, Section 6.2):

(∀τ ∈ ]0,T[)

·



u(τ) ∈ argmin
u∈�+

H(τ,ψ(τ), r(τ),u ,w(τ), η(τ)),

−w′(τ)� ∂H
∂r
(τ,ψ(τ), r(τ),u(τ),w(τ), η(τ)),

w(T)� ∂R
∂r
(ψ(T), r(T))�0,

−η′(τ)� ∂H
∂ψ
(τ,ψ(τ), r(τ),u(τ),w(τ), η(τ)),

η(T)� ∂R
∂ψ
(ψ(T), r(T))�−1,

(18)

where H is the Hamiltonian of the system

H(τ, ψ, r, u ,w , η)
� `(τ, ψ, r, u)+ wue−µ(T−τ)−m(T−τ)(1−Φ(ψ))

+ ηu. (19)

Thus, we have transformed the seller’s problem to solv-
ing (17)–(18), a system of four ordinary differential
equations with initial value, coupled with a Hamil-
tonian equation.
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Figure 2. Optimal Price and Threshold for Homogeneous Poisson Arrivals of Rate λ � 3
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(b) Threshold equilibrium

4.4. Numerical Experiments
For solving system (17)–(18) numerically, we dis-
cretize the interval [0,T] into Nh � T/h subintervals of
length h, starting from a given piecewise linear control
function u0

h . For every n ∈ �, we find piecewise linear
functions rn

h and ψn
h by solving the differential equa-

tions in (17) via a forward Euler’s method, and we find
wn

h and ηn
h by solving the differential equations in (18)

via a backward Euler’s method. Then we obtain un+1
h

by computing the projected gradient step

un+1
h (τi) � P�+

(
un

h (τi) − γ
∂H
∂u
(τi , ψ

n
h (τi), rn

h (τi), un
h (τi),

wn
h (τi), ηn

h (τi))
)
, (20)

where, for i � 0, . . . ,Nh , we let τi � i · h, the parameter
γ > 0 is chosen appropriately, and P�+

(x) � max{0, x}.
The algorithm stops when max0≤i≤Nh

|un+1
h (τi) − un

h (τi)|
< ε, for ε > 0 small enough. All our computations con-
sider that Φ is the uniform distribution in [0, 1] and
T � 1. The parameters are set to be ε � 0.005, h � 0.001,
and γ � 0.3.

Figure 3. Optimal Price and Threshold Functions for a Discount Factor µ �− ln(0.7)
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(b) Threshold equilibrium

In Figure 2, we vary the discount rate, whereas the
arrivals are modeled via an homogeneous Poisson pro-
cess of fixed rate λ � 3. On the other hand, in Figure 3,
we fix µ � − ln(0.7) and vary the arrival rate of the buy-
ers. Tables 1 and 2 exhibit the profits obtained in each
case and compare them to those of an optimal auction
(that takes place at the end of the season). We verify
that the profit obtained with the markdown strategy
is always better than that of the optimal auction and
that, quite naturally, the difference increases when µ
increases. Maybe not so naturally, note that when µ is
large, it is more profitable to decrease the reserve price.
The situation with fixed discount rate and varying λ
is different. There, it is not clear that a higher arrival
rate impacts the profit ratio. It is natural, however, that
the reservation price is not significantly affected by the
number of buyers as this is also the case in an optimal
auction.

Additionally, the numerical results show that in the
continuous valuation model, the reservation price p(T)
is affected by the temporal discount rate, in contrast to
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Table 1. Optimal Profits When λ � 3 Compared with the
Revenue of an Optimal Auction at the End of the Season

µ Profit α Opt. auction Ratio

− ln(0.9)� 0.105 0.4877 0.50 0.4821 1.011
− ln(0.7)� 0.357 0.4900 0.48 0.4821 1.016
− ln(0.5)� 0.693 0.4973 0.46 0.4821 1.031
− ln(0.3)� 1.204 0.5072 0.45 0.4821 1.052
− ln(0.1)� 2.303 0.5230 0.44 0.4821 1.085

Table 2. Optimal Profits When µ �− ln(0.7) Compared with
the Revenue of an Optimal Auction at the End of the Season

λ Profit α Opt. auction Ratio

1 0.2166 0.49 0.2131 1.016
2 0.3733 0.49 0.3679 1.015
3 0.4900 0.48 0.4821 1.016
4 0.5777 0.49 0.5677 1.018
5 0.6450 0.48 0.6328 1.019

the discrete valuationmodel, where we proved that the
reservation price is unaffected by the discount factor.
The intuition behind this is that in the discrete valua-
tion model, the reservation price is just used to avoid
that high-valuation buyers decide to go to the lottery
at the end the season. In contrast, in the continuous
setting, the reservation price is used to split the bidders
that are ex ante interesting (for the seller) to trade with.
Since the valuation is affected by time with the dis-
count rate, it is quite natural that here the reservation
price depends on the discount factor.
Another interesting observation is that in our numer-

ical simulations, as in Section 3 when µ � 0, we recover
the classic result of static optimal mechanism design
when we do not consider a temporal discount factor.
Indeed, as µ approaches 0, the optimal price function
becomes flat and decreases very quickly to 0.5 at time 1.
This is a way of simulating a first price auction at time
1 with a reserve price of 0.5, which is known to yield
the optimal revenue. For instance, taking λ � 3 and
µ�− ln(0.99), we obtain that the optimal price is essen-
tially 0.740 until time 0.95 (with an underlying thresh-
old of value essentially 0.99). This is in almost perfect
agreement with the fact that in a first price auction
with a random number of bidders Poisson distributed
at rate 3, the maximum possible bid, i.e., that of a bid-
der with valuation 1, is equal to 0.741.

5. Concluding Remarks
We have studied a two-stage dynamic game where,
in the first stage, a seller proposes a markdown path
price for selling a single item, and strategic consumers
respond by selecting the optimal time to buy the item
considering the risk of not getting it.
In particular, we have characterized the optimal price

function when buyers’ valuations can only take two

values. Interestingly, this function satisfies an impor-
tant economic property: it is incentive compatible.
Indeed, even if the seller cannot observe the buyers
arrival time (a common situation in practice), it is
in the buyers’ best interest to buy upon arrival, thus
revealing their private type. Furthermore, the revenue
obtained by this price function is at least as large as
that of the optimal mechanism in this context. In this
respect, the obtained optimal price function is discon-
tinuous at the end of the season, which nicely mimics
the implicit random allocation necessary in the optimal
mechanism.

We also derive a numerical approach to tackle the
general valuation case. Our numerical results show in
particular that the fact that buyers discount the future
faster than the seller severely affects the optimal pric-
ing policy. Indeed, one can easily derive from the work
of Gershkov et al. (2014) that if the seller and the buyers
discount the future equally, then the optimal mecha-
nism takes the form of a threshold that is constant until
the end of the season, the time at which an auction is
run. In our case the threshold is far from constant for
small arrival rates or large discount rates.

Throughout this paper, we have assumed that the
seller has commitment power and can credibly prean-
nounce a certain price path. However, because we deal
with the single unit case, this assumption is not really
needed. Indeed, when there is a single unit on sale,
the optimal preannounced price function and the opti-
mal dynamic price function (in which the seller does
not make commitments) actually coincide. Therefore,
all our results apply to the case without commitment
as well.

Finally, important extensions that require further
investigation are to characterize the optimal path price
function in more general frameworks, including when
consumers have a random private value over a contin-
uous distribution and when there are multiple units to
be sold.

Acknowledgments
The authors thank Gustavo Vulcano for his valuable com-
ments on an earlier draft of this paper. They also thank the
three reviewers and the associate editor for several sugges-
tions that greatly improved this paper.

Appendix. Existence of Equilibrium
In this section we prove that for a large family of reasonable
price functions the seller may impose, there is an equilib-
rium in the buyers’ subgame. Because low-valuation buyers
do not behave strategically (because the seller does not have
incentives to lower the price below v), our task is equivalent
to show existence of equilibrium for high-value consumers.
Specifically, we prove the following result:

Theorem 2. Consider two classes of buyers arriving according to
nonhomogeneous Poisson processes with continuous arrival rate;
the first group has rate Λ: �++→�++ and value the item at V , and
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the second group has rate λ: �++→ �++ and value the item at v.
If the seller commits to a price function p : [0,T) → (v ,V) that
is continuous on [0,T), satisfying limt→T− p(t) ∈ [v , b∗], where
b∗ �V −((V − v)(1− e−∫

T
0 λ(t) dt))/(∫T

0 λ(t) dt), and p(T)� v, then
a symmetric equilibrium exists.

Observe that we are considering the case of a markdown
strategy assuming in addition that p(t) < V . This is with-
out loss of generality because if p(t) � V for some t ∈ [0,T],
U(t) � 0 for the buyers, and thus nobody buys at this time
(unless p ≡V , the case of constant pricing).

It is worth mentioning that the standard fixed point
approaches to prove the existence of equilibrium do not seem
work here since we have infinitely many players with an infi-
nite set of available pure strategies. Furthermore, the natu-
ral fixed-point mapping is hard to analyze. Thus, to prove
Theorem 2, we take a constructive approach and build an
equilibrium that is in a way symmetric.

The technique for characterizing the equilibrium is inno-
vative. Solving the trade-off betweenwaiting for a lower price
and risking loosing the item induces us to split the season
into two disjoint subsets: one where the buyers’ strategy is
to buy upon arrival and the other where buyers use mixed
strategies. Consequently, the first main idea of our construc-
tion is to divide the interval [0,T] into subintervals. In some
of these subintervals, buyers will simply buy upon arrival,
whereas in others they will use a mixed strategy over that
subinterval. In the subintervals where mixed strategies are
used, the conditional distribution determining the buying
time of a consumer that arrived at time t and has already
waited until time s is independent of t and identical across
buyers. Thus, all consumers that wait until a certain time
behave identically. It is in this sense that our constructed
equilibrium is symmetric.

The second main idea of the proof is the construction
of this symmetric equilibrium within an interval, (t1 , t2),
in which mixed strategies are used. Here, we first iron the
price function and show that one can assume that the func-
tion t 7→ (V − p(t))e−µt is nondecreasing. Then, we impose
that a symmetric equilibrium is molded by a distribution
H: [t1 , t2] → [0, 1], which generates the equilibrium strat-
egy of a consumer arriving at time t as the conditional
distribution (Ht)t∈[t , t2]. Finally, by imposing the equilibrium
conditions on this family, particularly, that the whole interval
maximizes the utility of a buyer, we are able to characterize
this distribution through a differential equation, whose solu-
tion somewhat surprisingly satisfies all desired properties.

Regarding the technical requirement on p(t) close to T, it
ensures that a high-value costumer does not prefer to wait
until the end of the season and participate in the lottery
with low-value costumers. Hence, the main difficulty of the
proof consists in developing strategies that avoid deviations
over [0,T). For this reason, we first construct equilibrium
strategies assuming that p is continuous over [0,T], with
p(T) ∈ [v , b∗], and, at the end of the section, we show that the
same strategies sustain an equilibrium for the case stated in
Theorem 2.

A.1. Time Horizon Decomposition
We now decompose the interval [0,T] into subintervals. The
key property of these subintervals is that, in equilibrium, all
consumers will actually buy in the subinterval they arrived.

Given a continuous function p: [0,T) → (v ,V) such that
p(T) ∈ [v , b∗], and letting, for all t ∈ [0,T], the average arrival
rate until time t, m(t) � ∫ t

0 Λ(x)dx, we consider the set
I ⊆ [0,T]:

I :�
{

t ∈ [0,T]: t ∈ arg max
s∈[t ,T]

(V − p(s))e−(µs+m(s))
}
. (21)

In our constructed equilibria, buyers arriving in I will buy
upon arrival. Consider now

t∗ :� min
{
t ∈ [0,T]: t ∈ argmax

s∈[0,T]
(V − p(s))e−(µs+m(s))

}
, (22)

t0 :� min
{
t ∈ [0, t∗]: (V − p(t))e−µt

� (V − p(t∗))e−(µt∗+m(t∗))
}
. (23)

Lemma 3. The quantities t∗ and t0 are well defined. Furthermore,
t∗ � 0 if and only if t0 � 0.

Proof. First note that t∗ is well defined since p and m are con-
tinuous and [0,T] is compact, implying that the set of max-
imizers of t 7→ (V − p(t))e−(µt+m(t)) is also compact. Observe
that if t∗ � 0, then t0 � 0. Conversely, if t∗ > 0, then 0 <
arg maxs∈[0,T](V − p(s))e−(µs+m(s)), which yields (V − p(0)) <
(V − p(t∗))e−(µt∗+m(t∗)). Moreover, since m(t∗) > 0, we have that
(V − p(t∗))e−µt∗ > (V − p(t∗))e−(µt∗+m(t∗)). Altogether, the conti-
nuity of t 7→ (V − p(t))e−µt yields the existence of t0 and also
that t∗ � 0 if and only if t0 � 0. �

Whenever t∗ > 0, buyers arriving in (0, t∗) will use a mixed
strategy with support in the interval (t0 , t∗]. Note that it
makes no sense to buy at t < t0, since U(t) ≤ (V − p(t))e−µt <
(V − p(t∗))e−(µt∗+m(t∗)) ≤U(t∗).

As wewill prove in Lemma 8, the remainder of the interval
[0,T] can be decomposed into a collection of open intervals
of the form (t1 , t2) such that

t2 � min
{
t ∈ [0,T]: t ∈ arg max

s∈(t1 ,T]
(V − p(s))e−(µs+m(s))

}
, (24)

and t1 is the largest t < t2 satisfying

(V − p(t1))e−(µt1+m(t1)) � (V − p(t2))e−(µt2+m(t2)). (25)

Buyers arriving in an interval of the form (t1 , t2) will buy
within the interval according to a mixed strategy defined
in the next section. Note also for t1 < t < t2 that we have
(V − p(t))e−(µt+m(t)) < (V − p(t2))e−(µt2+m(t2)). From now on we
refer to these intervals (t1 , t2) as well as the interval (t0 , t∗) as
mixing intervals, since mixed strategies are used.

In the next section we will show that every mixing interval
(t1 , t2) has a corresponding distribution H with support on
[t1 , t2] such that buyers arriving at time t ∈ (t1 , t2)will buy at
a random time drawn according to Ht , the conditional dis-
tribution of H in [t , t2]. We may summarize our constructed
equilibrium as follows (see Figure A.1):

(i) Consumers arriving in I buy upon arrival.
(ii) Consumers arriving at time t ∈ [0, t0] buy at a random

time drawn according to the distribution H, corresponding
to the mixing interval (t0 , t∗).

(iii) Consumers arriving at time t ∈ (t0 , t∗) buy at a ran-
dom time drawn according to the conditional distribution Ht ,
corresponding to distribution H of themixing interval (t0 , t∗).
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Figure A.1. Interval [0,T] Is Decomposed in Three
Collections of Intervals

t0 t*

t

(V – p(t))e–(�t + m(t))

T

Notes. Costumers arriving in I (continuous line) buy straightaway.
Costumers arriving in intervals, marked by a dotted line, play mixed
strategies. Finally, costumers arriving in the first interval, marked by
a dashed line, play a mixed strategy with support in (t0 , t∗).

(iv) Consumers arriving at time t ∈ (t1 , t2) of a generic
mixing interval buy at a random time drawn according to the
conditional distribution Ht , corresponding to distribution H
of the mixing interval (t1 , t2).

A.2. Strategy in a Mixing Interval
In this section we focus on a mixing interval (t1 , t2) where t1
and t2 satisfy (24) and (25). We isolate (t1 , t2) assuming that
nobody arrived before t1, which is consistent with our parti-
tioning of the time horizon T. For simplicity we first assume
that p is such that the function

gp(t) :� (V − p(t))e−µt

is nondecreasing. At the end of this section, we consider an
arbitrary continuous price function.

In the following lemma, we impose that themixed strategy
of a consumer who arrived at t should be the same as that
of those who arrived earlier but did not buy before t. This
gives us a closed expression of the availability probability f
in terms of H.
Lemma 4. Let H be a continuous distribution over [t1 , t2].
Assume that buyers arriving at t ∈ (t1 , t2) buy according to the
conditional distribution of H; then, the probability that the item is
available at time t ∈ [t1 , t2] is given by

f (t)� exp
(
−m(t)+ (1−H(t))

∫ t

t1

Λ(x)dx
1−H(x)

)
.

Proof. Let h be the probability density function of H. Thus,
the conditional density on [t , t2] is

ht(s)�
h(s)∫ t2

t
h(τ)dτ

, for all t ∈ (t1 , t2) and s ∈ [t , t2]

so that the conditional distributions is

Ht(s)�
H(s)−H(t)

1−H(t) , for all t ∈ (t1 , t2) and s ∈ [t , t2]. (26)

To apply Equation (1) in the definition of equilibrium,
we need an expression for the density of the arrival pro-
cess. For t ∈ (t1 , t2), the density of the arrival time in a non-
homogeneous Poisson process between (t1 , t) is given by

dFt(x)� (Λ(x)/(m(t) −m(t1))) dx. Also, for every k ∈ �, we
have that Qk(t) � e−m(t)+m(t1)(m(t) − m(t1))k/k!. Hence, it fol-
lows that

f (t) � e−m(t1)� (item is available at t | is available at t1)

� e−m(t1)
∑
k≥0

Qk(t)
∫ t

t1

· · ·
∫ t

t1

k∏
i�1

1−H(t)
1−H(xi)

dFt(x1) . . . dFt(xk)

� e−m(t1)
∑
k≥0

Qk(t)(1−H(t))k
(∫ t

t1

1
1−H(x) dFt(x)

) k

� e−m(t1)
∑
k≥0

Qk(t)
(
(1−H(t))

∫ t

t1

1
1−H(x) dFt(x)

) k

� e−m(t1)
∑
k≥0

e−(m(t)−m(t1))

·
((m(t)−m(t1))(1−H(t))

∫ t

t1
(1/(1−H(x))) dFt(x))k

k!

� e−m(t1) exp
[
(m(t)−m(t1))

(
−1+ (1−H(t))

·
∫ t

t1

1
1−H(x) dFt(x)

)]
� exp

(
−m(t)+ (1−H(t))

∫ t

t1

Λ(x)
1−H(x) dx

)
. �

We now turn to give an explicit expression for the strate-
gies of buyers arriving in a mixing interval. For t ∈ (t1 , t2],
consider the function

H(t) � 1− (ln(gp(t1)/gp(t))+ m(t) −m(t1))

·
(
K exp

(
−

∫ (t1+t2)/2

t

· Λ(x)dx
ln(gp(t1)/gp(x))+ m(x) −m(t1)

))−1

, (27)

where K > 0 is a constant to be determined later. The next
result shows that this is actually a distribution and that if
all consumers buy according to the conditional distribution
given by (26), namely,

Ht(s) �
H(s) −H(t)

1−H(t)

� 1− exp
(
−

∫ s

t

Λ(x)dx
ln(gp(t1)/gp(x))+ m(x) −m(t1)

)
·

ln(gp(t1)/gp(s))+ m(s) −m(t1)
ln(gp(t1)/gp(t))+ m(t) −m(t1)

, (28)

then their utility U(t) is constant in the interval [t1 , t2].
Lemma 5. Let p be a price function such that gp is nondecreasing.
Then, there is K > 0 such that H, defined by (27), is nondecreas-
ing, continuous, and satisfies that H(t2) � 1. Furthermore, if all
consumers buy according to (Ht)t∈(t1 , t2), the family of distributions
defined in (28), their utility satisfies U(t)�U(t1) for all t ∈ [t1 , t2].
Proof. We proceed backward by first imposing that the util-
ity is constant throughout the interval and study the impli-
cations of this condition. Since we assume that nobody
arrived before t1, we have f (t1) � e−m(t1), and the condi-
tion U(t) � U(t1), which is equivalent to (V − p(t))e−µt f (t) �
(V − p(t1))e−µt1 f (t1), yields

em(t1) f (t)�
(V − p(t1))e−µt1

(V − p(t))e−µt �
gp(t1)
gp(t)

for all t ∈ (t1 , t2].
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Note that, since gp is nondecreasing, f is nonincreasing,
which is consistent with the fact that f represents the prob-
ability of the item being available. From Lemma 4 we obtain
the equation

gp(t1)
gp(t)

� exp
(
−m(t)+ m(t1)+ (1−H(t))

∫ t

t1

Λ(x)dx
1−H(x)

)
,

where the unknown is H. This can be rewritten as

ln
gp(t1)
gp(t)

+ m(t) −m(t1) � (1−H(t))
∫ t

t1

Λ(x)dx
1−H(x) dx

for all t ∈ (t1 , t2].

Denoting u : t 7→ ∫ t
t1
(Λ(x)dx/(1−H(x))), we have that u′(t) �

Λ(t)/(1−H(t)) and then we transform the previous integral
equation into the differential equation

Λ(t)
ln(gp(t1)/gp(t))+ m(t) −m(t1)

�
u′(t)
u(t) .

The latter is solved by integrating from (t1 + t2)/2 to t, which
leads to

ln(u(t)) − ln(u((t1 + t2)/2))

�

∫ t

(t1+t2)/2

Λ(x)dx
ln(gp(t1)/gp(x))+ m(x) −m(t1)

.

Defining K � u((t1 + t2)/2) � ∫
(t1+t2)/2
t1

(Λ(x)dx/(1−H(x))) > 0,
we obtain that the solution is

u(t)� K exp
(∫ t

(t1+t2)/2

Λ(x)dx
ln(gp(t1)/gp(x))+ m(x) −m(t1)

)
,

and hence,

(∀ t ∈ (t1 , t2))
Λ(t)

1−H(t) � u′(t)

�

(
KΛ(t)exp

(∫ t

(t1+t2)/2

Λ(x)dx
ln(gp(t1)/gp(x))+ m(x) −m(t1)

))
·
(
ln

( gp(t1)
gp(t)

)
+ m(t) −m(t1)

)−1

, (29)

which yields (27). Now, since (25) yields gp(t1)e−m(t1) �

gp(t2)e−m(t2), it is clear that the right-hand side of (29) goes to
infinity as t→ t2 so that we can set H(t2) � 1. Also, since p is
continuous, gp is continuous and H is continuous in (t1 , t2].

To see that H is nondecreasing, assume for simplicity
that p is differentiable. In this case,

H′(t) � (gp
′(t)) ·

(
gp(t)K

·exp
(
−
∫ (t1+t2)/2

t

Λ(x)dx
ln(gp(t1)/gp(x))+m(x)−m(t1)

))−1

≥ 0.

In general, the monotonicity of H can be easily obtained by
considering a sequence (gn

p )n∈� ∈C∞([0,T]) of nondecreasing
functions such that gn

p converges to gp uniformly on [0,T].
To conclude, note that the conditional distributions defined
in (28) are indeed distributions. Since H is continuous and
nondecreasing in (t1 , t2], Ht is also continuous and nonde-
creasing in [t , t2]. Moreover, because H(t2) � 1, we get that
Ht(t2)� 1 and Ht(t)� 0. �

Remark 6. H remains constant on a subset of (t1 , t2) if and
only if gp remains constant.

Now we tackle the general case when the assumption on
the monotonicity of gp is dropped. For this we define an
auxiliary price scheme over (t1 , t2),

p̄(t) :�V+ inf
τ∈(t1 , t)

{eµ(t−τ)(p(τ)−V)}�V− eµt sup
τ∈(t1 , t)

gp(τ), (30)

and define the distribution, H̄, corresponding to the mixing
interval (t1 , t2) as in (27) but using gp̄ instead of gp . Similarly,
we define the strategy for t ∈ (t1 , t2) as H̄t , the conditional
distribution of H̄ obtained as in (28).

To see the intuition behind p̄, note that when µ � 0, p̄(t) �
infτ∈(t1 , t) p(τ). In general, p̄ is the largest function below p
such that g p̄(t) � supτ∈(t1 , t) gp(τ) is nondecreasing. Indeed,
whenever gp is decreasing, g p̄ remains constant, and further-
more, if in an interval g p̄ , gp , then g p̄ is constant in that
interval.

Next, we assert that H̄ and H̄t are indeed distributions. In
fact, observe that p(t) � p̄(t) if and only if gp(t) � g p̄(t), and
therefore the set A:� {t ∈ (t1 , t2) | p̄(t), p(t)} is the same set as
the set where g p̄( · ) remains constant. Thus, by Remark 6, the
support of H̄ is actually [t1 , t2] \ A, and therefore H̄ and H̄t
are nondecreasing. Finally, invoking Lemma 4, we conclude
that the subset of times over a mixing interval where f ( · )
stays constant is the set A.

Remark 7. The analysis for the mixing interval (t0 , t∗) is anal-
ogous, excepting that we have to take into account that the
buyers arriving in [0, t0] are waiting to buy on (t0 , t∗). Hence,
at the moment of computing f , we consider that Qk(t) �
e−m(t)m(t)k/k!.

A.3. Putting the Pieces Together
We are now ready to prove Theorem 2. First, recall that
the strategies of buyers in the game can be summarized as
follows:

(i) Consumers arriving in I buy upon arrival.
(ii) Consumers arriving at time t ∈ [0, t0] buy at a random

time drawn according to the distribution H̄, corresponding
to the mixing interval (t0 , t∗) constructed using (27), (30), and
Remark 7.

(iii) Consumers arriving at time t ∈ (t0 , t∗) buy at a ran-
dom time drawn according to the conditional distribution H̄t ,
corresponding to distribution H̄ of themixing interval (t0 , t∗).

(iv) Consumers arriving at time t ∈ (t1 , t2) of a generic
mixing interval buy at a random time drawn according to the
conditional distribution H̄t , defined by (28) and (30), corre-
sponding to the distribution H̄ of the mixing interval (t1 , t2).

In the next lemma, we show that the time decomposition
of the horizon [0,T] is correct. This means that for every
t ∈ [0,T]we can associate a strategy as just described.

Lemma 8. The interval [0,T] can be partitioned into the set I,
the interval [0, t∗), and a collection of mixing intervals of the form
(t1 , t2), as defined by Equations (21)–(25). Hence, the constructed
strategies are well defined for every t ∈ [0,T].
Proof. We first prove that the set I is a compact. Indeed, con-
sider a convergent sequence in I, xn→ x and ε > 0. By conti-
nuity of T(s) :� (V − p(s))e−(µs+m(s)), there is M > 0 such that

max
s≥xn

T(s)+ ε ≥max
s≥x

T(s) for all n ≥M.
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Since xn ∈ I we obtain that T(xn) + ε ≥ maxs≥x T(s) for all
n ≥M. Taking n→∞, we conclude that x ∈ arg maxs≥x T(s),
equivalently, x ∈ I. Then, I is closed and thus compact.

The compactness of I quickly implies the lemma. Let t ∈
[0,T], and let t̄ � min{s ≥ t: s ∈ I}. Clearly, if t � t̄, then t ∈ I.
So assume t < t̄. In this case, if t̄ � t∗, then t ∈ [0, t∗]. Otherwise
there is s ∈ I such that s < t. So, letting t1 � max{s ≤ t | s ∈ I}
and t2 � t̄, they satisfy (25) and (24), respectively; therefore
t ∈ (t1 , t2). �

Slightly abusing notation, let us call Ht the strategy defined
for a buyer arriving at time t ∈ [0,T]. We are finally able to
prove our main result: if all buyers behave according to Ht ,
we have a Bayes–Nash equilibrium of the subgame.

Proof of Theorem 2. First, let us show that if Ht is an equi-
librium when p is continuous, then it will also be an equilib-
rium when p is only continuous over [0,T) and p(T) � v. In
fact, if all players follow Ht , the utility of any player arriving
before T is greater or equal than (V − p(T−))e−(µT+m(T)). Then,
since p(T−) ≤V −((V − v)(1− e−∫

T
0 λ(t) dt))/(∫T

0 λ(t) dt), we con-
clude that is not profitable to wait and purchase at the end of
the season.

To conclude that Ht is an equilibrium for the game, it only
remains to prove that there is no profitable deviation over
[0,T). By contradiction, assume that there is a deviation for
some player, i.e., there is t ∈ [0,T) and z ≥ t such that z
lies outside the support of Ht and U(z) > U(s) for s in the
support of Ht .

If t ∈ I, we have that Ht(t) � 1 (buy upon arrival), and
by definition of I, we obtain (V − p(t))e−(µt+m(t)) ≥ (V − p(z))
e−(µz+m(z)) ≥ U(z), where the last inequality follows because,
by construction, every buyer arriving before t will end up
buying before t.

Otherwise, if t belongs to a mixing interval of the form
t ∈ (t1 , t2), recalling that the utility of a buyer arriving at
time t equals U(t1) and, by Lemma 5, for z̃ ∈ (t1 , t2] we have
that U(z̃) ≤ U(t1), we conclude that z > t2. But if z > t2, the
situation is analogous to the case t ∈ I since, by definition
of t2, (V − p(t2))e−(µt2+m(t2)) ≥ (V − p(z))e−(µz+m(z)) ≥U(z).

Finally, we study the case t ∈ [0, t∗] with t∗ > 0. If z ≥ t0,
the situation is analogous to the previous case. If, on the
contrary, z < t0 and U(z) > U(t0), since t∗ > 0, we have that
U(0) < U(t∗) � U(t0); therefore, by continuity, there is z̄ < t0
such that U(z̄)� (V − p(z̄))e−µz̄ �U(t∗)� (V − p(t∗))e−(µt∗+m(t∗)),
contradicting the minimality of t0. �

Endnotes
1See http://www.mercadominero.cl/sitio/home.php?lang�1 (ac-
cessed June 9, 2016).
2Clearly s′ ∈ [0, s], and some basic calculus shows that actually s′ < s.
3We define the infimum over the empty set as V .
4Note that equilibrium is actually defined as a price and a probabil-
ity of availability f , but using (12), we see that ϕ characterizes the
equilibrium as well.
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